
Federal Department of the Environment, Transport, 
Energy and Communications DETEC 

Swiss Federal Office of Energy SFOE 
Energy Research and Cleantech Division 

REEL Demo – Romande Energie ELectric network in 
local balance Demonstrator 

Deliverable: 2c Simulation and Experimental Validation 
of Linearized and Exact Convex AC OPF-based Real-
time Controls on AIGLE Distribution Grid using PMU 

Measurements 

Demo site: Aigle 

Developed by 
Rahul Gupta and Prof. Dr. Mario Paolone 

Distributed Electrical Systems Laboratory, EPFL 

[Lausanne, 20.05.2022] 



1 Description of deliverable and goal

1.1 Executive summary

The objective of this deliverable is to validate a grid-aware real-time (RT) control al-

gorithm for tracking a predefined power profile (dispatch plan) at the grid connection

point (GCP) of a distribution network hosting heterogeneous multiple uncontrollable,

and controllable energy resources. The RT control problem is formulated as Model

Predictive Control (MPC) that computes the active and reactive power setpoints of a

battery energy storage system (BESS) such that it tracks the dispatch plan at the

GCP while obeying the constraints of the grid and the BESS.

The grid constraints are modeled by convex optimal power flow (OPF) models. Specif-

ically, we consider two different OPF models: the first is the Linearized Optimal Power
Flow (L-OPF) model that relies on the first-order Taylor series expansion of the non-

linear power flow equations to express the grid states (such as nodal voltages, lines

currents and net grid losses) as linear functions of power injections. The second

is the Augmented Relaxed Optimal Power Flow (AR-OPF), which is an exact convex

relaxation of the original non-linear non-convex OPF. The performances of the pro-

posed RT controls with different grid models are compared against an a-posteriori

non-approximated power flow. The comparison is assessed in terms of modeling er-

ror on the nodal voltages, lines currents and grid losses as well as the computation

time.

Finally, the dominant grid model is used for experimental validation on an actual 24-

node medium voltage (MV) distribution network in Aigle, Switzerland hosting uncon-

trollable 3.2 MWp distributed photovoltaic generation, 3.4 MVA hydro generations,

and 2.8 MW base demand as uncontrollable resources and a 1.5 MVA/2.5 MWh

BESS connected as the sole controllable resource. The grid situational awareness

(i.e., time-synchronised measurements coupled to a real-time state estimator) is pro-

vided by 17 phasor measurement units installed at different locations in the grid.

1.2 Research question

Which OPF model is appropriate to accurately account for the grid constraints in a

grid-aware real-time control scheme?

1.3 Novelty of the proposed solutions compared to the state-of-art

The main contributions of this work are listed below.

• Development of the grid-aware model predictive control of a BESS for achiev-

ing dispatch of a power distribution network hosting substantial amount of

stochastic and non-controllable resources.
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• Performance comparison of two different grid models in terms of accuracy and

computation time.

• Validation of the dominant model in a full-scale real environment via the REeL

demonstrator site in Aigle, Switzerland.

1.4 Methodology description

1.4.1 Control and Scheduling framework

We consider a distribution grid interfacing heterogeneous uncontrollable injections

that is dispatched at its grid connection point (GCP) according to a pre-determined

dispatch plan. The dispatch plan is tracked by controlling the grid-connected battery

energy storage system (BESS) while respecting its own constraints along with those

of the grid. It is formulated as two-stage framework. We refer to Fig. 1 that shows

the dataflow during the day-ahead and real-time control stages. The two stages are

described below.

• Day-ahead scheduling: the operator computes a dispatch plan for the next day

based on the forecast of the stochastic generation and demand, the status of con-

trollable resource (BESS in this case), and local grid constraints. The dispatch

plan accounts for the uncertainties of the stochastic resources (modeled by sce-

narios) but also ensures that battery have a suitable level of flexibility to track

the dispatch plan in real-time. We assume that the dispatch plan has a 5-minute

resolution and is computed at 23.00 UTC the day before operations.

• Real-time operations: the BESS is controlled in real-time, so to compensate for

power mismatches at the GCP between the realization and dispatch plan. The

control problem is formulated as an MPC. It accounts for future uncertainties

along the look-ahead horizon (5-minutes) and the grid’s constraints. The MPC

formulation aims to minimize the dispatch error over a 5-minute horizon actuated

each 30 sec. Real-time operations start at 00.00 UTC and end at 23.59.59 UTC.

In the following, we present only on the real-time operation as it is the main focus of

this deliverable. The dispatch plan is obtained from method described in [1].

