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3. INTRODUCTION 
The DiGriFlex project is aimed at proposing and validating effective forecasting and optimal control algorithms 

to ensure efficient and secure operation of low voltage distribution grids, as well as to provide flexibility (from 

distribution grids toward upstream grids) under uncertainties. A two-level rolling optimization framework is 

developed and experimentally validated. The first level deals with prescheduling of controllable resources in a time 

ahead basis, whereas the second level deals with real-time online scheduling of all the controllable resources. An 

appropriate forecasting system is developed to provide day-ahead and near real-time forecast of uncertain 

parameters, in accordance with the optimization framework. The proposed methodology will be validated, and its 

effectiveness demonstrated under realistic uncertainty sources, this activity being object of the final part of the 

project. 

This report refers to the activities of the project referring to the first two years of activities of the project. The 

activities within this period which involved the University of Naples Federico II are included in the WP2 

(Development of appropriate day-ahead and real-time forecasting systems for renewable generation and loads) and 

are related to Tasks 2.1 and 2.3:  

Task 2.1 refers to “Data collection, data pre-processing and exploratory data analysis”.  

Task 2.3 refers to “Development of real-time forecasting systems for renewable generation and loads”. 

The activities of Task 2.1 include the i) collection of time series data, ii) data pre-processing and iii) exploratory 

data analysis.  

The activities of Task 2.3 include the i) development of methods for real-time forecasting of renewable 

generation power and loads, ii) identification of possible combination of models in ensemble approaches, iii) 

comparison with relevant state-of-the-art benchmarks. 

More specifically, in Task 2.1 the activities include all the data collection and data pre-processing tasks that 

were necessary to create a large robust database of variables which could be exploited to develop forecasting 

systems for renewable generation and loads. Since the forecasting methodology will be integrated into the grid 

optimization models that are the object of the WP3, data and pre-processing were made with reference to the site 

of the installation of the test distribution grid of the ReIne laboratory. Other variables that were not available at 

the site of installation of the test distribution grid of the ReIne laboratory were taken from the literature and/or 

collected at different sites, in order to develop the forecasting systems.  

Exploratory data analysis was aimed at discarding uninformative predictors which are the input datasets for the 

forecasting systems developed in the Task 2.3, particularly with reference to those methods which require large 

historical datasets. 
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With reference to Task 2.3, the development of methods and models able to obtain accurate real-time 

forecasting of PV generation and load (electric vehicle load) focused on both deterministic and probabilistic 

approaches. As deterministic approach, two persistence-based methods were proposed. Probabilistic methods 

referred to hybrid physical-statistical models based on multiple linear regression and random forests. The 

identification of the best combination type for these underlying models in ensemble approach is also explored. 

Finally, a comparison with the relevant state-of-the-art benchmarks is carried out. More specifically, the models 

proposed in the research activity are the: 

 derivative-persistence method for real-time photovoltaic power forecasting; 

 Caputo-derivative method for real-time photovoltaic power forecasting; 

 Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting; 

 hierarchical probabilistic electric vehicle load forecasting. 

In what follows, after a brief illustration of the objectives of the tasks (Section 5), a description of the state of 

the art on real-time forecasting methods is proposed with reference to both renewable generation and load (Section 

6). The specific activities of Tasks 2.1 and 2.3 are detailed in Sections 7 and 8.  Finally, a comparison with expected 

results, the human resources involved in the project and the publications produced during the first year are 

reported in Sections 10-12.      

 

4. OBJECTIVES 
Objectives of the Tasks involved in this Milestone focus on forecast of loads and renewable generation in active 

distribution networks. More specifically, objective of the activities of the research unit was the development of 

online forecasting systems and algorithms for renewable generation and loads with reference to both deterministic 

and probabilistic frameworks.  

 

5. STATE OF THE ART  
Real-time operation of smart grids is based on intra-hour strategies which require to handle real-time forecast 

of input data such as photovoltaic (PV) or wind source power production. Due to the requirements in terms of real-

time computing, these data need to be available in very short time (i.e., very-short-term or ultra-short-term 

forecasting) [1]-[3].  
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5.1. RENEWABLE GENERATION PREDICTION 
Focusing on renewable generation prediction, the persistence model, which is based on the assumption that the 

quantity to be forecasted will remain constant over time, has been always considered performant in real-time 

forecasts [4]. Statistical approaches, which are based on historical time series and use mathematical equations to 

extract the pattern and correlation from past input data, show accurate performance in very-short-term horizons. 

These methods can be divided into two groups, that are machine learning and time series-based models [5] which 

are both used for real-time forecasting. Physical forecasting models, such as numerical weather prediction models, 

which are based on physical parameters for future predictions, are typically used for longer lead times (i.e., from 

short-term to long-term forecasting), but they cannot be considered performant for very-short-term scenarios 

since they would increment the computational time with negligible improvement.  

With reference to the persistence method, it is often adopted to forecast renewable power generation due to its 

ease of implementation, since it does not need weather forecast data or on in-built toolboxes for implementation. 

In case of real-time operation, the persistence forecasting method allows obtaining an almost instantaneous 

estimate of the forecasting power based on the most recent measurements. This is crucial to catch the fast 

variations of power generated by renewable based systems which are highly variable by nature. Focusing on 

forecasting horizons up to few hours, the persistence method has been recognized in the literature as accurate 

enough and its predictions are usually adopted as a benchmark in deterministic [6] and also probabilistic [7] 

frameworks. It is also worth to note that persistence is often used as a fallback model to provide forecasts in case 

more sophisticated models fail.  

Focusing on PV generation, in literature, the persistence method is used for both PV power production and 

solar radiation forecasts. The persistence method is adopted in [8] for short-term forecast of PV power production 

based on historical power data without using numerical weather predictions. Still with reference to solar 

generation prediction, a comparison between auto-regressive moving average (ARMA) and persistence models is 

performed in [9], showing that persistence model performs better at very-short-term forecasting intervals. The 

proposal shows great accuracy improvement of short-term forecasts. Smart persistence methods are also proposed 

in the literature. They consist in decomposing solar power production in a stationary and in a stochastic 

component [10]. Usually, the stationary term is associated to the clear sky production and the stochastic term to 

the cloud-induced change [11]. In [12] a modification is presented that keeps unvaried the stochastic part of the 

time series. A method which applies the persistence approach to the cloudiness is used in [13]. The method 

presented in [14] adopts the ramp persistence approach. In [15], a smart persistence method is used as input of a 
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machine learning technique. In [4] a physical smart persistence model is proposed to forecast solar irradiance that 

is capable to better capture cloud conditions than typical persistence models. More specifically, the persistence 

model is improved by adding a clear-sky index correction factor (that is, the ratio of radiation measurements 

divided by clear-sky radiation) which is then multiplied by future clear-sky radiation to obtain a forecast. The 

clear-sky radiation is forecasted through the computation of three variables by using different models. 

Also, in [16] a physics-based smart persistence model is adopted, for intra-hour forecasting of solar radiation. It 

decomposes global horizontal irradiance into cloud albedo and cloud fraction using simulated extra-terrestrial solar 

radiation and solar zenith angle. In [17] an improved persistence-based real-time forecasting method is proposed by 

implementing the incremental and decremental patterns on solar generation at sunrise and sunset hours. 

 With reference to probabilistic approaches, they produce forecasts in the form of quantiles, intervals or density 

functions, which provide more comprehensive information compared to point forecasts. Nevertheless, the 

technical literature scarcely deals with probabilistic approaches. The methods typically used in probabilistic 

framework are statistical models or hybrid physical-statistical models. By focusing on forecast methods of solar 

irradiance and PV power production, quantile regression (QR) models are proposed in [18], [19]. [18] uses QR 

approach to predict distribution of outcomes. [19] carries out probabilistic models for intra-day solar forecasting in 

the case of highly variable sky conditions based on linear QR method. Other approaches are based on machine 

learning techniques [20], [21]. Particularly, [20] compares the performance of k-nearest-neighbours and gradient 

boosting for intra-hour forecasting of solar irradiance.  [21] is a hybrid physical-statistical model which uses QR 

Forests to forecast power output employing as inputs predicted meteorological variables from a numerical weather 

forecast model, and actual power measurements of PV plants. It is worth to note that it is crucial to improve 

predictions of some weather variables though proper model selection which allows selecting the most informative 

predictors and discarding uninformative inputs. To do that the exploitation of available input data must be 

maximized. In probabilistic energy forecasting this has been successfully done through ensemble approaches [22]. 

Among these, widely applicable and powerful tools are those based on the bootstrap methodology. The bootstrap is 

a statistical tool which can be tailored to quantify the uncertainty related to a specific estimator or statistical 

learning method. In the bootstrap method, small range of samples are repeatedly taken along with their statistic 

and relevant average features. For each of these set of samples, models are derived, and their performance is 

assessed through the samples which are not included in the set used to build the model itself. Regarding the 

suitability of this technique for real-time applications, it must be noted that, despite bootstrap can appear 

characterized by a heavy computational burden, it is a flexible technique which can be applied on some selected 

suitable parameters, thus reducing the computational time. Focusing on real-time application, bootstrap technique 



 
  

 
 
 

10 
 

has been used to monitor PV power plant output in [23]. A two-stage method is proposed in [24] to estimate 

uncertainty of PV forecasting. The forecasting is based on the bootstrap method applied to short-term 

deterministic predictions obtained from a hybrid intelligent model that combines wavelet transform technique for 

data pre-processing, and radial basis function neural network method. Within the Bayesian framework – which is 

successfully applied to short-term photovoltaic forecasting, e.g. [25] and [26] – bootstrapping techniques have also 

been used to improve the probabilistic forecasts. Bayesian bootstrap techniques for short term forecasting methods 

have been rarely adopted. [27] proposes this approach in the transportation sector. 

