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Summary 
In this report, we present four deliverables of the project DiGriFlex aiming to "D4.1: Validation case study 
and grid operation scenarios", "D4.2: Pre-validation report including results of the power grid simulation 
tool (Simscape Power Systems and PLECS)", "D4.3: Validation report including experimental validation 
of forecasting algorithms", and "D4.4: Validation report including experimental test results in the ReIne 
laboratory". WP4 is focused on i) definition of case studies and related grid operation scenarios, ii) pre-
validation of optimization using the grid simulation environment, iii) experimental validation of forecasting 
algorithms developed in WP2, and iv) experimental validation in the ReIne laboratory. This report in-
cludes all of the sections from I to iv (equivalent to Tasks 4.1 to 4.4). On a laboratory demonstration 
platform that mimics a real-world distribution grid, we validate the effectiveness of forecasting and opti-
mization algorithms (outcomes of WP2 and WP3). Despite the uncertainties, the proposed algorithms 
enable efficient and secure real-time (RT) distribution grid operation, as well as flexibility provision from 
the LV distribution grid to upstream medium- and high-voltage (HV) grids. Uncertainties arise from the 
power generation and load power consumption of photovoltaic (PV) systems, as well as the RT deploy-
ment of flexibility services. The distribution grid becomes active in providing flexibility services as a result 
of the proposed algorithms. Bayesian bootstrap quantile regression (BBQR) and distributionally robust 
chance-constrained (DRCC) programming are used in the forecasting and optimization algorithms, re-
spectively. This report assesses the laboratory demonstration platform's framework as well as the effi-
cacy and validity of developed algorithms.  
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1 Introduction 
In the context of the energy transition, to accomplish the sustainability goals of energy systems, the 
penetration of renewable energy sources (RESs) at the distribution grids level must be increased (see 
[1] for explaining this necessity in the case of Switzerland). This task on the consumption side, however, 
poses technical and operational challenges for the distribution grids. First, even though the distribution 
grids are designed for one-way power flow, they must be operated with bidirectional power flow and 
excessive stress [2]. Second, given the high level of uncertainty in distributed photovoltaic (PV) systems, 
which are the major source of distributed RESs, power production control and forecasting will be com-
plicated. Third, the stochastic profile of electric vehicle (EV) charging introduces a new source of uncer-
tainty in load power consumption [3]. The primary solution to all these technical and operational chal-
lenges is to improve the distribution grids' observability and controllability. 

The development of efficient forecasting algorithms for PV power production and load power consump-
tion will improve the distribution grid's observability. For probabilistic forecasting of PV power production, 
[4] has developed a Bayesian bootstrap quantile regression (BBQR) approach. Furthermore, for load 
power consumption, [5] has proposed a real-time (RT) forecast based on random forests. 

Controllability of distribution grids, on the other hand, will be improved through the development of effi-
cient optimization algorithms. The grid's security will be ensured, and flexibility services will be provided 
to compensate for the increased uncertainties caused by the stochastic nature of PV system power 
production and EV load power consumption. A method for controlling the active and reactive power 
flexibilities of battery energy storage (BES) systems as the major sources for increasing the controlla-
bility of distribution grids has been proposed and tested in [6]. A two-stage control framework for dis-
patching a distribution grid has been developed and experimented upon, utilizing a BES system as a 
controllable element in [7]. The dispatch plan has been determined at the day-ahead (DA) stage, includ-
ing the profile that the feeder's connection node must follow during the operation, allowing the BES 
system to restore an adequate amount of flexibility. A model predictive control algorithm has been pre-
sented for the RT stage to compensate for the mismatch between the profile realization of the distribution 
grid's connection node to the external grid and the DA stage's decided dispatch plan. Finally, an optimi-
zation technique based on distributionally robust chance-constrained (DRCC) programming has been 
developed in [8] for scheduling the operation of distribution grids for delivering flexibility services to 
upstream grids. 