1.5 Grid-aware Real-time operation

The real-time (RT) operation start at 00:00 local time. The objective of the RT con-

troller is to achieve a fine tracking of the day-ahead dispatch plan while avoiding the

saturation of the BESS SOC during the day’s operation. Furthermore, at the end of

the day, the framework has to restore a sufficient BESS SOC for reliably dispatching

the feeder next day. Existing schemes in [2, 3] used a RT controller with an MPC

look-ahead horizon of 5-minutes. However, this MPC is myopic to the uncertainties

of the injections, eventually leading to BESS SOC saturation with a consequent loss

of the tracking of the dispatch plan. We propose to avoid BESS SOC saturation by
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Figure 1: Schematic dataflow of the proposed scheduling and control framework.

adding a farsighted MPC layer imposing an SOC budget. This feature is enabled by

the proposed two-layered MPC framework where the upper layer (farsighted) takes

care of the SOC saturation of the BESS, whereas the lower layer (myopic) aims to

fine-track the dispatch plan.

The real-time control objective is to track the day-ahead dispatch plan during the day

of operation using a BESS. As stated earlier, the real-time control scheme comprises

two layers operating at 5-minutes and 30 seconds time resolutions. The control

problems of both layers are formulated as MPC and require forecasts of the nodal

power injections. The Upper layer MPC uses forecasts of the nodal power injections

at 5-minutes time resolution, whereas the Lower layer MPC uses forecasts at 30-

seconds time resolution.

The control framework accounts for the grid constraints i.e., the constraints on the

nodal voltages, lines and transformer capacities via a grid model. It is described as

follows.

1.5.1 Grid-model

Accounting for the grid constraints makes the control problem non-convex as the

power-flow equations are inherently non-linear and non-convex. This is widely re-

ferred to as the optimal power flow (OPF) problem. OPF problems are generally

intractable and difficult to solve [4, 5]. Therefore, to increase their tractability sev-

eral convexification approaches are proposed in the literature. They can be broadly

categorised in following two types.

1. Linearization: this category of OPF convexification linearizes the non-linear

power flow equations around a known operating point. The scheme relies on the

first or multiple orders of Taylor’s series expansion of the power flow equations.

It uses sensitivity coefficients of the state variables (nodal voltages and lines

currents) with respect to the control variables (nodal active and reactive power
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injections). A typical example is proposed in [6].

2. Relaxation: In this case, suitable relaxations are applied such that the overall

problem becomes a convex problem. An example is the adoption of the Semi-

definite relaxation as the Second-Order-Cone-Program (SOCP) [7].

In this work, we implement linearized OPF model of [6] and relaxed OPF model of [7].

In the following, we describe above two methods.

Nomenclature: we refer to generic two-port equivalent Π−model of the network

branches shown Fig. 2. As anticipated before, we consider a radial grid configura-

tion. Let index 0 refer to the slack bus. The symbol St
0,k = P t

0,k + iQt
0,k refer to the

apparent power at the slack. Buses other than the slack are denoted by 1, . . . , L

and are in the set L. The upstream and downstream buses to bus l are denoted by

symbol up(l) and l respectively. The symbol H refers to adjacency matrix as defined

in [7]. Let k be the time index in the set K = [1, . . . ,K]. Let St
l,k = P t

l,k + iQt
l,k and

Sb
l,k = P b

l,k + iQb
l,k be the complex power that is entering the line l from top and bot-

tom respectively; and fl be the square of the current in line l flowing through zl (see

Fig. 2). zl = rl + ixl and 2bl be the longitudinal impedance and shunt capacitance of

line l. z∗l refer to complex conjugate of zl. Let vl,k be the square of the voltage magni-

tude at bus l and vmin and vmax the squares of the minimum and maximum of nodal

voltages. Imax
l is the square of maximum current limits of the line l. Let sl,k = pl,k+iql,k

be the power absorbed at bus l. Let sbessl,k = pbessl,k + iqbessl,k be the injections from BESS.

The uncontrollable injections from demand, PV and hydro generation are modeled

by their forecasts denoted as p̂loadl,k , p̂pvl,k and p̂hydrol,k respectively. The nodal active and

reactive injections are pl,k = pbessl,k + p̂pvl,k + p̂hydrol,k − p̂loadl,k and ql,k = −qbessl,k − q̂loadl,k − q̂hydrol,k ,

respectively.

Upstream Downstream

Figure 2: Illustration of the adopted nomenclature with respect to the generic two-
port Π model of a transmission line.

