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1 Description of deliverable and goal

1.1 Executive summary

Dispatching active distribution networks (ADNs) is an energy-intensive application

that, if implemented via Battery Energy Storage Systems (BESSs), may require large

capacity of these assets to fully balance the uncertainties caused by the stochastic

demand and generation. Insufficient BESSs capacity often leads to their State-of-

charge (SOC) saturation resulting in unreliable dispatch tracking.

This work proposes, and experimentally validates, a real-time control scheme that

achieves a highly-reliable dispatching of ADNs while ensuring that BESSs SOC is

not saturated during the daily operation. The proposed scheme uses a two-layer

model predictive control (MPC). The upper layer MPC, running every 5-minutes, op-

timizes BESSs SOC trajectories while minimizing the tracking error considering the

prosumption forecast of the whole day. Then, the lower layer MPC, running every

30 seconds, takes BESSs SOC trajectories as constraints while achieving a high-

resolution tracking of the dispatch plan over the current 5-minutes time horizon.

Both layers account for the grid constraints using the Augmented Relaxed Optimal

Power Flow (AR-OPF) model, an exact convex relaxation of the original AC-OPF, used

in this paper for the first time in the literature to solve a real-time constrained control

problem for ADNs.

Both the layers are supported by day-ahead and intra-day forecasts of the uncon-

trollable injections such as demand, PV and Hydro generation. The proposed frame-

work is experimentally validated using a 1.5 MVA/2.5 MWh BESS connected to an

actual 24-node medium voltage (MV) ADNs in Aigle, Switzerland hosting uncontrol-

lable 3.2 MWp distributed photovoltaic generation, 3.4 MVA hydro generations, and

2.8 MW base demand. The RT control problem is formulated as a Model Predictive

Control (MPC) that computes the active and reactive power setpoints of the battery

energy storage system BESS such that it tracks the dispatch plan at the GCP while

obeying the grid and the BESS constraints.

1.2 Research question

Can we enhance the dispatching performance using short-term forecast of uncon-

trollable PV and demand?
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1.3 Novelty of the proposed solutions compared to the state-of-art

The main contributions of this work are listed below.

• Development of a two-layer model predictive control of BESS for achieving dis-

patch of a power distribution network while ensuring that BESS is not satu-

rated.

• Development of day-ahead and intra-day forecast algorithms.

• Validation of the dominant model in a full-scale real environment via the REeL

demonstrator site in Aigle, Switzerland.

1.4 Methodology description

We refer to attached pre-print article below [1] for description on the method-
ology and experimental results.
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Reliable Dispatch of Active Distribution Networks
via a Two-layer Grid-Aware Model Predictive Control

Rahul Gupta, Antonio Zecchino, Ji-Hyun Yi, Mario Paolone
Abstract—Dispatching active distribution networks (ADNs) is

an energy-intensive application that, if implemented via Battery
Energy Storage Systems (BESSs), may require large capacity
of these assets to fully balance the uncertainties caused by
the stochastic demand and generation. Insufficient BESSs ca-
pacity often leads to their State-of-charge (SOC) saturation
resulting in unreliable dispatch tracking. This work proposes,
and experimentally validates, a real-time control scheme that
achieves a highly-reliable dispatching of ADNs while ensuring
that BESSs SOC is not saturated during the daily operation.
The proposed scheme uses a two-layer model predictive control
(MPC). The upper layer MPC, running every 5-minutes, optimizes
BESSs SOC trajectories while minimizing the tracking error
considering the prosumption forecast of the whole day. Then,
the lower layer MPC, running every 30 seconds, takes BESSs
SOC trajectories as constraints while achieving a high-resolution
tracking of the dispatch plan over the current 5-minutes time
horizon. Both layers account for the grid constraints using the
Augmented Relaxed Optimal Power Flow (AR-OPF) model, an
exact convex relaxation of the original AC-OPF, used in this
paper for the first time in the literature to solve a real-time
constrained control problem for ADNs. The proposed framework
is experimentally validated using a 1.5 MVA/2.5 MWh BESS
connected to an actual 24-node medium voltage (MV) ADNs in
Aigle, Switzerland hosting uncontrollable 3.2 MWp distributed
photovoltaic generation, 3.4 MVA hydro generations, and 2.8 MW
base demand.

Index Terms—Active distribution networks, dispatching, model
predictive control, battery, AC optimal power flow.

I. INTRODUCTION

Increasing the displacement of conventional power gener-
ation towards stochastic renewable (e.g., [1], [2]) is causing
increased power imbalances leading to increased reserve re-
quirements in power transmission grids (e.g., [3], [4]). At the
same time, such a displacement is at the origin of operational
issues in power distribution systems associated to the delivered
quality-of-service (mainly associated to voltage quality and its
control) as well as lines and transformers congestion [5], [6]).

Dispatching power distribution networks has been proposed
in the existing literature as a way to tackle the problem of
bulk transmission systems imbalances at the local scale and,
at the same time, solve local distribution grid operational
issues (e.g., [7], [8]). This process is achieved by control-
ling suitable distributed energy resources (DERs) in order
to indirectly regulate the power injections of heterogeneous
and stochastic resources according to a pre-defined power
trajectory established the day before operation [9], [10]. In
these schemes, distribution system operators (DSOs) may
determine the day before operation their dispatch plan by
taking into account uncertainties of stochastic power injections
and follow it during the day of operation by controlling flexible
resources such as battery energy storage systems (BESSs).
Different dispatching frameworks have been already proposed
by the Authors of this paper. For example, the work in

