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3. INTRODUCTION

The DiGriFlex project is aimed at proposing and validating effective forecasting and optimal control algorithms
to ensure efficient and secure operation of low voltage distribution grids, as well as to provide flexibility (from
distribution grids toward upstream grids) under uncertainties. A two-level rolling optimization framework is
developed and experimentally validated. The first level deals with prescheduling of controllable resources in a time
ahead basis, whereas the second level deals with real-time online scheduling of all the controllable resources. An
appropriate forecasting system is developed to provide day-ahead and near real-time forecast of uncertain
parameters, in accordance with the optimization framework. The proposed methodology will be validated, and its
effectiveness demonstrated under realistic uncertainty sources, this activity being object of the final part of the
project.

This report refers to the activities of the project referring to the first two years of activities of the project. The
activities within this period which involved the University of Naples Federico II are included in the WP2
(Development of appropriate day-ahead and real-time forecasting systems for renewable generation and loads) and
are related to Tasks 2.1 and 2.3:

Task 2.1 refers to “Data collection, data pre-processing and exploratory data analysis”.
Task 2.3 refers to “Development of real-time forecasting systems for renewable generation and loads”.

The activities of Task 2.1 include the i) collection of time series data, ii) data pre-processing and iii) exploratory
data analysis.

The activities of Task 2.3 include the i) development of methods for real-time forecasting of renewable
generation power and loads, ii) identification of possible combination of models in ensemble approaches, iii)

comparison with relevant state-of-the-art benchmarks.

More specifically, in Task 2.1 the activities include all the data collection and data pre-processing tasks that
were necessary to create a large robust database of variables which could be exploited to develop forecasting
systems for renewable generation and loads. Since the forecasting methodology will be integrated into the grid
optimization models that are the object of the WP3, data and pre-processing were made with reference to the site
of the installation of the test distribution grid of the Relne laboratory. Other variables that were not available at
the site of installation of the test distribution grid of the Relne laboratory were taken from the literature and/or
collected at different sites, in order to develop the forecasting systems.

Exploratory data analysis was aimed at discarding uninformative predictors which are the input datasets for the
forecasting systems developed in the Task 2.3, particularly with reference to those methods which require large

historical datasets.
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With reference to Task 2.3, the development of methods and models able to obtain accurate real-time
forecasting of PV generation and load (electric vehicle load) focused on both deterministic and probabilistic
approaches. As deterministic approach, two persistence-based methods were proposed. Probabilistic methods
referred to hybrid physical-statistical models based on multiple linear regression and random forests. The
identification of the best combination type for these underlying models in ensemble approach is also explored.
Finally, a comparison with the relevant state-of-the-art benchmarks is carried out. More_specifically, the models
proposed in the research activity are the:

= derivative-persistence method for real-time photovoltaic power forecasting;

=  Caputo-derivative method for real-time photovoltaic power forecasting;

= Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting;
= hierarchical probabilistic electric vehicle load forecasting.

In what follows, after a brief illustration of the objectives of the tasks (Section 5), a description of the state of
the art on real-time forecasting methods is proposed with reference to both renewable generation and load (Section
6). The specific activities of Tasks 2.1 and 2.3 are detailed in Sections 7 and 8. Finally, a comparison with expected
results, the human resources involved in the project and the publications produced during the first year are

reported in Sections 10-12.

4. OBJECTIVES

Objectives of the Tasks involved in this Milestone focus on forecast of loads and renewable generation in active
distribution networks. More specifically, objective of the activities of the research unit was the development of
online forecasting systems and algorithms for renewable generation and loads with reference to both deterministic

and probabilistic frameworks.

5. STATE OF THE ART

Real-time operation of smart grids is based on intra-hour strategies which require to handle real-time forecast
of input data such as photovoltaic (PV) or wind source power production. Due to the requirements in terms of real-
time computing, these data need to be available in very short time (i.e., very-short-term or ultra-short-term

forecasting) [1]-[3].
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5.1. RENEWABLE GENERATION PREDICTION

Focusing on renewable generation prediction, the persistence model, which is based on the assumption that the
quantity to be forecasted will remain constant over time, has been always considered performant in real-time
forecasts [4]. Statistical approaches, which are based on historical time series and use mathematical equations to
extract the pattern and correlation from past input data, show accurate performance in very-short-term horizons.
These methods can be divided into two groups, that are machine learning and time series-based models [5] which
are both used for real-time forecasting. Physical forecasting models, such as numerical weather prediction models,
which are based on physical parameters for future predictions, are typically used for longer lead times (i.e., from
short-term to long-term forecasting), but they cannot be considered performant for very-short-term scenarios
since they would increment the computational time with negligible improvement.

With reference to the persistence method, it is often adopted to forecast renewable power generation due to its
ease of implementation, since it does not need weather forecast data or on in-built toolboxes for implementation.
In case of real-time operation, the persistence forecasting method allows obtaining an almost instantaneous
estimate of the forecasting power based on the most recent measurements. This is crucial to catch the fast
variations of power generated by renewable based systems which are highly variable by nature. Focusing on
forecasting horizons up to few hours, the persistence method has been recognized in the literature as accurate
enough and its predictions are usually adopted as a benchmark in deterministic [6] and also probabilistic [7]
frameworks. It is also worth to note that persistence is often used as a fallback model to provide forecasts in case
more sophisticated models fail.

Focusing on PV generation, in literature, the persistence method is used for both PV power production and
solar radiation forecasts. The persistence method is adopted in [8] for short-term forecast of PV power production
based on historical power data without using numerical weather predictions. Still with reference to solar
generation prediction, a comparison between auto-regressive moving average (ARMA) and persistence models is
performed in [9], showing that persistence model performs better at very-short-term forecasting intervals. The
proposal shows great accuracy improvement of short-term forecasts. Smart persistence methods are also proposed
in the literature. They consist in decomposing solar power production in a stationary and in a stochastic
component [10]. Usually, the stationary term is associated to the clear sky production and the stochastic term to
the cloud-induced change [11]. In [12] a modification is presented that keeps unvaried the stochastic part of the
time series. A method which applies the persistence approach to the cloudiness is used in [13]. The method

presented in [14] adopts the ramp persistence approach. In [15], a smart persistence method is used as input of a
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machine learning technique. In [4] a physical smart persistence model is proposed to forecast solar irradiance that
is capable to better capture cloud conditions than typical persistence models. More specifically, the persistence
model is improved by adding a clear-sky index correction factor (that is, the ratio of radiation measurements
divided by clear-sky radiation) which is then multiplied by future clear-sky radiation to obtain a forecast. The
clear-sky radiation is forecasted through the computation of three variables by using different models.

Also, in [16] a physics-based smart persistence model is adopted, for intra-hour forecasting of solar radiation. It
decomposes global horizontal irradiance into cloud albedo and cloud fraction using simulated extra-terrestrial solar
radiation and solar zenith angle. In [17] an improved persistence-based real-time forecasting method is proposed by
implementing the incremental and decremental patterns on solar generation at sunrise and sunset hours.

With reference to probabilistic approaches, they produce forecasts in the form of quantiles, intervals or density
functions, which provide more comprehensive information compared to point forecasts. Nevertheless, the
technical literature scarcely deals with probabilistic approaches. The methods typically used in probabilistic
framework are statistical models or hybrid physical-statistical models. By focusing on forecast methods of solar
irradiance and PV power production, quantile regression (QR) models are proposed in [18], [19]. [18] uses QR
approach to predict distribution of outcomes. [19] carries out probabilistic models for intra-day solar forecasting in
the case of highly variable sky conditions based on linear QR method. Other approaches are based on machine
learning techniques [20], [21]. Particularly, [20] compares the performance of k-nearest-neighbours and gradient
boosting for intra-hour forecasting of solar irradiance. [21] is a hybrid physical-statistical model which uses QR
Forests to forecast power output employing as inputs predicted meteorological variables from a numerical weather
forecast model, and actual power measurements of PV plants. It is worth to note that it is crucial to improve
predictions of some weather variables though proper model selection which allows selecting the most informative
predictors and discarding uninformative inputs. To do that the exploitation of available input data must be
maximized. In probabilistic energy forecasting this has been successfully done through ensemble approaches [22].
Among these, widely applicable and powerful tools are those based on the bootstrap methodology. The bootstrap is
a statistical tool which can be tailored to quantify the uncertainty related to a specific estimator or statistical
learning method. In the bootstrap method, small range of samples are repeatedly taken along with their statistic
and relevant average features. For each of these set of samples, models are derived, and their performance is
assessed through the samples which are not included in the set used to build the model itself. Regarding the
suitability of this technique for real-time applications, it must be noted that, despite bootstrap can appear
characterized by a heavy computational burden, it is a flexible technique which can be applied on some selected

suitable parameters, thus reducing the computational time. Focusing on real-time application, bootstrap technique
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has been used to monitor PV power plant output in [23]. A two-stage method is proposed in [24] to estimate
uncertainty of PV forecasting. The forecasting is based on the bootstrap method applied to short-term
deterministic predictions obtained from a hybrid intelligent model that combines wavelet transform technique for
data pre-processing, and radial basis function neural network method. Within the Bayesian framework — which is
successfully applied to short-term photovoltaic forecasting, e.g. [25] and [26] — bootstrapping techniques have also
been used to improve the probabilistic forecasts. Bayesian bootstrap techniques for short term forecasting methods

have been rarely adopted. [27] proposes this approach in the transportation sector.

5.2. LOAD PREDICTION

With reference to load prediction, particularly important is the forecast of EV load due to the characteristics of
the EV demand (i.e., non-constant patterns, seasonal effects, weather and social correlation, high volatility and
jumps) which make the forecasting problem a critical issue.

Various models have been developed to determine the impact of the EVs on electricity distribution networks,
distinguishing between deterministic and probabilistic approaches. At the very early point of research on EV load
forecasting, the lack of consistent actual EV load data determined the development of Monte Carlo approaches to
build experimental scenarios [28]-[32]. The availability of actual EV load data changed the approach to EV load
forecasting, allowing for the exploitation of consolidated load forecasting techniques based on stochastic and data-
driven approaches [33], [34]. Time series approaches based on AutoRegressive Integrated Moving Average
(ARIMA) models [35], [36] and their seasonal extensions [37], [38] were applied to forecast EV load. Supervised
data-driven models, such as Support Vector Regression (SVR), Artificial Neural Network (ANN), and Random
Forest (RFs) have been used in [39]-[41]. Although the existing review of the literature shows that deterministic
EV load forecasting has undergone a relevant development process, Probabilistic EV Load Forecasting (PEVLF) has
not received the same attention. Recent studies (e.g., [42]) have applied probabilistic forecasting models to EV
charging time and to the required energy approximated by the upcoming trip distance, but the temporal
probabilistic prediction of the EV load is not yet established.

Adapting conventional probabilistic load forecasting models to develop PEVLF systems is however complex.
The periodicity and fluctuation related to the large distribution of EVs make conventional probabilistic techniques
less effective [43], [44]. In order to overcome the problem, relevant research efforts have been developed in the last
years, turning a light on PEVLF [45]-[48]. A relevant outcome of the literature review determines the importance

of the spatial-temporal analysis in the development of a probabilistic method to forecast EV from different areas,

10
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due to their capillarity over the distribution networks [44]. This problem is prone to be tackled from a hierarchical
perspective, proceeding by a series of successive merges of prediction made at a different level of aggregation [49],
[50]. In hierarchical load forecasting, the information contained in the load at low-level aggregation (for example,
the load at the HV/MV nodes in a HV network, or the load of small regions) is used to predict the load at high-
level aggregation (for example, the overall load of the entire HV network, or the overall load of a geographic
region). Hierarchical methodologies to merge probabilistic forecasts have been recently applied for probabilistic
load forecast purposes [51], [52]. They are however challenging, mostly because the problem is usually formulated
as a nonlinear and non-convex optimization problem, so that global optimality cannot be guaranteed, and the

combined results may be worse than individual forecasts [52].

6. RESULTS OF ACTIVITIES OF TASK 2.1

The activities included:
= the collection of time series that include both target variables (photovoltaic power and loads) and
predictor variables;
= the development of methods to pre-process the data to eliminate outliers and missing/bad values;
= the exploratory data analysis aimed at discarding uninformative predictors to reduce the
dimensionality of the forecasting problems.
Activities included all the data collection and data pre-processing tasks that were necessary to create a large
robust database of variables which could be exploited to develop forecasting systems for renewable generation and

loads.

6.1. GENERATION DATA COLLECTION, PRE-PROCESSING
AND EXPLORATORY ANALYSIS

With reference to renewable generation, the research activities completed in Task 2.1 resulted in:
= the collection of large, robust datasets of photovoltaic (PV) power generation and weather variables at
the site of installation of the test distribution grid of the Relne laboratory;
= the collection of large, robust datasets of weather variables available from the relevant literature and
from public databases;
= the pre-processing of the collected data, aiming at individuating and correcting missing data, bad data

and outliers;

11
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= the exploratory data analysis to reduce the dimensionality of the input datasets, favouring the

development of adequate forecasting systems for renewable generation and load.

6.1.1 DATA COLLECTION

Two PV systems have been continuously monitored. The first PV installation (PVI1) is a 30-kWp system
equipped with 4 8.5-kWp inverters. PVI1 is part of the test distribution grid of the Relne laboratory. Since it has
been installed only recently, the data collection is ongoing since August 24, 2019 at a 1-minute time resolution.
This PV system has a relatively short operation life of utilization so these data could be not sufficient for validating
and testing some PV power forecasting models. For this reason, a second PV installation (PVI2), located close to
the test distribution grid of the Relne laboratory, has been monitored since January 1, 2016 until December 31,
2018 at a 1-minute time resolution. Also, datasets including solar irradiance measurements (SI1) have been used
which are taken by a dedicated weather station installed at the same location of the test distribution grid of the
Relne laboratory. The data collection started on August 24, 2019, with a 1-minute time resolution. The solar
irradiance data taken from this dataset were used as target data for the verification of the maximum PV power
forecasting system; since the utilization of these data for validating and testing forecasting models was unfeasible at
the progress stage of the first year of project activities, this dataset was included only in the most recent
experimental frameworks.

A dedicated weather station is installed at the location of the test distribution grid of the Relne laboratory. This
station allows collecting weather data at the same time resolution and for the same time periods of the PV power
data, allowing their usage as exogenous variables for PV power forecasting models. Twenty-six variables are
monitored in this way.

Eventually, weather forecast data have been gathered from the European Centre for Medium-range Weather
Forecasts (ECMWF) for the corresponding time periods. Requests have been prepared in Python3.7 and sent via
the ECMWF Application Programming Interface (API). Forecasts for nine variables are obtained in this way. These
data are related to the noon run (i.e., forecasts are issued at 12:00 A.M. of day D-1 for the entire day D) and to the
midnight run (i.e., forecasts are issued at 12:00 P.M. of day D-1 for the entire day D). This differentiation in the
weather forecast lead time allows developing models diversified for day-ahead control and real-time control of the

distributed energy resources.
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6.1.2 DATA PRE-PROCESSING: CLEANSING

The initial analysis upon the PVI1 and PVI2 data and on weather data collected by the weather station revealed
some potential outliers, missing and bad data. If not corrected, these data may significantly deteriorate the
performance of the PV power forecasting models.