Augemented Relaxed Optimal Power Flow (AR-OPF): According to [7], the AR-

OPF constraints are composed of the SOCP relaxation of power flow equation (re-

ferred as relaxed (R)-OPF). The R-OPF equations are
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St
l,k = sl,k +

∑
m∈L

Hl,mSt
m,k+zl fl,k−j(vup(l),k+vl,k)bl, (1a)

Sb
l,k = sl,k +

∑
m∈L

Hl,mSt
m,k, ∀l ∈ L,∀k ∈ K, (1b)

vl,k = vup(l),k−2R

(
z∗l

(
St
l,k+jvup(l),kbl

))
+|zl|2fl,k, ∀l ∈ L,∀k ∈ K, (1c)

fl,k ≥
|St

l,k + jvup(l),kbl|2

vup(l),k
, ∀l ∈ L, ∀k ∈ K, (1d)

To guarantee the exactness of the OPF solution, the AR-OPF [7] introduces auxiliary

variables to add security constraints on upper bounds of the nodal voltage and cur-

rent magnitudes. It is done such that this upper bounds do not depend on original

variable f rather an upper bound f̄ . Let symbols f̄ , Ŝ, S̄ are auxiliary variables for

lines of the grid and v̄ for the buses. The AR-OPF equations are defined as follows.

Ŝt
l,k = sl,k+

∑
m∈L

Hl,mŜt
m,k−j(v̄up(l),k+v̄l,k)bl, ∀l ∈ L,∀k ∈ K, (1e)

Ŝb
l,k = sl,k+

∑
m∈L

Hl,mŜt
m,k, ∀l ∈ L,∀k ∈ K, (1f)

S̄t
l,k = sl,k+

∑
m∈L

Hl,mS̄t
m,k+zlfl,k−j(vup(l),k+vl,k)bl, ∀l ∈ L, ∀k ∈ K, (1g)

S̄b
l,k = sl,k+

∑
m∈L

Hl,mS̄t
m,k, ∀l ∈ L,∀k ∈ K, (1h)

v̄l,k = v̄up(l),k−2R
(
z∗l (Ŝ

t
l,k+jv̄up(l),kbl)

)
, ∀l ∈ L,∀k ∈ K, (1i)

f̄l,kvl,k ≥ |max
{
|Q̂b

l,k−jv̄l,kbl|, |Q̄b
l,k−jvl,kbl|

}
|2 + |max

{
|P̂ b

l,k|, |P̄ b
l,k|

}
|2, ∀l ∈ L,∀k ∈ K,

(1j)

f̄l,kvup(l),k ≥ |max
{
|Q̂t

l,k+jv̄up(l),kbl|, |Q̄t
l,k+jvup(l),kbl|

}
|2 + |max

{
|P̂ t

l,k|, |P̄ t
l,k|

}
|2,

∀l ∈ L, ∀k ∈ K,
(1k)

Imax
l vup(l),k ≥ |max

{
|P̂ t

l,k|, |P̄ t
l,k|

}
|2+|max

{
|Q̂t

l,k|, |Q̄t
l,k|

}
|2, ∀l ∈ L,∀k ∈ K, (1l)

Imax
l vl,k ≥ |max

{
|P̂ b

l,k|, |P̄ b
l,k|

}
|2+|max

{
|Q̂b

l,k|, |Q̄b
l,k|

}
|2, ∀l ∈ L, ∀k ∈ K, (1m)

vmin ≤ vl,k, v̄l,k ≤ vmax, ∀l ∈ L, ∀k ∈ K, (1n)

P̄ t
l,k ≤ Pmax

l , Q̄t
l,k ≤ Qmax

l , ∀l ∈ L, ∀k ∈ K, (1o)

Eq. 1e-(1f) express the lower bound on branch power flows at the sending and re-

ceiving ends of the line l, whereas the eq. (1g) and (1h) express the upper bound for

power flows. Eq (1i) expresses the upper bound on the nodal voltages. These vari-

ables are then used in upper and lower bounds on the square of longitudinal current

in eq. (1j) and (1k). Eq. (1l)- (1m) and eq. (1n) impose limits on the amapacities and

nodal voltage respectively. Eq. (1o) expresses upper bound on the active and reactive

power flows in line l where Pmax
l /Qmax

l are bounds on active/reactive power flows in

line l.
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Linearized grid model: the linear grid model relies on the first-order Taylor’s se-

ries expansion of the power flow equations. We use so-called sensitvity coefficients

of the state-variables (i.e., the voltage and current sensitivity coefficients) to express

them as linear functions of the control variables i.e. active and reactive power in-

jections. Computing the sensitivity coefficients requires solving a system of linear

equations as a function of the grid state and admittance matrix [8], whose solution

is guaranteed to exist and be unique when the Jacobian of the load flow problem is

locally invertible [9].

