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1 Introduction

SUPSI developed demand-side management (DSM) algorithms aimed at control-ling several flexible 
resources at different levels in the grid, taking into account grid constraints. To this end, a distributed 
multilevel predictive control system was developed. The controller relies on a machine learning-based 
forecast developed in parallel. In this report, we analyze the performance of the fore-casting and 
control algorithms applied to the management of two battery energy storage systems in the Chapelle-
sur-Moudon case study.

This report is structured as follows:

• In section 2, we present the test setup in the Chapelle-sur-Moudon pilot.

• In section 3, we analyze the results, in particular:

In section 3.1, we analyze the control part. We describe the algorithms used and analyze their
effect in the pilot.

In section 3.2, We deal with the load curve prediction part, briefly describing the forecasting
algorithms and evaluating the performance during the test phase.

• In section 4, we discuss the limitations of the chosen approach in the available configuration and
propose future developments that could improve its performance.

2 Pilot setup

The ReEL DSM demo site consists of a section of LV grid in Chapelle-Sur-Moudon with roughly 300kWp
of PV installed. A total of 7 nodes are monitored, as shown in figures 1 and 2. A total of 3 batteries are
installed in the grid, two of which can be directly controlled:

• Node 107: a 300 kWh district-level battery with charging and discharging power of [50, -200] kW
located at the PCC. It is intended to be used for peak shaving to smooth the consumption peak
and reduce the production peaks generated by the PV power plants.

• Node 106: a 40 kWh battery with charging and discharging power of [10, -20] kW is owned by an
end-user and is operated to maximize self-consumption and minimize its billing costs.

Nodes were monitored at 1-second resolution by GridEye devices, which provided active and reactive
power, voltage and current, per phase. The measurement history is not queryable, so data must be
constantly fetched from the Grideye server every second. This is not an ideal setup, as, if for any
reason, the server is not reachable, data get lost. But the system was very reliable, and very few data
were lost.
The batteries are managed by Aurora’s Grid, which provided us with an API that allows us to query the
state of the batteries and set active power setpoints. Although GridEye offered a sampling resolution
of 1 second, after some testing and discussions with Aurora’s Grid engineers, we decided to set the
battery data sampling and control resolution to 1 minute since the system could not handle faster paces.
However, this is suitable for the application we had in mind, which was never meant to perform real-
time control, as the distributed control mechanism has an iterative convergence mechanism, making it
inherently slow.

An Influxdb database has been created, in which all measurement data, both from GridEye and from
the batteries are stored. The database is used both to collect the data necessary to train the forecasting
algorithms, and to analyze the performance of the control.
A Grafana web interface was used to visually asses data and control quality. An example of data visual-
ization for three days of test is shown in figure 3.
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Figure 1: The ReEL demo site aerial view

Figure 2: The ReEL demo site single line diagram
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Figure 3: Pilot data visualization
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3 Results

The testing phase lasted 2 months, from October 24th to December 20th 2021. A previous testing phase
was planned in spring 2021, but at the time the API interface with the batteries proved to be unreliable.
Since then Aurora’s grid has upgraded battery hardware and software, greatly improving the reliability of
the system. The first couple of weeks of successful testing phase were used to fine tune the algorithms
and test the battery control interface. In the following period, unfortunately, the PV production was
limited and lower than the consumption of local loads, so most of it was 100% self-consumed. Under
these circumstances, we were unable to extensively test our self-consumption optimization algorithms.
Figure 4 shows the time course of power at the node 106 and state of charge for the small battery that
tries to optimize the self-consumption of the node, during the testing period. It can be noted that most
of the time all the production is self-consumed without the need for battery intervention, and that when
the battery is charged to absorb the excess PV power, it rarely reaches a state of charge (SOC) above
50%. In the following two subsections, we present the results of the test campaign. First, we focus on
the performance evaluation of the forecasting algorithms, which is of paramount importance as we use
predictive control methods. Then we present the results of battery control.

Figure 4: Time course of power at node 106 and SOC of the small battery.