The objective of this paper is to develop and validate efficient forecasting and optimization algorithms 
for enhancing the observability and controllability of distribution grids. The proposed algorithms, which 
are based on BBQR forecasting and DRCC optimization, ensure that distribution grids operate safely 
by taking into consideration operational constraints such as network currents and voltages, as well as 
the limits of connected components. Furthermore, the proposed algorithms allow us to provide flexibility 
services from local low-voltage (LV) distribution grids to upstream medium- (MV) and high-voltage (HV) 
grids, considering operational uncertainties. Using the framework of a laboratory demonstration plat-
form, all forecasting and optimization algorithms are tested and validated on a test case LV distribution 
grid. In comparison to earlier studies, the key contribution of this paper is that it describes the imple-
mentation and validation tests in a reconfigurable distribution grid laboratory environment. The frame-
work and setup of RT data acquisition from the grid, control component interfaces, and software for DA 
and RT forecasting and optimization algorithms are all provided. 

 

 



 

 

1.1 DiGriFlex project description 
The first objective of this research project is to develop effective forecasting and optimal control methods 
to ensure efficient and secure operation of distribution grids, as well as flexibility and ancillary service 
provision from local low voltage distribution grids to the upstream medium/high voltage grids, under 
uncertainties. The source of uncertainties varies from stochastic distributed power generation (e.g., solar 
and wind power generation) and demand uncertainties to system model uncertainties (e.g., uncertain 
parameters of overhead lines and cables). Secure operation deals with satisfaction of technical con-
straints of distribution grids such as nodal voltage limits, power flow limits of lines/cables, and technical 
constraints of grid connected resources such as distributed generation and battery storage capacity 
limits. Efficient and optimal operation deals with both of the technical and economic objectives of local 
distribution operators such as minimization of voltage deviations and line’s losses, maximization of an-
cillary service provision to upstream medium and high voltage grids, and minimization of real-time im-
balances with respect to predefined schedules. 

The second objective of the project is to implement the above forecasting and optimal control methods 
in a test case low voltage distribution grid, and demonstrate the effectiveness of the developed methods 
for different grid operation scenarios. 

1.2 WP4 description 
WP3 “Implementation of the proposed methods and algorithms of WP2 and WP3 in a LV distribution 
grid (ReIne laboratory), and demonstration of their effectiveness under different operational scenarios 
(test cases)” consists of four tasks: 

• Task 4.1: definition of case studies and related grid operation scenarios, 

• Task 4.2: pre-validation of optimization using grid simulation environment, 

• Task 4.3: experimental validation of forecasting algorithms developed in WP2, 

• Task 4.4: experimental validation in the ReIne laboratory. 

The next chapter will introduce the detailed contents of each task and its association with the four deliv-
erables planned for this WP. 

1.3 Deliverable D4.1 definition 
The setup of grid configurations and grid parameters to represent typical LV distribution grids in Swit-
zerland is determined in this deliverable "validation case study and grid operation scenarios" based on 
the WP1 outcome. Furthermore, grid operation scenarios, including generation/consumption uncertain-
ties and grid component outages, are determined based on the outcomes of WP1, WP2, and WP3. 

1.4 Deliverable D4.2 definition 
The pre-validation case studies are implemented in a time-domain power grid simulation environment 
in this deliverable "pre-validation report including results of the power grid simulation tool", according to 
the above setups of deliverable 4.1. (e.g., Python, Sim-scape Power Systems, or PLECS). The pre-
validation success criteria (e.g., level of over/under of nodal voltages as well as over currents of lines or 
probability of successful deployment of flexibility) are defined. 
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1.5 Deliverable D4.3 definition 
The deliverable "validation report including experimental validation of forecasting algorithms" is the re-
sult of three major subtasks. First, the data acquisition, pre-processing, and exploratory data analysis 
processes are validated. Second, forecasting systems are implemented using algorithms that are run in 
a statistical programming environment (e.g., MATLAB or R). Third, the outcomes of forecasting algo-
rithms in terms of target variable realizations are validated in terms of appropriate forecasting errors.  

1.6 Deliverable D4.4 definition 
The "validation report including experimental test results in the ReIne laboratory" is the fourth deliverable 
of this work package. First and foremost, the link between the forecasting and optimization algorithms 
is validated. Second, the operation of real-time online optimization with grid constraints and controllable 
source capabilities is investigated. Finally, the connection between prescheduling and online optimiza-
tion is validated in terms of grid constraints, communication, and computation requirements. 