Nodal voltages and lines current magnitudes for all the nodes and lines are con-

tained in vectors vt ∈ R|L| and ik ∈ R|L| at time index k, i,e., vk = [v1,k; , . . . , vL,k] and

ik = [i1,k; , . . . , iL,k]. The bold-typeface represents vectors. Symbols p̂pv
k , p̂load

k , p̂hydro
k

and q̂pv
k, q̂

load
k , q̂hydro

k collect aggregated active and reactive power injections of un-

controllable resources i.e. of PV, Load and Hydro plants of all the nodes, respectively.

For example, p̂pv
k and q̂pv

k can be expanded as p̂pv
k = [p̂pv1,k; . . . ; p̂

pv
L,k], q

pv
k = [qpv1,k; . . . ; q

pv
L,k]

(similarly for pload
k , pbess

k ,qload
k , qbess

k ). The injections from controllable BESS from all

the nodes are contained in the vectors pbess
k and qbess

k for active and reactive powers

respectively. In this setting, active and reactive nodal injections at time t read as:

pk = pbess
k + p̂pv

k + p̂hydro
k − p̂load

k k ∈ K (2a)

qk = qbess
k + q̂pv

k + q̂hydro
k − q̂load

k k ∈ K. (2b)

The linearized grid quantities as a function of the nodal injections and the grid states

are

vk = Av
k

[
pk

qk

]
+ bv

k (2c)

ik = Ai
k

[
pk

qk

]
+ bi

k (2d)[
P0,k

Q0,k

]
= A

gcp
k

[
pk

qk

]
+ b

gcp
k (2e)

where Av
k ∈ R|N |×2|N | and bv

k ∈ R|N |, Ai
k ∈ R|L|×2|N | and bi

k ∈ R|L|, Agcp
k ∈ R2×2|N | and

b
gcp
k ∈ R2 collect the sensitivity coefficients and known terms of the linear model as

described in [6]. The grid constraints read as:

vmin ≤ vl,k ≤ vmin l ∈ L, k ∈ K (2f)

0 ≤ il,k ≤ Imax
l,k l ∈ L, k ∈ K. (2g)

1.5.2 BESS model

As mentioned before, the BESS is controlled by an MPC to provide active and reactive

power regulations to the grid while respecting the capability of the BESS power

converter. Let P bess
l and Ebess

l be the power and energy capacities of BESS connected
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at bus l. In a first approximation, the converter capability is represented by a circle

((pbessl,k )2 + (qbessl,k )2 ⩽ P bess
l

2). However, such as representation is not true in practice as

the power capability of the converter depends on both the AC and DC voltages of the

converter. An example of capability curves with different combination of the AC and

DC voltage are shown in Fig. 3a, and they can be represented by piece-wise-linear

functions as follows.

ϕ(vdct , vact , pBl , q
B
l , P

bess
l ) ≤ 0. (3a)

Here, vdc is the DC bus voltage and vact is the magnitude of the direct sequence

voltage on the AC side of the converter. They can be obtained from measurements

or the BESS converter manufacturer.

Regarding the BESS losses by adding an equivalent resistance in the power flow

equations as proposed in [10]. The approach integrates the equivalent resistance

into the grid’s admittance matrix by adding a extra line (l′) for each BESS. It allows

retaining the convexity of the AR-OPF problem without the need of any auxiliary

variables. Fig. 3 shows the equivalent resistance with an ideal voltage source and

series resistance (Rbess
l ). Thanks to this model of the BESS losses (i.e., adding equiv-

(a)

Ideal battery

virtual node real node

(b)

Figure 3: (a) BESS converter capability function ϕ in eq.3a with AC and DC voltage.
(b) Equivalent circuit diagram of BESS.

alent resistance into the grid’s admittance matrix), the BESS state-of-energy (SOE)

evolution with sampling time Ts is now expressed simply by

SOEl,k+1 = SOEl,k + Tsp
bess
l,k , ∀l ∈ L, ∀k ∈ K. (3b)

We constrain the SOE by safety margin of 0.1 per unit of the extremes satura-
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tion/depletion of the battery, namely:

0.1Ebess
l ≤ SOEl,k ≤ 0.9Ebess

l , ∀l ∈ L,∀k ∈ K, (3c)

Furthermore, to account for the degradation of the BESS caused by its cycling,

we include the following constraint that limits the active power by a pre-defined

threshold:

Ts

2× 3600

∣∣∣pbessl,k

∣∣∣ ≤ NeE
bess
l , ∀l ∈ L, ∀k ∈ K (3d)

where Ne is the rated number of full cycles for the battery provided by the BESS

manufacturer.