[9] proposed and validated a dispatching framework on an
medium voltage (MV) feeder using a utility-scale BESS. The
work in [11] proposed and validated a day-ahead dispatching
framework on a micro-grid using multiple controllable DERs.
Both controls were formulated to track the dispatch plan
over a short horizon (i.e., 5 minutes) with the consequence
for the control to be myopic with respect to prosumers’
uncertainties in the forthcoming timesteps during the rest
of the day. The consequence is that early saturation of the
flexibility offered by controllable resources (e.g., BESSs State-
of-Charge - SOC) may occur, hence interrupting the reliable
tracking of the dispatch plan. A way to solve the problem has
been proposed in [11] by optimally curtailing the excess of
power from renewable stochastic generation. Another solution
is to increase the time-ahead horizon period (e.g., [12]) in the
real-time (RT) MPC of the schemes proposed in [9], [11].
However, this approach increases the computation time (due
to large number of variables) and may exceed the real-time
actuation time deadline of the MPC controller. Additionally,
when the above schemes are implemented on a grid with rich
stochastic injections, a successful dispatch requires a large
BESS capacity, which might be challenging to be procured
by the DSOs due to regulatory constraints and (sufficiently
low) payback times. Furthermore, the works in [9], [12] did
not account for the grid constraints and the work in [11]
did consider the grid constraints via a linearized power flow
model. Although the linear power flow model in [11] stands
correct for most of the cases, it cannot rigorously guarantee the
feasible operation of a generic power distribution grid in cor-
respondence to any possible state. In this respect, the full AC
power flow equations might be considered to properly model
the grid constraints. However, this leads to the well-known
non-convex optimal power flow (OPF) problem [13], [14].
OPF problems are usually computationally expensive; thus,
they are often used for offline optimizations schemes such as
for the planning of grid reinforcements (e.g., [15]). Several
approaches have been proposed in the literature to address the
non-convexity of power-flow equations [11], [16]–[20]. The
first approach is based on its linearization, for example, in
[11], [16], [17]. These schemes rely on the first (e.g. [11],
[17]) or multiple (e.g. [16]) order Taylors series expansion of
the power flow equations to express the nodal voltages, lines
current, and losses as a function of the power injections. The
second approach relies on the adoption of suitable relaxation of
the power flow equations to obtain a convex formulation of the
OPF [18]–[20]. Semidefinite relaxation, as second-order-cone-
program (SOCP) in a bus injection model [19] and in a branch
flow model [20] are the most adopted models. However, they
apply to a subset of distribution networks. Furthermore, these
methods ignore the presence of shunt elements, which is not a
realistic assumption for MV distribution networks with branch
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composed by long coaxial cables. To fix these shortcomings,
in [18] it is proposed the so-called augmented relaxed (AR)-
OPF, which accounts for the shunt elements and provides an
exact solution of the OPF if specific conditions are met.

Given the above-listed issues, we propose an MPC scheme
to achieve an accurate dispatch tracking of distribution grid
while avoiding BESSs SOC saturation. The proposed scheme
inherently restores adequate SOC levels for the subsequent
day. It is achieved by a two-layer real-time MPC where the
upper layer refines the SOC trajectory of the BESS every 5
minutes, based on updated forecasts of prosumers uncertainties
for longer time horizons. Then, the lower layer MPC computes
the BESS active and reactive power setpoints by considering
the SOC trajectory computed by the upper layer as a con-
straint. The upper layer MPC is periodically fed with updated
5-minutes forecasts of the stochastic injections for a longer
time horizon (up to the end of the day of operation). Regarding
the forecasts, we adopted an integrated data-driven prediction
of the prosumption relying on day-ahead predicted scenarios,
updated global horizontal irradiance (GHI) forecasts from
a commercial service, and the latest power measurements.
The RT control scheme accounts for the grid constraints
by means of the AR-OPF [18]. The proposed framework is
experimentally validated on an actual 24-node medium volt-
age (MV) grid in Aigle, Switzerland, hosting uncontrollable
3.2 MWp distributed photovoltaic generation, 3.4 MVA hydro
generations, and 2.8 MW base demand. A grid-connected
1.5 MVA/2.5 MWh BESS is the sole controllable resource in
this setup. The grid is equipped with a state-of-the-art metering
and communication infrastructure to determine the grid state
at a high refresh rate (i.e., 50 estimations a second) by using
distribution level phasor measurement units (PMUs).

The paper is organized as follows. Section II states the
problem, Section III describes the day-ahead problem, Sec-
tion IV introduces the real-time controller, Section V presents
the experimental setup, Section VI discusses the experimental
results and Section VII summarizes the outcomes and findings.

II. PROBLEM STATEMENT

We consider a power distribution grid hosting heterogeneous
controllable and uncontrollable DERs. The uncontrollable re-
sources comprise stochastic renewable power generators and
demand whereas the controllable resource is a grid-connected
BESS. The grid is dispatched at its grid connection point
(GCP) by controlling the BESS via a real-time (RT) controller
according to a pre-determined dispatch plan. The dispatch plan
is computed the day-ahead based on the forecasts of stochastic
generation and demand, the status of the controllable resource
(i.e., the BESS) and by taking into account the local grid
constraints. The dispatch plan has a 5-minutes time resolution
and is computed at 23:30 local time the day before operation.

The RT operation start at 00:00 local time. The objective of
the RT controller is to achieve a fine tracking of the day-ahead
dispatch plan while avoiding the saturation of the BESS SOC
during the rest of the daily operation. Furthermore, at the end
of the day, the framework has to restore a sufficient BESS
SOC for dispatching the next day. Existing schemes in [9],
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Fig. 1. Schematic representation of the SOC evolution of the BESS with
myopic single-layer MPC and farsighted two-layer MPC.

[11] used a RT controller with an MPC look-ahead horizon of
5-minutes. However, this MPC is myopic to the uncertainties
of the injections, eventually leading to BESS SOC saturation
as schematically shown in Fig. 1. We want to avoid BESS
SOC saturation by adding a farsighted MPC layer imposing
an SOC budget. This feature is enabled by the proposed two-
layered MPC framework where the upper layer (farsighted)
takes care of the SOC saturation of the BESS, whereas the
lower layer (myopic) aims to fine-track the dispatch plan.
• The upper layer MPC computes the BESS energy budget

using the information on the intraday forecasts and current
states of both grid and BESS. It runs every 5 minutes.

• The lower layer MPC optimizes the active and reactive
power setpoints of the BESS while considering the energy
budget restrictions from upper layer MPC and grid con-
straints. It runs every 30 seconds.

The day-ahead and real-time dataflow is shown in Fig. 2. Each
stage is described in detail in the following sections.

Day-ahead dispatch
computation

Day-ahead scenarios of nodal
demand and generaration

Intraday
forecast

Initial BESS SOC

BESS SOC

Grid state

Scheduling loop (Day before operation)

Active and reactive power setpoints
computation by lower-layer MPC

Energy budget computation by the
upper-layer MPC

Short-term
forecast

Control loop (During the day)

Every 30 seconds

Every 5 minutes

Once a day

Fig. 2. Schematic dataflow of the proposed scheduling and control framework.

III. DAY-AHEAD DISPATCH COMPUTATION

The objective of the day-ahead scheduling is to compute the
dispatch plan, namely the active power profile that the targeted
distribution network should follow at its GCP at 5 minutes
resolution during the next day operation. The dispatch plan
is denoted by the sequence P disp

k , k = 0, 1, . . . , N − 1 where
index k is associated to 5-minute discrete intervals of the day
of operation, and N = 288 is the number of time intervals
in 24 hours. The dispatch plan accounts for the stochastic
variations of the distributed renewable generations and demand
by day-ahead scenarios produced according to forecasts.

