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1. Description of deliverable and goal

1.1. Executive summary

The goal of this deliverable is to study the operational limits of the electrical
distribution feeder of Onnens (medium voltage) and Rolle (low voltage) that were
initially expected to be used as demonstration sites. Both networks belong to the
assets of Romande Energie and are located in the south-west part of Switzerland in

the Vaud canton.

We first collect and analyze the load and distributed generation! time series in
both networks. This task is accomplished by integrating coarse data provided by
Romande Energie (RE) with refined data available from the photovoltaic installations of
the EPFL-DESL. Concerning the methodology, the operational limits of both networks
are assessed using a Probabilistic Load Flow developed at the DESL and based on
standard methods existing in the literature.
As described in the report, the Onnens grid may face nodal over-voltage and
lines congestions due to the massive injections coming from a single multi-MW PV
plant located at the end of the Onnens medium voltage feeder.
On the other hand, the low voltage grids in Rolle are robust against the planned
PV installations, i.e., the grids will not suffer any security constraint violations.
In what follows, we first briefly describe the methodology adopted to carry-out the
study and then the analysis of the steady-state behavior of both grids.

1.2. Description

The standard Probabilistic Load Flow process

The probabilistic load flow (PLF) is a well-known technique typically applied for short
or long-term planning of power systems as well as for steady-state analysis of a grid
(e.g., [1, 2, 3]). Contrary to the traditional load flow analysis, where the power flow
equations are solved at a specific time instant for fixed power values of loads/
injections, the PLF accounts for the stochasticity associated with loads/injections by

considering that these quantities are represented by probability density functions

(PDFs) at a given time

1 In both networks, the distributed generation is solely represented by photovoltaic (PV) power plants.



interval. This allows for a probabilistic assessment of the associated stochastic network
state.

The statistical distributions of the network states can be obtained either by using a
numerical approach (e.g., [4, 5, 6]) or an analytical method (e.g. [7, 8]). The numerical
approach is typically based on Monte Carlo simulations, where a large number of values
of loads and injections are sampled from the corresponding distributions and a
deterministic load flow is solved for each combination of these values2. The analytical
approach uses the mathematical expressions of the PDFs of loads/injections and tries to
analytically express the statistical distributions of network states usually by
approximating the non-linear power flow equations. In this work, we have adopted the
former approach. Even though such a method is computationally demanding, it has the
benefit that the exact non-linear power flow equations can be used which results in
better accuracy of the obtained PDFs of the network states.

The first step towards performing a PLF analysis is to infer the statistical distributions
of the loads and injections in the network, namely define their probability density
functions for the different periods of the day/month/season/year. With particular
reference to the case of active distribution networks, the PV profiles have variations
across the seasons and they have dissimilar characteristics for the cloudy and clear sky
days. The loads have seasonal variations in addition to dissimilarities in weekdays and
weekends. Additionally, their profiles may have variations with respect to the external
parameters like temperature and holidays. In this study, we have considered all these
variations in order to generate specific scenarios.

The historical data of the parameters (load active/reactive power consumptions and
solar irradiation) are collected from RE and empirical measurement at the EPFL-DESL.

In order to statistically characterize the network nodal injections from loads and PV, we
assume that the aggregate load or PV plant at the k" time interval of the day denoted
hereafter by L, is a random variable. The time aggregation horizon to perform the PLF
is of 15 minutes. Therefore, we have 96 daily intervals and for each time interval, we
observe the available samples after removing the outliers and the mean (L, — L;). An
example of the the QQ-plot of the zero-mean data for a specific time interval for a load

in Onnens is shown in Fig. 1. The data for the other 95 time intervals are not shown here

Z Note that, in general, the MC approach allows for taking into account any type of stochastic distribution
of load and generation.



for the sake of brevity as they exhibit similar characteristics. As it can be observed, after

having removed the outliers, the data exhibit, approximately, a Gaussian distribution.
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Figure 1 - QQ-plots of zero-mean data for a load in the network of Onnens. Data
obtained for a specific time interval (15 minutes) of the day during the winter period.

The dataset to infer this kind of plots is of 91 days.