1.5.3 Model Predictive Control (MPC) Problem

As stated earlier, the real-time control scheme comprises two layers, both formulated

as MPC but with different horizon lengths. The upper layer considers intra-day

prosumption forecast along the whole day via subsequent shrinking horizon and

computes successive BESS SOC trajectories. The lower layer considers forecast of

5-minutes interval with a shrinking horizon and computes power setpoints for the

BESS while accounting for the SOC trajectory (provided by the upper layer) as hard

constraint. This two-layered structure enables full visibility of the uncertainties

during the real-time operation, therefore ensuring the BESS SOC to not saturate.

Fig. 4 explains the sequence of operations during real-time operation per time step.

The time intervals are divided into 5-minutes and 30-seconds slots corresponding to

the sampling of upper and lower level MPCs.

Figure 4: Sequence of decisions computed during real-time operations.

• The dispatch setpoint to track P disp
k is retrieved from the dispatch plan profile with

indices k = 0, 1, . . . , N − 1 where N = 288 for 24 hours in a day. Intra-day forecasts

p̂loadl,k , q̂loadl,k , p̂pvl,k, p̂
hydro
l,k , are updated.

• The upper layer MPC computes BESS energy budget ∆SOEk, k = 0, 1, . . . , N − 1

every 5-minutes based on updated intra-day forecasts and current BESS SOE.
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• The dispatch setpoint to track by the lower MPC is denoted by P̄ disp
k = P disp

⌊ k
10

⌋, where

⌊.⌋ refers to the floor funtion. The first and the last 30-seconds index in current

5-minutes interval are denoted by k and k̄ respectively, i.e., k = ⌊ k
10⌋ × 10 and

k̄ = k + 10− 1. The power measurements at the GCP denoted by Pmeas
0,k is obtained.

Using P̄ disp
k , Pmeas

0,k and ∆SOEk, it computes BESS setpoints pbessk at time resolution

of 30 seconds with indices k = 0, 1, . . . ,K − 1 ∈ K with K = 2880 for a 24 hours

operation day.

Upper layer MPC: the objective is to minimize the tracking error between the dis-

patch plan P disp and power at the GCP P t
0. Note that P t

0 is a dependent variable

related to the uncontrollable power injections, the controllable BESS injections and

the grid losses derived from AR-OPF (Eq.(1)). The decisions variables are the BESS

active and reactive powers to compensate for the uncertainties in the nodal injec-

tions, the latter modeled by intraday point forecasts. The objective function to min-

imize is the weighted1 sum of the tracking error for the whole day and grid losses2:

p̂bessl = arg min
∀S,v,sB

wp

N∑
j=k

∥P disp
j − P t

0,j∥2 + wl

N∑
j=k

∑
l∈L

rlflj (4a)

subject to grid constraints ((1) or (2)), (4b)

(3). (4c)

A bound on the final SOE such that it is restored to comfortable SOC by the day’s

operation is also added.

0.45Ebess
l ≤ SOEl,N ≤ 0.55Ebess

l . (4d)

The state of energy budget ∆SOEl is computed using the first element of the BESS

setpoint vector from upper-layer MPC:

∆ŜOEl = p̂bessl,1 × 300

3600
. (4e)

Lower layer MPC: the problem is formulated as an MPC and its objective is to

minimize the energy error incurred over a 5 minutes horizon length with power set-

points actuated each 30 sec. The dispatch energy error at time k comprises of (i)
uncovered energy error from time index k to k − 1, ϵ̂k =

∑k−1
j=k(P̄

disp
j − Pmeas

0,j ) and (ii)

the predicted error from k to k̄ given as ϵk =
∑k̄

j=k(P̄
disp
j − P t

0,j). The MPC goal is a

multi-objective function comprised by the dispatch energy error incurred at the GCP

1The weights wp, wl and we may be derived from energy imbalance price in day-ahead electricity
market.

2Grid losses are included to satisfy exactness conditions of the AR-OPF formulation as in [7]
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(from current timestep to end of the 5-min period) and the grid losses:

minimize
∀S,v,sB

we(ϵk + ϵ̂k) + wl

∑
k∈K

∑
l∈L

rlfl,k (5a)

subject to grid constraints ((1) or (2)), (5b)

(3). (5c)

Additionally, the energy budget from the upper layer MPC are added as constraint

imposed on the BESS SOE as:

SOEl,k̄ ≥ SOEl,k +∆ŜOEl if ∆ŜOEl ≥ 0, (5d)

SOEl,k̄ ≤ SOEl,k +∆ŜOEl if ∆ŜOEl ≤ 0. (5e)

The constraints in (5d) sets a threshold SOC to be attained by the end of current

5-minutes duration. It ensures that the BESS is used judiciously by the lower MPC

to avoid its saturation and therefore restoring to comfortable SOC value by the end

of the daily operation. Thanks to the convex reformulation of the AC power flow

equations using AR-OPF, the control problems in (4) and (5) are convex and can be

solved by standard solvers.