A. Day-ahead load and renewable power generation forecast
The dispatch computation relies on power injection forecasts

(for each node of the network) modeled by scenarios. We
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develop a data-driven scheme to generate day-ahead scenarios
of demand and renewable (in the form of PV and hydro) power
generation. We assume that the PV generation is aggregated
behind-the-meter with the local loads whereas the hydro power
generation is from stand-alone distributed power plants.

1) Demand forecast: it uses nodal historical data-sets up-
dated on a rolling horizon whenever new data is available.
Algorithm 1 shows the key steps: the first one refers to
the disaggregation of the true demand from the aggregated
nodal injections (denoted by Pl), followed by the clustering
and multivariate Gaussian fitting of the true demand. These
steps are described below.

Algorithm 1 Day-ahead demand forecasting
Require: Historical nodal power injections (Pl), GHI (G), air tem-

perature (θ), node index l ∈ L = [1, . . . , L]
1: procedure DEMANDDAYAHEAD(1)
2: for l = 1:|L| do
3: if node l contains a PV plant then
4: [P load

l , PV-config] = Dissaggregation(Pl,G, θ)
5: else
6: P load

l = Pl

7: end if
8: [PC1

l , . . . ,PCNc
l ] = Clustering(P load

l , features)
9: end for

10: for c = 1 : Nc do
11: ∆PCi

l = PCi
l −mean(PCi

l )
12: ΩCi

l = cov(∆PCi
l ) (multivariate Gaussian fitting)

13: ∆P̃Ci
l = mvnrnd(ΩCi , Nsc)

14: P̃Ci
l = ∆P̃Ci

l + mean(PCi
l )

15: end for
16: end procedure

• Disaggregation: it separates the true demand from the
behind-the-meter (BTM) PV generation. We use the unsu-
pervised disaggregation (step 4 in Algorithm 1) process
proposed in [21]. In brief, the method relies on the net
nodal power injections (Pl), GHI G, and air temperature
θ from the same area. It models the PV generation as a
function of GHI (considering several tilt and azimuth of PV
panels), enabling the identification of the patterns of the
PV generation in the measured data set. As side result, it
provides the disaggregated (or actual) demand that is used
to develop the corresponding day-ahead forecast model.

• Clustering: is applied on the estimated demand profiles
(P load

l ) to group them into Nc clusters based on features
(such as day-types in step 8, Algorithm 1). We use four
clusters (Nc = 4): Mondays to Thursdays (C1) are into one
day type, Fridays (C2), Saturdays (C3) and Sundays (C4)
into other three separate day type clusters.

• Multivariate-Gaussian-based scenario generation: each
day type cluster is fitted to a Multivariate-Gaussian model
via the following steps: i) computation of the zero mean sce-
narios for the historical data set (step 11, Algorithm 1), ii)
computation of the time cross-correlation matrix (step 12),
iii) sampling of Nsc number of scenarios using the time-
correlated multivariate Gaussian distribution model with a

1The functions mean, cov and mvnrnd are MATLAB functions to com-
pute mean, correlation coefficients and for generating random scenarios based
on a pre-computed standard deviation and number of samples, respectively.

95% confidence interval (step 13) and, finally, generate the
demand scenarios by adding the cluster mean (step 14).
2) PV generation: is modeled starting from the day-ahead

GHI forecasts provided by a commercial forecasting service,
SoDa [22]. It provides forecasts for the present and the next
day with a time resolution of 15-minutes and updated every 6
hours. The method uses gradient boosting as part of machine
learning scheme and uses inputs such as historical data-sets
of HelioClim-3 [23], McClear clear sky irradiance model
[24], and Global Forecast Service (GFS) Numerical Weather
Prediction (NWP).2 It provides point predictions and 5% and
95% confidence intervals that are fundamental to generate
scenarios when computing the dispatch plan. The 15-minutes
forecasts are linearly interpolated to obtain estimates with 5-
minutes time sampling. To convert the GHI forecasts to power
generation, we use a physics-based model tool-chain [25] that
takes air temperature (θ), tilt, and azimuth angles and nominal
capacity of the PV plant. These parameters are obtained from
the PV-config output from step 4, Algorithm 1 as the true
configurations of the PV plants are not known a-priory.

3) Hydro generation: In our forecast model, the hy-
dropower plants are operated at a given power setpoint and
do not have significant intra-day variation, so we model them
as constant power injection sources.

A validation of the predicted scenarios using above fore-
casting methods are presented in Sec VI.

B. Day-ahead problem formulation
We use the dispatch computation algorithm from [26],

a stochastic-based optimization problem accounting for the
uncertainty of the nodal powers (modeled by day-ahead sce-
narios) and the grid constraints by co-dist-flow3 [26]. The
problem minimizes the dispatch error considering all the day-
ahead scenarios and flexibility offered by the controllable
resource. The dispatch plan is computed such that the power
regulation made by the controllable resources (BESS in this
case) does not violate the grid’s and its constraints, and the
power factor at the GCP remains within a pre-defined range.
Since the main contribution of this work is on a real-time
control scheme, we omit to include the dispatch formulation.

IV. REAL-TIME OPERATION

The real-time control objective is to track the day-ahead
dispatch plan during the day of operation using a BESS.
As stated earlier, the real-time control scheme comprises two
layers operating at 5-minutes and 30 seconds time resolutions.
The control problems of both layers are formulated as MPC
and require forecasts of the nodal power injections. The upper
layer MPC uses forecasts of the nodal power injections at 5-
minutes time resolution, whereas the lower layer MPC uses
forecasts at 30-seconds time resolution. We use data-driven
schemes for intra-day and short-term forecasting for upper
and lower MPCs respectively. They are described below.

2www.ncei.noaa.gov/products/weather-climate-models/global-forecast.
3The co-dist-flow is an iterative scheme where the dispatch plan is first

optimized by neglecting the losses, then they are corrected by solving
non-linear AC power flow which is accounted in the next iteration of the
optimization. The reader can refer to [26] for more information.
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A. Intra-day and short-time forecasting

A data-driven intra-day forecasting scheme has been de-
veloped to forecast nodal power injections during the day
using the latest measurements of power (pmeas

l ) (provided by
PMUs), updated GHI forecasts from SoDa [22] and day-ahead
scenarios. The scheme in described in Algorithm 2. Intra-day
forecasts p̂load

l is obtained as the weighted sum of the day-
ahead scenarios of nodal injections (P̃l from Algorithm 1).
The weights are derived and updated every 5-minutes based
on recent realization from the measurements. The weights are
computed by finding the similarity (by norm-2) between the
realization and day-ahead scenarios as in step 5, Algorithm 2.
In step 7-12, updated GHI and air temperature forecasts are
obtained from SoDA service, then used to compute PV gener-
ation (p̂pv

l ). Intra-day forecasts are updated every 5 minutes.