2 WP planning 

2.1 Project plan 
Based on the breakdown of activities presented in the previous chapter, the time plan of WP4 shown in 
Figure 1 has been established.  

Figure 1: Summary of WP4 time plan 

2.2 Tasks description 
Figure 1 shows the progress and plan of the proposed tasks in WP4. This report includes the results of 
tasks 4.1, 4.2, 4.3, and 4.4. In the following, the detailed sub-tasks for these two tasks are listed. 

Task 4.1: Definition of case studies and related grid operation scenarios 

- Setup of grid configurations and grid parameters to represent typical low voltage distribution 
grids in Switzerland according to WP1 outcome.  

- Setup of grid operation scenarios including generation/consumption uncertainties and grid com-
ponent outages according to the outcomes of WP1, WP2, and WP3. 

Task 4.2: Pre-validation of optimization using grid simulation environment 

- Implementation of pre-validation case studies, according to above setups of Task 4.1 in a time-
domain power grid simulation environment (e.g., Simscape Power Systems and PLECS).  

- Definition of success criteria of pre-validation (e.g., level of over/under of nodal voltages as well 
as over currents of lines) 



 

 

Task 4.3: Experimental validation of forecasting algorithms developed in WP2.  

- Data acquisition, data pre-processing and exploratory data analysis.  
- Implementation of the forecasting systems by means of algorithms run in a statistical program-

ming environment (e.g., MATLAB or R). 
- Validation of the outcomes of forecasting algorithms with respect to the realizations of the target 

variables, in terms of appropriate forecasting errors.  

Task 4.4: Experimental validation in the ReIne laboratory 

- Implementation of validation case studies in the ReIne laboratory 
- Validation of the link between the forecasting algorithms and the optimization algorithms. 
- Validation of real-time online optimization regarding grid constraints and controllable source 

capabilities. 
- Validation of link between prescheduling and online optimization regarding grid constraints, 

communication and computation requirements. 

3 Setup of validated algorithms 
A two-level rolling framework for forecasting and optimization algorithms is used to determine the optimal 
and secure operation of a distribution grid under uncertainties. The first level deals with the DA sched-
uling of controllable resources, whereas the second level deals with the RT scheduling of controllable 
resources. Figure 2 depicts the timeline of the proposed two-level rolling framework for forecasting and 
optimization algorithms. 

 
Figure 2: Two-level rolling framework for forecasting and optimization algorithms. 

According to figure 2, we forecast profiles of PV power production and load power consumption in DA 
for the entire day of D using data collected until 18:00 on day D-1. To that end, we must forecast 144 
values for each power profile when the resolution is set to 10 minutes. The primary objective of the DA 
optimization problem is to minimize the relative expected cost of the operation while forecasting the 
uncertain parameters. This objective function includes the balancing cost minus the total revenues from 
providing flexibility services to upstream MV and HV grids. As shown in figure 2, the optimization prob-
lem's set-points are activated prior to the start of the day D, which includes some operational time (OT). 

In RT, we forecast power profiles that occur during T using data collected until interval T-2 as shown in 
figure 2. The objective of the RT optimization problem is to minimize the deviation of controllable re-
sources (i.e., BES and PV systems) from the pre-scheduled set-points obtained from the DA optimiza-
tion, with respect to the RT realization of the uncertainties. The RT algorithm forecasts PV system power 
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production and load power consumption over the next 10 minutes. The set-points are then sent to the 
controllable resources for activation before the start of time interval T, which also requires some OT. 

It is worth mentioning that the technical constraints of the grid, as well as the constraints associated with 
the capacities of the controllable resources, connect two-level rolling optimization problems in DA and 
RT (e.g., state of charge of the BES systems). Both forecasting and optimization control algorithms for 
the DA and RT scales are briefly explained below. 

3.1 Forecasting algorithm 
In DA, we require two forecasts: for PV energy production and load power consumption (both active and 
reactive power). The methodology used for both DA forecasts is based on an ensemble BBQR ap-
proach, which is a combination of individual forecasts from different underlying models. Furthermore, 
the methodology is developed within a probabilistic framework, i.e., the proposed algorithm generates 
predictive quantiles of the target variable for the target forecast horizon. 