One of the principal objectives of the pre-processing activity is therefore to correct and remove this harmful
effect by cleansing the data. Bad and missing data are easy to be individuated by visual inspection. Potential
outliers instead are more subtle, since they cannot be immediately individuated by visual inspection. A slight
modification of the Tukey’s test has been applied in order to individuate potential outliers. Tukey’s test acts by
examining and individuating data which lie beyond a specific band of tolerance, in which the null hypothesis can
be rejected. For the generic variable y, the band of tolerance is individuated through its lower bound y;
10w = ¥ =3+ (y079 — y©25)) and upper bound yryp Yrup = ¥O7% + 3 - (y079 — y©25)), where y{©2%
and y{%7% are respectively the 0.25-quantile (25-percentile) and the 0.75-quantile (75-percentile) of the samples
collected in the entire dataset. Due to the strong seasonality of the PV power data pattern (which suggests
heteroskedasticity), the Tukey’s test has been differentiated for each hour of the day, accounting for different
sample quantiles during the 24 hours of the day.

Potential outliers, bad data and missing data are treated in the same manner, i.e., they are entirely discarded. It
is important to note that ECMWF weather forecasts are already pre-processed by the original source, therefore

data cleansing activity has not been developed on them.

6.1.3 DATA PRE-PROCESSING: AVERAGING

Another important objective of the data pre-processing activity is to average values collected at a one-minute
time resolution in order to obtain hourly data. This has been performed in R environment using the lubridate
package. In presence of too many removed data (i.e., beyond 30% of the total observations in the considered hour),
the entire hourly value is set at the mean value from the two nearest hourly values. In presence of fewer removed
data (i.e., less than 30% of the total observations in the considered hour), the entire hourly value is set at the mean
value of the one-minute observations within the considered hour.

It is important to note that ECMWTF weather forecasts are already provided at hourly time resolution by the

original source, therefore data averaging activity has not been developed on them.

6.1.4 DATA PRE-PROCESSING: NORMALIZATION

The last objective of the data pre-processing activity is to normalize hourly values in the range 0-1. This

accommodation is usually necessary when the ranges in which the considered variables are included are very
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different. Although some forecasting models are insensitive to data normalization, other models may be
significantly affected by the lack of normalization. At this progress stage, data are normalized in order to be used in

Yh~Ymin

any case. The normalized value J, of the generic variable y occurred at hour h is §, = , where y, is the

Ymax~Ymin

value observed at hour h, and yy,;, and Yy, are respectively the minimum and maximum values observed in the

entire dataset.

6.1.5 EXPLORATORY DATA ANALYSIS

The database resulting from the data pre-processing activities consists of hourly observations of several
exogenous weather variables and hourly observations of PV power. In order to reduce the dimensionality of the
problem, an exploratory data analysis has been carried out to individuate exogenous variables which are
informative for the PV power, and to discard uninformative exogenous variables.

At this progress stage, the exploratory data analysis has been performed only to individuate potential
relationship between the PV power of PVI2 and ECMWF weather forecasts. This was performed via graphical
inspection of relative scatter plots.

As an example, scatter plots of the normalized PV power versus the normalized clear-sky irradiance forecasts
Fig. 1.a) and versus the normalized solar irradiance forecasts Fig. 1.b) evidence clear relationship among these
variables. Nevertheless, this relationship is not steady across the hour of the day, as patterns clearly differ

considering, for example, 12 A.M., 9 AM,, and 6. P.M in the figures.

Normalized power (W]

Normalized clear-sky iradiance [-] Normalized solar irradiance [-]

(a) (b)
Fig. I - Scatter plots of the normalized PV power versus the normalized clear-sky irradiance forecasts (a) and

versus the normalized solar irradiance forecasts (b) for three different hours of the day.
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From the graphical inspection of Fig. 1, it is suggested to add normalized clear-sky irradiance forecasts and
normalized solar irradiance forecasts as candidate predictors of PV power forecasting models and to add a dummy
variable to differentiate among the hours of the day.

The exploratory data analysis also allows discarding some variables which cannot be considered informative for
predicting PV power. As significant example, Fig. 2 shows the scatter plots of the normalized PV power versus the
normalized forecasts of wind speed at 10 m. No clear relationship can be evidenced from this plot, as the cloud of
points is very irregular. Also, there are no clear patterns differentiated among the hours of the day. For this reason,

it can be considered safe to discard normalized forecasts of wind speed at 10 m to reduce the dimensionality of the

problem.
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Fig. 2 - Scatter plots of the normalized PV power versus the normalized forecasts of wind speed at 10 m, for

three different hours of the day.

6.2, EV IOAD DATA COLLECTION, PRE-PROCESSING AND
EXPLORATORY ANALYSIS

The data pre-processing unit described in this Section refers to a large-scale charging dataset and a weather
dataset and aims to get the time series of EV load and the arranged predictors for the probabilistic models described
in Section 8.3.

6.2.1 DATA SOURCES

The EVnetNL dataset has been provided for research purposes by the ElaadNL, the Dutch knowledge and

innovation centre in the field of smart charging infrastructure [53]. The dataset is organized in two database tables,

“Transactions” and “Meter readings”. Table “Transactions” contains 1 822 884 rows, each corresponding to a unique
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charging transaction event, which is characterized by the charging station and the charging point identifiers,
latitude and longitude, the initial and the final state of the meter, maximum power charged during the transaction,
the RFID (hashed) card starting and finishing the charging transaction and the Coordinated Universal Time (UTC)
timestamp of the start and the end of the charging transaction. Table “Meter readings” has 52 294 851 rows, each
corresponding to one reading of a meter status. The readings are done regularly every 15 minutes from the time
when a charging transaction is initiated until it is terminated (i.e. when the EV is unplugged). A unique identifier
of the charging transaction, UTC timestamp of the reading, transferred energy and the value of the meter
characterizes each meter reading. The EVnetNL dataset includes transaction data from January 1, 2012 to June 30,
2018.

To use only the most recent data, all the transactions that ended before June 30, 2015 and the meter readings
corresponding to such transactions were discarded.

The potential impact of weather conditions on charging behaviour has been considered by employing both the
real and forecasted meteorological data for the area of the Netherlands [54]. The meteorological data (precipitation
[m], snowfall [m (of water equivalent)], temperature [°C], wind speed [m/s]) are associated with geographical
locations characterized by the latitude and the longitude forming regular grids that fully contain the studied
geographical areas. The considered period coincides with the charging data and predictions of weather are issued at
midnight of day D-1 for day D, with an hourly time resolution.

From the collected data, a time series of energy consumption and a set of potentially relevant predictors were

compiled.

6.2.2 ENERGY CONSUMPTION TIME SERIES: DATA CLEANING
The EVnetNL dataset has been already partially cleaned and, to ensure validity and consistency of analysed
data, missing and unexpected values (e.g. unusually high values or negative values of consumed energy) in the data
were checked for. However, no such cases were found. Further, inconsistencies between the “Transactions” and
“Meter readings” tables we checked for. 565 transactions with no information were found in the “Meter readings”

table. Such cases were removed also from the Transactions tables.

6.2.3 ENERGY CONSUMPTION TIME SERIES: SELECTION OF THE PERIOD
The EVnetNL dataset covers a relatively long-time interval. In the early years, the number of charging stations
was gradually growing as the charging network was built, and it stabilized only around the year 2015 [55]. In the
first half of 2017, ElaadNL gave over the responsibility for the operation of more than 50% of charging stations to

municipalities [56]. Consequently, data recordings for some charging stations were discontinued. To minimize the
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impact of these developments on the analysed data, years 2016 and 2017 were selected and only stations active in
the whole selected period were considered (i.e. stations where, according to the EVnetNL dataset, at least one
charging transaction was initiated before the year 2016 and at least one charging transaction was accomplished
after the year 2017). After these steps, 1137 120 and 35 936 734 observations respectively remained in the

“Transactions” and the “Meter readings” datasets.

6.2.4 ENERGY CONSUMPTION TIME SERIES: SELECTION OF GEOGRAPHIC AREAS

Predictions of energy consumption for an individual station are very challenging and hardly generalizable [57]
as the temporal pattern of energy consumption is driven by the stochasticity of EV drivers charging behaviour, by
the available smart charging technologies and by the EV characteristics (charging power, battery capacity, etc.).
Since the energy predictions that could be useful in the power grid management applications, where a single
charging station plays only a minor role, are of interest for this research project, the energy consumption has been
spatially aggregated. To maintain the geographical closeness of charging stations, the COROP regions were used
which divide the area of the Netherlands into 40 continuous spatial units that are typically used for statistical
purposes [58]. Each charging station was assigned to the COROP region and for further analyses, four COROP
regions were selected with the largest aggregated energy consumption in the considered period. Selected COROP
regions are Zuidoost-Noord-Brabant, Rijnmond, Noordoost-Noord-Brabant and Utrecht, with 104, 91, 71 and 40
active charging stations, respectively. In Figure 3, the positions of the EVnetNL charging stations located in the

selected COROP regions are shown.

R 5 Utrecht
v Noordoost-Noord-Brabant
¥ 3
v ?7‘7 @ ‘g?v v v
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v w V. v ¢
vV V_ W9V v
W VW@ w v
v v
= % &y £ ! v
- Wy Zuidoost-Noord-Brabant
v v

Fig. 3 - Locations of the EVnetNL charging stations in the selected COROP regions, together with the map of
the Netherlands showing where the COROP regions are situated.
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6.2.5 ENERGY CONSUMPTION TIME SERIES: COMPILATION OF TIME SERIES

A time series is a set of observations, each one defined at a specific time, with time difference between two
consecutive observations that is equal for all the observations [59]. From the EVnetNL dataset, time series of
energy consumption were extracted, with an observation every hour, for the period from July 1, 2015 to June 30,
2018 and for the four COROP regions. A meter reading of consumed energy within the last 15 minutes that fully
overlapped with the hourly time interval, was added to the corresponding value of the time series. If the 15
minutes period of a meter reading overlapped with two hourly intervals, the energy was divided between the
intervals proportionally to the length of the time overlap.

Panel A of Figure 4 displays 3 years of data selected for the analysis, together with the aggregated energy

consumption in all four COROP regions.

Low-level regions

§ a) Noordoost-Noord-Brabant Rijnmond High-level region
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Fig 4 - (a) Time series of weekly consumption for the considered period for all four used low-level regions
and the high-level region (sum of the four regions). (b) Time series of aggregated energy consumption with
hourly resolution obtained for the EVnetNL charging stations located in the Noordoost-Noord-Brabant region
recorded in the period from February 6 2017 until October 16 2017.

In Fig. 4.a), to illustrate intra-day and weekly seasonality, the time series are overlaid, and the average value is

visualized with the thick blue line. The dropdown in energy consumption at the end of 2016 and at the beginning
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of 2017, most visible for the Zun Brabant and the Rijnmond regions, was caused by the refurbishment of some
charging stations to smart charging ready stations and thus they were out of service during this period. The time
series of energy consumption of the Noordoost-Noord-Brabant COROP region is displayed in panel B of Figure 4.
Similarly, as in the other selected COROP regions, the data display approximately regular patterns with the daily

and weekly seasonality. The largest difference in daily patterns is between weekdays and weekend days.

6.2.6 PREPARATION OF PREDICTORS

The exogenous predictors included in the forecasting models are of three types: weather predictors, super-user
predictors, and calendar predictors.

Weather forecast data for the area [54] were included to address possible interaction among weather and EV
charging patterns. The weather data are associated with geographical locations of the Netherlands having the
latitude and the longitude forming regular grids that fully contain the studied low-level geographical regions. As
data are typically provided in 0.1°x0.1° partitions, there are multiple weather predictors for a given low-level
region, and some weather predictors are shared for two or more low-level regions (this occurs when the 0.1°x0.1°
square overlaps two or more low-level regions in proximity to the region borders). It is also worth noting that the
EV charging stations are not evenly distributed in the low-level regions, as typically the station distribution is more
dense near cities. Therefore, the impact of weather forecasts that are spatially distributed is not theoretically even
across the regions. All of the weather forecasts related to the 0.1°x0.1° squares that cover the entire low-level
regions are however used as predictors of the forecasting models, but since many of them could be only little
informative for the EV load, they are manipulated in a Principal Component Analysis (PCA) module to reduce
their dimensionality.

Super-user predictors have been recognized in previous publications as influential for energy consumption [60].
Super users form a relatively small group of EV users that has the above-average energy consumption. Charging
patterns of these users are less random and therefore can constitute useful predictors. The number of charging
users and the aggregated energy consumption of 100, 300 and 500 users with the highest energy consumption for
each region were used as predictors. From these data, the following four predictors were extracted: 1-hour-lagged,
24-hour-lagged, 48-hour-lagged, and 168-hour-lagged energy consumption. Super-user data are manipulated in the
PCA module, too.

Eventually, calendar predictors are typical inputs in load forecasting. They capture the social behavior of the
EV users that, for example, may change during holidays or weekdays or during the different hours of the day. In
this paper, two calendar predictors were considered: a working/nonworking dummy variable hol (0 if the

observation corresponds to a working day, and 1 otherwise), and an hour-of-the-day integer variable hod that
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assumes a value equal to the hour of the day in which the observation occurs [61]. Calendar predictors are not
manipulated in the PCA module but are instead directly included in the vectors of predictors for the baseline
models.

For sake of completeness, other types of predictors, such as the total number of circulating EVs in a given
region or the total number of charging stations, could be used to forecast the EV load. These predictors are time-
varying, but they reasonably do not vary significantly in short-term horizons; therefore, their impact on short-
term predictability is limited, whereas it might be of major importance at medium-term horizons. Since this
research specifically targets short-term EV load forecasting, these types of predictors are not included in the

research.

6.2.7 PRINCIPAL COMPONENT ANALYSIS
PCA is a popular dimension reduction method [62]. The set of predictors is replaced by a smaller set of
orthogonal principal component directions along which the data vary the most. This way, the remaining principal
components capture most of the variability in data and the number of predictors is reduced.
The number of used predictors is 219. To reduce the dimensionality of inputs, the PCA was applied because the
training process of probabilistic forecast approaches is very time consuming and sensitive to the number of
predictors. The PCA was applied to all predictors with the exception of calendar predictors, and four principal

components were picked as predictors for the baseline models.

7. RESULTS OF ACTIVITIES OF TASK 2.3

Methods for real-time forecast of PV generation and electric vehicle (EV) load have been proposed. More
specifically the following models have been carried out:

— two derivative-persistence methods for real-time photovoltaic power forecasting;
— a Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting;
— a hierarchical probabilistic electric vehicle load forecasting.