Algorithm 2 Intra-day forecasting
Require: Day-ahead load scenarios (P̃l = [pload

l,1 , . . . ,pload
l,Nsc

]), PV-
config (from Algorithm 1)

1: procedure INTRADAYFORECAST
2: for l = 1:|L| do
3: Retrieve realizations (pmeas

l ) till the last 5-minutes slot.
4: d = [d1, . . . , di, . . . , dNsc ] = ‖P̃l − pmeas

l )‖2
5: Weights wi = 1/di/

∑Nsc
i (1/di)

6: Intra-day load forecast p̂load
l =

∑
wip

load
l,i

7: if node l contains a PV plant then
8: Get GHI, temperature (G, θ) forecasts from SoDa
9: p̂pv

l = PVmodel(G, θ, PV-config)
10: else
11: p̂pv

l = 0
12: end if
13: end for
14: end procedure

Short-term forecasts are obtained by linearly interpolating
the latest intra-day forecasts with the time-resolution of 30 sec-
onds and, then we use persistent predictor4 to correct the
forecasts of current timestep using the last observations. The
short term forecasts are updated each 30 seconds.

B. Grid model

Both the MPC layers account for the grid constraints using
AR-OPF [18] model, an exact convexification of the non-linear
AC power flow equations. To introduce the AR-OPF nomen-

Upstream Downstream

Fig. 3. Illustration of the adopted nomenclature with respect to the generic
two-port Π model of a transmission line.

clature, we refer to generic two-port equivalent Π−model of
the network branches shown Fig. 3. As anticipated before, we
consider a radial grid configuration.

4More advanced forecaster will be investigated in future works.

Let index 0 refer to the slack bus. Buses other than the slack
are denoted by 1, . . . , L and are in the set L. The upstream
and downstream buses to bus l are denoted by symbol up(l)
and l respectively. The symbol H refers to adjacency matrix
as defined in [18]. Let k be the time index in the set K =
[1, . . . ,K]. Let St

l,k = P t
l,k + iQt

l,k and Sb
l,k = P b

l,k + iQb
l,k

be the complex power that is entering the line l from top and
bottom respectively; and fl be the square of the current in
line l flowing through zl (see Fig. 3). zl = rl + ixl and 2bl be
the longitudinal impedance and shunt capacitance of line l. z∗l
refer to complex conjugate of zl. Let vl,k be the square of the
voltage magnitude at bus l and vmin and vmax the squares
of the minimum and maximum of nodal voltages. Imax

l is
the square of maximum current limits of the line l. Let sl,k =
pl,k+iql,k be the power absorbed at bus l. Let sBl,k = pBl,k+iqBl,k
be the injections from BESS. The uncontrollable injections
from demand, PV and hydro generation are modeled by their
forecasts denoted as p̂loadl,k , p̂pvl,k and p̂hydrol,k respectively. The
nodal active and reactive injections are pl,k = pBl,k + p̂pvl,k +

p̂hydrol,k − p̂loadl,k and ql,k = −qBl,k− q̂loadl,k − q̂hydrol,k , respectively.
According to [18], the AR-OPF constraints are composed

of the SOCP relaxation of power flow equation (referred as
relaxed (R)-OPF). The R-OPF equations are

St
l,k = sl,k +

∑

m∈L
Hl,mS

t
m,k+zl fl,k−j(vup(l),k+vl,k)bl, (1a)

Sb
l,k = sl,k +

∑

m∈L
Hl,mS

t
m,k, ∀l ∈ L,∀k ∈ K, (1b)

vl,k = vup(l),k−2R

(
z∗l
(
St
l,k+jvup(l),kbl

))
+|zl|2fl,k,

∀l ∈ L, ∀k ∈ K,
(1c)

fl,k ≥
|St

l,k + jvup(l),kbl|2

vup(l),k

, ∀l ∈ L, ∀k ∈ K, (1d)

For the exactness, the AR-OPF [18] introduces auxiliary
variables to add security constraints on upper bounds of the
nodal voltage and current magnitudes. It is done such that this
upper bounds do not depend on original variable f rather an
upper bound f̄ . Let symbols f̄ , Ŝ, S̄ are auxiliary variables for
lines of the grid and v̄ for the buses. The AR-OPF equations
are defined as follows.

Ŝt
l,k = sl,k+

∑

m∈L
Hl,mŜ

t
m,k−j(v̄up(l),k+v̄l,k)bl,

∀l ∈ L, ∀k ∈ K,
(1e)

Ŝb
l,k = sl,k+

∑

m∈L
Hl,mŜ

t
m,k, ∀l ∈ L, ∀k ∈ K, (1f)

S̄t
l,k = sl,k+

∑

m∈L
Hl,mS̄

t
m,k+zlfl,k−j(vup(l),k+vl,k)bl,

∀l ∈ L,∀k ∈ K,
(1g)

S̄b
l,k = sl,k+

∑

m∈L
Hl,mS̄

t
m,k, ∀l ∈ L, ∀k ∈ K, (1h)

v̄l,k = v̄up(l),k−2R
(
z∗l (Ŝt

l,k+jv̄up(l),kbl)
)
, ∀l ∈ L, ∀k ∈ K, (1i)

f̄l,kvl,k ≥ |max
{
|Q̂b

l,k−jv̄l,kbl|, |Q̄b
l,k−jvl,kbl|

}
|2+

|max
{
|P̂ b

l,k|, |P̄ b
l,k|
}
|2, ∀l ∈ L, ∀k ∈ K,

(1j)

f̄l,kvup(l),k ≥ |max
{
|Q̂t

l,k+jv̄up(l),kbl|, |Q̄t
l,k+jvup(l),kbl|

}
|2

+|max
{
|P̂ t

l,k|, |P̄ t
l,k|
}
|2, ∀l ∈ L, ∀k ∈ K,

(1k)

Imax
l vup(l),k ≥ |max

{
|P̂ t

l,k|, |P̄ t
l,k|
}
|2+|max

{
|Q̂t

l,k|, |Q̄t
l,k|
}
|2,

∀l ∈ L, ∀k ∈ K,
(1l)
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Imax
l vl,k ≥ |max