 

5.2. LOAD PREDICTION 
With reference to load prediction, particularly important is the forecast of EV load due to the characteristics of 

the EV demand (i.e., non-constant patterns, seasonal effects, weather and social correlation, high volatility and 

jumps) which make the forecasting problem a critical issue.  

Various models have been developed to determine the impact of the EVs on electricity distribution networks, 

distinguishing between deterministic and probabilistic approaches. At the very early point of research on EV load 

forecasting, the lack of consistent actual EV load data determined the development of Monte Carlo approaches to 

build experimental scenarios [28]-[32]. The availability of actual EV load data changed the approach to EV load 

forecasting, allowing for the exploitation of consolidated load forecasting techniques based on stochastic and data-

driven approaches [33], [34]. Time series approaches based on AutoRegressive Integrated Moving Average 

(ARIMA) models [35], [36] and their seasonal extensions [37], [38] were applied to forecast EV load. Supervised 

data-driven models, such as Support Vector Regression (SVR), Artificial Neural Network (ANN), and Random 

Forest (RFs) have been used in [39]-[41]. Although the existing review of the literature shows that deterministic 

EV load forecasting has undergone a relevant development process, Probabilistic EV Load Forecasting (PEVLF) has 

not received the same attention. Recent studies (e.g., [42]) have applied probabilistic forecasting models to EV 

charging time and to the required energy approximated by the upcoming trip distance, but the temporal 

probabilistic prediction of the EV load is not yet established. 

Adapting conventional probabilistic load forecasting models to develop PEVLF systems is however complex. 

The periodicity and fluctuation related to the large distribution of EVs make conventional probabilistic techniques 

less effective [43], [44]. In order to overcome the problem, relevant research efforts have been developed in the last 

years, turning a light on PEVLF [45]-[48]. A relevant outcome of the literature review determines the importance 

of the spatial-temporal analysis in the development of a probabilistic method to forecast EV from different areas, 
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due to their capillarity over the distribution networks [44]. This problem is prone to be tackled from a hierarchical 

perspective, proceeding by a series of successive merges of prediction made at a different level of aggregation [49], 

[50]. In hierarchical load forecasting, the information contained in the load at low-level aggregation (for example, 

the load at the HV/MV nodes in a HV network, or the load of small regions) is used to predict the load at high-

level aggregation (for example, the overall load of the entire HV network, or the overall load of a geographic 

region). Hierarchical methodologies to merge probabilistic forecasts have been recently applied for probabilistic 

load forecast purposes [51], [52]. They are however challenging, mostly because the problem is usually formulated 

as a nonlinear and non-convex optimization problem, so that global optimality cannot be guaranteed, and the 

combined results may be worse than individual forecasts [52]. 

 

6. RESULTS OF ACTIVITIES OF TASK 2.1  
The activities included: 

 the collection of time series that include both target variables (photovoltaic power and loads) and 

predictor variables; 

 the development of methods to pre-process the data to eliminate outliers and missing/bad values; 

 the exploratory data analysis aimed at discarding uninformative predictors to reduce the 

dimensionality of the forecasting problems. 

Activities included all the data collection and data pre-processing tasks that were necessary to create a large 

robust database of variables which could be exploited to develop forecasting systems for renewable generation and 

loads. 

6.1. GENERATION DATA COLLECTION, PRE-PROCESSING 
AND EXPLORATORY ANALYSIS   

With reference to renewable generation, the research activities completed in Task 2.1 resulted in:  

 the collection of large, robust datasets of photovoltaic (PV) power generation and weather variables at 

the site of installation of the test distribution grid of the ReIne laboratory;  

 the collection of large, robust datasets of weather variables available from the relevant literature and 

from public databases; 

 the pre-processing of the collected data, aiming at individuating and correcting missing data, bad data 

and outliers; 
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 the exploratory data analysis to reduce the dimensionality of the input datasets, favouring the 

development of adequate forecasting systems for renewable generation and load.  

6.1.1 DATA COLLECTION 
Two PV systems have been continuously monitored. The first PV installation (PVI1) is a 30-kWp system 

equipped with 4 8.5-kWp inverters. PVI1 is part of the test distribution grid of the ReIne laboratory. Since it has 

been installed only recently, the data collection is ongoing since August 24, 2019 at a 1-minute time resolution. 

This PV system has a relatively short operation life of utilization so these data could be not sufficient for validating 

and testing some PV power forecasting models. For this reason, a second PV installation (PVI2), located close to 

the test distribution grid of the ReIne laboratory, has been monitored since January 1, 2016 until December 31, 

2018 at a 1-minute time resolution. Also, datasets including solar irradiance measurements (SI1) have been used 

which are taken by a dedicated weather station installed at the same location of the test distribution grid of the 

ReIne laboratory. The data collection started on August 24, 2019, with a 1-minute time resolution. The solar 

irradiance data taken from this dataset were used as target data for the verification of the maximum PV power 

forecasting system; since the utilization of these data for validating and testing forecasting models was unfeasible at 

the progress stage of the first year of project activities, this dataset was included only in the most recent 

experimental frameworks. 

A dedicated weather station is installed at the location of the test distribution grid of the ReIne laboratory. This 

station allows collecting weather data at the same time resolution and for the same time periods of the PV power 

data, allowing their usage as exogenous variables for PV power forecasting models. Twenty-six variables are 

monitored in this way. 

Eventually, weather forecast data have been gathered from the European Centre for Medium-range Weather 

Forecasts (ECMWF) for the corresponding time periods. Requests have been prepared in Python3.7 and sent via 

the ECMWF Application Programming Interface (API). Forecasts for nine variables are obtained in this way. These 

data are related to the noon run (i.e., forecasts are issued at 12:00 A.M. of day D-1 for the entire day D) and to the 

midnight run (i.e., forecasts are issued at 12:00 P.M. of day D-1 for the entire day D). This differentiation in the 

weather forecast lead time allows developing models diversified for day-ahead control and real-time control of the 

distributed energy resources.  
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6.1.2 DATA PRE-PROCESSING: CLEANSING 
The initial analysis upon the PVI1 and PVI2 data and on weather data collected by the weather station revealed 

some potential outliers, missing and bad data. If not corrected, these data may significantly deteriorate the 

performance of the PV power forecasting models.  

One of the principal objectives of the pre-processing activity is therefore to correct and remove this harmful 

effect by cleansing the data. Bad and missing data are easy to be individuated by visual inspection. Potential 

outliers instead are more subtle, since they cannot be immediately individuated by visual inspection. A slight 

modification of the Tukey’s test has been applied in order to individuate potential outliers. Tukey’s test acts by 

examining and individuating data which lie beyond a specific band of tolerance, in which the null hypothesis can 

be rejected. For the generic variable 𝑦𝑦, the band of tolerance is individuated through its lower bound 𝑦𝑦𝑇𝑇,𝑙𝑙𝑙𝑙𝑙𝑙  

(𝑦𝑦𝑇𝑇,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦〈0.25〉 − 3 ∙ (𝑦𝑦〈0.75〉 − 𝑦𝑦〈0.25〉) and upper bound 𝑦𝑦𝑇𝑇,𝑢𝑢𝑢𝑢 (𝑦𝑦𝑇𝑇,𝑢𝑢𝑢𝑢 = 𝑦𝑦〈0.75〉 + 3 ∙ (𝑦𝑦〈0.75〉 − 𝑦𝑦〈0.25〉), where 𝑦𝑦〈0.25〉 

and 𝑦𝑦〈0.75〉 are respectively the 0.25-quantile (25-percentile) and the 0.75-quantile (75-percentile) of the samples 

collected in the entire dataset. Due to the strong seasonality of the PV power data pattern (which suggests 

heteroskedasticity), the Tukey’s test has been differentiated for each hour of the day, accounting for different 

sample quantiles during the 24 hours of the day. 

Potential outliers, bad data and missing data are treated in the same manner, i.e., they are entirely discarded. It 

is important to note that ECMWF weather forecasts are already pre-processed by the original source, therefore 

data cleansing activity has not been developed on them. 

6.1.3 DATA PRE-PROCESSING: AVERAGING 
Another important objective of the data pre-processing activity is to average values collected at a one-minute 

time resolution in order to obtain hourly data. This has been performed in R environment using the lubridate 

package. In presence of too many removed data (i.e., beyond 30% of the total observations in the considered hour), 

the entire hourly value is set at the mean value from the two nearest hourly values. In presence of fewer removed 

data (i.e., less than 30% of the total observations in the considered hour), the entire hourly value is set at the mean 

value of the one-minute observations within the considered hour. 

It is important to note that ECMWF weather forecasts are already provided at hourly time resolution by the 

original source, therefore data averaging activity has not been developed on them.  

6.1.4 DATA PRE-PROCESSING: NORMALIZATION 
The last objective of the data pre-processing activity is to normalize hourly values in the range 0-1. This 

accommodation is usually necessary when the ranges in which the considered variables are included are very 
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different. Although some forecasting models are insensitive to data normalization, other models may be 

significantly affected by the lack of normalization. At this progress stage, data are normalized in order to be used in 

any case. The normalized value 𝑦𝑦�ℎ of the generic variable 𝑦𝑦 occurred at hour ℎ is 𝑦𝑦�ℎ = 𝑦𝑦ℎ−𝑦𝑦min
𝑦𝑦max−𝑦𝑦min

 , where 𝑦𝑦ℎ is the 

value observed at hour ℎ, and 𝑦𝑦min and 𝑦𝑦max are respectively the minimum and maximum values observed in the 

entire dataset. 

6.1.5 EXPLORATORY DATA ANALYSIS 
The database resulting from the data pre-processing activities consists of hourly observations of several 

exogenous weather variables and hourly observations of PV power. In order to reduce the dimensionality of the 

problem, an exploratory data analysis has been carried out to individuate exogenous variables which are 

informative for the PV power, and to discard uninformative exogenous variables.  

At this progress stage, the exploratory data analysis has been performed only to individuate potential 

relationship between the PV power of PVI2 and ECMWF weather forecasts. This was performed via graphical 

inspection of relative scatter plots. 