With reference to the derivative-persistence method for real-time photovoltaic power forecasting, we focused
to forecasting time horizons ranging from few minutes up to few hours, that are those typically categorized as very
short-term and short-term forecasting, and that are included in the intra-day scenarios. A derivative-persistence
method has been proposed based on information on measured data of the PV power production in the intervals

preceding the forecast horizon. Also, a further derivative-persistence method, the Caputo-derivative, has been
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proposed which uses fractional derivatives in order to take into account the memory effect of the power
production.

With regard to the Bayesian bootstrapping in real-time, the research has focused on the application of Bayesian
bootstrap in short-term probabilistic PV forecasting. The Bayesian bootstrap was specifically suited up to be
applied to three different underlying probabilistic models in order to evaluate potential improvements due to its
application. The major aim of this research was indeed to evaluate if the Bayesian bootstrap enabled for better
performance and increased skill of the forecasts, compared to the stand-alone usage of the underlying probabilistic
models and compared to the application of the traditional bootstrap. Another contribution of the research was the
development of the three probabilistic forecasting systems under a new framework that makes the Bayesian
bootstrap operate directly on the PV power forecasts, rather than on the parameters of the models. This approach
allows reducing the overall computational effort, which is particularly important in short-term forecasting, thanks
to the fact that there is no need to pass through the sample bootstrap distributions of the parameters since the
sample Bayesian bootstrap distribution of the predictive quantile of PV power is directly provided.

The hierarchical probabilistic EV load forecasting is performed by proposing a methodology dedicated to
probabilistic EV load forecasting for low-level geographic regions, which implements a hierarchical perspective to
forecast the aggregate load of a high-level geographic region. This methodology can provide comprehensive
information on electricity consumption at different levels. The hierarchical approach is applied to decompose the
problem into lower-level sub-problems which are resolved through standard probabilistic models.

The proposal was validated using Dataset_PVI2 and Dataset_PVI3, together with the corresponding NWPs
contained in Dataset_weath_ ECMWF and Dataset_weath_PV [63]. Also, a dataset of measured PV power produced
by the GECAD N system installed in Portugal at the Instituto Superior de Engenharia do Porto/Politécnico do
Porto was used to test the Caputo-derivative approach [64].

Regarding the PV forecast, the developed methods have been applied to both the actual PV power of the
MPPT-controlled PV system and the maximum PV power that can be produced by a controlled PV system. In this
latter case, the total solar irradiance is forecasted instead of the PV power output, being the maximum PV power

obtained from the solar irradiance through a linear relationship.

/.1.  DERIVATIVE-PERSISTENCE METHOD FOR REAL-TIME
PHOTOVOLTAIC POWER FORECASTING

The derivative-persistence method deals with a real-time forecasting technique which aims at predicting, on a

very-short-term basis, PV power production, based on information on measured data of the PV power production
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in the intervals preceding the forecast horizon. The same procedure is applied to the forecast of solar irradiance to
derive the maximum PV power based on information on measured data of the solar irradiance in the intervals
preceding the forecast horizon.

The method is based on the idea to conveniently weight information on past data by imposing continuity of the
function, of the first derivative and of the second derivative so obtaining three estimates of the function in the
forecast interval. The three estimates are then opportunely weighted to provide the forecast.

The continuity of the function relies to the classical persistence method [4] where the estimate of the power
value at the time interval k, y;,(k), is given by
Yis(k) = y(k = 1) 1)
where y(k — 1) is the available measured data of PV power at the preceding time interval.

The continuity of the first derivative, y’(k), is imposed at the time instants (k — 1) and (k — 2), i.e.:

y'k=1)=y'(k=2) 2)
where:

(-1 =X 2EZ2D) ®

Vik—2) = y(k = 1)2Zty(k —3) @)

with At the duration of the time intervals.
By substituting (3) and (4) in (2) a further estimate of y(k), y,;(k), is found which is given by:
Yos(k) = y(k = 1) + y(k = 2) —y(k = 3) ©)

The third information is given by imposing the continuity of the second derivative, y'" (k), at the time instants

(k—1)and (k — 2),i.e.:

y'k—-1)=y"(k—-2) (6)
where:

" _y(k) —2y(k — 1) + y(k — 2) ]
yiem D= a2 o)
" _y(k—=1)—2y(k —2) + y(k - 3) .
yik-2)= At? 8)

By substituting (7) and (8) in (6) a further estimate of y(k), y35(k), is found which results:
y3s(k) =3y(k—1) =3y(k —2) + y(k = 3) )

The forecasted value, §(k), is conceived as a proper weighted combination of the three estimates:
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(k) = ay(k) y15(k) + az (k) ya5(k) + as(k) yss(k) (10)

The weights a4 (k), a,(k) and az(k) are evaluated as detailed in the following equations (11), (12): the
weighting procedure is performed in a manner that, in high variability conditions, more weight is given to the first

estimate. More specifically, the weights are normalized as follows:

Y2.() + y2.(k)
k) = (11)
() j SRR ACEEAC)
(k) = as (k) = ) (12)

2

By using equations (11) and (12) to evaluate the weights, the proposed method shapes up to be a non-linear

regression being the coefficients a, (k), a, (k) and as(k) not constant.

/.2.  CAPUTO-DERIVATIVE-PERSISTENCE METHOD FOR
REAL-TIME PHOTOVOLTAIC POWER FORECASTING

The proposed method deals with a real-time forecasting technique which aims at predicting, on a very-short-
term basis, PV power production, based on information on measured data of the PV power production in the
intervals preceding the forecast horizon. The same procedure is applied to the forecast of solar irradiance to derive
the maximum PV power based on information on measured data of the solar irradiance in the intervals preceding
the forecast horizon.

This method carries out estimates of the variable to be forecasted by imposing the continuity of the Caputo
derivative of the function at two consecutive time steps.

The Caputo derivative of order a of y(t) is defined as [65]:

N AC)
rl-—a) ), (t—9°

where I'(+) is the Euler Gamma function and 0 < a < 1.

y @) =

dé (13)

Let At be the time resolution of the forecasting and y, = y(nAt) be the value of the function y at the point
t,, = nAt. The approximation of the Caputo derivative proposed in [66] can be constructed by dividing the interval
[0, t] into subintervals of equal length At and approximating the first derivative on each subinterval using a second-

order central difference approximation:
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where O(At?~%) is the accuracy of the approximation and the following cases apply for a:

aéa) =1,

O'(a) — (n _ 1)1—(1 _ nl—a

n

o\ = (k+ 1) =2k 4+ (k — 1), (k=2,..,n—1).

Eq. (14) can be approximated by neglecting the accuracy O(At) so obtaining:

n

1
@ _ E ' @ 15
T T2 = a)ace L % In-k (15

Starting from this approximation, the continuity of the a-th derivative at the time intervals n and n — 1 can be

imposed (i.e., y,sa) = ,E'f)l :
n n-1
9 = __t Z 0 Ynoe = 99 = L Z oy (16)
T T2 - a)Ate ke Inmk T In=1 T p g — @) Ate ke n-ick
k=0 k=0
that is:
n n-1
Z Ulga) Yn-k = Z O—]‘(;a) Yn-1-k (17)
k=0 k=0

and, by isolating the term k = 0 by the rest of the sum in the left side of (17), an estimate of y at the nth interval is

obtained, given the value of the function in the preceding n intervals:

n n—-1
yn = _z O_]‘(;a) Yn-r + Z O_]‘(;a) Yn-1-k- (18)
k=1 k=0

The choice of the number of intervals to include in the sums, indeed, depends on the available historical data
and based on the features of their time variation. Its value strictly affects the accuracy of the prediction and then,
must be determined according to sensitivity analyses.

The value of @, which is in the range [0,1], can be evaluated at each interval by minimizing the error on the
estimates of the predicted variable over a known set of previous measures. Thus, the following formulation based

on the root mean squared error is proposed:
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1
@ = argmin \/_ E Tk — yi)?
ng

keQy
(19)
subject to

0<ax<1

where () is the set of previous, measured values of the variable and is composed of n; elements (i.e., Q) =
{yk_nk, e yk_l}); Py is evaluated according to (18). The number of previous intervals 1, can be determined offline
and empirically evaluated on the basis of several issues such as, available data, sensitivity analysis of the forecasted

values, computational effort, etc.

/.3, BAYESIAN  BOOTSTRAPPING IN  REAL-TIME
PROBABILISTIC PHOTOVOLTAIC POWER FORECASTING

The use of Bayesian bootstrap has been also proposed for short-time forecast of photovoltaic generation. The
same procedure is applied to the forecast of solar irradiance to derive the maximum PV power. The inputs of the
PV power forecasting system are NWPs NW and historical PV power data, whereas the inputs of the maximum PV
power forecasting system are total irradiance data. Note that NWPs are not added as predictors of the maximum
PV power forecasting system due to the limitations encountered in the actual implementation of the forecasting
system, but they could be theoretically included as well.

Let’s assume to be interested into characterizing a target statistic ¢ (x) € R® that is a function of a (row) vector
x = {xy, ..., xy} of N, variables, and let’s assume that an estimation @ (x) of the target statistic can be characterized
using an available dataset X = {x, ..., x,} that contains M known occurrences of x. Bootstrapping is a resampling
approach that allows estimating the probabilistic properties of the target statistic by randomly sampling with
replacement from data X [67], [68]. Under the previous assumptions, X is a M X N, matrix and its generic m™ row
is X;p = {Xm1, ) Xy, }- The M rows of X can theoretically be assumed as M elements extracted from an unknown
Ny-variate distribution F(x) € F, and within a probability distribution framework the estimated target statistic
@ (x) retains the statistical properties of a function G['] applied to F(x), i.e., G[F(x)], that maps from F to R®.

Bootstrapping estimates the target statistic in terms of an empirical R-sample bootstrap distribution
G[FM ()], ..., G[F® (x)], obtained by applying the function G[-] to R replicates F™(x), ..., F®)(x). Specifically,
bootstrapping assumes the type of the unknown distribution F(x) to be:

F(x)=Xm=1Wn "6 MWy, =1landw, =0, (20)

Xm?’
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where w,, is a weight assigned to the m™ occurrence, and §,,, is a degenerate probability measure for the m™

vector X,,. The generic r™ replicate is:

FOx) =34 w6, M wi =1andw >0, 1)
where the weights w" = {wlm, e w,f,,r } are extracted randomly from an assigned M-variate distribution f,,,.
In traditional bootstrap, the distribution f,, from which the weights w are extracted is the multinomial

distribution in M dimensions with equal probabilities 1/M, i.e.:

£, = Mul(wy, ..., wy |M; 1/M,1/M, ... 1/M) = —= H,“,ﬂ:l(ﬁ)wm; (22)

wil.wpy!
the M-variate sample extracted from (22) is then normalized by M, to meet the constraint },2_; anr b=1.

In Bayesian bootstrap, instead, the weights w = {w;, ..., w),} are estimated through the Bayesian inference upon
the observed probabilities W = {Wy, ..., Wy} of data x4, ...,xy in X. The posterior distribution p(w|Ww, &) of the
weights is obtainable by assigning a prior distribution p(w|a) to the objective weights w, which has parameters a.
To allow the calculation of the posterior distribution in closed form, the prior distribution is selected as a conjugate

prior of the likelihood. Since the likelihood is multinomial [69], [70], the prior distribution is a symmetric

Dirichlet:

. 1 -
p(w|a) = Dir(wy, ..., wyla, ..., a) = TR _, W,Sf 1)’ (23)

where B(a) is the Beta function calculated on the M-dimensional vector @ = {«, ..., a}. With this position, the
corresponding posterior distribution is a Dirichlet too:

1 M (a+Mw,;,—1)
— — "1lm=1Wnm . (24)
B(a+MW,,...a+MWyy)

p(W|W, @) = Dir(wy, ..., wyla + MW, ...,a + Mwy,) =

If the prior is uninformative, as in [69], [70], « = 0 and:

1 . TIM W(Mwm—l) (25)

p(w|w,0) = Dir(wy, ..., Wy |MWy, ..., MiVy,) = Bote.twny Lim=1Wm ,
which, for continuous variables, can be further and reasonably written as Dir(wy, ..., wy|1, ...,1) since the observed
TOWS X4, ..., Xy likely have the probability 1/M to occur (i.e., only once in the entire dataset X) [69].

In Bayesian bootstrap, in summary, the distribution f;, from which the weights w" are directly extracted is the
M -variate flat Dirichlet distribution, i.e.:

fo = Dir(wy, ..., wy 1, ...,1). (26)

Once the weights are extracted, the function G[‘] is applied to F D), ..., FR(x) given by (3), and the R-

sample Bayesian bootstrap distribution G[F™ (x)], ..., G[F™ (x)] is the output of the Bayesian bootstrap that gives

an estimation @ (x) of the target statistic.

26



* % x
* *

* *

* *

i B Menistiore dtl Fotszione,
UNIONE EUROPEA At Viversite o diltly Sorerca

7.3.1 APPLICATIONS OF THE BAYESIAN BOOTSTRAP TO PROBABILISTIC MODELS
FOR PV POWER FORECASTING

Traditional bootstrap is commonly applied in forecasting problems to generate probabilistic predictions or to
characterize the uncertainty of predictive parameters [67]. In this research, the Bayesian bootstrap is applied to
three probabilistic forecasting models — Linear Quantile Regression (LQR), Gradient Boosting Regression Tree
(GBRT) and Quantile Regression Neural Network (QRNN) - to provide sample bootstrap distributions of the
predictive quantiles of PV power. The models, selected from the literature, are purposely very heterogeneous by
nature in order to evaluate the performance of the Bayesian bootstrap within different forecasting frameworks.

The three probabilistic forecasting model are briefly recalled in Appendix; then the role of Bayesian bootstrap
in the forecasting system and a procedure to optimize the Bayesian-bootstrap-based predictions are detailed in the

second part of this Section.

As discussed above, in either the LQR, the GBRT or the QRNN the a,-quantile P,faq) of PV power for the target

horizon h can be viewed as a function of the predictors z and of the PV power P. In this sense, the predictive a,-

.. pla . . . .
quantile P, ? of PV power for the target horizon h can be viewed as a function of the training data Y7 =
[P Z{¢7)], and thus it can be viewed as a target statistic calculated on M,,. variables, with occurrences contained

in Y, Therefore, the Bayesian bootstrap can be directly applied to evaluate the sample Bayesian bootstrap

distribution of the predictive a,-quantile ﬁ}fa'ﬁ of PV power, with the following correspondences:

X = y = [P Z]) X = Y<tr) = [P(tr> Z(tr)])

(ag) " S(aq)
px) = Phaq s P(x) = Phaq (y(tr))’ (27)
M = M, N, =N+ 1.