{
|P̂ b

l,k|, |P̄ b
l,k|
}
|2+|max

{
|Q̂b

l,k|, |Q̄b
l,k|
}
|2,

∀l ∈ L,∀k ∈ K,
(1m)

vmin ≤ vl,k, v̄l,k ≤ vmax, ∀l ∈ L,∀k ∈ K, (1n)

P̄ t
l,k ≤ Pmax

l , Q̄t
l,k ≤ Qmax

l , ∀l ∈ L, ∀k ∈ K, (1o)

Eq. 1e-(1f) express the lower bound on branch power flows
at the sending and receiving ends of the line l, whereas the
eq. (1g) and (1h) express the upper bound for power flows.
Eq (1i) expresses the upper bound on the nodal voltages. These
variables are then used in upper and lower bounds on the
square of longitudinal current in eq. (1j) and (1k). Eq. (1l)-
(1m) and eq. (1n) impose limits on the amapacities and nodal
voltage respectively. Eq. (1o) expresses upper bound on the
active and reactive power flows in line l where Pmax

l /Qmax
l

are bounds on active/reactive power flows in line l.

C. Model Predictive Control (MPC) of BESS
1) BESS model: the BESS is controlled by an MPC to

provide active and reactive power regulations to the grid
while respecting the capability of the BESS power converter.
Let P bess

l and Ebess
l be the power and energy capacities of

BESS connected at bus l. In theory, the converter capability
is represented by a circle ((pBl,k)2 + (qBl,k)2 6 P bess

l

2), but it
is not true in practice as the power capability of the converter
depends on both the AC and DC voltages of the converter.
An example of capability curves with different combination
of the AC and DC voltage are shown in Fig. 4a, and they can
be represented by piece-wise-linear functions as follows.

φ(vdct , v
ac
t , p

B
l , q

B
l , P

bess
l ) ≤ 0. (2a)

Here, vdc is the DC bus voltage and vact is the magnitude of
the direct sequence voltage on the AC side of the converter.
They can be obtained from measurements.

We model the BESS losses by adding an equivalent resis-
tance in the power flow equations as proposed in [26]. The
approach integrates the equivalent resistance into the grid’s
admittance matrix by adding a extra line (l′) for each BESS. It
allows retaining the convexity of the AR-OPF problem without
the need of any auxiliary variables. Fig. 4 shows the equivalent
resistance with an ideal voltage source and series resistance
(Rbess

l ). Thanks to this simplification (i.e., adding equivalent

(a)

Ideal battery

virtual node real node

(b)

Fig. 4. (a) BESS converter capability function φ in eq.2a with AC and DC
voltages. (b) Equivalent circuit diagram of BESS.

resistance into the grid’s admittance matrix) the BESS state-
of-energy (SOE) evolution with sampling time Ts is now
expressed simply by

SOEl,k+1 = SOEl,k + Tsp
B
l,k, ∀l ∈ L, ∀k ∈ K. (2b)

We constrain the SOE by safety margin of 0.1 per unit of
the extremes saturation/depletion of the battery. It is

0.1Ebess
l ≤ SOEl,k ≤ 0.9Ebess

l , ∀l ∈ L, ∀k ∈ K, (2c)

Also, to account for the degradation of the BESS caused by
its operation, we include the following constraint that limits
the active power by a pre-defined threshold:

Ts

2× 3600

∣∣∣pBl,k
∣∣∣ ≤ NeE

bess
l , ∀l ∈ L, ∀k ∈ K (2d)

where Ne is rated number of cycles for the battery.
2) Model Predictive Control (MPC) Problem: as stated ear-

lier, the real-time control scheme comprises two layers, both
formulated as MPC but with different horizon lengths. The
upper layer considers intra-day prosumption forecast along
the whole day via subsequent shrinking horizon and computes
successive BESS SOC trajectories. The lower layer considers
forecast of 5-minutes interval with a shrinking horizon and
computes power setpoints for the BESS while accounting for
the SOC trajectory (provided by the upper layer) as hard
constraint. This two-layered structure enables full visibility
of the uncertainties during the real-time operation, therefore
ensuring the BESS SOC to not saturate. Fig. 5 explains the
sequence of operations during real-time operation per time
step. The time intervals are divided into 5-minutes and 30-
seconds slots corresponding to the sampling of upper and
lower level MPCs.

Fig. 5. Sequence of decisions computed during real-time operations.

• The dispatch setpoint to track P disp
k is retrieved from the

dispatch plan profile with indices k = 0, 1, . . . , N − 1
where N = 288 for 24 hours in a day. Intra-day forecasts
p̂loadl,k , q̂loadl,k , p̂pvl,k, p̂

hydro
l,k , are updated.

• The upper layer MPC computes BESS energy budget
∆SOEk, k = 0, 1, . . . , N − 1 every 5-minutes based on
updated intra-day forecasts and current BESS SOE.

• The dispatch setpoint to track by the lower MPC is denoted
by P̄ disp

k = P disp

b k
10 c

, where b.c refers to the floor funtion. The
first and the last 30-seconds index in current 5-minutes inter-
val are denoted by k and k̄ respectively, i.e., k = b k

10c× 10
and k̄ = k + 10− 1. The power measurements at the GCP
denoted by Pmeas

0,k is obtained. Using P̄ disp
k , Pmeas

0,k and
∆SOEk, it computes BESS setpoints pBk at time resolution
of 30 seconds with indices k = 0, 1, . . . ,K − 1 ∈ K with
K = 2880 for a 24 hours operation day.

a) Upper layer MPC: the objective is to minimize the
tracking error between the dispatch plan P disp and power at
the GCP P t

0 . Note that P t
0 is a dependent variable related

to the uncontrollable power injections, the controllable BESS
injections and the grid losses derived from AR-OPF (Eq.(1)).
The decisions variables are the BESS active and reactive pow-
ers to compensate for the uncertainties in the nodal injections,
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the latter modeled by intraday point forecasts. The objective
function to minimize is the weighted5 sum of the tracking
error for the whole day and grid losses6:

p̂Bl = arg min
∀S,v,sB

wp

N∑

j=k

‖P disp
j − P t

0,j‖2 + wl

N∑

j=k

∑

l∈L
rlflj (3a)

subject to (1), (2) (3b)

A bound on the final SOE such that it is restored to
comfortable SOC by the day’s operation is also added.