1.6 Experimental Validation

In the following, we present the experimental validation of the proposed real-time

MPC algorithm. First, we compare the performance of the above two reported grid

models in terms of their accuracy in modeling the grid constraints. Since the same

experiment can not be repeated twice because of the uniqueness of weather condi-

tions on each day, we perform this comparison via simulation. Finally, the dominant

model is used for the experimental validation. The experimental setup is described

below.

1.6.1 Experimental Setup

Medium voltage distribution network in Aigle, Switzerland: We validate the pro-

posed control scheme on a real MV grid situated in Aigle, Switzerland, a mixed ru-

ral/urban system operated by Romande Energie,3 one of the main Swiss DSOs. We

consider a radial feeder composed by 24 nodes. The topology and locations of vari-

ous connected resources are shown in Fig. 5a-5b. It is a three-phase 21 kV/20 MVA

balanced (seen in the observations) system. The grid accommodates peak power con-

sumption (at the feeder) of 4.3 MWp and 2.9 MWp during the winter and summer,

respectively. It hosts aggregated PV generation capacity of 3.2 MWp including a sin-

gle plant of 1.8 MWp. The grid also hosts distributed hydropower generation of 3.4

MVA allocated in 4 plants. The placement of these generations are shown in Fig. 5a.

The grid is connected with a 1.5 MW/2.5 MWh BESS at node 11. Figure 5c shows

3https://www.romande-energie.ch/.
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exterior and interior of the BESS. The cells are Lithium-Nickel-Manganese-Cobalt-

Oxide (Li-NMCo) based and are rated for 4000 equivalent full cycles. It consists in

30 racks in parallel with 11 modules per rack in series (each module composed by

1p22s cell pack) connected to a four-quadrant power converter. The whole setup is

installed in a temperature controlled container as shown in Fig. 5c. The technical

specifications of the 1.5 MW/2.5 MWh BESS, including information of its cell tech-

nology as well as of its power conversion system (PCS) are included in the Table 1.

7
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Figure 5: (a) Topology with locations of the PMUs, PV plants, hydro-power plants, (b)
Location of the substations and lines on the map, and (c) BESS and PV infrastruc-
ture: (1) Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery
container and (3) interior of the battery.

Phasor measurement units: the real-time MPC algorithm relies on the grid-awareness

provided by a cluster of distributed metering units providing up-to-date relevant

measurements such that they can be accounted as initial conditions in the MPC

problem while optimizing the power set-points from the controllable resources and

ensuring safe and secure operation of the grid. In this respect, the MV distribu-
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Table 1: Technical specifications of the 1.5 MW/2.5 MWh BESS installed at the 21
kV MV grid of Romande Energie in Aigle, Vaud, Switzerland.

Parameter Value
Nominal capacity 1.5 MVA/2.5 MWh

GCP Voltage 21 kV
DC bus voltage range 770-1000 V
PCS PQ controllability 4-quadrant operation

PCS efficiency 93 % for all the operating conditions
Total harmonic distortion < 3 %

CSC operation mode Compliant
VSC operation mode Compliant

Cell technology Lithium nickel manganese cobalt oxide (NMC)
Number of racks 30 in parallel

Number of modules per rack 11 in series
Cells configuration per module 1p22s

Total number of cells 7260
Cell nominal voltage 3.68 (limits 2.7 - 4.15 V)
Cell nominal capacity 94 Ah (343 Wh)

Battery cycle life 4000 equivalent cycle at 1C rate at 100 % DoD
with 80 % of the initial storage capacity available

at the end of life

tion grid is equipped with the state-of-the-art monitoring solution SynchroGuard4

that provides real-time situational awareness of the grid. The setup contains 17

PMUs distributed across the grid, the locations are shown in Fig. 5a. The PMUs pro-

vide synchronised and time-tagged phasors which are sent to a central server using

a telecom network (fiber optic or 4G). Fig 6a shows an example of the PMU and its

components at a substation. A real-time state estimator (RTSE) accurately estimates

nodal voltage and nodal/branch current and powers of the whole grid every 20 ms

using only the PMU data. It is worth noting that the metering system is also a source

of historical data that is used to obtain day-ahead scenarios, intra and short-term

forecasts of the uncontrollable injections.