The forecasting methodology for PV power systems is depicted in figure 3. First, a procedure is used to 
select only the most informative predictors from all of the candidate predictors after evaluating their 
performance during a validation period. The BBQR method is then used to evaluate the posterior distri-
bution of PV power production by extracting a number of multivariate weight samples from the Dirichlet 
distribution. Finally, the best sample quantiles are chosen to provide probabilistic forecasting. The de-
tails of the PV power production forecast are explained in WP2. The same procedure was also devel-
oped to forecast the load power consumption (for both active and reactive power), as shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Forecasting methodology for PV power systems based on BBQR approach. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Forecasting methodology for load power consumption based on BBQR approach. 

The developed methodology for RT forecasting of load power consumption and PV power production is 
deterministic. As a result, a single spot value is extracted and used as an input to the RT optimization 
model in the deterministic framework. WP2 presents the derivative-persistence (DP) model for RT fore-
casting of PV power production. 

3.2 Optimization Algorithm 
Figure 5 depicts the overall view of the proposed optimization algorithm, which is expressed as two-
level rolling optimization. We have a set of decisions to make that must be made in the absence of 
complete information about random events. These are known as first level decisions, and they are made 
using DRCC programming (the details of DA optimization using DRCC are explained in WP3). Later, 
complete information on the occurrence of random events is received. Following that, decisions at the 
second level are made. 

 

 

 

 

 

 

 
Figure 5: Two-level formulation of the optimization algorithm. 
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At the first level, the objective is to maximize revenue from selling flexibility services to upstream grids 
while minimizing consumption costs. The distribution grid operator determines the decision variables in 
the vector 𝑧𝑧, which include the planned active and reactive power as well as the planned flexibilities, at 
the first level. The uncertain parameters in the vector  𝜁𝜁 are then realized in the second level, and the 
operator uses available distributed resources to compensate for the uncertainties. As a result, the ob-
jective of second level optimization is to minimize imbalances while taking into account the distribution 
grid's operating criteria, planned active/reactive power, and requested flexibilities. 

4 Experimental Validation in ReIne 
The ReIne (RÉseaux INtElligents, French acronym for ``Smart Grids") laboratory (figures 6 and 7) has 
been built at the School of Engineering and Management Vaud (HEIG-VD), Yverdon-les-Bains, Swit-
zerland, to study and plan changes to distribution grids. ReIne is a hardware and software platform for 
mimicking a wide range of the LV grid's topologies at full scale, as well as the MV grid's topologies on a 
per-unit basis. The laboratory allows for the testing of the smart grid's control methods, as well as power 
electronics equipment, smart meter devices, and so on [9]. The uniqueness of this laboratory, in com-
parison to other existing structures in Switzerland or around the world  [10,11], is its flexibility, which 
makes use of both lumped grid's elements and actual electrical sources and load. It allows for the re-
configuration of the grid's topology as well as the connection points of the various sources and load. 

 

 

 

 

 

 

 
 

 

Figure 6: ReIne laboratory for emulation of distribution grids. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Configuration of ReIne laboratory and connected elements. 

Table 1 summarizes the main characteristics of the laboratory. ReIne is made up of a matrix network 
(switchboard cabinets) that connects production devices, passive and active load, and bidirectional 
power electronics converters. The part of the laboratory that emulates the grid is made up of nine lines 
arranged in a matrix. Discrete inductors and resistors are used to emulate all lines. 

Table 1: Main characteristics of ReIne. 

Voltage range: 0-305V 

Nominal power: 100kVA 

Earthing system: TN-S without residual-current devices 

Wiring type: Line with R/X from 0.3 up to 3.5 

Nominal Power: 100kVA 

Controls mode: (1) Centralized SCADA; (2) Distributed GridEye 

Purpose: Research, industrial, and education 

 

The proposed forecasting and optimization algorithms are tested and validated in the ReIne laboratory. 
The overall system configuration for this test is depicted in figure 8. As shown, the following five key 
parts were built to close the system loop and validate the performance of the proposed solution: (1) grid 
emulation; (2) data acquisition; (3) optimization codes; (4) forecasting codes; and (5) control signal ac-
tivation. 
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Figure 8: Overall system configuration for a laboratory demonstration platform. 