As an example, scatter plots of the normalized PV power versus the normalized clear-sky irradiance forecasts 

Fig. 1.a) and versus the normalized solar irradiance forecasts Fig. 1.b) evidence clear relationship among these 

variables. Nevertheless, this relationship is not steady across the hour of the day, as patterns clearly differ 

considering, for example, 12 A.M., 9 A.M., and 6. P.M in the figures.  

 

(a)                                                                                           (b) 

Fig. 1 - Scatter plots of the normalized PV power versus the normalized clear-sky irradiance forecasts (a) and 

versus the normalized solar irradiance forecasts (b) for three different hours of the day.  
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From the graphical inspection of Fig. 1, it is suggested to add normalized clear-sky irradiance forecasts and 

normalized solar irradiance forecasts as candidate predictors of PV power forecasting models and to add a dummy 

variable to differentiate among the hours of the day. 

The exploratory data analysis also allows discarding some variables which cannot be considered informative for 

predicting PV power. As significant example, Fig. 2 shows the scatter plots of the normalized PV power versus the 

normalized forecasts of wind speed at 10 m. No clear relationship can be evidenced from this plot, as the cloud of 

points is very irregular. Also, there are no clear patterns differentiated among the hours of the day. For this reason, 

it can be considered safe to discard normalized forecasts of wind speed at 10 m to reduce the dimensionality of the 

problem. 

 
Fig. 2 -  Scatter plots of the normalized PV power versus the normalized forecasts of wind speed at 10 m, for 

three different hours of the day. 

 

6.2. EV LOAD DATA COLLECTION, PRE-PROCESSING AND 
EXPLORATORY ANALYSIS   

The data pre-processing unit described in this Section refers to a large-scale charging dataset and a weather 

dataset and aims to get the time series of EV load and the arranged predictors for the probabilistic models described 

in Section 8.3. 

6.2.1 DATA SOURCES 
The EVnetNL dataset has been provided for research purposes by the ElaadNL, the Dutch knowledge and 

innovation centre in the field of smart charging infrastructure [53]. The dataset is organized in two database tables, 
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charging transaction event, which is characterized by the charging station and the charging point identifiers, 

latitude and longitude, the initial and the final state of the meter, maximum power charged during the transaction, 

the RFID (hashed) card starting and finishing the charging transaction and the Coordinated Universal Time (UTC) 

timestamp of the start and the end of the charging transaction. Table “Meter readings” has 52 294 851 rows, each 

corresponding to one reading of a meter status. The readings are done regularly every 15 minutes from the time 

when a charging transaction is initiated until it is terminated (i.e. when the EV is unplugged). A unique identifier 

of the charging transaction, UTC timestamp of the reading, transferred energy and the value of the meter 

characterizes each meter reading. The EVnetNL dataset includes transaction data from January 1, 2012 to June 30, 

2018.  

To use only the most recent data, all the transactions that ended before June 30, 2015 and the meter readings 

corresponding to such transactions were discarded. 

The potential impact of weather conditions on charging behaviour has been considered by employing both the 

real and forecasted meteorological data for the area of the Netherlands [54]. The meteorological data (precipitation 

[m], snowfall [m (of water equivalent)], temperature [°C], wind speed [m/s]) are associated with geographical 

locations characterized by the latitude and the longitude forming regular grids that fully contain the studied 

geographical areas. The considered period coincides with the charging data and predictions of weather are issued at 

midnight of day D-1 for day D, with an hourly time resolution.   

From the collected data, a time series of energy consumption and a set of potentially relevant predictors were 

compiled. 

6.2.2 ENERGY CONSUMPTION TIME SERIES: DATA CLEANING  
The EVnetNL dataset has been already partially cleaned and, to ensure validity and consistency of analysed 

data, missing and unexpected values (e.g. unusually high values or negative values of consumed energy) in the data 

were checked for. However, no such cases were found. Further, inconsistencies between the “Transactions” and 

“Meter readings” tables we checked for. 565 transactions with no information were found in the “Meter readings” 

table. Such cases were removed also from the Transactions tables. 

6.2.3 ENERGY CONSUMPTION TIME SERIES: SELECTION OF THE PERIOD 
The EVnetNL dataset covers a relatively long-time interval. In the early years, the number of charging stations 

was gradually growing as the charging network was built, and it stabilized only around the year 2015 [55]. In the 

first half of 2017, ElaadNL gave over the responsibility for the operation of more than 50% of charging stations to 

municipalities [56]. Consequently, data recordings for some charging stations were discontinued. To minimize the 
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impact of these developments on the analysed data, years 2016 and 2017 were selected and only stations active in 

the whole selected period were considered (i.e. stations where, according to the EVnetNL dataset, at least one 

charging transaction was initiated before the year 2016 and at least one charging transaction was accomplished 

after the year 2017). After these steps, 1 137 120 and 35 936 734 observations respectively remained in the 

“Transactions” and the “Meter readings” datasets.  

6.2.4 ENERGY CONSUMPTION TIME SERIES: SELECTION OF GEOGRAPHIC AREAS 
Predictions of energy consumption for an individual station are very challenging and hardly generalizable [57] 

as the temporal pattern of energy consumption is driven by the stochasticity of EV drivers charging behaviour, by 

the available smart charging technologies and by the EV characteristics (charging power, battery capacity, etc.).  

Since the energy predictions that could be useful in the power grid management applications, where a single 

charging station plays only a minor role, are of interest for this research project, the energy consumption has been 

spatially aggregated. To maintain the geographical closeness of charging stations, the COROP regions were used 

which divide the area of the Netherlands into 40 continuous spatial units that are typically used for statistical 

purposes [58]. Each charging station was assigned to the COROP region and for further analyses, four COROP 

regions were selected with the largest aggregated energy consumption in the considered period. Selected COROP 

regions are Zuidoost-Noord-Brabant, Rijnmond, Noordoost-Noord-Brabant and Utrecht, with 104, 91, 71 and 40 

active charging stations, respectively. In Figure 3, the positions of the EVnetNL charging stations located in the 

selected COROP regions are shown. 

 
Fig. 3 - Locations of the EVnetNL charging stations in the selected COROP regions, together with the map of 

the Netherlands showing where the COROP regions are situated. 
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6.2.5 ENERGY CONSUMPTION TIME SERIES: COMPILATION OF TIME SERIES 
A time series is a set of observations, each one defined at a specific time, with time difference between two 

consecutive observations that is equal for all the observations [59]. From the EVnetNL dataset, time series of 

energy consumption were extracted, with an observation every hour, for the period from July 1, 2015 to June 30, 

2018 and for the four COROP regions. A meter reading of consumed energy within the last 15 minutes that fully 

overlapped with the hourly time interval, was added to the corresponding value of the time series. If the 15 

minutes period of a meter reading overlapped with two hourly intervals, the energy was divided between the 

intervals proportionally to the length of the time overlap.   

Panel A of Figure 4 displays 3 years of data selected for the analysis, together with the aggregated energy 

consumption in all four COROP regions.  

 

 
Fig. 4 - (a) Time series of weekly consumption for the considered period for all four used low-level regions 

and the high-level region (sum of the four regions). (b) Time series of aggregated energy consumption with 

hourly resolution obtained for the EVnetNL charging stations located in the Noordoost-Noord-Brabant region 

recorded in the period from February 6 2017 until October 16 2017.  

 

In Fig. 4.a), to illustrate intra-day and weekly seasonality, the time series are overlaid, and the average value is 

visualized with the thick blue line. The dropdown in energy consumption at the end of 2016 and at the beginning 
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of 2017, most visible for the Zun Brabant and the Rijnmond regions, was caused by the refurbishment of some 

charging stations to smart charging ready stations and thus they were out of service during this period. The time 

series of energy consumption of the Noordoost-Noord-Brabant COROP region is displayed in panel B of Figure 4. 

Similarly, as in the other selected COROP regions, the data display approximately regular patterns with the daily 

and weekly seasonality. The largest difference in daily patterns is between weekdays and weekend days. 

6.2.6 PREPARATION OF PREDICTORS 
The exogenous predictors included in the forecasting models are of three types: weather predictors, super-user 

predictors, and calendar predictors.  

Weather forecast data for the area [54] were included to address possible interaction among weather and EV 

charging patterns. The weather data are associated with geographical locations of the Netherlands having the 

latitude and the longitude forming regular grids that fully contain the studied low-level geographical regions. As 

data are typically provided in 0.1°×0.1° partitions, there are multiple weather predictors for a given low-level 

region, and some weather predictors are shared for two or more low-level regions (this occurs when the 0.1°×0.1° 

square overlaps two or more low-level regions in proximity to the region borders). It is also worth noting that the 

EV charging stations are not evenly distributed in the low-level regions, as typically the station distribution is more 

dense near cities. Therefore, the impact of weather forecasts that are spatially distributed is not theoretically even 

across the regions. All of the weather forecasts related to the 0.1°×0.1° squares that cover the entire low-level 

regions are however used as predictors of the forecasting models, but since many of them could be only little 

informative for the EV load, they are manipulated in a Principal Component Analysis (PCA) module to reduce 

their dimensionality.    

Super-user predictors have been recognized in previous publications as influential for energy consumption [60]. 

Super users form a relatively small group of EV users that has the above-average energy consumption. Charging 

patterns of these users are less random and therefore can constitute useful predictors. The number of charging 

users and the aggregated energy consumption of 100, 300 and 500 users with the highest energy consumption for 

each region were used as predictors. From these data, the following four predictors were extracted: 1-hour-lagged, 

24-hour-lagged, 48-hour-lagged, and 168-hour-lagged energy consumption. Super-user data are manipulated in the 

PCA module, too.  