The sample Bayesian bootstrap distribution is constituted by R replicates of the predictive a,-quantile P}faq) of

PV power, i.e., ﬁﬁla‘ﬂ = {P}faq'l), ...,P,faq'm

}. The necessary steps to calculate them are hereby summarized:

1) R weight samples w'¥, ..., w(®) are independently drawn from distribution (48) (reported in Appendix);

2) F(x), ..., F® (x) are calculated by applying (21);

3) G[F m(x)], .., G[F (R)(x)] are calculated by applying either (51)-(53) (reported in Appendix) for the LQR,
(60)-(64) (reported in Appendix) for the GBRT, or (66)-(67) (reported in Appendix) for the QRNN;

A(ocq,r) _

4) B G[F"(x)] forr =1,...,R.
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7.3.2 OPTIMIZING THE BAYESIAN-BOOTSTRAP-BASED PREDICTIONS

Dealing with a sample bootstrap distribution of predictive quantiles may be not friendly for power system
operators, who are the end-users of the PV power forecasts but are usually unaware of the statistical background
behind the predictions. Also, most of the probabilistic decision-making tools in power systems accept input
probabilistic forecasts of PV power given either in terms of predictive distribution or in terms of a set of predictive
quantiles [71]. For this reason, two procedures to extract an optimal predictive quantile from the sample Bayesian
bootstrap distribution are developed in this research, in order to put the forecasting system in line with the needs
of operators and practitioners.

The first procedure (SM-BB) is naive and it simply consists of picking the sample mean from the sample

Bayesian bootstrap distribution T’ilaq) as the optimal predictive a,-quantile of PV power 13,:<aq> for the target

horizon h, i.e.:

A’(‘lq) ’\(‘xq T)
Zr 1 h . (28)
The sample mean performs well in most scenarios, plus it does not exactly require a rigorous “optimization”,

allowing for its usage per se.

The second procedure Optimal Quantile Bayesian Bootstrap (OQ-BB) consists of picking a sample quantile from

the sample Bayesian bootstrap distribution ﬁilaq) as the optimal predictive a,-quantile of PV power P,:mq) for the

target horizon A, i.e.:

s'lag) _ plagr™
p*e = pta, (29)

ag,r*)

where ﬁ,f "7 is the value that is smaller than a ¢* fraction of the samples in 1/5;“") or, equivalently, 100

(1 — 0")% of the samples in T’ﬁlaq> are greater than ﬁ;aq'r ) The fraction ¢* is a result of an optimization problem
that minimizes the Pinball Score (PS) over a validation dataset with indices Q%% (this validation dataset may or

may not have overlap with the training dataset; the latter option is preferable). It is:
N . Alagr®) slagr®)
0" = argmin },,cqwa) {aq -1 [Pt <P “at ]} - (Pt - P “at ), (30)
[

(‘xq )

with Pt(aq'r = inf {P, € P<aq> gl (Pt < P<aq T)) >0}, and F, £%0 s the cumulative distribution obtained

BB,t BB,t

from the sample Bayesian bootstrap distribution of the predictive a,-quantile of PV power at time t.

28



* % x
* *

* *

* *

i B Menistiore dtl Fotszione,
UNIONE EUROPEA At Viversite o diltly Sorerca

7.3.3 HINTS ON THE SELECTION OF THE SIZE OF THE SAMPLE BAYESIAN
BOOTSTRAP DISTRIBUTION

The size R of the sample bootstrap distribution certainly has an impact on the overall performance of the
forecasting system. This topic has been discussed extensively in the literature in the traditional bootstrap
framework, but there is no general agreement about how the sample size should be arranged with respect to the
number of available data M. Optimizing R through a random search upon a validation set is in general a good
practice and this should also be valid for the Bayesian bootstrap; theoretically, there are no boundaries in which
the optimal R should be searched. However, there are some practical limitations:

1) the Bayesian bootstrap is originally applied in this research to a particular statistic, i.e., the predictive
quantile of PV power, and therefore the function G[-] intrinsically contains the formulation of the training
procedure of the probabilistic forecasting model. For models that require a non-trivial solution of the training
procedure (as in the case of the GBRT and QRNN), increasing R determines an increased computational
complexity that is not in line with some short-term forecasting lead times using standard workstations;

2) increasing R does not necessarily increase the performance of the forecasts. We found in our numerical
experiments that optimal values for R are across a 1:100 ratio between R and M, as performance deteriorates with
greater R.

For these reasons, the search for the optimal R is performed within this range.

7.3.4 BACKGROUND OF THE PERFORMANCE ASSESSMENT

The performance of Bayesian bootstrap in probabilistic PV power forecasting is assessed in a wide comparative
framework. Several benchmarks and error indices and scores are exploited for this assessment.

Benchmarks

Several benchmarks are considered to compare the outcomes of the Bayesian-bootstrap-based forecasts and to
highlight pros and cons with respect to existing literature.

The first group of benchmarks aims at evaluating how the Bayesian bootstrap performs with reference to the
traditional bootstrap. This group therefore includes three forecasting systems (LQR-TB, GBRT-TB, and QRNN-TB)
that apply the traditional bootstrap to build the sample traditional bootstrap distribution of the predictive quantiles
of PV power, respectively applying an LQR, a GBRT and a QRNN model. The extraction of the optimal prediction
from the traditional bootstrap distribution is performed applying the SM and the OQ procedures. Therefore, the
only difference with the presented Bayesian-bootstrap forecasts consists of the different bootstrap procedure

applied in first place.
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The second group of benchmarks aims at evaluating if, in general, the bootstrap increases the performance or
not. This group therefore includes three forecasting systems (LQR-NB, GBRT-NB, and QRNN-NB) that directly
predict the quantiles of PV power, respectively applying an LQR, a GBRT and a QRNN model, without any
bootstrap.

The third group of benchmarks is instead based on persistence models, and they are provided as an unbiased
reference for the performance evaluation. This group includes two benchmarks: the PM1 that assumes the

predictive quantiles for the target horizon equal to the last observed PV power, i.e.:

P = p vg=1,..,0, (31)
and the PM2 that assumes the predictive quantiles for the target horizon equal to the PV power observed in the
same time slot of the day before. For an hourly time resolution, e.g., the PM2 returns:

PP = py_y, vg=1,..,0Q. (32)

Probabilistic error indices and scores

Three error indices are used to compare the accuracy of the proposed forecasting method with the other
methods which have been used as benchmark. In what follows, the definition of the PS metric is first recalled.
Beyond comparisons, this metric is also used into the application of the linear LQR method. Then, the average
absolute coverage error (AACE) and the prediction intervals normalized width (PINAW) are briefly introduced.

Pinball score

PS allows addressing the accuracy of the prediction by evaluating, at the same time, the reliability and the
sharpness of the forecasted values [72], [73]. It is used in all the three considered models as the loss function to be
minimized to train the corresponding parameters as it is a negatively oriented error measure (i.e., a smaller PS

indicates a better forecast performance). It is here recalled that PS is defined as:

PSPy B| = {ag —1[P, < B,]}- (P, - B). (33)

In order to obtain a measure of the forecast performance in a comprehensive manner, the value of PS can be
evaluated by averaging the values it assumes across multiple forecast issues and summing over the Q quantiles. In
the numerical experiments, a normalized version of the PS is used for evaluating performance in the test period.
The Normalized Pinball Score (NPS) is defined as:

PS [P hﬁ}(laq>]

NP [Py, | = (34)

P rated

where P ,q is the rated power of the PV system.
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Average Absolute Coverage Error

The AACE is used to assess the reliability of the forecasting method, by quantifying the difference of the
predicted values and the nominal coverages of the predictive quantiles [74]. AACE can only be formulated for
multiple forecast issues. For a test set with indices Q{¢®’, the estimated ag-coverage @, is provided by:

& = = Yieate [P B, (35)
with M, the size of the considered test set. The absolute coverage error on the nominal a,-quantile, ACE (@q) js
defined as:

ACE* = |a, — @,|. (36)
and the percentage value of AACE, AACE,,, across the Q coverages can be easily derived as a percentage value of
ACE'®a), as:

AACEy, = % - YO ACE‘a), (37)
AACE is a negatively oriented metric, i.e., smaller is the value it assumes, more reliable is the forecast method.

Prediction intervals normalized width

The PINAW is used to assess the sharpness of the forecasting method, by quantifying the width of the
prediction intervals [74]. It is a property of the forecast by itself, so this index is not calculated considering the
actual PV power outcomes. For a test set of size M,, with indices Q{®), the PINAW at the nominal prediction
interval rate A is:
plo5+2/2)_p(0:5-2/2)

1
PINAW? = M—tezten<te> \ (38)

prated

PINAW is a negatively oriented metric, i.e., smaller is the value it assumes, sharper are the forecasts

/.4.  HIERARCHICAL PROBABILISTIC FLECTRIC VEHICLE
LOAD FORECASTING

A hierarchical approach for PEVLF is proposed, focusing on several probabilistic forecasting models that have
been used with success [75]-[77] in PLF (i.e., LQR [78], GBRT [79], Quantile Regression Forests (QRFs) [80], and
QRNN [81]). The hierarchical approach is applied to decompose the problem into lower-level sub-problems, i.e.,
forecasting the EV load of smaller lower-level geographic regions, which are resolved through standard
probabilistic models (either GBRT, QRF and QRNN). Differently from other works, the PEVLF problem is
finalized at higher-level through an ensemble methodology based on an 11-Penalized LQR (PLQR) model, in

which the penalization adds robustness to the hierarchical model with respect to outliers and abnormal inputs.
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Compared to a single-model approach for each series within a higher-level hierarchy, forecasts are improved
thanks to the exploitation of information related to lower-level regions.

The proposed hierarchical PEVLF system consists of three main units: i) an input data pre-processing unit,
including the PCA reported in Section 7.2 to reduce the data dimensionality; ii) the baseline probabilistic
forecasting unit for the low-level regions; iii) the hierarchical probabilistic forecasting unit for the high-level
region. Figure 5 illustrates the workflow of the proposed hierarchical PEVLF system.

For consistency of symbols, the forecast horizon is indicated with h, the forecast lead time is indicated with k,
and thus the forecast origin is h — k. To differentiate vectors from scalars, the former are indicated with bold
symbols. We will also refer to data (and forecasts) having hourly time resolution, for sake of clarity; nevertheless

the proposal can be easily adapted to other time resolution frameworks.

EV load data EV load data PREPRPS EV load data Weather dat B
Low-level region 1 Low-level region 2 Low-level region R eatherdata Calendar variables
— 1 P
Data pre-processing unit [
Py |x . P, |x Pr|x
Low-level L s Lovs./ Iev#ezl 2 |72 R|*R Low-level
region #1 ......... TR — e S— e T€GION R

Baseline probabilistic

Baseline probabilistic . Deeasingimadal Baseline probabilistic
forecasting model L ﬁz«;‘ll)‘ forecasting model
R a .: .................................................. : A(al) A<¢ZQ)
P1<Z1>' (@) i T S A

High-level
region

Fig. 5 - Workflow of the hierarchical PEVLF system.

7.4.1 DATA PRE-PROCESSING UNIT
The data pre-processing unit reported in Section 7.2 is aimed at: i) extracting the time series of EV load at the
desired time resolution for the low-level regions (P; = {P;1, P, 5, ..., Pins .., Pip—i} i = 1,...,R) and for the high-
level region (P = {Py, Py, ..., Py, ..., Ph_i}) from the available readings at the charging stations; ii) preparing the
predictors of the forecasting models that include also external data, such as numeric weather predictions (e.g.,

precipitation forecasts) and calendar predictors (e.g., a dummy variable to discern working days from holidays); iii)
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arranging the predictor data in a Principal Component Analysis (PCA) module that allows reducing the
dimensionality of the problem, which is particularly challenging in probabilistic forecasting as model training is
computationally intensive. This allows getting the arranged predictors for the low-level regions (x; =

{xXi1, %2, s Xi oo X p—i > L = 1,..., R), that are inputs of the baseline probabilistic models.

7.4.2 BASELINE PROBABILISTIC FORECASTING UNIT

The baseline probabilistic forecasting unit is responsible for the generation of the probabilistic predictions of
EV load at the i™ low-level region, exploiting the input data (historical EV load data P; =
{Pi1,Pi2s s Pigyy oo Pip—g} and predictors x; = {X;1,X;2, .., Xipn, -, Xin—} » i =1,...,R) pre-processed in the
previous unit. In order to evaluate the performance of the hierarchical system under different conditions and to
demonstrate that, no matter which is the baseline model used at low-level regions, the hierarchical system is able
to improve the skill of the forecasts at the high-level region when compared to a direct non-hierarchical approach,

three different models are used in this unit: GBRT, QRF and QRNN. The outputs of the baseline probabilistic

forecasting unit consist of Q predictive EV load quantiles Isif;fl), ., FA’L.(ZQ) at coverages aj, ..., g of the i Jow-level
region for the target forecast horizon h. This is obviously accomplished for i = 1,...,R, where R is the total

number of considered low-level regions.

7.4.3 HIERARCHICAL PROBABILISTIC FORECASTING UNIT

The hierarchical probabilistic forecasting unit is dedicated to combine the predictions coming from the

P\(OCQ)

previous unit in order to generate the probabilistic forecasts ﬁ,fal), A

of EV load at the high-level region for
the target horizon h. This combination is performed through a PLQR model, which is applied to an input dataset
that includes the baseline forecasts and historical high-level EV load data P = {P,P,,..., P, ..., Py_}. The
penalization is applied to make the model more robust towards outliers. The hierarchical system is expected to
increase the skill of the forecasts at the high-level region by exploiting the information contained at the lower
level. Also, the PLQR model parameters can be estimated iteratively as new observations become available, thus
allowing for exploiting the information brought by recent loads without re-training the baseline models (this
would be more challenging in terms of computational time, because multiple models - one for each low-level
region - should be trained iteratively).

In this research the EV load forecasts at the low-level regions are obtained through a baseline probabilistic

model. Probabilistic forecasts of the i™ region for the forecast horizon h are provided in each case through Q
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predictive EV load quantiles Isif;fl), o, B *5 at coverages ay, ..., @, respectively. Three different baseline models
were explored (i.e., GBRT, QRF and QRNN) in our proposal, in order to evaluate performance under different
circumstances. Brief analytic details on these models are reported in Appendix. Analytic formulations are
generically referred to the EV load in the i low-level region, reminding that this is iterated for i =1, ..., R.

Eventually, Qi‘;’; denotes the index set that individuates the data used to train the baseline models. For example,

the dataset Pgiia ={P.ne€E ng;} contains the historical EV loads in the i low-level region that are the

dependent variables to train the baseline models for the ith low-level region.