4.1 Grid emulation 
A grid is emulated, including five nodes, six lines, one transformer, one 100kW/63kWh BES system, a 
PV system with an 8.7kW ABB converter, and a 20kVA/18kW grid simulator mimicking the load at node 
3. The grid configuration and connections between lines and nodes are depicted in figure 8 in the block 
of ReIne. The HEIG-VD school load is communicated in RT to the grid simulator at node 3, then rescaled 
by a factor of 1/30. The goal is to control the active and reactive power outputs of the BES system and 
the PV converter so that flexibility services can be provided at the point of common coupling (PCC). 

4.2 Data acquisition 
For handling all measurements and reference/control commands, a supervisory control and data acqui-
sition (SCADA) system based on LabVIEW has been designed. This allows for the modification of the 
grid's topology by controlling the contactors of the switchboard cabinets, as well as the visualization and 
recording of measurements. Transducers are used to measure voltages and currents, and three parallel 
National Instrument CompactRIOs are used to calculate root mean square (RMS) signals, active/reac-
tive power, and harmonics over time scales of 200 milliseconds and 10 minutes. These readings are 
then grouped on an RT scale and sent to a personal computer (PC) that runs the LabVIEW code for the 
SCADA system. 

4.3 Optimization codes 
We have two optimization codes for DA and RT. Both programs are written in Python and use GUROBI 
optimization solvers [12]. The DA one, which is based on DRCC programming, is executed automatically 
every day at 18:00 after the forecasting code has been executed. On the other hand, the LabVIEW code 
calls the RT code every ten minutes, which is based on deterministic linear programming. The RT opti-



 

 

mization code takes as inputs both the RT data captured by the SCADA system and the schedule de-
termined by the DA optimization code. Both the DA and RT codes are run on the same PC as the 
LabVIEW code. As a result, a Python node is included in the LabVIEW code to integrate the interface. 
It is worth mentioning that backup scenarios are included in both Python and LabVIEW codes on the 
occasion that the RT optimization code does not yield a viable solution or an error occurs during the 
activation process. 

4.4 Forecasting codes 
The BBQR and DP methods are being used for DA and RT forecasting, respectively. Both the forecast-
ing codes for DA and RT are written in R and are called by the main Python code. To that end, the 
Python package rpy2 is used for the interface between Python and R. In both DA and RT, the SQL 
database is used to ingest historical data. The strength of R in the development of numerical algorithms 
was the driving force behind its use in the forecast. 

4.5 Control signal activation  
The BES and PV converter set-points in RT are determined by Python code running on the PC. These 
set-points are managed by LabVIEW code in RT and transmitted via the Modbus interfaces of BES and 
PV converter systems. It is worth mentioning that the ABB converter requires an interface relay module 
in order to receive Modbus commands. To accomplish this, an additional expansion board and a pro-
grammable logic controller (PLC) are added to the converter to transfer Modbus control signals to it. 

5 Test Results 
The proposed forecasting and optimization algorithms, as well as the described demonstration platform, 
were tested for one month (during September 2021). During a meeting on September 28, 2021, the 
online demonstration was also presented to SFOE representatives (Dr. Michael Moser and Dr. Denis 
Peytregnet) and other project partners from Depsys and EPFL. Because of the demonstration purpose, 
the operational time-step in this test is set to 2.5 minutes rather than 10 minutes. Furthermore, both the 
forecasting and optimization algorithms in RT can be run for the given example grid in less than 2.5 
minutes, ensuring that the set-points are ready for activation and that there is no practical challenge. 

Figure 9 depicts the outcome of forecasts for load power consumption (both active and reactive power) 
on September 24, 2021 (as an example day). The shaded area around the DA forecast in figure 9 
represents the error prediction based on a confidence level of 90%. Because the DA algorithm employs 
probabilistic forecasting, we can estimate the forecast error with any arbitrary confidence level. 

We anticipate that the RT forecast will be closer to the actual load power consumption than the DA 
forecast. This expectation is correct for active power because the mean absolute error (MAE) of DA 
forecasting is 0.35kW and 0.22kW for RT forecasting during the test month. On the other hand, the MAE 
of DA and RT forecasting of reactive power, on the other hand, are 0.23kVar and 0.22kVar, respectively. 
As a result, there is not much of an improvement in RT forecast of reactive power. 