0.45Ebess
l ≤ SOEl,N ≤ 0.55Ebess

l . (3c)

The state of energy budget ∆SOEl is computed using the first
element of the BESS setpoint vector from upper-layer MPC:

∆ŜOEl = p̂Bl,1 ×
300

3600
. (3d)

b) Lower layer MPC: The problem is formulated as an
MPC and its objective is to minimize the energy error incurred
over a 5 minutes horizon length with power set-points actuated
each 30 sec. The dispatch energy error at time k comprises
of (i) uncovered energy error from time index k to k − 1,
ε̂k =

∑k−1
j=k(P̄ disp

j −Pmeas
0,j ) and (ii) the predicted error from

k to k̄ given as εk =
∑k̄

j=k(P̄ disp
j −P t

0,j). The MPC objective
is a multi-objective function comprised of the dispatch energy
error incurred at the GCP (from current timestep to end of the
5-min period) and the grid losses:

minimize
∀S,v,sB

we(εk + ε̂k) + wl

∑

k∈K

∑

l∈L
rlfl,k (4a)

subject to (1), (2). (4b)

Additionally, the energy budget from the upper layer MPC are
added as constraint imposed on the BESS SOE as:

SOEl,k̄ ≥ SOEl,k + ∆ŜOEl if ∆ŜOEl ≥ 0, (4c)

SOEl,k̄ ≤ SOEl,k + ∆ŜOEl if ∆ŜOEl ≤ 0. (4d)

The constraints in (4c) sets a threshold SOC to be attained by
the end of current 5-minutes duration. It ensures that the BESS
is used judiciously by the lower MPC to avoid its saturation
and therefore restoring to comfortable SOC value by the end of
the daily operation. Thanks to the convex reformulation of the
AC power flow equations using AR-OPF, the control problems
in (3) and (4) are convex and can be solved by standard solvers.

V. EXPERIMENTAL SETUP

A. Medium voltage distribution grid in Aigle, Switzerland
We validate the proposed control scheme on a real MV grid

situated in Aigle, Switzerland, a mixed rural/urban system op-
erated by Romande Energie,7 one of the main Swiss DSOs. We
consider a radial feeder composed by 24 nodes. The topology
and locations of various connected resources are shown in
Fig. 6a-6b. It is a three-phase 21 kV/20 MVA balanced (seen
in the observations) system. The grid accommodates peak
power consumption (at the feeder) of 4.3 MWp and 2.9 MWp

5The weights wp, wl and we may be derived from energy imbalance price
in day-ahead electricity market.

6Grid losses are included to satisfy exactness conditions of the AR-OPF
formulation as in [18]

7https://www.romande-energie.ch/.

during the winter and summer, respectively. It hosts aggregated
PV generation capacity of 3.2 MWp including a single plant
of 1.8 MWp. The grid also hosts distributed hydropower
generation of 3.4 MVA allocated in 4 plants. The placement of
these generations are shown in Fig. 6a. The grid is connected
with a 1.5 MW/2.5 MWh BESS at node 11. Figure 6c shows
exterior and interior of the BESS. The cells are Lithium-
Nickel-Manganese-Cobalt-Oxide (Li-NMCo) based and are
rated for 4000 equivalent full cycles. It consists in 30 racks
in parallel with 11 modules per rack in series (each module
composed by 1p22s cell pack) connected to a four-quadrant
power converter. The whole setup is installed in a temperature
controlled container as shown in Fig. 6c.

B. Metering and IT infrastructure

1) Phasor measurement units: The real-time MPC algo-
rithm relies on the grid-awareness provided by a cluster of
distributed metering units providing up-to-date relevant mea-
surements such that they can be accounted as initial conditions
in the MPC problem while optimizing the power set-points
from the controllable resources and ensuring safe and secure
operation of the grid. In this respect, the MV distribution
grid is equipped with the state-of-the-art monitoring solution
SynchroGuard8 that provides real-time situational awareness
of the grid. The setup contains 17 PMUs distributed across the
grid, the locations are shown in Fig. 6a. The PMUs provide
synchronised and time-tagged phasors which are sent to a
central server using a telecom network (fiber optic or 4G).
Fig 7a shows an example of the PMU and its components
at a substation. A real-time state estimator (RTSE) accurately
estimates nodal voltage and nodal/branch current and powers
of the whole grid every 20 ms using only the PMU data. The
performance analysis of the RTSE is detailed in [27].

It is worth noting that the metering system is also a source
of historical data that is used to obtain day-ahead scenarios,
intra and short-term forecasts of the uncontrollable injections.

2) GHI and temperature measurement box: For modelling
of the PV generation, we use historical data of GHI and
air temperature from the same region where PV plants are
located. So, we installed GHI and temperature sensing boxes
(Meteobox) to measure the GHI, air- and PV-panel- tempera-
tures. These meteoboxes are installed at three locations in the
grid. They provide in real-time measurements with sampling
of 500 ms (including communication latency). Fig 7b shows
the installed meteobox at the site; each one consists of a
pyranometer to sense the GHI, two temperature sensors, and
a power supply. It also contains a modem which is used to
stream the measured data using public 4G network to our data
server. The meteobox code is implemented in NI compact RIO.

3) Communication infrastructure, centralized server and
data-logging: Fig. 8 shows the schematic of communication
and server infrastructure to enable the day-ahead and real-time
control operations. A centralised server hosts four different
virtual machines (VMs) to implement real-time state esti-
mation (State-estimator), data logging (Database), day-ahead
dispatch and real-time control computations (Controller) and

8https://zaphiro.ch/technology/.
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Fig. 6. (a) Topology with locations of the PMUs, PV plants, hydro-power plants, (b) Location of the substations and lines on the map, and (c) BESS and
PV infrastructure: (1) Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery container and (3) interior of the battery.
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Fig. 7. (a) PMU installation at a monitored substation, 1) Zaphiro PMU box
2) GPS antenna, (3) current sensor (4) cables and (b) GHI and temperature
measurement box (Meteobox) at a PV plant: 1) pyranometer, (2) temperature
sensor (3) antenna (4) power supply (5) NI Compact RIO.
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Fig. 8. IT communication infrastructure for the experimental setup (vSwitch
refer to virtual switches).

BESS setpoint actuator (Actuator). To facilitate communica-
tion among VMs, BMS, PMUs and Meteoboxes, we equip
it with dedicated IPv4 communication network as shown in
Fig. 8. The communication network links all the monitoring
units (PMUs and Meteoboxes), controllable resources (BESS’
BMS and its converter). The PMUs and the Meteoboxes
use public telecom network (fiber optic or 4G), whereas
BESS use Ethernet cables. The Database VM gathers all the
time series generated by the monitoring units. The VM state
estimator does RTSE. The codes for forecasting (day-ahead to
short-term), dispatch computation and real-time operation are
running on Controller VM. The BESS Actuator VM receives
the power set-points from the real-time controller, verifies its
feasibility and implements it.