3.1 Evaluation of control performance

3.1.1 Multi-level distributed model predictive control algorithm description

The multilevel hierarchical algorithm that we developed for the coordination of prosumers located in
different voltage levels of the electrical grid is presented in [1]. The hierarchical structure of the grid is
described by means of a rooted tree. At the top level the objective is peak shaving and valley filling,
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while and in level below, the local objective of the small battery is self-consumption optimization, as
summarized in table 1. Since the two objectives could be in conflict with each other, we adopted a slight

PV Controllable batteries Objective Control type

ReEl 200 kWp 40 kWh [-20, 10] kW
300 kWh [-200, 50] kW

Cost reduction
Peak shaving

distributed,
lexicographic

Table 1: Technical characteristics of the demo site

modification of the algorithm presented in [1]: at each iteration of the coordination process, the smaller 
battery performs a lexicographic optimization in which it will at first optimize for i ts own costs and in a 
second moment will try to synchronize with the higher level of the hierarchy (in this case constituted of 
just another agent), to perform peak shaving. In the ReEl demo, the privately owned battery (the small 
one) has no economic reason to synchronize with the district level battery to perform peak shaving. 
In fact, the objective of the private battery is to increase its own self-consumption. However, typically, 
several equivalent solutions for the charging and discharging operations exist, which achieve the same 
results in terms of self-consumption. A win-win solution is to use a lexicographic approach for the 
small battery: at first, a n o ptimal s cheduling f or t he s mall b attery, w hich m aximizes i ts o wner’s self-
consumption, is obtained. This optimal scheduling generates a cost and a final s tate o f c harge of 
the battery. These can be used as constraints during the coordination needed for peak shaving. A 
more detailed description of the algorithm can be found in the deliverable 3d3 Design and test of 
distributed DSM algorithms that use communication and new forecasting models.

3.1.2 Challenges in Battery control

The SOC reported by the battery management system (BMS) was highly inaccurate and very power-
dependent (figure 5). We were unable to obtain information on how the estimation of SOC is done in 
the BMS, but our observations lead to the conclusion that SOC is estimated by the battery management 
system (BMS), almost only on the basis of the closed source voltage, which causes that when power is 
fed into the battery, the estimate of the state of charge suddenly increases and, conversely, when power 
is drawn from it, the SOC decreases. This is particularly true when the power set points have a steep 
ramp. We decided not to develop our own SOC estimator, as this was out of the scope of the project. 
Instead, to minimize the oscillation in the SOC estimate, with implemented a ramp constraint on the set 
point power sent to the batteries. The maximum rate of change in absolute power was set to 2kW per 
minute and 10kW per minute for the small and the big battery, respectively.
Another minor practical problem we encountered during the test phase is the standby power of the 
300kWh battery, which appeared to be around 1.4kW. During the period in which the small battery was 
not operated because the PV was completely self-consumed, it required 500Wh per day in order to 
stay above the safe limit of 15% SOC. This is 1.25% of the total 40kWh capacity per day, which is a 
surprisingly high number.

3.1.3 Control performance

Batteries were operated within a safe range between 20% and 80% SOC. Those numbers were commu-
nicated to us by Aurora’s Grid. Figure 6 shows a summary of battery control during the testing period. It 
shows the total active power at both nodes with and without batteries and the battery power as a function 
of the hour of the day and the day of the week. One can notice that the small battery was charged mainly 
from the excess PV power and mostly discharged during the evening peaks. The outlier 5kW charging 
events that spread throughout the day are emergency charging events, which were automatically trig-
gered in our software when the SOC of the battery would fall below 15%.
The big battery instead was allowed to charge from the grid, and therefore we can see that it tends to 
absorb energy in periods in which the power at node 100 is low or negative and reinject energy when the 
consumption at the node is high, during the morning and evening peaks. Since at node 106, PV produc-
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Figure 5: Oscillations in SOC readings as a function of the active power requested.

tion was not sufficient for the vast majority of the time, the advantage given by coordinating the batteries 
with each other could not be evaluated on the empirical data. However, we have demonstrated 
the advantage of coordination in the deliverable 3Overall-Cross-site Comparison of the performance 
of different DSM strategies. Investigation of the possible conflicts (LIC and Chapelle-sur-Moudon) and 
sub-optimality issues, in simulation. The algorithm em-ployed is the same, and it worked as specified. 
We focus here on analyzing the impact of control at the coupling point of the pilot network (node 100). 
The main objective of the control was to reduce power fluctuations at node 100, through an objective 
function that quadratically punished them.

To better assess control quality, we decided to calculate what would have happened under ideal condi-
tions. We simulated ideal batteries with the same specifications as those used in the project and used 
perfect forecasts to control them. The batteries were modelled in simulation with a simple 1-state model, 
using constant charge and discharge efficiencies of 95% and a self-discharge of 3% per month. Sim-
ulating ideal batteries allows us to better assess the performance of our control, against a best-case 
scenario. We also decided to evaluate the effect of imposing a ramp constraint on the battery power set 
point. Since we added it to overcome the problem in the SOC readings we received from the battery, we 
wanted to assess whether this would hinder the control under ideal conditions.
Figure 7 shows the distribution of the active power at the coupling point of the test network (node 100) 
during the period in which the algorithms were activated. The no_bat case represents the power mea-
sured at the node 100 after the battery actions were subtracted from it. Losses were not taken into 
account. We can see that our algorithms effectively reduce the power excursions at node 100 and flat-
ten the profile. However, we can also notice that the distribution’s right tail is much better in the ideal 
case. This happens primarily because the forecasts are not perfect. The bias in the forecasts probably 
plays a crucial role. We often observed that the battery was depleted too early, leading to a peak in
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consumption. The results would probably be much better if we managed to reduce the bias.
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Figure 7: Power distribution during the test period, sampled with 1-minute resolution.
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3.1.4 Peak reduction analysis