A good selection of input predictors based on the type of load is a determining factor of forecast perfor-
mance. The school load here is heavily influenced by working hours and holidays. As a result, adding a 
feature that represents such data significantly improves the results. 
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Figure 9: Forecast output for load power consumption on September 24, 2021. 

The forecast results for PV power production on September 24 and 25, 2021 are depicted in figure 10. 
The shaded area in figure 10 represents the maximum error of DA forecasting at 90% confidence level. 
This area can be determined since we employed a probabilistic forecasting algorithm. As can be seen, 
24 and 25 of September were sunny and partly cloudy days, respectively. As a result, the performance 
of the DA forecast for September 24 was more acceptable. The effectiveness of the RT forecast, on the 
other hand, is clear in both types of days because the available power follows the RT forecast. It is worth 
noting that the deployed power is also shown in figure 10, as PV system power can be curtailed based 
on the optimization algorithm solution. 

The MAE of PV power production forecasting in DA is 0.28kW (on average, 12%). The MAE is reduced 
to 0.14kW (an average of 6%) using the RT forecast. It is worth mentioning that these forecasts do not 
incorporate the weather data for the PV system location. The forecasting will be significantly more ac-
curate if such data inputs are added to the predictors of the forecasting algorithm. 

 
Figure 10: Forecast output for PV power production on September 24 and 25, 2021. 

The DA schedule and realized power at the PCC of the LV grid in RT are shown in figure 11. The shaded 
area of figure 11 also depicts the active and reactive power flexibilities surrounding the scheduled power 
(in both upward and downward directions). The behavior of the upstream grid operator in terms of flex-
ibility services deployment is also simulated. The asked power is represented by a dotted blue line based 
on the simulated behavior (which is always between the determined flexibility boundaries). As can be 
seen, the realized active and reactive power in RT complies with the requested power. 

Three reasons contribute to the difference in realized active power in RT versus asked power: First, the 
forecast error in RT cannot be zero. Second, the BES and PV systems' set-points are changed every 
2.5 minutes, so short-term variations in PV power production and load power consumption are reflected 
in output power. Third, the BES system converter's accuracy is not perfect across all set-point ranges. 
Here, we used a 100kW battery in this test for the set-points less than 10kW. This is the worst power 
range for the converter of this BES system. 



 

 

Figure 11: Optimization output at the grid's connection point on September 27, 2021. 

6 Conclusion and Next Steps 
In this report, the laboratory demonstration platform for the DiGriFlex project (real-time distribution grid 
control and flexibility provision under uncertainties) is presented. The platform is created in the ReIne 
laboratory, which mimics and emulates various distribution grid configurations. For the experiment, a 
loop of data acquisition, data storage, forecasting uncertainties, optimization, and control activation is 
implemented. The control loop operates automatically on the DA and RT scales, taking into account the 
uncertainties in grid operation. The following major lessons were learned from the test results and the 
demonstration platform that can be applied to related industrial products: 

- The accuracy of the BES systems converter in activating set-points in various operating ranges 
must be considered. 

- The proposed solution's scalability in terms of the number of nodes and components must be 
taken into account. 

- The access to historical data and communicating predictors as forecast inputs were the bottle-
necks of the proposed algorithms. 

- Forecasting and optimization algorithms can be decomposed and parallelized to run on multiple 
processing units at the same time. 

In future work to address the above lessons, a comparative evaluation of stream processing frameworks 
is needed for the implementation of RT control engines in distribution grids. 

7 Appendix A: Description of Optimization Codes 
The optimization algorithm proposed in WP3 is written in Python and implemented with the optimization 
package Gurobi. This code requires the following packages: "gurobi", "rpy2", "sql-connector", "sklearn", 
"scipy", and "statsmodel". Because the LabVIEW interface only works with 32 bit versions of Python, 
the version 3.6.8 32 bit of Python must be used to run this code. 

To run the DA optimization code, open the file "DiGriFlex DA.py." The bat file "DA code.bat" is also 
created, which executes this code automatically. You can also run the RT optimization code by running 
the file "DiGriFlex Sim.py." The bat file RT code is also created, which automatically executes this code. 
The results are saved in the "/Results/" folder. The results can also be plotted using the jupyter file 
"/Figures/plotting.ipynb." The code is written with git version control, and code documentation is availa-
ble. 
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8 Appendix B: Description of Forecasting Codes 
The forecasting code can be found in the folder "/Functions R." For DA and RT forecasting, the following 

codes are used: 

- Function_DayAhead_Bayesboot_irra.R: This code is used for PV power production DA fore-

casting. 