Eventually, calendar predictors are typical inputs in load forecasting. They capture the social behavior of the 

EV users that, for example, may change during holidays or weekdays or during the different hours of the day. In 

this paper, two calendar predictors were considered: a working/nonworking dummy variable ℎ𝑜𝑜𝑜𝑜 (0 if the 

observation corresponds to a working day, and 1 otherwise), and an hour-of-the-day integer variable ℎ𝑜𝑜𝑜𝑜 that 
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assumes a value equal to the hour of the day in which the observation occurs [61]. Calendar predictors are not 

manipulated in the PCA module but are instead directly included in the vectors of predictors for the baseline 

models. 

For sake of completeness, other types of predictors, such as the total number of circulating EVs in a given 

region or the total number of charging stations, could be used to forecast the EV load. These predictors are time-

varying, but they reasonably do not vary significantly in short-term horizons; therefore, their impact on short-

term predictability is limited, whereas it might be of major importance at medium-term horizons. Since this 

research specifically targets short-term EV load forecasting, these types of predictors are not included in the 

research.  

6.2.7 PRINCIPAL COMPONENT ANALYSIS 
PCA is a popular dimension reduction method [62]. The set of predictors is replaced by a smaller set of 

orthogonal principal component directions along which the data vary the most. This way, the remaining principal 

components capture most of the variability in data and the number of predictors is reduced.  

The number of used predictors is 219. To reduce the dimensionality of inputs, the PCA was applied because the 

training process of probabilistic forecast approaches is very time consuming and sensitive to the number of 

predictors. The PCA was applied to all predictors with the exception of calendar predictors, and four principal 

components were picked as predictors for the baseline models. 

 

7. RESULTS OF ACTIVITIES OF TASK 2.3 
Methods for real-time forecast of PV generation and electric vehicle (EV) load have been proposed. More 

specifically the following models have been carried out: 

− two derivative-persistence methods for real-time photovoltaic power forecasting; 

− a Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting; 

− a hierarchical probabilistic electric vehicle load forecasting. 

With reference to the derivative-persistence method for real-time photovoltaic power forecasting, we focused 

to forecasting time horizons ranging from few minutes up to few hours, that are those typically categorized as very 

short-term and short-term forecasting, and that are included in the intra-day scenarios. A derivative-persistence 

method has been proposed based on information on measured data of the PV power production in the intervals 

preceding the forecast horizon. Also, a further derivative-persistence method, the Caputo-derivative, has been 
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proposed which uses fractional derivatives in order to take into account the memory effect of the power 

production. 

With regard to the Bayesian bootstrapping in real-time, the research has focused on the application of Bayesian 

bootstrap in short-term probabilistic PV forecasting. The Bayesian bootstrap was specifically suited up to be 

applied to three different underlying probabilistic models in order to evaluate potential improvements due to its 

application. The major aim of this research was indeed to evaluate if the Bayesian bootstrap enabled for better 

performance and increased skill of the forecasts, compared to the stand-alone usage of the underlying probabilistic 

models and compared to the application of the traditional bootstrap. Another contribution of the research was the 

development of the three probabilistic forecasting systems under a new framework that makes the Bayesian 

bootstrap operate directly on the PV power forecasts, rather than on the parameters of the models. This approach 

allows reducing the overall computational effort, which is particularly important in short-term forecasting, thanks 

to the fact that there is no need to pass through the sample bootstrap distributions of the parameters since the 

sample Bayesian bootstrap distribution of the predictive quantile of PV power is directly provided.   

The hierarchical probabilistic EV load forecasting is performed by proposing a methodology dedicated to 

probabilistic EV load forecasting for low-level geographic regions, which implements a hierarchical perspective to 

forecast the aggregate load of a high-level geographic region. This methodology can provide comprehensive 

information on electricity consumption at different levels. The hierarchical approach is applied to decompose the 

problem into lower-level sub-problems which are resolved through standard probabilistic models.  

The proposal was validated using Dataset_PVI2 and Dataset_PVI3, together with the corresponding NWPs 

contained in Dataset_weath_ECMWF and Dataset_weath_PV [63]. Also, a dataset of measured PV power produced 

by the GECAD N system installed in Portugal at the Instituto Superior de Engenharia do Porto/Politécnico do 

Porto was used to test the Caputo-derivative approach [64]. 

Regarding the PV forecast, the developed methods have been applied to both the actual PV power of the 

MPPT-controlled PV system and the maximum PV power that can be produced by a controlled PV system. In this 

latter case, the total solar irradiance is forecasted instead of the PV power output, being the maximum PV power 

obtained from the solar irradiance through a linear relationship. 

7.1. DERIVATIVE-PERSISTENCE METHOD FOR REAL-TIME 
PHOTOVOLTAIC POWER FORECASTING  

The derivative-persistence method deals with a real-time forecasting technique which aims at predicting, on a 

very-short-term basis, PV power production, based on information on measured data of the PV power production 
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in the intervals preceding the forecast horizon. The same procedure is applied to the forecast of solar irradiance to 

derive the maximum PV power based on information on measured data of the solar irradiance in the intervals 

preceding the forecast horizon. 

The method is based on the idea to conveniently weight information on past data by imposing continuity of the 

function, of the first derivative and of the second derivative so obtaining three estimates of the function in the 

forecast interval. The three estimates are then opportunely weighted to provide the forecast. 

The continuity of the function relies to the classical persistence method [4] where the estimate of the power 

value at the time interval 𝑘𝑘, 𝑦𝑦1𝑠𝑠(𝑘𝑘), is given by 

𝑦𝑦1𝑠𝑠(𝑘𝑘) = 𝑦𝑦(𝑘𝑘 − 1) (1) 

where 𝑦𝑦(𝑘𝑘 − 1) is the available measured data of PV power at the preceding time interval. 

The continuity of the first derivative, 𝑦𝑦′(𝑘𝑘), is imposed at the time instants (𝑘𝑘 − 1) and (𝑘𝑘 − 2), i.e.: 

𝑦𝑦′(𝑘𝑘 − 1) = 𝑦𝑦′(𝑘𝑘 − 2) (2) 

where:   

𝑦𝑦′(𝑘𝑘 − 1) =
𝑦𝑦(𝑘𝑘) − 𝑦𝑦(𝑘𝑘 − 2)

2Δ𝑡𝑡
 (3) 

𝑦𝑦′(𝑘𝑘 − 2) =
𝑦𝑦(𝑘𝑘 − 1) − 𝑦𝑦(𝑘𝑘 − 3)

2Δ𝑡𝑡
    (4) 

with Δ𝑡𝑡 the duration of the time intervals. 

By substituting (3) and (4) in (2) a further estimate of 𝑦𝑦(𝑘𝑘), 𝑦𝑦2𝑠𝑠(𝑘𝑘), is found which is given by: 

𝑦𝑦2𝑠𝑠(𝑘𝑘) = 𝑦𝑦(𝑘𝑘 − 1) + 𝑦𝑦(𝑘𝑘 − 2) − y(𝑘𝑘 − 3) (5) 

The third information is given by imposing the continuity of the second derivative, 𝑦𝑦′′(𝑘𝑘), at the time instants 

(𝑘𝑘 − 1) and (𝑘𝑘 − 2), i.e.: 

𝑦𝑦′′(𝑘𝑘 − 1) = 𝑦𝑦′′(𝑘𝑘 − 2) (6) 

where: 

𝑦𝑦′′(𝑘𝑘 − 1) =
𝑦𝑦(𝑘𝑘) − 2𝑦𝑦(𝑘𝑘 − 1) + 𝑦𝑦(𝑘𝑘 − 2)

Δ𝑡𝑡2
 (7) 

𝑦𝑦′′(𝑘𝑘 − 2) =
𝑦𝑦(𝑘𝑘 − 1) − 2𝑦𝑦(𝑘𝑘 − 2) + 𝑦𝑦(𝑘𝑘 − 3)

Δ𝑡𝑡2
 (8) 

By substituting (7) and (8) in (6) a further estimate of 𝑦𝑦(𝑘𝑘), 𝑦𝑦3𝑠𝑠(𝑘𝑘), is found which results: 

𝑦𝑦3𝑠𝑠(𝑘𝑘) = 3𝑦𝑦(𝑘𝑘 − 1) − 3𝑦𝑦(𝑘𝑘 − 2) + 𝑦𝑦(𝑘𝑘 − 3) (9) 

The forecasted value, y�(𝑘𝑘), is conceived as a proper weighted combination of the three estimates: 
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𝑦𝑦�(𝑘𝑘) = 𝛼𝛼1(𝑘𝑘) 𝑦𝑦1𝑠𝑠(𝑘𝑘) + 𝛼𝛼2(𝑘𝑘) 𝑦𝑦2𝑠𝑠(𝑘𝑘) + 𝛼𝛼3(𝑘𝑘) 𝑦𝑦3𝑠𝑠(𝑘𝑘) (10) 

The weights 𝛼𝛼1(𝑘𝑘), 𝛼𝛼2(𝑘𝑘) and 𝛼𝛼3(𝑘𝑘) are evaluated as detailed in the following equations (11), (12): the 

weighting procedure is performed in a manner that, in high variability conditions, more weight is given to the first 

estimate. More specifically, the weights are normalized as follows: 

 

𝛼𝛼1(𝑘𝑘) = �
𝑦𝑦2𝑠𝑠2 (𝑘𝑘) + 𝑦𝑦3𝑠𝑠2 (𝑘𝑘)

𝑦𝑦1𝑠𝑠2 (𝑘𝑘) + 𝑦𝑦2𝑠𝑠2 (𝑘𝑘) + 𝑦𝑦3𝑠𝑠2 (𝑘𝑘)
 (11) 

𝛼𝛼2(𝑘𝑘) = 𝛼𝛼3(𝑘𝑘) =
1 − 𝛼𝛼1(𝑘𝑘)

2
 (12) 

By using equations (11) and (12) to evaluate the weights, the proposed method shapes up to be a non-linear 

regression being the coefficients 𝛼𝛼1(𝑘𝑘), 𝛼𝛼2(𝑘𝑘) and 𝛼𝛼3(𝑘𝑘) not constant.  