We analyzed the performance of the algorithms for peak shaving. In this case, we evaluated the re-
duction and the ideal potential reduction in daily peaks with a sampling of 1-minute (or control sampling
time) and 15-minute peaks (the usual peak invoicing sampling time in Switzerland). For each day of the
test phase, we calculated the maximum power consumed, after averaging the values according to the
sampling time.
Figure 8 and 9 show the time-series of daily peaks during the testing period in which both batteries
were actively controlled, with a sampling time of 1 minute and 15 minutes, respectively. Here one can
clearly see that the ramping constraint imposed on the battery affects the high-resolution peak reduction
capabilities. This effect disappears when the sampling resolution is 15 minutes.

The empirical cumulative density function of the peak reduction is shown in figures 10 and 11 for the
sampling resolutions of 1 and 15 minutes, respectively. The average relative and absolute daily peak
reduction is summarized in table 2. The algorithm reached slightly above 1/4 of the maximum possible
peak reduction in 1-min resolution, and slightly above 1/3 of the maximum reduction in 15-min resolution.
For a more detailed analysis of the cost, refer to deliverable 3f - Assessment of investment costs of
controllable batteries and comparison with grid refurbishment. However, it is important to notice that the
peak is billed on the monthly and not on the daily maximum, which makes the task of optimizing peak
costs very difficult, since it only takes the algorithm to make a mistake once a month to undo the effect
of days in which the controller actually helped lower the peak. In this case, it might be interesting for the
DSO to revise the peak billing method to make the service more attractive, which in any case helps to
reduce losses on the network and extend the life of components on the network.

controller 1 min relative
reduction [%]

1 min absolute
reduction [kW]

15 min relative
reduction [%]

15 min absolute
reduction [kW]

ideal 35.59 76.12 29.75 58.18
ideal_ramp 32.36 69.30 29.75 58.17
pilot 8.41 17.86 11.02 21.28

Table 2: Peak reduction during test period
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day of month

day of month

Figure 8: Time-series of peak in the period between 12.11.21 and 21.12.21, sampled with 1-minute
resolution.
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day of month

day of month

Figure 9: Time-series of peak in the period between 12.11.21 and 21.12.21, sampled with 15-minute
resolution.
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Figure 10: Empirical CDF of peak in the period between 12.11.21 and 21.12.21, sampled with 1-minute
resolution.
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Figure 11: Empirical CDF of peak in the period between 12.11.21 and 21.12.21, sampled with 15-minute
resolution.
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3.2 Evaluation of forecasting performance

3.2.1 Forecasting algorithm

In the previous deliverable 3d3 Design and test of distributed DSM algorithms that use communication 
and new forecasting models comparison CsM e LIC, we an-alyzed the performance of different 
forecasting models and have used them to assess the closed-loop performance of storage and load 
control. We focused on methods that have already proved to be ac-curate in forecasting 24 hours 
ahead residential power profiles. In particular, we tried to improve the performance of the methods 
that were tested in [2] and [3], and focused on the Holt-Winters method and on different forecasting 
techniques exploiting gradient boosted models (GBM), a family of competition-winning, general-
purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to 
minimize a specific loss function.

In the pilot phase we decided to use a forecaster based on the Light Gradient Boosting Machine (Light-
GBM), a general-purpose, non-parametric regressor, which exploit sequential model fitting and gradient 
descent to minimize a specific l oss f unction. We a pplied a  p reliminary c ausal e mbedding o f t he ex-
planatory variables, in order to capture seasonal effects. Starting from the original time series s ∈ S, a 
predictors (or regressors) matrix X and a target matrix Y are obtained. Given a dataset with T observa-
tions, a prediction horizon of h steps ahead, and an history embedding of e steps, we obtain the Hankel 
matrix of targets Y ∈ IR(T−h−e)×h, and the Hankel matrix of the past regressors, Xp ∈ IR(T−h−e)×nxe, 
where nx is the number of regressors. Verbosely, Xp and Y can be written as:

Xp =

[ x1,t−e x1,t−e+1 ... x1,t x2,t−e ... xnx,t
...

x1,t−e+1 x1,t−e+2 ... x1,t+1 x2,t−e+1 ... xnx,t+1
x1,T−2h x1,T−2h+1 ... x1,T−h x2,T−2h ... xnx,T−h

]
(1)

Y =
[ yt+1 yt+2 ... y1,t+h

...
yT−h+1 yT−h+2 ... yT

]
(2)

where x1,t stands for the first regressor at time t.