Retrieve dispatch plan P disp
k from the database (k = 0,

start of the real-time operation) at 00.00 local time.
Obtain intra-day 5-minutes forecast using Algorithm 2

Retrieve measurements (Pmeas
0,k ) for previous

time-steps in the current dispatch horizon

If start of the 5-minute dispatch horizon,
update intra-day 5-minutes forecast using

Algorithm 2, compute energy budget ∆SoE
by solving upper layer MPC problem eq. (3)

Compute the incurred dispatch error ε̂k ,
short-term prediction of the sl,k , read
latest state of the BESS, i.e. SOEl,k

Solve lower-layer MPC problem eq. (4),
extract the first elements of the control

set-point and send it for BESS actuation

Wait for the next control step

k = k + 1

Stop at 23:59:59.

Fig. 9. Flow-chart showing real-time operation during 24 hours.

C. Dataflow

Fig. 9 shows the sequence of the operations and communi-
cation flow at the day-ahead and real-time stages. In the day-
ahead scheduler (first step), the dispatch plan is computed and
stored in the database. The input to the day-ahead stage are
the forecast scenarios of the load and generation of different
nodes (Sec. III-A) and the estimated state of the BESS. The
day-ahead stage is run once a day at 23.30 local time. The real-
time stage (second step onward) shows the steps during real-
time operations. In the beginning of 5-minutes time interval,
the energy budget is computed by the upper layer MPC based
on latest intraday forecasts and current SOC. Then, the lower
layer MPC loops every 30 seconds to compute BESS active
and reactive setpoints based on short-term forecasts and BESS
SOC. This cycle is repeated till 23:59:30 local time.

VI. EXPERIMENTAL RESULTS

A. Experimental validation

This section presents the experimental results obtained by
dispatching the MV grid described in Sec. V. First, we show
results for two typical days representing different character-
istics in terms of power injection patterns. On the first day,
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it imports net power into the grid, whereas on the second
day, it exports net power during the middle of the day,
thanks to generations from hydro and PV plants. Then, we
show control performance for a week-long experiment. The
control performance of the proposed two-layer MPC scheme
is compared against other two cases: (i) Without control,
where no compensation from BESS is performed, and (ii) a
Single-layer MPC, solving lower-layer MPC problem (eq. 4)
but without SOE budget from upper layer MPC. Since the
experiments were performed with the two-layer MPC, and
the same experimental conditions can not be reproduced, we
perform numerical simulations with single-layer MPC with
same conditions as the day of operation for this comparison.

1) Day 1: corresponds to a clear-sky and weekday, where
the demand is relatively higher than the net generations. The
main source of uncertainty is the demand. The experimental
results are described below.

a) Day-ahead operation: starts at 23.30 local time the
day before. It computes the dispatch plan based on predicted
scenarios. We show the day-ahead scenarios (lineplots in
different colors) at the GCP9 in Fig. 10a. The computed
dispatch plan is shown in Fig. 10b along with the power at the
GCP with contribution from the BESS. As it can be observed,
the dispatch plan still have some uncovered error because of
the insufficient size of the BESS. The SOC plot shown in the
Fig. 10c shows that BESS is reaching its saturation limits with
many scenarios. The initial SOC is 50 % which is also the SOC
of the battery before the start of the real-time operation.

b) Real-time operation: starts at 00.00 hrs. Fig 11a
shows the dispatch plan (in gray area), power at the GCP for
different control schemes. Fig. 11b shows the SOC evolution
with different control schemes. Fig 11c shows the plot of
tracking error cumulative distribution function (CDF) as result
of different real-time controls. As it can be observed, the
single-layer MPC lets the BESS saturate at around 8:00 hrs
and it could not be used for the whole day; hence failing the
dispatch. In contrast, the two-layer MPC ensures the BESS
to never saturate, thanks to the energy budget constraints
computed by the upper layer MPC. Also, by looking at the
CDF plot of the tracking error in Fig. 11c, it is clear that two-
layer MPC, on the one hand, achieves better tracking of the
dispatch plan with a lower probability of high tracking error.
On the other hand, it keeps the BESS SOC within a flexible
range. Table I reports the maximum-absolute-error (MAE), net
absolute-energy-error (AEE), root-mean-square-error (RMSE)
of the dispatch error using different controls concluding that
the control based on two-layer MPC performs the best. The
two-layer MPC outperforms the single-layer MPC in RMSE
by 40%, MAE by 67% and AEE by 35% respectively.

2) Day 2: corresponds to a day with higher variation in the
power injection due to higher uncertainty with next export due
to high PV and hydro generations. The results are below.

a) Day-ahead operation: Fig 12a shows the day ahead
scenarios for day 2. As it can be seen, this day exhibit more
variations in power injections resulting in higher uncertainty in

9Due to space constraints, the day-ahead scenarios for the all the nodes of
Aigle grid are not shown. The day ahead scenarios at the GCP is a by-product
of the day-ahead scenarios at all the nodes accounting for the grid losses.

(a) Day-ahead aggregated prosumption scenarios (P̂0) at the GCP.

(b) Computed dispatch plan (in gray area) and scenarios at the GCP.

(c) Battery active power injection pB (top) and SOC (bottom) for different
day-ahead scenarios.

Fig. 10. (a-c) Dispatch plan computation for day 1 (01-Mar.-2022). Each
line-plot in different color represents a different day-ahead scenario.

(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Fig. 11. (a-c) Real-time operation for day 1 (01-Mar.-2022).

the day-ahead scenarios of the GCP. Also, during the middle
of the day, the net power at the GCP is negative (producing) as
hydro power plants at node 34 are generating. Fig 12b shows
the computed dispatch plan and compressed scenarios of active
powers at the GCP, thanks to the compensations from BESS.
However, again the BESS capacity is not enough to cover the
uncertainty of all the day-ahead scenarios resulting in spread
of the optimized power at the GCP even with contribution
of the BESS. It is also evident from the BESS SOC plot in
Fig. 12c that the it saturates for several day-ahead scenarios.
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(a) Day-ahead aggregated prosumption scenarios (P̂0) at the GCP.

(b) Computed dispatch plan (in gray) and scenarios at GCP.

(c) Battery active power injection pB (top) and SOC (bottom) for different
day-ahead scenarios.