The majority of the approaches adopted so far in the literature to perform PLF studies
assumes that the random variables that describe the network nodal injections at
different time intervals are independent (e.g., [4, 9]). In this work, we take into account
temporal correlation of the random vectors L,k = 1, ...,96. In this respect, we assume
that the random vector (L—L)=(L; —Ly,...,Log — Log) follows a multivariate
Gaussian distribution (L — L) = N (0, ) where Q is the covariance matrix that contains
the whole information about the variance and covariance of the random variables
(Ly — Ly, k=1,..,96)3.

The sample covariance matrix that will be used to generate a sample of the random
vector is obtained empirically using the available zero-mean data in each time interval.
The obtained distributions are used to generate scenarios using multivariate normal
random numbers for each temporal bin. Once the scenarios for load and PV are
generated, they are used to generate the final scenario tree using the technique

described in [9] and [10].

3 3Note that the rank of the covariance matrix (1 corresponds to the number of considered time steps
(i.e., 96). Also note that Q is a full matrix.



Implemen

tation of the PLF process

The algorithm adopted to implement the PLF is depicted in Figure 2. As above-

mentioned, the time resolution of the study is 15 minutes. First, the load and PV profiles

are sampled by the process explained in the previous section. Then, for each sample of

the stochastic parameters, we solve a load flow problem of the targeted network to

obtain the network state from which we derive the nodal voltage magnitudes and lines’

current. We continue this process to cover all the plausible scenarios.
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Figure 2 - Implementation of the PLF process.

2. Achievement of deliverable:

2.1. Date

This deliverable has been achieved on December 2017.

No?




2.2. Demonstration of the deliverable

Study of the Onnens medium voltage feeder using the PLF process

The topology of the Onnens medium voltage feeder (20 kV) is shown in Figure 3. The
yearly aggregated load consumption and PV production are shown in Figure 4a and 4b
respectively. These profiles have been used to infer the multivariate statistical

distributions described before.
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Figure 3: Topology of the Onnens 20kV feeder.
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Figure 4: Yearly aggregated load consumption (a) and PV production (b) for the

Onnens feeder.

The steady-state security of the Onnens grid is assessed using PLF described above. The
obtained Cumulative Distribution Function of the nodal voltage-magnitudes and lines’
current are obtained using the PLF are depicted in Figures 5 and 6, respectively, for all

the network nodes and lines. The results are clustered for the four seasons of the year.
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Figure 5: CDF of the nodal voltage magnitudes for Onnens feeder.
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Figure 6: CDF of the lines’ current of the Onnens medium feeder.

As it can be seen from Figure 5, the Onnens feeder will face over-voltages in 3 seasons:

summer, spring and fall. Note that the standard upper bound for the voltage magnitude



in Swiss medium voltage grids is 1.02 p.u.. Over-voltages (>2%) occur in these 3 season.
Then, from Figure 6, we can observe that the network lines operate close to their

ampacity limits during spring and summer periods.

Study of the Rolle low voltage grids using the PLF process

The second grid is composed by six low voltage systems on the site of Rolle. For sake of
brevity, we do not report the yearly profiles of the loads and PV generation.

The CDF of the nodal voltage magnitudes for a given time slot are shown in Figure 7 (for
sake of brevity, we do not report all the results). The lines’ current and nodal voltage-
magnitudes of all the six low voltage grids are within the safe operational margins for all
the simulated scenarios. In particular, voltages are always between -10% and +4% of
the rated voltages values and line currents largely lower than line ampacities. Note that
these are low voltage grids and the acceptable limits for lower and upper bounds are -

10% and +4%, respectively.
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Figure 7: CDF of the nodal voltage magnitudes for the targeted low voltage grids on

the site of Rolle.

3. Impact

The results of the analysis carried out in this deliverable have two fundamental
impacts. The first one is related to the setup of a standard analysis process to be used
by FURIES utilities. The second is associated to the identification of the operational
constraints of the two targeted electrical distribution networks. With particular
reference to the case of Onnens, the analysis has quantified the probability to exceed
the grid operational constraints for both nodal voltages and line currents. This
analysis will be used to dimension, and locate, a suitable battery energy storage
system in the Onnens grid (deliverable 1.4.4b). With reference to the Rolle grids, the
analysis has shown that the inclusion of grid constraints in aggregation/control
processes is useless since all the six grids do not exhibit violations of operational
constraints. This result will impact the definition of the control processes expected to

be deployed in this demonstration site.
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