7.4.4 HIGHER LEVEL OF THE HIERARCHICAL PROBABILISTIC FORECASTING
UNIT

A hierarchical PLQR model is applied to combine the baseline forecasts of EV load at the low-level regions,

generating the forecasts at the high-level region. The hierarchical PLQR model is trained upon the data

(H)

individuated by an index set £,

(for example, Pé% ={P,ne Qg{;} is the dataset that contains the EV loads in

the high-level region that are the dependent variables of the PLQR model). The B predictors x§lH> of the PLQR

model for the target horizon h are the baseline forecasts of the R considered low-level regions f’f;f 1), ) I%TZQ), Vi =
1,..,R, and lagged high-level EV loads (up to the 24-hours lagged EV load, i.e., Py_, Pp—g—1, -, Ph_24, 2-days
lagged EV load Py _,g, and 1-week lagged EV load Pj,_14g).

The predictive a,-quantile of the high-level EV load at the target horizon h returned by the PLQR model is

analytically formulated as:

p}fa,ﬂ _ x;lm Bl (39)

where B{®a) is the vector (having the same cardinality B of x;lm) of coefficients for the a,-quantile, and they are

estimated by solving the following li-penalized minimization problem over the high-level EV load training dataset

P = (p,ne .
= . 1 ~{ag) (ag)
Bt = argmin s B gon [ (P 227)] + 225 |8, (40)
ﬁ ra

where dim(ﬂim) is the number of training points in the set fo)ad)

o tra» A is the parameter that controls the

"(‘lq)

) ) is the PS as defined above. The minimized function in (40) is indeed

regularization effectiveness, and ¥ (Pn,
easily interpretable, since it is the PS penalized by the li-norm of the coefficient vector.
The selection of the predictors x;lH) is performed by exploiting the intrinsic properties of the li-regularized

model. In practice, the penalization effect (driven by the value of 1) sets some estimated parameters in the vector

B'“? as zero. This is equivalent to performing model selection, since predictors that are multiplied by zero

34



* % x
* *
* -

* *

i B Menistiore dtl Fotszione,
UNIONE EUROPEA At Viversite o diltly Sorerca

coefficients have no impact on the dependent variable. Obviously, 4 becomes an important hyper-parameter of the

PLQR, as greater A values determine more parameters that are set as zero (or, equivalently, more predictors that are

discarded). Therefore, it is optimized in 10-fold cross-validation across the training dataset Pif; ={P,ne€ Qé’:& .

7.4.5 FORECAST ASSESSMENT: BENCHMARKS AND ERROR INDICES

The proposed hierarchical probabilistic EV load forecasting model is validated considering its performance
against several benchmarks. Since the proposal performs forecasts for the low-level regions and forecasts for the
high-level regions, different benchmarks are developed for the baseline forecasts and for the hierarchical forecasts,
in order to highlight the improvements brought by the proposal in each stage. The comparative assessment
framework is based in both cases on the usage of relevant probabilistic error indices [82].

Benchmarks for baseline forecasts

To evaluate the skill of the forecasts provided by the baseline models for the low-level regions (these will be
indicated as “GBRT baseline”, “QRF baseline” and “QRNN baseline” hereinafter), four benchmarks are introduced.

The first three benchmarks consist of the application of GBRT, QRF and QRNN models using input predictors
that are not processed through PCA. These benchmarks are respectively labeled as “GBRT no PCA”, “QRF no PCA”
and “QRNN no PCA”. They are introduced in the comparative framework in order to evaluate whether the PCA
yields additive skill to the baseline forecasts, with respect to the case in which raw predictors are directly sent to
the probabilistic underlying models. To fairly compare the outcomes, the same predictors and the same model
selection procedure are considered for the GBRT, QRF and QRNN models in the “baseline” and in “no PCA”
benchmarks.

The fourth benchmark (BPersB) is a persistence model that is introduced in order to provide a simple, unbiased

reference. BPersB returns the last observed value in one-step-ahead forecasting:

5(ag)
P =Py forq=1,..,0Q, (41)

or the homologous value observed the day before in day-ahead forecasting:

P = Py forg=1,..,0Q. (42)
Thus, the predicted value is the same, whatever the quantile nominal coverage is. Although based on a naive
approach, this benchmark is often presented in the energy forecasting literature [77] to allow for a straightforward
evaluation of different models against the same reference.
Benchmarks for hierarchical forecasts

Seven benchmarks are introduced with the scope to evaluate the skill of the forecasts provided by the

hierarchical forecasting system for the high-level region.
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The first three benchmarks consist of the application of GBRT, QRF and QRNN models to directly forecasts the
EV load at the high-level region. These benchmarks, respectively labeled as “GBRT direct”, “QRF direct”, and
“QRNN direct”, are introduced in order to check if a direct approach for forecasting the EV load at the high-level
region performs better than passing through the baseline forecasts of the component regions.

The fourth benchmark consists of applying a simple sum-and-sort (SaS) of the homologous baseline predictive
quantiles returned by the baseline forecasting models [52]. This benchmark performs the simplest combination of
individual forecasts because it simply sums up the sorted homologous quantiles. It is therefore useful to evaluate it
against the proposal that considers instead a PLQR-based combination of baseline forecasts, to check whether a
simplest combination approach would surpass the proposal.

The fifth benchmark consists of a non-penalized quantile regression model (NPLQR, i.e., with A = 0) using the
same inputs considered for the PLQR model discussed above. This benchmark is introduced to evaluate whether
the li-penalization is useful in order to reduce the importance of uninformative predictors at the high-level
forecasting.

The sixth benchmark consists of a PLQR model using only the baseline forecasts, without exploiting the lagged
high-level EV loads as additional predictors. This benchmark denoted as “PLQR no recency” is added to validate
the importance of recency effects in hierarchical forecasting.

The seventh benchmark (HPersB) consists of a persistence model that is again introduced in order to provide a
simple, unbiased reference.

Probabilistic error indices

The skill of probabilistic forecasts is comprehensively evaluated through strictly proper scores [82]. However,
the reliability of probabilistic forecasts should be separately investigated in order to evaluate if the predictive
coverages are close to the nominal coverages [83].

In this paper, the PS is the strictly proper score used to comprehensively evaluate the accuracy of forecasts. The

PS of forecasts, belonging to a generic index set (1, is calculated as:

PS = S [ Znen ¥ (B 2" = 2 [ Bnea (= 270) - (e = 1 = 277} )

with dim((2) the number of points in the set (. The PS is therefore a negatively oriented score, since smaller values
denote more accurate probabilistic forecasts.

The reliability of forecasts is instead evaluated qualitatively through the reliability diagrams [84], which plot
the predictive coverages @, against the nominal coverages a4, ¢ = 1,..., Q. The predictive coverages of forecasts

belonging to a set {) are evaluated as:
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@ = g Znea 1{P < B} (44)

The closer the diagrams are to the bisector of the positive quadrant, the more reliable are the forecasts.
Reliability is also evaluated quantitatively through the Percentage Average Absolute Coverage Error (AACEx)

index, that is:

100

AACE,, = 7z§=1|ozq — . (45)
The AACE% is therefore a negatively oriented index, since smaller values denote more reliable probabilistic

forecasts.

/.5. INUMERICAL  APPLICATIONS ON  REAL-TIME
GENERATION AND LOAD FORECASTING

The methods detailed above have been tested by means of numerical simulations performed with respect to an
actual dataset of measured power produced by a PV system installed at a reconfigurable low voltage distribution
grid (Relne laboratory [85]) located in Switzerland and the actual EVnetNL dataset on EV load collected in the

Netherlands which has been provided for research purposes by the ElaadNL [53].

7.5.1 APPLICATION OF THE DERIVATIVE PERSISTENCE FORECASTING METHOD
The derivative persistence forecasting method has been applied to a data set of measured power produced by a PV
system installed at a reconfigurable low voltage distribution grid (Relne laboratory [85]) located in Switzerland.
The generation system has a total capacity of 30 kW and includes four AC/DC power inverters. The data
considered in this application refer to the measured power at the AC side of one inverter having a capacity of 8.5
kW. Particularly, the data refer to a measurement set recorded in the period August 24, to December 19, 2019. This
set of data is useful for testing purposes since it refers to different seasons and represents daily power profiles with

different degree of variability. Some examples of daily power production are reported in Fig. 6.
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Fig. 6 - Four days selected among the available measurement data

The data refer to measurements sampled at intervals of ten minutes (original measurements are sampled at 1
minute intervals, then the average values over 10 minutes intervals are computed). Based on the historical
measured data, the real-time forecasting is requested to generate the forecasts of the PV power produced during
the following 10 minutes (i.e., this is one-step-ahead forecasting with 10 minutes lead time).

To validate the proposed approach and highlight its peculiarities in terms of real-time estimation, the forecasted
values of power are compared with those of the persistence method of which the proposal is an improvement and
ARMA method which is recognized as popular statistical tool for time series analysis forecast.

ARMA model considers the lagged past values and errors as [6]:

P q
900 =) 4yk=0D+) Gel—10) (46)
i=1 i=1

where y(k —i) and e(k — i) are the lagged past values and errors, with p and q parameters and ¢, and 6
coefficients of the model. In this application, to derive these coefficients the system identification toolbox of
Matlab® has been used [86]. The values p = 1 and g = 2 have been used since in this application they generally
gave the best results. Approaches for the ARMA model development based on Akaike Information Criterion or
Bayesian Information Criterion, or based on the auto-ARIMA function in R environment, may show slightly
different results, but are not presented in these experiments for brevity.

To check the accuracy of the proposed approach, the performance metrics summarized in Tab. 1 are used [10], [87].
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TAB.1 PERFORMANCE METRICS

Symbol Metric
1 N
.« MAE = Iy - 90|
k=1
150 |y(k) = 9(k)|
o NMAPE 100_ZM
N P,
k=1
k) — 9k
e MdAAPE 100 median M
i=1,,N y(k)
1 N
* RMSE 5D 00 = 9(K))?
k=1

The mean absolute error (MAE) assesses the average distance between the measured values, y(k) and the model
predictions, y(k), of the N forecasted values; normalized mean absolute percentage error (NMAPE) evaluates the
magnitude of the prediction error normalized with respect to the system capacity (P,); compared to the MAPE,
median absolute percentage error (MdAPE) is used since it is less sensitive to outliers; root mean square error
(RMSE) is useful since it penalizes large errors.

The proposed forecasting method has been iteratively applied to all the available days. With reference to days of
Fig. 6 (i.e., Aug. 25, Sept. 7 and Dec. 19, 2019), the results of the proposed forecasting method are reported in Fig.
7, Fig. 8, and Fig. 9, respectively. For comparison purposes, the forecasted values of persistence and ARMA model

are also reported.

! 7measur‘ements
. _persistence
. _proposed
.__ARMA

) 2
6 8 10 12 14 16 18 20 22

hour

Fig. 7 - Comparison among measurements and different forecasting models (day August 25, 2019)
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Fig. 8 - Comparison among measurements and different forecasting models (day September 7, 2019)
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Fig. 9 - Comparison among measurements and different forecasting models (day December 19, 2019)
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Fig. 10-  Zooms of the comparison among measurements and different forecasting models (August 25, 2019)

In the case of Fig. 7, the daily profile of the power production shows small variations, thus obtaining the typical
profile of the PV power. Based on a rough analysis, the three models provide quite similar results. However, by
analyzing the zooms of the figure reported in Fig. 10, the proposed approach always provides a slightly better

prediction compared to the persistence model. In the zooms, it also appears that these improvements slightly
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decrease when the variability of the power increases. In these circumstances, the prediction of the proposed
approach is also batter than the ARMA approach, as shown in Fig. 10.a) and Fig. 10.b). During the periods when
the power profile shows smaller variations (Fig. 10.c), the ARMA model allows predicting with a significant better
accuracy. The case of Fig. 8 refers to a power daily profile with large variability. In this case a rough analysis shows
how the prediction errors of all forecasting models increase and, particularly, the differences between the
persistence and the proposed approaches seem smaller than the case of Fig. 7 — even though the curve of the
proposed approach is closest to the curve of the real measured values. Fig. 9 refers to the case of a low production
scenario. Compared to the persistence model, the proposed approach still provides a slightly more accurate
forecast. The ARMA approach shows a significant error in the period when fast variations appear. In order to
better investigate on the accuracy of the proposed method, the performance metrics shown in Tab. 1 are evaluated
for the three methods with reference to daily forecasting horizons. The results related to the days of Fig. 6 are
reported in Tab. 2.

The results of Tab. 2 confirm the qualitative analyses of Figs. 7 - 10. Indeed, with reference to the day August 25,
2019, the values that all metrics assume in the case of the proposed approach are lower than those assumed by the
persistence method. Compared to the persistence model, the NMAPE and MdAPE of the proposed model are 16%
and 22% lower, respectively. The values of RMSE and MAE also show better performance of the proposed
approach. It is interesting to note that in case of the day August 25, 2019 the ARMA model allows obtaining an
accuracy better than the persistence model and worse than the proposed approach. With reference to the other
days of the measured data, this generally happens in the days characterized by small variability.

In the case of the day September 7, 2019, the prediction errors of all the three forecasting methods are larger,
compared to the previous considered day. In this case also, the metrics of the proposed approach are better than
those of the persistence model, even if the differences among methods decrease. Regarding the NMAPE, both the
proposed and the persistence allow containing the error within 4%, whereas the ARMA approach implies errors
larger than 39%. In this case, the large error of ARMA is due to the high variability of the power during the day.
This error slightly reduces on the day December 19 for which similar considerations can be drawn regarding the
comparison of the three methods. The unique exception is for the MdAPE, since the value it assumes in the case of

the proposed approach is slightly larger than that assumed in the case the persistence approach is applied.
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TAB.2 PERFORMANCE COMPARISON

NMAPE MdJAPE

Model MAE [W] RMSE [W]
[%] [%]
day August 25, 2019
Persistence 127.36 1.50 3.79 224.94
Proposed 105.92 1.25 2.96 191.54
ARMA 120.26 1.41 3.02 212.55
day September 7, 2019
Persistence 334.58 3.94 15.13 593.57
Proposed 318.99 3.75 14.94 569.12
ARMA 467.43 5.50 20.40 891.78
day December 19, 2019
Persistence 108.95 1.28 7.43 249.43
Proposed 104.35 1.23 8.53 240.81
ARMA 221.50 2.61 13.99 540.07

The same analysis has been repeated for all the days of the available measured data. The results, which are not
reported here for the sake of conciseness are coherent with those of Tab. 2. Particularly, the skill score, ss, has

been evaluated which is defined as [9]:

RMSE

ss =1~ RumsE,

(47)

being RMSE), referred to the persistence and RMSE referred to the test approach. The skill score is typically used
to compare a test forecasting approach to the persistence model. In the case analysed in this application, the mean
value assumed by the skill score is 0.0026 and its maximum value is 0.14, thus demonstrating a generalized
improvement of the proposed approach compared to the persistence model. As expected, the skill score of the
ARMA is negative, showing the inaccuracy of this model compared to the persistence in the regard of the real-time
forecasting. This is aligned to the literature, such as in [9]. Moreover, still referring to the peculiarities relevant to
the real-time forecasting, it has to be noted that ARMA approach implies computational time hugely larger than

the one implied by the proposed or persistent model.
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7.5.2 APPLICATION OF THE CAPUTO-DERIVATIVE FORECASTING METHOD
The proposed forecasting method has been applied to a data set of measured PV power produced by the GECAD N
system installed in Portugal at the Instituto Superior de Engenharia do Porto/Politécnico do Porto [88]. The
installation power is 10 kW. The data refer to the period July 27, 2016-November 16, 2016, with a sampling time of
one minute. Regarding the validation metrics, in addition to those reported in Tab. 1, the following metrics were

used to validate the method:

- the relative Root Mean Squared Error (tfRMSE) which evaluates the RMSE normalized with respect to the

mean value of the measured values:

PRMSE L [R5 -y (48)

- the Pearson correlation coefficient (R) which is based on the method of covariance and gives a measure of
the correlation between the forecasted and measured values has been also included for the sake of

completeness even if it is less suited for evaluating forecasting methods:

5 2R=101-9) 0=

= 49
Jz’,!Zl(yk—y)zz’,le(yk—y)Z (49)

where ¥ and J are the average value of the measured dataset and of the forecasted dataset, respectively.
Some examples of daily power production are reported in Fig. 11 with reference to two days characterized by

regular and irregular weather conditions (i.e., September 24 and September 12, respectively).