- Function_DayAhead_Bayesboot_P.R: This code is used for DA forecasting of loads' active 

power consumption. 

- Function_DayAhead_Bayesboot_Q.R: This code is used for DA forecasting of reactive load 

power consumption. 

- Function_LQR_Bayesboot_irra.R: This code is used for PV power production RT forecasting. 

- Function_LQR_Bayesboot_P_v2.R: This code is used to forecast the active power consumption 

of loads in RT. 

- Function_LQR_Bayesboot_Q_v2.R: This code is used to forecast the reactive power consump-

tion of loads in RT. 

The training datasets used in the forecasting codes are located in the folder "/Data" and are labelled 

"DATA_tra", "DATA_tra_Irr", "DATAP_tra", and "DATAQ_tra". 

9 Bibliography 
[1] R. Gupta, F. Sossan, and M. Paolone, “Countrywide pv hosting capacity and energy storage require-
ments for distribution networks: The case of Switzerland,” Applied Energy, vol. 281, p. 116010, 2021. 

[2] Nick, Mostafa, Rachid Cherkaoui, Jean-Yves Le Boudec, and Mario Paolone. "An exact convex for-
mulation of the optimal power flow in radial distribution networks including transverse compo-
nents." IEEE Transactions on Automatic Control 63, no. 3 (2017): 682-697. 

[3] E. Veldman and R. A. Verzijlbergh, “Distribution grid impacts of smart electric vehicle charging from 
di_erent perspectives,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 333–342, 2014. 

[4] M. Bozorg, A. Bracale, M. Carpita, P. De Falco, F. Mottola, and D. Proto, “Bayesian bootstrapping in 
real-time probabilistic photovoltaic power forecasting,” Solar Energy, vol. 225, pp. 577–590, 2021. 

[5] M. Rayati, T. Pidancier, M. Carpita, and M. Bozorg, “State estimation for medium and low voltage 
distribution grids based on near real-time grid measurements and delayed smart meters data,” in 2020 
22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe). IEEE, 2020, 
pp. P–1. 

[6] A. Zecchino, Z. Yuan, F. Sossan, R. Cherkaoui, and M. Paolone, “Optimal provision of concurrent 
primary frequency and local voltage control from a bess considering variable capability curves: Model-
ling and experimental assessment,” Electric Power Systems Research, vol. 190, p. 106643, 2021. 

[7] F. Sossan and et al., “Achieving the dispatchability of distribution feeders through prosumers data 
driven forecasting and model predictive control of electrochemical storage,” IEEE Trans. Sustainable 
Energy, vol. 7, no. 4, pp. 1762–1777, 2016. 



 

 

[8] M. Rayati, M. Bozorg, R. Cherkaoui, and M. Carpita, “Distributionally robust chance constrained 
optimization for providing flexibilities in an active distribution network.” IEEE under review, 2021. 

[9] M. Carpita, J.-F. A_olter, M. Bozorg, D. Houmard, and S. Wasterlain, “Reine, a flexible laboratory for 
emulating and testing the distribution grid,” in 2019 21st European Conference on Power Electronics 
and Applications (EPE’19 ECCE Europe). IEEE, 2019, pp. P–1. 

[10] M. Shamshiri, C. K. Gan, and C. W. Tan, “A review of recent development in smart grid and micro-
grid laboratories,” in 2012 IEEE International Power Engineering and Optimization Conference Melaka, 

Malaysia. IEEE, 2012, pp. 367–372. 

[11] C. Patrascu, N. Muntean, O. Cornea, and A. Hedes, “Microgrid laboratory for educational and re-
search purposes,” in 2016 IEEE 16th international conference on environment and electrical engineering 
(EEEIC). IEEE, 2016, pp. 1–6. 

[12] J. P. Pedroso, “Optimization with gurobi and python,” INESC Porto and Universidade do Porto,, 
Porto, Portugal, vol. 1, 2011. 