GHI and temperature measurement box: For modelling of the PV generation, we

use historical data of GHI and air temperature from the same region where PV plants

are located. So, we installed GHI and temperature sensing boxes (Meteobox) to

measure the GHI, air- and PV-panel- temperatures. These meteoboxes are installed

at three locations in the grid. They provide in real-time measurements with sampling

of 500 ms (including communication latency). Fig 6b shows the installed meteobox

at the site; each one consists of a pyranometer to sense the GHI, two temperature

sensors, and a power supply. It also contains a modem which is used to stream the

measured data using public 4G network to our data server. The meteobox code is

implemented in NI compact RIO.

4https://zaphiro.ch/technology/.
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Figure 6: (a) PMU installation at a monitored substation, 1) Zaphiro PMU box 2) GPS
antenna, (3) current sensor (4) cables and (b) GHI and temperature measurement
box (Meteobox) at a PV plant: 1) pyranometer, (2) temperature sensor (3) antenna (4)
power supply (5) NI Compact RIO.

1.6.2 Performance comparison of RT-MPC using Linearized vs. AR-OPF (Sim-
ulation)

To find the dominant grid model, we compare the performance of RT-MPC using the

two grid models: (i) Linear OPF and ii) AR-OPF concerning their accuracy and com-

putational speed. In the following, they are referred to as L-OPF-MPC and AR-OPF-
MPC respectively. For sake of simplicity, the comparison is performed using Single-
layer MPC, i.e. solving lower-layer MPC problem (eq. 5) but without SOE budget

from upper layer MPC. The comparison is performed against the true quantities ob-

tained by solving the non-linear load flow a posteriori. The results are compared

looking at the root-mean-square-error (RMSE) and maximum absolute error (MAE)

in the voltage, current magnitudes and grid losses. The comparisons are performed

for a single day of experiments. Since the objective of this comparison is to estab-

lish the dominant grid model, the control performances are not shown. The control

performances will be directly presented in the experimental results (Sec. 1.6.3)

Accuracy of the grid model: here, we compare the grid states i.e., nodal voltages,

lines currents and losses computed by the L-OPF and AR-OPF model. They are com-

pared against true values by solving non-linear AC power flow using the setpoint of

BESS. Fig. 7a and 7b shows the nodal voltages using L-OPF and AR-OPF respec-

tively. The plot in the upper panel shows the voltage computed by the OPF models

whereas the lower panel shows error (in %) against true voltage. Similarly, Figs. 7c

and 7d shows the lines current magnitudes (upper panel) and corresponding error
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(lower panel) using L-OPF and AR-OPF respectively. Finally, Figs 7e and 7f show

the net grid losses (upper panel) and corresponding error (lower panel) with L-OPF

and AR-OPF respectively. Fig. 7g shows the compare the CDF of the error in nodal

voltages, lines currents and grid losses using L-OPF and AR-OPF. Table 2 presents

the comparison of the two models in terms of maximum absolute error (MAE) and

RMSE errors of the nodal voltages, lines currents and grid losses. From both the

comparisons, it can be seen that AR-OPF model performs better on the lines current

magnitude and grid losses by 87% and 90% on MAE. The error on the voltage mag-

nitudes are slightly higher for AR-OPF however below than 5.5e-3% on maximum

magnitude error.

Table 2: Error on the modeled voltage, currents and grid losses.

MPC Voltage error Current error Losses error
RMSE (%) MAE (%) RMSE (%) MAE (%) RMSE (kW) MAE (kW)

L-OPF-MPC 3.8e-5 2.2e-4 0.38 3.31 0.11 0.62
AR-OPF-MPC 2e-3 5.5e-3 0.14 0.45 0.04 0.06

Computational performance: we also compare the computation time using the

two schemes. The comparison is shown in Table in terms of mean, maximum com-

putation time. The MPC algorithms was simulated on a MacBook Pro with configu-

ration of 2.7 GHz Quad Core Intel Core i7 and 16 GB Memory. Both the schemes

achieve computation time below 30 seconds which is the time resolution of the MPC.

Table 3: Computation time

MPC Mean time (sec) Max time (sec)
L-OPF-MPC 1.29 2.46

AR-OPF-MPC 1.32 2.49

In summary, from above comparative analysis, the AR-OPF-MPC is more accurate

concerning modeling of the lines current and grid losses. Thus, this model has been

adopted for the experimental validation on the Aigle distribution network.