6 6

N

Photovoltaic Power (kW)

Photovoltaic Power (kW)

o

=)

150 300 450 600 750 0 150 300 450 600 750

Time interval Time interval

Fig. 11 -  Measured PV power profile of the 59th day, September 24 (a) and of the 47th day, September 12 (b)
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The following experiments refer to different time intervals which are relevant to real-time applications for
distribution networks operation, that are one minute, five minutes and ten minutes. Since the original
measurements are sampled at one-minute intervals, with the aim to handle also the other considered time scales,
the average values of the measurements over five-minute and ten-minute intervals were computed.
Based on the historical measured data, the real-time forecasting is requested to generate the forecasts of the PV
power produced during the following one minute, five minutes and ten minutes (i.e., this is one-step-ahead
forecasting with one-, five- and ten-minute lead time, respectively). In the following subsections, the results of the
application of the proposed Caputo-derivative method are reported together with a comparison with the other
considered forecasting techniques to evaluate the accuracy of the results.
Forecasting output
With reference to the daily PV power profiles reported in Fig. 11, the results of the forecasted profiles carried out
by applying the proposed Caputo-derivative method are reported in Figs. 12, 13 and 14 which refer to different
lead times (which in the application correspond to the forecasting time horizons) and different numbers of past
samples used for the forecast:

— one-minute lead time and 30 samples

— five-minute lead time and 12 samples

— ten-minute lead time and 12 samples.
In the three cases, a value of n; equal to one has been assumed. Tab. 3 reports the performance indices evaluated
on those single days.
The analysis of the results reported in Tab. 3 evidences that, with reference to the regular day (59® day, September
24), the forecasting indices have quite good values. They assume slightly worse values in the case of the irregular
day (47" day, September 12), however, still being acceptable. The values of the indices in the case of one-minute
lead time are generally better than those assumed in the case of five-minute and ten-minute lead times. This is an
expected result since, by increasing the lead time, accuracy reduces. Particularly, it can be observed that the index
R reaches a value very close to one in the case of one-minute lead time for both days. Its approximation to one still

remains in the case of five-minute lead time and it assumes acceptable values in the case of ten-minute lead time.
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TAB.3 PERFORMANCE INDICES EVALUATED ON THE TWO CONSIDERED DAYS

Lead time Samples RMSE MAE
NMAPE [%] rRMSE [%)] R
[W] [W] rMBE x1le-4 [%]
59+ day, September 24
1 min 30 (30 min)  46.8903  21.5152 0.2152 0.026 -1.3899 0.9996
5 min 12 (60 min) 143.5294 71.5451 0.7155 0.0805 3.8048 0.9971
10 min 12 (120 min) 271.0762 140.0803 1.4008 0.1510 10.8921 0.9895
47% day, September 12
1 min 30 30 min)  121.0304 57.6087  0.5761 0.0653 -2.3560 0.9976
5 min 12 (60 min)  221.9227 130.9621 1.3096 0.1185 9.9717 0.9921
10 min 12 (120 min) 317.0545 199.5311 1.9953 0.1681 36.1401 0.9839

considered lead times. Figs. 12-17 b) show the relative normalized errors, which is evaluated as:

b)

Y=Yk
err, = ——.
Yk
6 1
Measured
_ Forecasted
0.5
4
0
= 3
3 &
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g 5
£ a) Z
=
0 L L L L -1
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Fig. 12 -Forecast results for day #59 —

1 min lead time: photovoltaic power values (a) and normalized error (b)

450
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750

Figs. 12-17 a) show the comparison of measured and forecasted power profiles for the two days and for the three

(50)

45



UNIONE EUROPEA
6
Measured
_ Forecasted
41 1
z
<
I
2
s
S
2
£ a)
~
0 . . . .
0 150 300 450 600 750

Time interval

Fig. 13 -Forecast results for day #47 — 1 min lead time: photovoltaic power values (a) and normalized error (b)
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Fig. 14 -Forecast results for day #59 — 5 min lead time:
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Fig. 15 -Forecast results for day #47 — 5 min lead time:
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Fig. 16 -Forecast results for day #59 — 10 min lead time: photovoltaic power values (a) and normalized error (b)
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Fig. 17 -Forecast results for day #47 — 10 min lead time: photovoltaic power values (a) and normalized error (b)

The profiles reported in Fig. 12 confirm the results reported in Tab. 3. More specifically, the analysis of the figures
evidences how measured and forecasted profiles almost overlap in the case of one-minute lead time for both the
considered days with very low values of the normalized errors. The overlapping remains in the case of five-minute
lead time with still contained values of the error and slightly reduces in the case of ten-minute lead time with
higher values of the error. Regarding the error profile of the one-minute lead time forecasting, some spikes can be
observed in correspondence of the irregular points of the power profile (Fig. 12.b). The same behavior can be
observed in the case of five-minute and ten-minute lead times with slightly larger spikes.

A sensitivity analysis was performed to evaluate the effect of the choice of n; on the forecasting performance. The
results are reported in Fig. 18, with reference to the days #47 (Figs. 18.a, 18.b and 18.c) and #59 (Figs. 18.d, 18.e

and 18.f), where the values of RMSE and NMAPE are reported versus nx In the figure, the results are reported
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referring to the three lead times, i.e., one minute (Figs.
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Fig. 18 -RMSE and NMAPE variations vs. ny values for day #47 — 1 min lead time (a), — 5 min lead time (b) and — 10
min lead time (c) and for day #59 — 1 min lead time (d), — 5 min lead time € and — 10 min lead time (f)

Fig. 18 shows that better performance of the proposed method is obtained for low values of n,. In particular, the

minimum values of RMSE and NMAPE are reached always for n, = 1, except for the NAMPE of Fig. 18.d where

the minimum value is reached for n, = 2. By increasing the value of n, the values of the indices increase. The

same considerations can be drawn for the other metrics whose values are not reported here for brevity.

Performance evaluation of the forecasting

In this Section, the performance of the procedure has been evaluated by comparing its accuracy with that obtained

by means of the i) persistence, ii) derivative-persistence and iii) ARMA methods. The comparison includes also a

sensitivity analysis with respect to the past samples used for the forecasting. More specifically, the persistence and

derivative-persistence methods require a fixed number of past samples, that are one and three, respectively.

In what follows, the results of one-minute (Tab. 4), five-minute (Tab. 5) and ten-minute (Tab 6) lead time

forecasting are reported. In the tables all the indices described above are reported except for the MAE since, in this

application, it can be derived by multiplying the NMAPE by 100 being 10 kW the size of the plant.

Regarding the past samples, for the ARMA and Caputo-derivative methods, a number of past samples equal to

seven (seven minutes), 15 (15 minutes) and 30 (30 minutes) have been assumed in the case of one-minute lead
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time. For the Caputo-derivative method also the case of three samples (three minutes) has been considered in order
to allow comparison to the derivative-persistence method. In the case of five- and ten-minute lead times, still with
reference to ARMA and Caputo-derivative methods, a larger lag time has been considered by using 12 (60 minutes)
and 24 (120 minutes) samples in the case of five-minute lead time, and 12 (120 minutes) samples in the case of ten-
minute lead time. The choice of the past samples used in the tables for comparing the various methods is due to the
minimum number of samples required by each method for the forecasting. In particular, the persistence method
operates by using only one previous sample, the derivative persistence needs exactly three samples, the Caputo-
derivative needs three samples, at least. Caputo-derivative can also operate with different, greater numbers of past
samples. ARMA also can operate with different number of samples, typically better operating with a higher
number and, in the application proposed in this paper, seven has been found to be the minimum number of
samples required. In the tables, to have a more complete comparison of the results obtained by using the Caputo
derivative and ARMA, the results obtained by using three different values of numbers of samples for the
forecasting are proposed.

The results reported in the tables show the efficacy of the proposed method for the real-time forecasting of the PV
power. Generally, all of the considered methods show comparable performance with slightly different results.
Particularly, in some circumstances the proposed method shows the best results depending on the number of
samples considered in the forecast.

With reference to one-minute lead time, the results of Tab. 4 evidence that, the forecast carried out by using the
Caputo-derivative method with three samples performs better than the persistence method in terms of RMSE.
Regarding R it has the same value assumed in the case of persistence. Furthermore, the value of rMBE is better that
the value it assumes with both the derivative-persistence and persistence approaches. Derivative-persistence
method gives results better than those obtained by applying the persistence method regarding the NMAPE index.
The Caputo-derivative also shows good performance when applied with 7, 15 and 30 samples compared to all of
the other approaches. Particularly, the case of 30 samples gives the best results. This reveals the ability of the
method to catch the history of the variable to be forecasted. It can be noted that, though appliable, the ARMA
method doesn’t give good results in the case of seven samples. By increasing the number of samples, better results
are obtained even if they are still worse than those obtained by applying the Caputo-derivative. The results of
ARMA also show that increasing the number of past samples, a better forecast is obtained, thus reflecting a better

estimation of the lag coefficients.
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TAB.4 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 1 MIN

RMSE NMAPE rRMSE rMBE
Method Samples R
[W] [%] [%]  xle-4[%]

Persistence 1 (1 min) 208.7251  0.5652  0.1569  -0.2435  0.9902
Derivative-persistence 3 (3min)  213.1019 0.5616 0.1602 -15.5737 0.9898
Caputo-derivative 3(3min) 208.7246  0.5650 0.1569  -0.0660  0.9902
7 (7min)  8885.6795 1.1072 6.6780 237.5481 0.1607
ARMA 15 (15 min) 249.3366  0.6933 0.1874  -2.5908  0.9860
0.9886

30 (30 min) 224.5512  0.6332 0.1688  -1.3241
7 (7min)  208.7249 05651 0.1569 -17.9810 0.9902
Caputo-derivative 15 (15 min) 208.7248 0.5651 0.1569 -14.8004 0.9902
0.9902

30 (30 min) 208.7243  0.5651 0.1569  -0.0424

With reference to the five-minute lead time (Tab. 5), by using three samples for the forecast, it still appears that

the Caputo-derivative provides the best results in term of RMSE, and rRMSE, and the same value of the persistence

in terms of R, while the derivative-persistence gives the best results in terms of NMAPE. By increasing the number

of samples (7 and 12) the Caputo-derivative provides the best results for all of the indices except for the NMAPE

for which the derivative-persistence still performs better. By further increasing the number of samples (24) the

values of the indices slightly worsen.
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TAB.5 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 5 MIN

RMSE NMAPE rRMSE rMBE
Method Samples R
[W] [%] [%] xle-4 [%]

Persistence 1 (5 min) 247.1509 1.1333 0.1844 -1.7182 0.9860

Derivative-persistence 3 (15 min) 254.6339 1.0987 0.1899 -44.6768  0.9852

Caputo-derivative 3 (15 min) 247.1354 1.1324 0.1843 -0.6815 0.9860

7 (35 min) 366.8468 1.5179 0.2736 172.1750 0.9702
ARMA 12 (60 min)  294.2581 1.3303 0.2195 92.5553 0.9808
24 (120 min) 270.9479 1.2632 0.2021  165.900 0.9839

7 (35 min) 247.1362 1.1328 0.1843 -0.7143 0.9860
Caputo—derivative 12 (60 min) 247.1303 1.1325 0.1843 0.5965 0.9860
24 (120 min) 247.1524 1.1328 0.1844 3.6058 0.9860

TAB.6 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 10 MIN

RMSE NMAPE rRMSE rMBE
Method Samples R
(W] [%] [%] xle-4 [%]
0.9814
Persistence 1 (10 min) 284.0675 1.6205 0.2106 -5.0788
Derivative-persistence 3 (30 min) 283.6419 1.5412 0.2103 -76.5393 0.9812
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Caputo-derivative 3 (30 min) 283.9904 1.6183 0.2106 -2.3452 0.9814
7 (70 min) 388.2195 2.0239 0.2878 316.5226 0.9683
ARMA
0.9752
12 (120 min) 345.4801 1.8939 0.2562 319.1121
7 (70 min) 283.9578 1.6183 0.2105 -0.1360 0.9814
Caputo-derivative
0.9814
12 (120 min) 283.9036 1.6177 0.2106 4.0855

The results in Tab. 6 (ten-minute lead time) generally confirm the above considerations regarding the forecasts
with three samples, except for RMSE and rRMSE which are better in the case of the derivative-persistence method.
In both cases, however, they are better (RMSE) or equal (rRMSE) than the values they assume in the case of
persistence. For other numbers of samples, the Caputo-derivative provides the best results in terms of rRMBE and
the same value of the persistence for R while the derivative-persistence method proves to be always the best
approach in terms of the other indices.

With reference to the different number of past samples used for the forecast, the Caputo-derivative shows always a
robust behaviour. Compared to the ARMA method, in fact, it shows only slight performance variations with
varying number of used past samples. Particularly, R is not affected at all by the variation of the number of past
samples as well as it happens for NMAPE and rRMSE in the case of one-minute lead time. This means that, even
not appropriate the choice of the number of past samples, the Caputo-derivative method gives always quite
accurate results.

The proposed Caputo-derivative forecasting method was also applied to the dataset used in this document at the
aim of forecasting the maximum PV power. The results obtained showed accuracy comparable as that discussed in
the above sections. With respect to the dataset SI1, as an example, the results related to day #15 are reported in Fig.
19.a) A zoom referring to part of the day characterized by high irregularity is reported in Fig. 19.b). The accuracy

of the proposed forecasting method and its feasibility clearly appear.
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Fig. 19-  Comparison of Caputo-derivative method applied to the maximum PV power and actual

measurements (a) and its zoom (b)

7.5.3 APPLICATION OF THE BAYESIAN BOOTSTRAPPING

Bayesian bootstrap in probabilistic PV power forecasting is applied to a data set of measured power produced by
the PV system installed at the already mentioned reconfigurable low voltage distribution grid (Relne laboratory
[85]) located in Switzerland.