In hour case, the battery controller runs every 1 minute, solving an optimization problem using model
predictive control over a receding horizon of 24 hours. The optimization strategy implements a variable
step length: the first 5 steps have a 1 minute duration, the following 2 have a 5 minutes duration, and
the rest 15, as shown in figure 12. This way, we reduced the number of steps h from 1440 to 102. The
past regressors matrix Xp is then augmented with categorical time features, e.g. day of week, and NWP
variables, to obtain the final regressors matrix X.

.   .   .
5 10 15 1425 144030

time (min)
forecasting step

1 2 3 4 5 6 7 8 102

0

Figure 12: Forecasting steps and their duration.

In order to realize the control we depicted in section 3.1, we need to forecast the time-course of power
at two points:

• At node 106, to optimize local self-consumption

• At node 100, to perform peak shaving and valley filling

The forecasting algorithms, described in 3.2.1, were trained based on one year of historical grid data,
measured by the GridEye devices installed at the nodes 100 and 106. Unfortunately, we didn’t get
access to the battery data for the entire period, when available, the battery actions were subtracted from
the power measured at the nodes.
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The accuracy of the forecasting varied as a function of the forecasting step and of the hour of the
day. Figure 13 shows the absolute error made by the forecasting algorithm during the test period. Not
surprisingly, the closer in time the forecasts are to the time at which they were produced, the better they
are. It can also be noted that the time of day when forecasts are most difficult to drill down is around
noon, which is due to the fact that PV is not easy to predict, even if numerical weather predictions are
fed into our forecasters. The same data are shown in Figure 14, where the mean absolute error (MAE)
is calculated as a function of time of day and number of steps ahead.
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Figure 13: Distribution of absolute error for the forecasters at the nodes 106 (000GC) and 100 (000GI).
Left: error distribution as a function of the step ahead. Right: error distribution as a function of the time
of the day.

Since our forecasts are used to control a battery, it is important to analyze the forecast error not only in
terms of MAE or RMSE, but it is equally important to understand whether the forecaster is biased in un-
derestimating or overestimating the power trend at the node. Overestimating PV production, for example,
would lead to a control strategy that does not fully charge the battery, underestimating the consumption
would lead to a premature battery depletion. Figure 15 shows that in both cases the forecaster displays
a significant positive bias. In our case, the residuals were calculated as et = Pobservedt

− Pforecastt ,
which means that a positive bias results in a underestimation of the total consumption at the forecast
nodes. This has a consequence on the control, as we will show in section 3.1.4. We hypothesize that
this bias is due to the fact that we could not subtract battery actions from the training data, which led to
an underestimation of grid consumption since, at least at some times, it was masked by battery actions.
However, it is possible that there was an evolution in the type and number of loads present at the nodes.
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Figure 14: MAE of the forecasters as a function of forecasting step and hour of the day. Left: node 106
(000GC), Right: node 100 (000GI).
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Figure 15: Decomposition of root mean squared error into bias and standard deviation for the forecast
at the nodes 106 (000GC) and 100 (000GI). blue lines: bias, green line: standard deviation, red line:
RMSE. Left: as a function of the step ahead. Right: as a function of the time of the day.
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4 Discussion

4.1 Limitations of current approach and future work

Controllers were initially designed with many flexible loads and batteries distributed throughout the grid
in mind. This was based on what was developed in FURIES and for the Gridsense commercial product.
We focused on the development of algorithms that would work at different voltage levels in the grid,
taking into account grid constraints. Unfortunately, only two batteries could be controlled in this case,
and for a limited time.

One of the limitations of the chosen approach is that it relies on deterministic optimization. For the
specific problem of peak shaving, it would be particularly useful to use an approach that accounts for
uncertainty in predictions of energy production and consumption, i.e., robust or stochastic control. A
possible extension of our formulation, which would certainly help to achieve better results in peak shav-
ing, would be the implementation of multilevel stochastic control.
Multilevel stochastic control requires to model the joint probability distribution of the power at all the lev-
els, and to take joint decisions, for example by constructing a multivariate stochastic tree with a number
of dimensions equal to the number of agents. As the initial number of agents was thought to be high,
this wasn’t considered feasible and we opted instead for a deterministic formulation. But in this case, in
which only two batteries are controlled, it would be a sound approach.
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