7.2. CAPUTO-DERIVATIVE-PERSISTENCE METHOD FOR 
REAL-TIME PHOTOVOLTAIC POWER FORECASTING  

The proposed method deals with a real-time forecasting technique which aims at predicting, on a very-short-

term basis, PV power production, based on information on measured data of the PV power production in the 

intervals preceding the forecast horizon. The same procedure is applied to the forecast of solar irradiance to derive 

the maximum PV power based on information on measured data of the solar irradiance in the intervals preceding 

the forecast horizon. 

This method carries out estimates of the variable to be forecasted by imposing the continuity of the Caputo 

derivative of the function at two consecutive time steps. 

The Caputo derivative of order 𝛼𝛼 of 𝑦𝑦(𝑡𝑡) is defined as [65]: 

 

𝑦𝑦(𝛼𝛼)(𝑡𝑡) =
1

Γ(1 − 𝛼𝛼)
�

𝑦𝑦′(ξ)
(𝑡𝑡 − ξ)𝛼𝛼

𝑑𝑑ξ
𝑡𝑡

0
  (13) 

where Γ(∙) is the Euler Gamma function and 0 < 𝛼𝛼 < 1.  

Let Δ𝑡𝑡 be the time resolution of the forecasting and 𝑦𝑦𝑛𝑛 = 𝑦𝑦(𝑛𝑛Δ𝑡𝑡) be the value of the function 𝑦𝑦 at the point 

𝑡𝑡𝑛𝑛 = 𝑛𝑛Δ𝑡𝑡. The approximation of the Caputo derivative proposed in [66] can be constructed by dividing the interval 

[0, t] into subintervals of equal length Δ𝑡𝑡 and approximating the first derivative on each subinterval using a second-

order central difference approximation: 
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𝑦𝑦𝑛𝑛
(𝛼𝛼) =

1
Γ(2 − 𝛼𝛼)Δ𝑡𝑡𝛼𝛼

�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛

𝑘𝑘=0

𝑦𝑦𝑛𝑛−𝑘𝑘 + 𝒪𝒪(Δ𝑡𝑡2−𝛼𝛼)  (14) 

where 𝒪𝒪(Δ𝑡𝑡2−𝛼𝛼) is the accuracy of the approximation and the following cases apply for 𝛼𝛼: 

𝜎𝜎0
(𝛼𝛼) = 1,  

𝜎𝜎𝑛𝑛
(𝛼𝛼) = (𝑛𝑛 − 1)1−𝛼𝛼 − 𝑛𝑛1−𝛼𝛼 

𝜎𝜎𝑘𝑘
(𝛼𝛼) = (𝑘𝑘 + 1)1−𝛼𝛼 − 2𝑘𝑘1−𝛼𝛼 + (𝑘𝑘 − 1)1−𝛼𝛼 ,   (𝑘𝑘 = 2, … ,𝑛𝑛 − 1). 

 

Eq. (14) can be approximated by neglecting the accuracy 𝒪𝒪(Δ𝑡𝑡) so obtaining: 

  

𝑦𝑦𝑛𝑛
(𝛼𝛼) =

1
Γ(2 − 𝛼𝛼)Δ𝑡𝑡𝛼𝛼

�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛

𝑘𝑘=0

𝑦𝑦𝑛𝑛−𝑘𝑘  (15) 

 

Starting from this approximation, the continuity of the 𝛼𝛼-th derivative at the time intervals 𝑛𝑛 and 𝑛𝑛 − 1 can be 

imposed (i.e., 𝑦𝑦𝑛𝑛
(𝛼𝛼) = 𝑦𝑦𝑛𝑛−1

(𝛼𝛼) ): 

𝑦𝑦𝑛𝑛
(𝛼𝛼) =

1
Γ(2 − 𝛼𝛼)Δ𝑡𝑡𝛼𝛼

�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛

𝑘𝑘=0

𝑦𝑦𝑛𝑛−𝑘𝑘 = 𝑦𝑦𝑛𝑛−1
(𝛼𝛼) =

1
Γ(2 − 𝛼𝛼)Δ𝑡𝑡𝛼𝛼

�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛−1

𝑘𝑘=0

𝑦𝑦𝑛𝑛−1−𝑘𝑘  (16) 

that is: 

�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛

𝑘𝑘=0

𝑦𝑦𝑛𝑛−𝑘𝑘 = �𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛−1

𝑘𝑘=0

𝑦𝑦𝑛𝑛−1−𝑘𝑘  (17) 

and, by isolating the term 𝑘𝑘 = 0 by the rest of the sum in the left side of (17), an estimate of 𝑦𝑦 at the nth interval is 

obtained, given the value of the function in the preceding 𝑛𝑛 intervals: 

𝑦𝑦�𝑛𝑛 = −�𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛

𝑘𝑘=1

𝑦𝑦𝑛𝑛−𝑘𝑘 + �𝜎𝜎𝑘𝑘
(𝛼𝛼)

𝑛𝑛−1

𝑘𝑘=0

𝑦𝑦𝑛𝑛−1−𝑘𝑘.  (18) 

The choice of the number of intervals to include in the sums, indeed, depends on the available historical data 

and based on the features of their time variation. Its value strictly affects the accuracy of the prediction and then, 

must be determined according to sensitivity analyses. 

The value of 𝛼𝛼, which is in the range [0,1], can be evaluated at each interval by minimizing the error on the 

estimates of the predicted variable over a known set of previous measures. Thus, the following formulation based 

on the root mean squared error is proposed: 

  



 
  

 
 
 

25 
 

𝛼𝛼 = argmin�
1
𝑛𝑛𝑘𝑘

� (𝑦𝑦�𝑘𝑘 − 𝑦𝑦𝑘𝑘)2
𝑘𝑘∈Ω𝑘𝑘

 

subject to 

0 < 𝛼𝛼 < 1 

 (19) 

where Ω𝑘𝑘 is the set of previous, measured values of the variable and is composed of 𝑛𝑛𝑘𝑘 elements (i.e.,  Ω𝑘𝑘 =

�𝑦𝑦𝑘𝑘−𝑛𝑛𝑘𝑘 , … ,𝑦𝑦𝑘𝑘−1�); 𝑦𝑦�𝑘𝑘 is evaluated according to (18). The number of previous intervals 𝑛𝑛𝑘𝑘 can be determined offline 

and empirically evaluated on the basis of several issues such as, available data, sensitivity analysis of the forecasted 

values, computational effort, etc.    

7.3. BAYESIAN BOOTSTRAPPING IN REAL-TIME 
PROBABILISTIC PHOTOVOLTAIC POWER FORECASTING  

The use of Bayesian bootstrap has been also proposed for short-time forecast of photovoltaic generation. The 

same procedure is applied to the forecast of solar irradiance to derive the maximum PV power. The inputs of the 

PV power forecasting system are NWPs NW and historical PV power data, whereas the inputs of the maximum PV 

power forecasting system are total irradiance data. Note that NWPs are not added as predictors of the maximum 

PV power forecasting system due to the limitations encountered in the actual implementation of the forecasting 

system, but they could be theoretically included as well. 

Let’s assume to be interested into characterizing a target statistic 𝜑𝜑(𝒙𝒙) ∈ ℝ𝑠𝑠 that is a function of a (row) vector 

𝒙𝒙 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁} of 𝑁𝑁𝑏𝑏 variables, and let’s assume that an estimation 𝜑𝜑�(𝒙𝒙) of the target statistic can be characterized 

using an available dataset 𝑿𝑿 = {𝒙𝒙1, … ,𝒙𝒙𝑀𝑀} that contains 𝑀𝑀 known occurrences of 𝒙𝒙. Bootstrapping is a resampling 

approach that allows estimating the probabilistic properties of the target statistic by randomly sampling with 

replacement from data 𝑿𝑿 [67], [68]. Under the previous assumptions, 𝑿𝑿 is a 𝑀𝑀 × 𝑁𝑁𝑏𝑏 matrix and its generic 𝑚𝑚th row 

is 𝒙𝒙𝑚𝑚 = {𝑥𝑥𝑚𝑚,1, … , 𝑥𝑥𝑚𝑚,𝑁𝑁𝑏𝑏}. The 𝑀𝑀 rows of 𝑿𝑿 can theoretically be assumed as 𝑀𝑀 elements extracted from an unknown 

𝑁𝑁𝑏𝑏-variate distribution 𝐹𝐹(𝒙𝒙) ∈ ℱ, and within a probability distribution framework the estimated target statistic 

𝜑𝜑�(𝒙𝒙) retains the statistical properties of a function 𝐺𝐺[∙] applied to 𝐹𝐹(𝒙𝒙), i.e., 𝐺𝐺[𝐹𝐹(𝒙𝒙)], that maps from ℱ to ℝ𝑠𝑠. 

Bootstrapping estimates the target statistic in terms of an empirical 𝑅𝑅-sample bootstrap distribution 

𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈𝑅𝑅〉(𝒙𝒙)], obtained by applying the function 𝐺𝐺[∙] to 𝑅𝑅 replicates 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙). Specifically, 

bootstrapping assumes the type of the unknown distribution 𝐹𝐹(𝒙𝒙) to be:  

𝐹𝐹(𝒙𝒙) = ∑ 𝑤𝑤𝑚𝑚 ∙ 𝛿𝛿𝒙𝒙𝑚𝑚
𝑀𝑀
𝑚𝑚=1 ,   ∑ 𝑤𝑤𝑚𝑚𝑀𝑀

𝑚𝑚=1 = 1 and 𝑤𝑤𝑚𝑚 ≥ 0,     (20) 
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where 𝑤𝑤𝑚𝑚 is a weight assigned to the 𝑚𝑚th occurrence, and 𝛿𝛿𝒙𝒙𝑚𝑚 is a degenerate probability measure for the 𝑚𝑚th 

vector 𝒙𝒙𝑚𝑚. The generic 𝑟𝑟th replicate is: 

 

𝐹𝐹〈𝑟𝑟〉(𝒙𝒙) = ∑ 𝑤𝑤𝑚𝑚
〈𝑟𝑟〉 ∙ 𝛿𝛿𝒙𝒙𝑚𝑚

𝑀𝑀
𝑚𝑚=1 ,   ∑ 𝑤𝑤𝑚𝑚

〈𝑟𝑟〉𝑀𝑀
𝑚𝑚=1 = 1 and 𝑤𝑤𝑚𝑚

〈𝑟𝑟〉 ≥ 0,     (21) 

where the weights 𝒘𝒘〈𝑟𝑟〉 = {𝑤𝑤1
〈𝑟𝑟〉, … ,𝑤𝑤𝑀𝑀

〈𝑟𝑟〉} are extracted randomly from an assigned 𝑀𝑀-variate distribution 𝑓𝑓𝒘𝒘.  