The NWPs used in the experiments are taken from the European Centre for Medium-range Weather Forecast
(ECMWF) [89]. All the NWPs belong to the midnight run, i.e., they are issued at midnight and cover the 24 hours
of the following day.

All the data are averaged to obtain an hourly time resolution. They are normalized to their respective minimum
and maximum values to be processed by the forecasting models.

Data are stored from February 1, 2016 to November 30, 2018, for a total number of 24816 occurrences. In these

experiments, the training set covers until January 31, 2018 and it is Q™ = {t: 1 < t < 17544}, whereas the test set
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covers the remaining months in 2018 and it is Q*¢" = {t: 17545 < t < 24816}. The validation set Q’® used in the
OQ-BB procedure to optimize the extraction of the final prediction from the sample Bayesian bootstrap
distribution is applied on a rolling monthly window: for example, the validation set Q®#® = {t:16801 <t <
17544} that corresponds to data in January 2018 is used to optimize the extraction of the final prediction for
February 2018, the validation set Q"% = {t: 17545 < t < 18264} that corresponds to data in February 2018 is
used to optimize the extraction of the final prediction for March 2018, and so on.

The 1-hour-ahead probabilistic forecasts are generated by @ = 19 predictive quantiles at nominal coverages
ay, ., Q19 = 0.05,0.10, ...,0.90,0.95. The sample size of the Bayesian bootstrap distribution is R = 100 and is kept
at this value for all the experiments. All forecasts are generated using an i7-6700HQ CPU @2.60GHz equipped
with 16 GB RAM in R, with the packages bayesboot [90], quantreg [91], qrnn [92] and gbm [93]. In any case, the
time required to generate forecasts was in line with the requirements driven by the 1-hour lead time. Table 3
shows the PS, the AACE and the PINAW obtained using the Bayesian-bootstrap-based forecasting systems and the
benchmarks, averaged across the test set. Bold values in Table 7 indicate the best performance for each model
family.

TAB.7 PERFORMANCE OF THE PROBABILISTIC FORECASTS AVERAGED ACROSS THE TEST SET. BOLD VALUES

INDICATE THE BEST PERFORMANCE FOR EACH MODEL FAMILY

Error score/index
Model family | Bootstrap | Forecasting system
PS [-] AACE [%] PINAWo [-] PINAWoo [-]
LQR-SM-BB 0.184 2.89 0.713 11.637
Bayesian
LQR-OQ-BB 0.183 1.42 0.632 11.980
LQR LQR-SM-TB 0.184 2.79 0.699 12.012
Traditional
LQR-OQ-TB 0.184 2.09 0.675 12.365
None LQR-NB 0.186 2.99 0.749 12.312
GBRT-SM-BB 0.188 3.91 0.560 7.938
Bayesian
GBRT-OQ-BB 0.185 0.97 0.675 11.481
GBRT GBRT-SM-TB 0.192 3.10 0.684 8.289
Traditional
GBRT-OQ-TB 0.190 1.23 0.731 11.705
None GBRT-NB 0.194 4.11 0.830 12.172
QRNN-SM-BB 0.188 3.64 0.797 7.135
Bayesian
QRNN-OQ-BB 0.186 2.02 0.716 10.200
QRNN
QRNN-SM-TB 0.187 3.89 0.831 7.427
Traditional
QRNN-OQ-TB 0.186 2.08 0.782 8.985
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None QRNN-NB 0.189 3.68 0.827 7.461
PM1 0.522 - - -
PM2 0.595 - - -

The reliability diagrams are shown for the LQR-OQ-BB, the GBRT-OQ-BB and the QRNN-OQ-BB in Figure 20(a),
20(b) and 20(c), respectively. The graphical inspection of the reliability diagrams denotes that forecasts are
calibrated, as the estimated coverages tend to lie along the bisector curve. GBRT-OQ-BB forecasts only marginally

deviate from the ideality, as confirmed by the smallest AACE index (0.97%) reported in Table 7.

Estimated coverage [

Estimated coverage [

(©

Fig. 20-  Reliability diagrams of the LOR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-
BB forecasts (c).

LQR-OQ-BB forecasts, GBRT-OQ-BB forecasts and QRNN-OQ-BB forecasts during the first two weeks of the test

period are plotted versus time and compared to the actual PV power in Figure 21(a), 21(b) and 21(c), respectively.
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LOR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-BB forecasts (c) during the

first two weeks of the test period.
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- Results for Dataset SI1

The results for Dataset_SI1 are presented for a case study that was arranged to suit the real-world experimental
framework of the optimization models. In particular, the LQR-SM-BB forecasting system was adapted to generate a
point forecast of the maximum power producible by a controllable PV system. Since the proposal was developed
within a probabilistic framework, only one nominal quantile coverage (a = 0.5) is considered as the point output
of the methodology. The forecasts are issued two-step-ahead, for all the 144 ten-minute sub-intervals of the day;

NWPs were not included as candidate predictors. For Dataset_SI1, the selected underlying LQR model is:

~

BLE = L B0 B+ BB, AP B0, 4 L B, 4 0 B + 5
pla) | pla) (@) pla) | pla) (a)
67 Pyiaa Py + Bg Pysiaa Paze

The number of predictors of the selected model is therefore M;, = 8, and two of them are obtained as
interacting predictors.
Table 8 shows the MAE and the RMSE calculated for the point forecasts of the maximum PV power, obtained

through the LQR-SM-BB and the Persistence Model, during one day (144 forecast issues) of the test period
characterized by adverse weather conditions. As seen, LQR-SM-BB returns a MAE (RMSE) that is about 8.8%
(8.0%) smaller than the benchmark for this dataset, too. Fig. 22 shows the maximum PV power pattern and the
forecasted values.

TAB.8 FORECAST RESULTS FOR ONE DAY (144 FORECAST ISSUES) OF THE TEST SET OF DATASET_SI1

Method MAE [-] RMSE [-]
LQR-SM-BB 553 12.58
PM 6.07 13.67

T T

Actual value

LQR-SM-BB forecast

PM forecast

er [-]

Normalized maximum PV pow

Ten-minute interval

Fig. 22 - Fig. LOR-SM-BB predictions during one day, characterized by adverse weather conditions, of the test
set of Dataset SI1.

57



* % x
* *

* *

* *

i B Menistiore dtl Fotszione,
UNIONE EUROPEA At Viversite o diltly Sorerca

7.5.4 APPLICATION OF THE HIERARCHICAL PROBABILISTIC ELECTRIC VEHICLE
LOAD FORECASTING

The data used for the experiments are discussed in Section 7.2 and span three years from July 1, 2015 to June 30,

2018. As discussed above, for the particular structure of the hierarchical forecasting system it is necessary to

(B)

irq) Of the available data to train the baseline models and another

reserve a portion (individuated by the index set Q)

. . P . H
portion (individuated by the index set Qir;

) to train the hierarchical PLQR model upon the predictions generated
by the baseline models. To allow the out-of-sample assessment of the forecasting skill in the experimental
framework, it is also mandatory to reserve some data (individuated by the index set (;,;) only to test the

performance of the forecasting system.

(B)

tra

(H)

In the experiments presented here, ) tra

includes roughly 50% of the available data, ();,;; includes roughly 30% of

the available data and Q. includes roughly 20% of the available data. The first one and half year (July 1, 2015 to

December 31, 2016) is reserved for training the baseline models (i.e, making up the set Qi‘;’;

of 13200 points).
(H)

Another year of data (the entire year 2017) is reserved to train the hierarchical model (i.e., making up the set 0,

of 8760 points). The remaining half year (first six months of 2018) is reserved for testing the results (i.e., making up

the set Qs of 4344 points).
(H)

tra

In the framework considered in this research, baseline forecasts are issued for the training set {,,, and the test set

(H)

Q¢ese, therefore the error indices and diagrams are calculated on the set Q = {Q;;/,

Q¢ }. Hierarchical forecasts are
issued for the test set {145 only, therefore the error indices and diagrams are calculated on the set Q = Q.
Probabilistic forecasts for low-level and high-level regions are provided by Q = 9 predictive quantiles at 0.1, 0.2,
... 0.9 nominal coverages. Two different forecasting frameworks, i.e., hour-ahead forecasting (with lead time k = 1
hour) and day-ahead forecasting (with forecast origin at midnight of the day before the actual energy consumption,
and lead times k = 1,2, ...,24 hours), are considered in the experiments in order to evaluate the proposal in
different practical implementations.

Assessment of hour-ahead baseline forecasts

Table 9 shows the PS and the AACE% of hour-ahead baseline probabilistic forecasts, averaged on the set ) =

{Qi%, Qes¢}- Bold values in Table 9 denote the smallest achieved indices for each region. The AACE« of BPersB is
not presented, since this persistence-based benchmark generates the same predictive quantiles for each nominal
coverage.

The baseline forecasts generated with the PCA pre-processing are more skilled than the corresponding “no PCA”

forecasts in three upon four regions. The PS improvements are in the ranges 1% to 7.5% (Noordoost region), 1.5%
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to 11% (Rijnmond region), and 2% to 9% (Zuidoost region). Utrecht region is the only exception to this behavior;
it is worth noting however that the PS of GBRT forecasts is practically the same with (14.47 kWh) and without
(14.46 kWh) PCA.

On average across the four regions, the GBRT baseline returns the most accurate forecasts, although GBRT, QRF
and QRNN baseline forecasts give PS that are very close in all the four low-level regions. The improvement with

respect to the seasonal BPersB ranges from 36% to 43%.

TAB.9 RESULTS OF HOUR-AHEAD BASELINE FORECASTS AT LOW-LEVEL REGIONS.

Low-level region
Noordoost Rijnmond Utrecht Zuidoost
Model
PS AACE% PS AACE% PS AACE% PS AACE%»

[(kWh] | [%] | [kWh] | [%] | [kWh] | [%] | [kWh] | [%]
GBRT baseline 18.07 1.55 22.30 1.67 14.47 2.94 17.51 1.40
QREF baseline 18.15 1.40 22.54 0.20 14.71 2.86 17.55 0.68
QRNN baseline 18.17 1.94 22.38 212 14.56 2.48 17.48 1.84
GBRT no PCA 18.23 2.06 22.64 3.18 14.46 2.37 17.90 1.35
QRF no PCA 18.55 3.11 23.33 3.44 14.73 1.36 18.40 2.05
QRNN no PCA 19.64 4.66 25.12 6.54 15.23 2.39 19.17 5.00

BPersB 28.34 - 38.84 - 22.85 - 30.75 -

*The most favorable value of the performance index in each column is highlighted in bold font

In order to evaluate the reliability of the hour-ahead baseline forecasts and as an example of the obtained results,
Figure 23 shows the reliability diagrams of the GBRT, QRF and QRNN hour-ahead baseline forecasts for the EV
load of Noordoost region, plotted against the ideal reliability bisector. The diagrams are very close to the ideal
bisector, with the only exception of the extreme left and right coverages of the QRNN forecasts, which are
respectively underestimated and overestimated.

Figure 24 shows the GBRT (Figure 24(a)), QRF (Figure 24(b)) and QRNN (Figure 24(c)) baseline forecasts against

the actual EV load of Noordoost region during the second week of the test period.
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Reliability diagrams of the hour-ahead baseline forecasts for the EV load of Noordoost region.
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(c)
GBRT (a), ORF (b), and ORNN (c) hour-ahead baseline forecasts and actual EV load of Noordoost
region during the 2" week of the test period.
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Assessment of hour-ahead hierarchical forecasts

Table 10 shows the PS and the AACEw of hour-ahead hierarchical probabilistic forecasts averaged on the set Q.
Bold values in Table 10 denote the smallest achieved indices for each low-level model. The AACE«% of HPersB is
not presented since this persistence-based benchmark generates the same predictive quantiles for each nominal
coverage.

The PLQR proposal returns the smallest PS no matter which is the underlying probabilistic model used for
generating the low-level EV load forecasts. It is also the most reliable model in two upon three cases.

The hierarchical approach returns more skilled forecasts than the “direct” approach by about 3.5% PS (QRF case)
up to about 8% PS (GBRT case). As expected, the simple sum-and-sort (SaS) of homologous quantiles proves to be
less skilled and very unreliable, as the AACE% is always beyond 7%. Results of the hierarchical approach without
penalization (NPLQR) and without recent observations (PLQR no recency) are very close, but still are
outperformed by the PLQR proposal. The improvement with respect to the persistence-based HpersB is about 54%
in the three considered cases.

TAB.10 RESULTS OF HOUR-AHEAD HIERARCHICAL FORECASTS AT HIGH-LEVEL REGION. THE MOST

FAVORABLE VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT

GBRT QRF QRNN

Model PS AACE% PS AACE% PS AACE%
[kWh] [%] [kWh] [%] [kWh] (%]

PLQR proposal 41.57 1.07 41.35 0.36 42.13 1.75

Direct 45.29 1.63 4291 1.42 43.59 1.95

SaS 46.62 7.29 48.92 9.50 4492 8.17

NPLQR 43.38 1.45 44.18 0.88 42.68 1.14

PLQR no recency 43.28 1.74 44.09 0.83 42.63 1.49
HPersB 89.87 - 89.87 - 89.87 -

In order to evaluate the reliability of the hour-ahead hierarchical forecasts and as an example of the obtained
results, Figure 25 shows the reliability diagrams of the PLQR proposal applied on GBRT, QRF and QRNN baseline
forecasts, plotted against the ideal reliability bisector. In this case, the diagrams are all very close to the ideal
bisector, no matter which is the underlying probabilistic model; the QRF-based hierarchical forecasts deviate less

than the others from the ideal line.
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Fig. 25 - Reliability diagrams of the PLOR hour-ahead forecasts for the high-level EV load.

Figure 26 respectively shows the PLQR forecasts applied on GBRT (Figure 26(a)), QRF (Figure 26(b)) and QRNN

(Figure 26(c)) baseline forecasts against the actual high-level EV load during the second week of the test period.
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Hour-ahead PLOR on GBRT (a), QRF (b), and QRNN (c) baseline forecasts and actual high-level EV

load during the 2™ week of the test period.
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Assessment of day-ahead baseline and hierarchical forecasts
Day-ahead baseline and hierarchical forecasts are assessed in this sub-Section in a more compact form, as they are

intended for comparative purposes. Table 11 shows the PS and the AACE« of day-ahead baseline probabilistic
(H)

forecasts averaged on the set O = {Q;/,

Qiest}- Bold values in Table 11 denote the smallest achieved indices for
each region. The AACEw of BPersB is not presented, since this persistence-based benchmark generates the same
predictive quantiles for each nominal coverage.