Fig. 12. (a-c) Dispatch plan computation for day 2 (22-Mar.-2022). Each
line-plot in different color represents a different day-ahead scenario.

(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Fig. 13. (a-c) Real-time operation for day 2 (22-Mar.-2022).

b) Real-time operation: Fig 13a shows the tracked dis-
patch plan using different control schemes. Again, we show
the BESS SOC, and the CDF of the dispatch tracking errors
in Fig. 13b and 13c respectively. As observed, the two-layer
MPC achieves fine-tracking of the dispatch plan compared to
the other two cases. Moreover, the two-layer MPC restores
the BESS SOC to 47% at the end of the day’s operation,
whereas the single-layer MPC lets the BESS to saturate to
the upper limit (90%) from 7.00 hrs to 14.00 hrs and again
from 20.00 hrs to 24.00 hrs; hence failing the dispatch during
this period. The CDF plot in Fig. 13c shows that two-layer
MPC achieves lower tracking error with high probability. The

TABLE I
TRACKING ERROR STATISTICS WITH DIFFERENT CONTROL SCHEMES.

MPC Day 1 Day 2
RMSE AEE MAE RMSE AEE MAE
(kW) (kWh) (kW) (kW) (kWh) (kW)

None 137 2.5e3 1e3 176 3.2e3 896
Single-layer 148 2.3e3 1e3 124 1.5e3 932
Two-layer 89 1.5e3 332 85 1.5e3 322

metrics reported in Table I show that the two-layer MPC scores
better on RMSE and MAE by 31% and 65% respectively than
the single-layer MPC, however similar AEE.

3) Week-long experiment: To demonstrate the effectiveness
of the dispatching scheme, we run the control of the BESS
for a whole week. Fig 14a shows the dispatch plan, measured
GCP power with and without two-layer MPC scheme. In
Fig. 14b, we show the SOC evolution during the week. It can
be observed that the power at the GCP follows the dispatch
plan and the keeps the BESS SOC within comfortable SOC
so that dispatching is continued the next day.

B. Further analysis

1) Validation of the grid model: We compare the modelled
grid quantities by AR-OPF with the measurements to validate
that the grid constraints are accounted correctly with minimum
error. Fig. 15 shows comparison in form of CDFs for the
difference between (modelled vs state estimated) the voltage,
current and losses. The CDF plots on voltages and currents
correspond to a particular bus/line. It can be seen that the
modeled voltages and currents achieve high accuracy. The
error on the voltage and current modelling are less than 0.01
pu and on the losses less than 0.2 kW for 99 % of the time.
This comparison validates that the OPF model used to model
the grid constraints in real-time MPC are realistic.

TABLE II
COMPUTATION TIME.

Control layers Min (sec.) Mean (sec.) Max(sec.)
Upper-layer MPC 4 9.9 19
Lower-layer MPC 0.15 0.2 0.4

2) Computational performance: Table II lists the minimum,
mean and maximum computation time to solve upper and
lower layer MPCs. As it can be seen, the computation time is
within 30 seconds, the time-deadline of real-time actuation.

VII. CONCLUSIONS

This work provided a solution to tackle the issue of BESS
SOC saturation in dispatching ADNs, where a day-ahead
dispatch plan is tracked with the help of a controllable BESS
during the day’s operation. The solution relies on a two-layer
real-time MPC scheme, where a slow and farsighted MPC
imposed an energy budget, every 5-minutes based on latest
whole day forecasts, on the real-time fast MPC running every
30-seconds. The two-layer scheme ensures that the BESS SOC
is not saturated during the day and restored to a comfortable
SOC for the next day’s dispatch operation. This is useful for
reliable and continuous dispatching of ADNs by BESS. The
MPCs are fed by data-driven forecasts of the demand and gen-
erations. The real-time control scheme accounted for the grid
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(a)

(b)

Fig. 14. Dispatch tracking over a week (25-Feb.-2022, Friday to 03-Mar.-2022, Thursday): (a) Power at the GCP and dispatch plan, (b) SOC evolution.

(a) (b) (c)

Fig. 15. Validation of OPF model for real-time operation with PMU
measurements: (a-c) shows CDF of the incurred error on the modeling of
voltage (in pu), current (in pu) and total grid losses (in kW).

constraints using a convex AC-OPF model. The optimization
problem is formulated as convex, achieving optimality and
enhanced level tractability and efficient to solve.

The control framework is validated on a real MV grid
located in Aigle Switzerland hosting 3.2 MWp of photovoltaic
generation, 3.4 MVA hydro generation and 2.8 MW of base
demand. The MV grid is connected with 1.5 MVA/2.5 MWh
BESS that is controlled by the real-time controller, and mon-
itored by 17 PMUs. The experimental results performed over
a week (including clear-sky, cloudy, weekday and weekend
days) show that the proposed two-layer MPC scheme always
keeps the BESS SOC within flexible region as well as achieves
better tracking compared to myopic single-layer MPC scheme.
The proposed two-layer MPC scheme reduces the absolute
energy tracking error, MAE and RMSE by half compared to
the myopic single-layer MPC scheme. We also validated the
grid model by comparing the modeled vs estimated states,
concluding the error below 0.01 per unit in the nodal volt-
ages/lines currents and below 0.2 kW in the grid losses.
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2 Achievement of deliverable

2.1 Date

March 2022

2.2 Demonstration of the deliverable

This deliverable has been achieved through:

• the development of a dedicated optimal control and scheduling framework;

• the development of two-layer model predictive control schems using short-term

intra-day forecasts of the uncontrollable power injections;

• the validation of the proposed methodologies in a full-scale real environment

via the REeL demonstrator site in Aigle, Switzerland.

3 Impact

This deliverables represent the final outcome of a series of activities undertaken in 
the frame of ReEL. This involves the development of the OPF-based control method-

ology, a PMU-based real-time grid state monitoring and a short-term PV forecasting, 
all patented, as well as the demonstration of those solutions in the real-grid of 
Aigle.

References

[1] R. Gupta, A. Zecchino, J.-H. Yi, and M. Paolone, “Reliable dispatch of active

distribution networks via a two-layer grid-aware model predictive control,” Under
review for the publication in the IEEE Open Access Journal of Power and Energy,

2022.

13


	Description of deliverable and goal
	Executive summary
	Research question
	Novelty of the proposed solutions compared to the state-of-art
	Methodology description
	Regulatory and legal barriers for implementation

	Achievement of deliverable
	Date
	Demonstration of the deliverable
	Added value of ReEL

	Impact