In traditional bootstrap, the distribution 𝑓𝑓𝒘𝒘 from which the weights 𝒘𝒘〈𝑟𝑟〉 are extracted is the multinomial 

distribution in 𝑀𝑀 dimensions with equal probabilities 1/𝑀𝑀, i.e.:  

 𝑓𝑓𝒘𝒘 = Mul(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|𝑀𝑀; 1/𝑀𝑀, 1/𝑀𝑀, … ,1/𝑀𝑀) = 𝑀𝑀!
𝑤𝑤1!…𝑤𝑤𝑀𝑀!

∏ �1
𝑀𝑀
�
𝑤𝑤𝑚𝑚𝑀𝑀

𝑚𝑚=1 ;      (22) 

the 𝑀𝑀-variate sample extracted from (22) is then normalized by 𝑀𝑀, to meet the constraint ∑ 𝑤𝑤𝑚𝑚
〈𝑟𝑟〉𝑀𝑀

𝑚𝑚=1 = 1.  

In Bayesian bootstrap, instead, the weights 𝒘𝒘 = {𝑤𝑤1, … ,𝑤𝑤𝑀𝑀} are estimated through the Bayesian inference upon 

the observed probabilities 𝒘𝒘� = {𝑤𝑤�1, … ,𝑤𝑤�𝑀𝑀} of data 𝒙𝒙1, … ,𝒙𝒙𝑀𝑀 in 𝑿𝑿. The posterior distribution 𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝜶𝜶) of the 

weights is obtainable by assigning a prior distribution 𝑝𝑝(𝒘𝒘|𝜶𝜶) to the objective weights 𝒘𝒘, which has parameters 𝜶𝜶. 

To allow the calculation of the posterior distribution in closed form, the prior distribution is selected as a conjugate 

prior of the likelihood. Since the likelihood is multinomial [69], [70], the prior distribution is a symmetric 

Dirichlet: 

 𝑝𝑝(𝒘𝒘|𝜶𝜶) = Dir(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|𝛼𝛼, … ,𝛼𝛼) = 1
B(𝜶𝜶)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝛼𝛼−1)𝑀𝑀

𝑚𝑚=1 ,      (23) 

where B(𝜶𝜶) is the Beta function calculated on the 𝑀𝑀-dimensional vector 𝜶𝜶 = {𝛼𝛼, … ,𝛼𝛼}. With this position, the 

corresponding posterior distribution is a Dirichlet too: 

 𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝜶𝜶) = Dir(𝑤𝑤1 , … ,𝑤𝑤𝑀𝑀|𝛼𝛼 + 𝑀𝑀𝑤𝑤�1, … ,𝛼𝛼 + 𝑀𝑀𝑤𝑤�𝑀𝑀) = 1
B(𝛼𝛼+𝑀𝑀𝑤𝑤�1,…,𝛼𝛼+𝑀𝑀𝑤𝑤�𝑀𝑀)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝛼𝛼+𝑀𝑀𝑤𝑤�𝑚𝑚−1)𝑀𝑀

𝑚𝑚=1 .  (24) 

If the prior is uninformative, as in [69], [70], 𝛼𝛼 = 0 and: 

𝑝𝑝(𝒘𝒘|𝒘𝒘� ,𝟎𝟎) = Dir(𝑤𝑤1 , … ,𝑤𝑤𝑀𝑀|𝑀𝑀𝑤𝑤�1, … ,𝑀𝑀𝑤𝑤�𝑀𝑀) = 1
B(𝑀𝑀𝑤𝑤�1,…,𝑀𝑀𝑤𝑤�𝑀𝑀)

∙ ∏ 𝑤𝑤𝑚𝑚
(𝑀𝑀𝑤𝑤�𝑚𝑚−1)𝑀𝑀

𝑚𝑚=1 ,    (25) 

which, for continuous variables, can be further and reasonably written as Dir(𝑤𝑤1 , … ,𝑤𝑤𝑀𝑀|1, … ,1) since the observed 

rows 𝒙𝒙1, … ,𝒙𝒙𝑀𝑀 likely have the probability 1/𝑀𝑀 to occur (i.e., only once in the entire dataset 𝑿𝑿) [69]. 

In Bayesian bootstrap, in summary, the distribution 𝑓𝑓𝒘𝒘 from which the weights 𝒘𝒘〈𝑟𝑟〉 are directly extracted is the 

𝑀𝑀-variate flat Dirichlet distribution, i.e.:  

 𝑓𝑓𝒘𝒘 = Dir(𝑤𝑤1, … ,𝑤𝑤𝑀𝑀|1, … ,1).           (26) 

Once the weights are extracted, the function 𝐺𝐺[∙] is applied to 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙) given by (3), and the 𝑅𝑅-

sample Bayesian bootstrap distribution 𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈1〉(𝒙𝒙)] is the output of the Bayesian bootstrap that gives 

an estimation 𝜑𝜑�(𝒙𝒙) of the target statistic. 
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7.3.1 APPLICATIONS OF THE BAYESIAN BOOTSTRAP TO PROBABILISTIC MODELS 

FOR PV POWER FORECASTING 
 

Traditional bootstrap is commonly applied in forecasting problems to generate probabilistic predictions or to 

characterize the uncertainty of predictive parameters [67]. In this research, the Bayesian bootstrap is applied to 

three probabilistic forecasting models – Linear Quantile Regression (LQR), Gradient Boosting Regression Tree 

(GBRT) and Quantile Regression Neural Network (QRNN) - to provide sample bootstrap distributions of the 

predictive quantiles of PV power. The models, selected from the literature, are purposely very heterogeneous by 

nature in order to evaluate the performance of the Bayesian bootstrap within different forecasting frameworks.  

The three probabilistic forecasting model are briefly recalled in Appendix; then the role of Bayesian bootstrap 

in the forecasting system and a procedure to optimize the Bayesian-bootstrap-based predictions are detailed in the 

second part of this Section.   

As discussed above, in either the LQR, the GBRT or the QRNN the 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the target 

horizon ℎ can be viewed as a function of the predictors 𝒛𝒛 and of the PV power 𝑷𝑷. In this sense, the predictive 𝛼𝛼𝑞𝑞-

quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the target horizon ℎ can be viewed as a function of the training data  𝒀𝒀〈𝑡𝑡𝑡𝑡〉 =

[𝑷𝑷〈𝑡𝑡𝑡𝑡〉 𝒁𝒁〈𝑡𝑡𝑡𝑡〉], and thus it can be viewed as a target statistic calculated on 𝑀𝑀𝑡𝑡𝑡𝑡 variables, with occurrences contained 

in 𝒀𝒀〈𝑡𝑡𝑡𝑡〉. Therefore, the Bayesian bootstrap can be directly applied to evaluate the sample Bayesian bootstrap 

distribution of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power, with the following correspondences: 

 

𝒙𝒙 = 𝒚𝒚 = [𝑷𝑷 𝒛𝒛],   𝑿𝑿 = 𝒀𝒀〈𝑡𝑡𝑡𝑡〉 = [𝑷𝑷〈𝑡𝑡𝑡𝑡〉 𝒁𝒁〈𝑡𝑡𝑡𝑡〉], 

(27) 𝜑𝜑(𝒙𝒙) = 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉(𝒚𝒚),  𝜑𝜑�(𝒙𝒙) = 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�𝒀𝒀〈𝑡𝑡𝑡𝑡〉�, 

𝑀𝑀 = 𝑀𝑀𝑡𝑡𝑡𝑡,                    𝑁𝑁𝑏𝑏 = 𝑁𝑁 + 1.    

 

The sample Bayesian bootstrap distribution is constituted by 𝑅𝑅 replicates of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 of 

PV power, i.e., 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 = {𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,1〉, … ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑅𝑅〉}. The necessary steps to calculate them are hereby summarized: 

1) 𝑅𝑅 weight samples 𝒘𝒘〈1〉, … ,𝒘𝒘〈𝑅𝑅〉 are independently drawn from distribution (48) (reported in Appendix); 

2) 𝐹𝐹〈1〉(𝒙𝒙), … ,𝐹𝐹〈𝑅𝑅〉(𝒙𝒙) are calculated by applying (21); 

3) 𝐺𝐺�𝐹𝐹〈1〉(𝒙𝒙)�, … ,𝐺𝐺[𝐹𝐹〈𝑅𝑅〉(𝒙𝒙)] are calculated by applying either (51)-(53) (reported in Appendix) for the LQR, 

(60)-(64) (reported in Appendix)  for the GBRT, or (66)-(67) (reported in Appendix) for the QRNN; 

4) 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑟𝑟〉 = 𝐺𝐺�𝐹𝐹〈𝑟𝑟〉(𝒙𝒙)� for 𝑟𝑟 = 1, . . . ,𝑅𝑅. 
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7.3.2 OPTIMIZING THE BAYESIAN-BOOTSTRAP-BASED PREDICTIONS 
Dealing with a sample bootstrap distribution of predictive quantiles may be not friendly for power system 

operators, who are the end-users of the PV power forecasts but are usually unaware of the statistical background 

behind the predictions. Also, most of the probabilistic decision-making tools in power systems accept input 

probabilistic forecasts of PV power given either in terms of predictive distribution or in terms of a set of predictive 

quantiles [71]. For this reason, two procedures to extract an optimal predictive quantile from the sample Bayesian 

bootstrap distribution are developed in this research, in order to put the forecasting system in line with the needs 

of operators and practitioners. 