The baseline forecasts generated with the PCA pre-processing are more skilled than the corresponding “no PCA”
forecasts in all the four regions. The PS improvements are in the ranges 0% to 5% (Noordoost region), 0.5% to 9%
(Rijnmond region), 0.5% to 5% (Utrecht region), and 1.5% to 9.5% (Zuidoost region). On average, the GBRT
baseline returns the most skilled forecasts for the four regions, although GBRT, QRF and QRNN baseline forecasts
give PS that are very close in all the four low-level regions. The improvement with respect to the BPersB ranges

from 39% to 40%, which are values close to the hour-ahead case, indicating that the proposal is efficient in all the

considered short-term forecasting horizons.

TAB.11 RESULTS OF DAY-AHEAD BASELINE FORECASTS AT LOW-LEVEL REGIONS. THE MOST FAVORABLE

VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT

Low-level region
Noordoost Rijnmond Utrecht Zuidoost
Model
PS AACE% PS AACE% PS AACE% PS AACE%

(kWh] [%] (kWh] [%] (kWh] [%] (kWh] [%]
GBRT baseline 27.60 3.51 32.25 2.92 20.65 4.53 25.56 1.89
QREF baseline 27.87 3.28 32.78 2.63 21.12 4.82 25.54 1.19
QRNN baseline 27.79 3.81 32.92 4.93 20.61 4.06 26.24 1.83
GBRT no PCA 27.60 3.25 32.35 3.03 20.74 4.85 25.94 1.99
QRF no PCA 28.15 3.98 33.34 291 21.17 4.07 26.19 1.79
QRNN no PCA 29.13 4.80 36.20 5.59 21.77 4.32 29.03 7.77

BPersB 45.18 - 52.73 - 33.86 - 42.53 -

Table 12 shows the PS and the AACEw of day-ahead hierarchical probabilistic forecasts averaged on the set Q.

Bold values in Table 12 denote the smallest achieved indices for each low-level model. The AACE«® of HPersB is
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not presented, since this persistence-based benchmark generates the same predictive quantiles for each nominal
coverage.

The PLQR proposal returns the smallest PS no matter which is the underlying probabilistic model used for
generating the low-level EV load forecasts. It is also the most reliable model in two upon three cases. These
outcomes match what was evidenced for the hour-ahead scenario.

The hierarchical approach returns more skilled forecasts than the “direct” approach by about 6.5% PS (GBRT case)
up to about 9.5% PS (QRNN case). As expected, the simple sum-and-sort of homologous quantiles (SaS) proves to
be less skilled and very unreliable, as the AACEw is always beyond 8%. Results of the hierarchical approach
without penalization (NPLQR) and without recent observations (PLQR no recency) are very close, but still are
outperformed by the PLQR proposal. The improvement with respect to the persistence-based HPersB is about 39%
in the three considered cases, which is a smaller improvement than the one obtained in the hour-ahead scenario,

although still suggesting that the proposal enables skilled forecasts in the entire day-ahead scenario.

TAB.12RESULTS OF DAY-AHEAD HIERARCHICAL FORECASTS AT HIGH-LEVEL REGION. THE MOST FAVORABLE

VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT.

GBRT QRF QRNN

Model PS AACE% PS AACE%» PS AACE%
[kWh] [%] [kWh] [%] [kWh] (%]

PLQR proposal 69.64 1.32 69.88 1.38 70.47 1.54

Direct 74.44 1.69 75.47 1.14 77.82 2.03

SaS 74.43 8.13 76.32 8.65 77.42 8.77

NPLQR 71.57 2.16 73.30 1.64 72.86 1.56

PLQR no recency 71.40 1.86 73.29 1.69 73.34 1.69
HPersB 114.85 - 114.85 - 114.85 -

Figure 27 shows the reliability diagrams of the PLQR proposal applied on GBRT, QRF and QRNN baseline
forecasts, plotted against the ideal reliability bisector. All forecasts are very reliable, and they follow the same

pattern across the nominal coverages.
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Fig. 27 - Reliability diagrams of the PLOR day-ahead forecasts for the high-level EV load.

8. COMPARISON WITH EXPECTED RESULTS

The activities related to Task 2.1 dealt with the design of databases of variables which allowed creating the
dataset to be used to test the performance of the forecasting systems.

The activities related to Task 2.3 focused on the development of the real-time forecasting system. Several
methods have been proposed and those based on data-driven ensemble approaches were exploited and validated to
be used in the experimental stages of the project.

The activities related to the Task 2.4 allowed refining and revisiting the real-time forecasting systems with respect

to the requirements of the optimization framework curried out in the other WPs.

Part of these activities were carried out in strict interaction with the partner University of Naples Parthenope
for the data collection, data pre-processing and exploratory data analysis and for the theoretical development of the
forecasting systems, and with the partner HEIG-VD for the acquisition of measurements available at the test
distribution network at the Relne laboratory.

The results obtained in this phase are coherent to the expected results.
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APPENDIX

In this Section the baseline models used in the methods shown in the report are briefly recalled.

Linear Quantile Regression model

An LQR model allows estimating the cumulative distribution function of the PV power by means of a linear
relationship between the power and informative predictors [19]. The linear relationship is established between the
predictive a,-quantile ﬁ;aq) of PV power and the predictors z,, = {2, ,, ..., Zy v} through a set of model parameters
ﬁ("‘q) = {[)’(()aq>, . I(V‘Zq)} which have to be estimated. Both quantile and predictors refer to the time horizon h, and
the forecast lead time k is assumed for predictors, i.e., their values are available at h — k, that is the forecast origin.
For ease of notation, in what follows the forecast lead time k is not included in the symbols. The linear relationship

imposed by a generic QR model is provided by:

(ag) (ag) (ag)
Phaq (zh | B(aq>) = :Bo 1 + Zﬁ=1 ﬁn“q ' Zh,n ) (51)
where the vector (%) = {[)’(()aq), e l(\]aq)} includes the N + 1 parameters of the LQR model. The estimated values

B2 of B'“a derive from the model training obtained by the minimization of a proper score evaluated respect to a
known data set (i.e., the supervised training set that includes M,, training PV power samples P =(p, t € Q'™
and the corresponding predictors Z{™) = {z,,t € Q{")},

The PS is used for this purpose. PS is a score calculated on the training samples P{") and on the corresponding

M,, a,-quantiles P¢"{@a)(Z() | glag)) = plee z, | B%@), t € Q4! given by the LQR model:
a9 t g y

PS[P{), pniag) (z(t) | glag))] = iztemm pS [Pt. Pt<aq>(lt m(aq))] —

Mgy

o= Seean {aq = 1[P < PO (2,1 80|} [P = P (2,1 B0)] (52)

where [ [Pt < Pt<aq)(zt | ﬁ(“q>)] is the indicator function that depends on condition in the brackets:

1 if P, < PV(z, | poo)

@) (53)
0 ifP, > P, 7 (z, | B*a).

[P, < P"(2, | )] =
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The estimated parameter vector (%’ is eventually given by:

Blea) = ar%m)in PS[P{r), pitridaq)(z(tr) | glaa))], (54)
B

i.e., it is a function of P{t" and Z!t"):

Bl = plaa(pn), z(en). (55)

The LQR predictive a,-quantile P;faq) of PV power for the time horizon h, returned by using the estimated

parameters, consequently depends on P{") and Z‘*™, too:
5lag) 5 5lag) 5{ag)
P20 | B (PO, 20)] = By + Ty B - 2 (56)

Gradient Boosting Regression Trees

G GBRTSs focus on the functional dependence f(*@(-) between the response variable (the predictive @4-quantile

of PV power) Ph(aq> and the corresponding predictors z:

9 = ey 7)

Assuming f{%@ to be unknown, the predictive ag-quantile of PV power depends on the function f @ je.,

P}f“zﬁ — Pff“q)(zhlf(aﬁ) _ An estimation f(txcﬁ of f<“q) can be obtained by minimizing the PS over the training data
[94]:
f{*@ = argmin PS[PW), P<tr)’(a">(z(tr> | f(aq>)] . ©8)

f(aq)

The iterative procedure for solving (48) starts at iteration j = 0 by initializing f<0> at the constant value:

aag) _ Mag) :
F = 1 = i, PSP ). *)
p
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The GBRT iterative procedure at the iteration j > 0 uses gradient descent to create new learners and the new
estimation is made through the negative gradient, that is the negative partial derivative of the PS loss function

evaluated for the m™ historical observation P;:

(ag)
aps[pt £ @)

<aq>
af(} 1)

00z = (60)

(z¢) <aq> Hag)
(1 1)( t) f<] 1)(Zt)

The weak learner to make predictions is a regression tree fitted on a random subsample extracted from the

original data, using the negative gradients as response variables and the predictors as input variables. More

specifically, the predicted value gi"‘") for the t™ negative gradient, given the predictors z;, can be written as:
35 (2,) = $52, g -1z, € Ryo, (61)

where g{%a) is the average of the negative gradient values contained in the s®leaf of the fitted tree, S is the total
number of leaves, R s is the rectangular subspace domain corresponding to the s® terminal leaf #*), and the
indicator function assumes value 1 if predictors z, belong to the subspace R s (or, equivalently, if predictors z,

individuate the s™ leaf on the fitted tree), and 0 otherwise. At the j™ iteration the updated weak learner is given

by:

(“q) (“q) A<aq>
f( f;J 1) Py » (62)

Aag) . . . . s . .
where p(<].>q) is the gradient descent step size to update the estimate of f{%’ at the j* iteration. The gradient descent

,\< aq)

is obtained by adding the outcome of the regression tree, p - (z;), to the previous estimate f(] 1), in order to

get an improved estimate, i.e.:

~a A( )
pmq = argmm Yieqien PS [Pt,f” 1)(zt) +p- “a (zt)] (63)
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Since the value ﬁiaq)(zt) is constant in the terminal leaf individuated by z; (i.e. it is the average of the negative
gradient values contained in the unique §% leaf, £6E)) individuated by z,), the problem in (27) can be solved

separately for each st leaf subspace [95], yielding the simplified expression [96]:

Alag)s)

. alag)
By = argmin Y, q(er) {PS [Pt,f(j'iql)(zt) + p] . I[zt € R€<s>]}. (64)
p
Hence, at the j™ iteration, the updated weak learner can be expressed as:

Alag) ~lag) ~lagh(s)
fop© = Fyy + v Tiaa b 1z € Ryo]s (65)

where v is the weight of each learner (called shrinkage or leaning rate), whose value is strictly related to the

optimal number of iterations [97] since smaller values involve more iterations and usually more skilled forecasts

[98].

An ending condition for the iterative procedure is reaching values of ﬁé;q)'(s> smaller than a given threshold.
Assuming that this is obtained at the iteration J, the prediction is:

Alag) aag) Aag)

Ph ! (zh|f(1->q )= <]_)q (zn) , (66)

and, since it is easy to verify that that ﬁj_‘)xq) is estimated upon training data P}, Z{"), the GBRT predictive ag-

quantile P,faQ) of PV power for the time horizon h, consequently depends on P*" and Z‘", too:

5laq) plag) plag)
Ph q [Zh |f;]—>q (P(tr)'Z(tﬂ)] — f;]_)ll (Zh)‘ (67)
Quantile Regression Neural Network
QRNN exploits a neural network to generate predictive quantiles of PV power. It estimates conditional
quantiles for specified values of quantile probability using regression equations and reproducing the behaviour of
human brain to discern among the informative inputs and to produce an output. An efficient approach is the

Monotone Composite Quantile Regression Neural Network (MCQRNN) proposed in [81] which is based on the
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Multi-Layer Perceptron (MLP) neural network with partial monotonicity. It assumes the predictive a,-quantile

p(“q)

), of PV power coming from a weighted combination of L hidden layer outputs:

(ag) (ag)
(ag) a (ag) | (ag) q
B (]90) = Shey [0 (Sees, e €'t + Tees,zne v 47 ) e | 4 2l (63)

where ®(*) is the function applied by each of the L neurons in the network hidden layer (in this paper, the
hyperbolic tangent function), Z; is the set of indices for predictors monotonically increasing with the predictors,

E, is the corresponding set of indices for predictors without monotonicity constraints (note that z, = {z,.,c €

E1}U{zp.,c €E,}), and yiaq>, ...,yiaq), pla) = {Miaq>' ...,,uiaq>}, ACTUES {Tia‘ﬁ, ...,Tia‘ﬁ}, and &%’ are the
parameters (all included in the vector 9¢*@, for clarity of representation) of the QRNN.
These parameters are once again estimated set by minimizing the PS over a training dataset [81], i.e., by solving

the following constrained optimization problem:

9% = argmin Y, qer PS [Pt, Pt<aq)],
19<aq>

s.t. (69)

<0¢q>
JP,
-t >0

Vc € &;.
625_5 - > 1

It is easy to verify that that parameters 9*¢) are estimated upon training data P*", Z" The QRNN predictive

@ g-quantile P,faQ) of PV power for the time horizon h consequently depends on P} and Z{*", too:

,\(aq)

plag) Slag)( pitr) 7{tr) L el S, M@, 2] L sao)
B, [Zh|19 a (P Z )] = Yi=1 [P (Xcez, Zne - e’e +Zceszzh,c')’c,l +71, et |+ &7 (70)

Quantile Regression Forests

QRF allows estimating the conditional quantiles of the response variable P; (in this paper, the EV load at the it
region) given the predictors x;; [81]. In this case, conditional quantiles are not obtained by minimizing a loss
function but rather they are given by building several trees in a random forest. QRFs approximate the value of the
predictive conditional cumulative distribution F(P;;, < P*|x;,) in the point P* as a weighted mean of the training

observations that are smaller than P*:
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F(Pip < P*lxip) = Znenifr?zl[wn(xi,h) 1P, <P}, (71)

where I{Pi,n < P*} is a function which assumes value 1 if P;,, < P*, and 0 otherwise. In (71) the weights w, (x; ;)

are given, assuming that there are T trees in the forest, by:

Bxin €R (z
1 T { in {,(St(li,h))}
wn(Xip) = T 4t=1

(72)

Znengz I{xi,n € Rg@t(xi,h))}

where R s;x;50 S R# (A being the cardinality of predictors) is the rectangular subspace domain corresponding to

the terminal leaf £¢¢*in)) individuated by dropping x; , down the t* tree.
_ g amlag) . . . .. . c .
The predictive @4-quantile Pi<hq is the ag-quantile of the continuous predictive cumulative distribution

F (Pin < P*|x;p), defined in terms of probability (equal to @) of P; being smaller than I%f;:w for given predictors

xi’h:

s(ag) . . A N
Pl.th = 1nf{P : F(Pp S P lxyp) 2 aq}. (73)

The quantile extraction is iterated Q times for different quantile coverages, allowing for generating probabilistic

forecasts of the EV load at the i*" region as a set of Q predictive quantiles ﬁf}? v, 131.(:@).
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