1.6.3 Experimental results

The dominant grid model from the last analysis, i.e., AR-OPF is used for the experi-

mental validation on a real active distribution network. The experimental setup and

the obtained results are described below. This section presents the experimental

results obtained by dispatching the MV grid described in Sec. 1.6. We show results

for two typical days representing different characteristics in terms of power injection

patterns. On the first day, it imports net power into the grid, whereas on the second

day, it exports net power during the middle of the day, thanks to generations from

hydro and PV plants.
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(a) Voltage computed using L-OPF. (b) Voltage computed using AR-OPF.

(c) Current computed using L-OPF. (d) Current computed using AR-OPF.
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(e) Losses computed using L-OPF.
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(f) Losses computed using AR-OPF.
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(g) CDF Errors of Voltage magnitude error (left), current magnitude
error (middle) and grid losses (right).

Figure 7: Performance comparison of MPC using L-OPF and AR-OPF as grid models.

The control performance of the proposed two-layer MPC scheme is compared against

other two cases: (i) Without control, where no compensation from BESS is per-

formed, and (ii) a Single-layer MPC, solving single-layer MPC problem (eq. 5) but

without SOE budget from upper layer MPC. Since the experiments were performed
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with the two-layer MPC, and the same experimental conditions can not be repro-

duced, we perform numerical simulations with single-layer MPC with same condi-

tions as the day of operation for this comparison.

Day 1: Fig 8a shows the dispatch plan (in gray area), power at the GCP for different

control schemes. Fig. 8b shows the SOC evolution with different control schemes.

Fig 8c shows the plot of tracking error cumulative distribution function (CDF) as

result of different real-time controls.

(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Figure 8: (a-c) Real-time operation for day 1 (01-Mar.-2022).

As it can be observed, the single-layer MPC lets the BESS saturate at around 8:00

hrs and it could not be used for the whole day; hence failing the dispatch. In con-

trast, the two-layer MPC ensures the BESS to never saturate, thanks to the energy

budget constraints computed by the upper layer MPC. Also, by looking at the CDF

plot of the tracking error in Fig. 8c, it is clear that two-layer MPC, on the one hand,

achieves better tracking of the dispatch plan with a lower probability of high tracking

error. On the other hand, it keeps the BESS SOC within a flexible range. Table 4

reports the maximum-absolute-error (MAE), net absolute-energy-error (AEE), root-

mean-square-error (RMSE) of the dispatch error using different controls concluding
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that the control based on two-layer MPC performs the best. The two-layer MPC

outperforms the single-layer MPC in RMSE by 40%, MAE by 67% and AEE by 35%

respectively.

(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Figure 9: (a-c) Real-time operation.

Day 2: Fig. 9a shows the tracked dispatch plan using different control schemes.

We show the BESS SOC, and the CDF of the dispatch tracking errors during the day

in Fig. 9b and 9c respectively. Between 15.00 - 17.00, there is sudden drop in the PV

generation (causing increased demand at the GCP) due to cloud passing resulting

in increased mismatch between the dispatch plan and power at the GCP (without

control). As observed, both the single- and two-layer MPCs achieves fine tracking of

the dispatch plan for most of the day.

Table 4 reports the key metrics. It show slightly better performance for the single-

layer MPC against the two-layer MPC, the latter restores the BESS to comfortable

SOC of 45% (for the next day operation), whereas the single-layer MPC lets the BESS

SOC to drop to 27%. The two-layer MPC sacrifices fine dispatch tracking from 19.00

till 23.59.30 to restore the BESS SOC from 20% to 45%. From the CDF plot in
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Fig. 9, it can be observed that two-layer MPC achieves lower tracking error with high

probability.

Table 4: Tracking error statistics with different control schemes.
MPC Day 1 Day 2

RMSE AEE MAE RMSE AEE MAE
(kW) (kWh) (kW) (kW) (kWh) (kW)

None 137 2.5e3 1e3 176 3.2e3 896
Single-layer 148 2.3e3 1e3 124 1.5e3 932
Two-layer 89 1.5e3 332 85 1.5e3 322
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2 Achievement of deliverable

2.1 Date

March 2022

2.2 Demonstration of the deliverable

This deliverable has been achieved through:

• the development of the control and scheduling framework

• accounting the grid constraints by two different optimal power flow models

• validation of the proposed methodologies in a full-scale real environment via

the REeL demonstrator site in Aigle, Switzerland.

3 Impact

This deliverables represent the final outcome of a series of activities undertaken in 
the frame of ReEL. This involves the development of the OPF-based control method-

ology, a PMU-based real-time grid state monitoring and a short-term PV forecasting, 
all developed during the Phase I (2014-2016) of the SCCER-FURIES and patented, 
as well as the demonstration of those solutions in the real-grid of Aigle during the 
Phase II (2017-2020).
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