The first procedure (SM-BB) is naïve and it simply consists of picking the sample mean from the sample 

Bayesian bootstrap distribution 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 as the optimal predictive 𝛼𝛼𝑞𝑞-quantile of PV power 𝑃𝑃�ℎ

′〈𝛼𝛼𝑞𝑞〉 for the target 

horizon ℎ, i.e.: 

𝑃𝑃�ℎ
′〈𝛼𝛼𝑞𝑞〉 = 1

𝑅𝑅
∑ 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟〉𝑅𝑅
𝑟𝑟=1 .          (28) 

The sample mean performs well in most scenarios, plus it does not exactly require a rigorous “optimization”, 

allowing for its usage per se. 

The second procedure Optimal Quantile Bayesian Bootstrap (OQ-BB) consists of picking a sample quantile from 

the sample Bayesian bootstrap distribution 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 as the optimal predictive 𝛼𝛼𝑞𝑞-quantile of PV power 𝑃𝑃�ℎ

′〈𝛼𝛼𝑞𝑞〉 for the 

target horizon ℎ, i.e.: 

𝑃𝑃�ℎ
′〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉,           (29) 

where 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉 is the value that is smaller than a 𝜎𝜎∗ fraction of the samples in 𝑷𝑷�ℎ

〈𝛼𝛼𝑞𝑞〉 or, equivalently, 100 ∙

(1 − 𝜎𝜎∗)% of the samples in 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 are greater than 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉. The fraction 𝜎𝜎∗ is a result of an optimization problem 

that minimizes the Pinball Score (PS) over a validation dataset with indices Ω〈𝑣𝑣𝑣𝑣〉 (this validation dataset may or 

may not have overlap with the training dataset; the latter option is preferable). It is: 

𝜎𝜎∗ = argmin
𝜎𝜎

∑ �𝛼𝛼𝑞𝑞 − I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉�� ∙ �𝑃𝑃𝑡𝑡 − 𝑃𝑃�𝑡𝑡

〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉�𝑡𝑡∈Ω〈𝑣𝑣𝑣𝑣〉 ,      (30) 

with 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟∗〉 = inf {𝑃𝑃�𝑡𝑡

〈𝛼𝛼𝑞𝑞,𝑟𝑟〉 ∈ 𝑷𝑷�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 ∶ 𝐹𝐹�𝐵𝐵𝐵𝐵,𝑡𝑡

〈𝛼𝛼𝑞𝑞〉 �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞,𝑟𝑟〉� ≥ 𝜎𝜎}, and 𝐹𝐹�𝐵𝐵𝐵𝐵,𝑡𝑡

〈𝛼𝛼𝑞𝑞〉 is the cumulative distribution obtained 

from the sample Bayesian bootstrap distribution of the predictive 𝛼𝛼𝑞𝑞-quantile of PV power at time 𝑡𝑡. 
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7.3.3 HINTS ON THE SELECTION OF THE SIZE OF THE SAMPLE BAYESIAN 

BOOTSTRAP DISTRIBUTION 
The size 𝑅𝑅 of the sample bootstrap distribution certainly has an impact on the overall performance of the 

forecasting system. This topic has been discussed extensively in the literature in the traditional bootstrap 

framework, but there is no general agreement about how the sample size should be arranged with respect to the 

number of available data 𝑀𝑀. Optimizing 𝑅𝑅 through a random search upon a validation set is in general a good 

practice and this should also be valid for the Bayesian bootstrap; theoretically, there are no boundaries in which 

the optimal 𝑅𝑅 should be searched. However, there are some practical limitations:  

1) the Bayesian bootstrap is originally applied in this research to a particular statistic, i.e., the predictive 

quantile of PV power, and therefore the function 𝐺𝐺[∙] intrinsically contains the formulation of the training 

procedure of the probabilistic forecasting model. For models that require a non-trivial solution of the training 

procedure (as in the case of the GBRT and QRNN), increasing 𝑅𝑅 determines an increased computational 

complexity that is not in line with some short-term forecasting lead times using standard workstations; 

2) increasing 𝑅𝑅 does not necessarily increase the performance of the forecasts. We found in our numerical 

experiments that optimal values for 𝑅𝑅 are across a 1:100 ratio between 𝑅𝑅 and 𝑀𝑀, as performance deteriorates with 

greater 𝑅𝑅. 

For these reasons, the search for the optimal 𝑅𝑅 is performed within this range.     

7.3.4 BACKGROUND OF THE PERFORMANCE ASSESSMENT 
The performance of Bayesian bootstrap in probabilistic PV power forecasting is assessed in a wide comparative 

framework. Several benchmarks and error indices and scores are exploited for this assessment. 

Benchmarks 

Several benchmarks are considered to compare the outcomes of the Bayesian-bootstrap-based forecasts and to 

highlight pros and cons with respect to existing literature.  

The first group of benchmarks aims at evaluating how the Bayesian bootstrap performs with reference to the 

traditional bootstrap. This group therefore includes three forecasting systems (LQR-TB, GBRT-TB, and QRNN-TB) 

that apply the traditional bootstrap to build the sample traditional bootstrap distribution of the predictive quantiles 

of PV power, respectively applying an LQR, a GBRT and a QRNN model. The extraction of the optimal prediction 

from the traditional bootstrap distribution is performed applying the SM and the OQ procedures. Therefore, the 

only difference with the presented Bayesian-bootstrap forecasts consists of the different bootstrap procedure 

applied in first place.  
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The second group of benchmarks aims at evaluating if, in general, the bootstrap increases the performance or 

not. This group therefore includes three forecasting systems (LQR-NB, GBRT-NB, and QRNN-NB) that directly 

predict the quantiles of PV power, respectively applying an LQR, a GBRT and a QRNN model, without any 

bootstrap.  

The third group of benchmarks is instead based on persistence models, and they are provided as an unbiased 

reference for the performance evaluation. This group includes two benchmarks: the PM1 that assumes the 

predictive quantiles for the target horizon equal to the last observed PV power, i.e.: 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ−𝑘𝑘,   ∀𝑞𝑞 = 1, … ,𝑄𝑄,        (31) 

and the PM2 that assumes the predictive quantiles for the target horizon equal to the PV power observed in the 

same time slot of the day before. For an hourly time resolution, e.g., the PM2 returns: 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ−24,  ∀𝑞𝑞 = 1, … ,𝑄𝑄.        (32) 

Probabilistic error indices and scores  

Three error indices are used to compare the accuracy of the proposed forecasting method with the other 

methods which have been used as benchmark. In what follows, the definition of the PS metric is first recalled. 

Beyond comparisons, this metric is also used into the application of the linear LQR method. Then, the average 

absolute coverage error (AACE) and the prediction intervals normalized width (PINAW) are briefly introduced.  

Pinball score 

PS allows addressing the accuracy of the prediction by evaluating, at the same time, the reliability and the 

sharpness of the forecasted values [72], [73]. It is used in all the three considered models as the loss function to be 

minimized to train the corresponding parameters as it is a negatively oriented error measure (i.e., a smaller PS 

indicates a better forecast performance). It is here recalled that PS is defined as: 

 

𝑃𝑃𝑃𝑃 �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� = �𝛼𝛼𝑞𝑞 − I �𝑃𝑃ℎ ≤ 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�� ∙ �𝑃𝑃ℎ − 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�.       (33) 

In order to obtain a measure of the forecast performance in a comprehensive manner, the value of PS can be 

evaluated by averaging the values it assumes across multiple forecast issues and summing over the 𝑄𝑄 quantiles. In 

the numerical experiments, a normalized version of the PS is used for evaluating performance in the test period. 

The Normalized Pinball Score (NPS) is defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁 �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� =

𝑃𝑃𝑃𝑃�𝑃𝑃ℎ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�

𝑃𝑃�rated
,                 (34) 

where 𝑃𝑃�rated is the rated power of the PV system.   
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Average Absolute Coverage Error 

The AACE is used to assess the reliability of the forecasting method, by quantifying the difference of the 

predicted values and the nominal coverages of the predictive quantiles [74]. AACE can only be formulated for 

multiple forecast issues. For a test set with indices Ω〈𝑡𝑡𝑡𝑡〉, the estimated 𝛼𝛼𝑞𝑞-coverage 𝛼𝛼�𝑞𝑞 is provided by: 

𝛼𝛼�𝑞𝑞 = 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ I �𝑃𝑃𝑡𝑡 ,𝑃𝑃�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,          (35) 

with 𝑀𝑀𝑡𝑡𝑡𝑡 the size of the considered test set. The absolute coverage error on the nominal 𝛼𝛼𝑞𝑞-quantile, 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉, is 

defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉 = �𝛼𝛼𝑞𝑞 − 𝛼𝛼�𝑞𝑞�.           (36) 

and the percentage value of AACE, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴%, across the 𝑄𝑄 coverages can be easily derived as a percentage value of 

𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉, as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴% = 100
𝑄𝑄
∙ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉𝑄𝑄

𝑞𝑞=1 .          (37) 

AACE is a negatively oriented metric, i.e., smaller is the value it assumes, more reliable is the forecast method. 

Prediction intervals normalized width 

The PINAW is used to assess the sharpness of the forecasting method, by quantifying the width of the 

prediction intervals [74]. It is a property of the forecast by itself, so this index is not calculated considering the 

actual PV power outcomes. For a test set of size 𝑀𝑀𝑡𝑡𝑡𝑡 with indices Ω〈𝑡𝑡𝑡𝑡〉, the PINAW at the nominal prediction 

interval rate 𝜆𝜆 is: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝜆𝜆 = 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ 𝑃𝑃�𝑡𝑡
〈0.5+𝜆𝜆/2〉−𝑃𝑃�𝑡𝑡

〈0.5−𝜆𝜆/2〉

𝑃𝑃�rated𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,        (38) 

PINAW is a negatively oriented metric, i.e., smaller is the value it assumes, sharper are the forecasts 

 

7.4. HIERARCHICAL PROBABILISTIC ELECTRIC VEHICLE 
LOAD FORECASTING  

A hierarchical approach for PEVLF is proposed, focusing on several probabilistic forecasting models that have 

been used with success [75]-[77] in PLF (i.e., LQR [78], GBRT [79], Quantile Regression Forests (QRFs) [80], and 

QRNN [81]). The hierarchical approach is applied to decompose the problem into lower-level sub-problems, i.e., 

forecasting the EV load of smaller lower-level geographic regions, which are resolved through standard 

probabilistic models (either GBRT, QRF and QRNN). Differently from other works, the PEVLF problem is 

finalized at higher-level through an ensemble methodology based on an l1-Penalized LQR (PLQR) model, in 

which the penalization adds robustness to the hierarchical model with respect to outliers and abnormal inputs. 
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Compared to a single-model approach for each series within a higher-level hierarchy, forecasts are improved 

thanks to the exploitation of information related to lower-level regions. 

 The proposed hierarchical PEVLF system consists of three main units: i) an input data pre-processing unit, 

including  the PCA reported in Section 7.2 to reduce the data dimensionality; ii) the baseline probabilistic 

forecasting unit for the low-level regions; iii) the hierarchical probabilistic forecasting unit for the high-level 

region. Figure 5 illustrates the workflow of the proposed hierarchical PEVLF system.   

For consistency of symbols, the forecast horizon is indicated with ℎ, the forecast lead time is indicated with 𝑘𝑘, 

and thus the forecast origin is ℎ − 𝑘𝑘. To differentiate vectors from scalars, the former are indicated with bold 

symbols. We will also refer to data (and forecasts) having hourly time resolution, for sake of clarity; nevertheless 

the proposal can be easily adapted to other time resolution frameworks. 

 
Fig. 5 - Workflow of the hierarchical PEVLF system. 

 
7.4.1 DATA PRE-PROCESSING UNIT 

The data pre-processing unit reported in Section 7.2 is aimed at: i) extracting the time series of EV load at the 

desired time resolution for the low-level regions (𝑷𝑷𝑖𝑖 = {𝑃𝑃𝑖𝑖,1,𝑃𝑃𝑖𝑖,2, … ,𝑃𝑃𝑖𝑖,𝑛𝑛, … ,𝑃𝑃𝑖𝑖,ℎ−𝑘𝑘}, 𝑖𝑖 = 1, . . . ,𝑅𝑅) and for the high-

level region (𝑷𝑷 = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 , … ,𝑃𝑃ℎ−𝑘𝑘}) from the available readings at the charging stations; ii) preparing the 

predictors of the forecasting models that include also external data, such as numeric weather predictions (e.g., 

precipitation forecasts) and calendar predictors (e.g., a dummy variable to discern working days from holidays); iii) 
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arranging the predictor data in a Principal Component Analysis (PCA) module that allows reducing the 

dimensionality of the problem, which is particularly challenging in probabilistic forecasting as model training is 

computationally intensive. This allows getting the arranged predictors for the low-level regions (𝒙𝒙𝑖𝑖 =

{𝒙𝒙𝑖𝑖,1,𝒙𝒙𝑖𝑖,2, … ,𝒙𝒙𝑖𝑖,𝑛𝑛, … ,𝒙𝒙𝑖𝑖.ℎ−𝑘𝑘}, 𝑖𝑖 = 1, . . . ,𝑅𝑅), that are inputs of the baseline probabilistic models. 

 

7.4.2 BASELINE PROBABILISTIC FORECASTING UNIT 
The baseline probabilistic forecasting unit is responsible for the generation of the probabilistic predictions of 

EV load at the 𝑖𝑖th low-level region, exploiting the input data (historical EV load data 𝑷𝑷𝑖𝑖 =

{𝑃𝑃𝑖𝑖,1,𝑃𝑃𝑖𝑖,2, … ,𝑃𝑃𝑖𝑖 ,𝑛𝑛, … ,𝑃𝑃𝑖𝑖 ,ℎ−𝑘𝑘} and predictors 𝒙𝒙𝑖𝑖 = {𝒙𝒙𝑖𝑖,1,𝒙𝒙𝑖𝑖,2, … ,𝒙𝒙𝑖𝑖,𝑛𝑛 , … ,𝒙𝒙𝑖𝑖,ℎ−𝑘𝑘} , 𝑖𝑖 = 1, . . . ,𝑅𝑅) pre-processed in the 

previous unit. In order to evaluate the performance of the hierarchical system under different conditions and to 

demonstrate that, no matter which is the baseline model used at low-level regions, the hierarchical system is able 

to improve the skill of the forecasts at the high-level region when compared to a direct non-hierarchical approach, 

three different models are used in this unit: GBRT, QRF and QRNN. The outputs of the baseline probabilistic 

forecasting unit consist of 𝑄𝑄 predictive EV load quantiles 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�𝑖𝑖,ℎ

〈𝛼𝛼𝑄𝑄〉 at coverages 𝛼𝛼1, … ,𝛼𝛼𝑄𝑄 of the 𝑖𝑖th low-level 

region for the target forecast horizon ℎ. This is obviously accomplished for 𝑖𝑖 = 1, . . . ,𝑅𝑅, where 𝑅𝑅 is the total 

number of considered low-level regions.  

 

7.4.3 HIERARCHICAL PROBABILISTIC FORECASTING UNIT 
The hierarchical probabilistic forecasting unit is dedicated to combine the predictions coming from the 

previous unit in order to generate the probabilistic forecasts 𝑃𝑃�ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�ℎ

〈𝛼𝛼𝑄𝑄〉 of EV load at the high-level region for 

the target horizon ℎ. This combination is performed through a PLQR model, which is applied to an input dataset 

that includes the baseline forecasts and historical high-level EV load data 𝑷𝑷 = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛, … ,𝑃𝑃ℎ−𝑘𝑘}. The 

penalization is applied to make the model more robust towards outliers. The hierarchical system is expected to 

increase the skill of the forecasts at the high-level region by exploiting the information contained at the lower 

level. Also, the PLQR model parameters can be estimated iteratively as new observations become available, thus 

allowing for exploiting the information brought by recent loads without re-training the baseline models (this 

would be more challenging in terms of computational time, because multiple models - one for each low-level 

region - should be trained iteratively). 

In this research the EV load forecasts at the low-level regions are obtained through a baseline probabilistic 

model. Probabilistic forecasts of the 𝑖𝑖th region for the forecast horizon ℎ are provided in each case through 𝑄𝑄 
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predictive EV load quantiles 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�𝑖𝑖,ℎ

〈𝛼𝛼𝑄𝑄〉, at coverages 𝛼𝛼1, … ,𝛼𝛼𝑄𝑄 respectively. Three different baseline models 

were explored (i.e., GBRT, QRF and QRNN) in our proposal, in order to evaluate performance under different 

circumstances. Brief analytic details on these models are reported in Appendix. Analytic formulations are 

generically referred to the EV load in the 𝑖𝑖th low-level region, reminding that this is iterated for 𝑖𝑖 = 1, … ,𝑅𝑅. 

Eventually, Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐵𝐵〉  denotes the index set that individuates the data used to train the baseline models. For example, 

the dataset 𝑷𝑷𝑖𝑖,𝑡𝑡𝑟𝑟𝑎𝑎
〈𝐵𝐵〉 = �𝑃𝑃𝑖𝑖,𝑛𝑛 ,𝑛𝑛 ∈ Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐵𝐵〉 � contains the historical EV loads in the 𝑖𝑖th low-level region that are the 

dependent variables to train the baseline models for the 𝑖𝑖th low-level region.   

7.4.4 HIGHER LEVEL OF THE HIERARCHICAL PROBABILISTIC FORECASTING 

UNIT 
A hierarchical PLQR model is applied to combine the baseline forecasts of EV load at the low-level regions, 

generating the forecasts at the high-level region. The hierarchical PLQR model is trained upon the data 

individuated by an index set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉  (for example, 𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉 = �𝑃𝑃𝑛𝑛,𝑛𝑛 ∈ Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 � is the dataset that contains the EV loads in 

the high-level region that are the dependent variables of the PLQR model). The 𝐵𝐵 predictors 𝒙𝒙ℎ
〈𝐻𝐻〉 of the PLQR 

model for the target horizon ℎ are the baseline forecasts of the 𝑅𝑅 considered low-level regions 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�𝑖𝑖,ℎ

〈𝛼𝛼𝑄𝑄〉, ∀𝑖𝑖 =

1, … ,𝑅𝑅, and lagged high-level EV loads (up to the 24-hours lagged EV load, i.e., 𝑃𝑃ℎ−𝑘𝑘,𝑃𝑃ℎ−𝑘𝑘−1, … ,𝑃𝑃ℎ−24, 2-days 

lagged EV load 𝑃𝑃ℎ−48, and 1-week lagged EV load 𝑃𝑃ℎ−168).  

The predictive 𝛼𝛼𝑞𝑞-quantile of the high-level EV load at the target horizon ℎ returned by the PLQR model is 

analytically formulated as: 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝒙𝒙ℎ

〈𝐻𝐻〉 ∙ 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 ,            (39) 

where 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 is the vector (having the same cardinality 𝐵𝐵 of 𝒙𝒙ℎ
〈𝐻𝐻〉) of coefficients for the 𝛼𝛼𝑞𝑞-quantile, and they are 

estimated by solving the following l1-penalized minimization problem over the high-level EV load training dataset 

𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 = {𝑃𝑃𝑛𝑛 ,𝑛𝑛 ∈ Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉 }: 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = argmin
𝜷𝜷〈𝛼𝛼𝑞𝑞〉

1

dim�Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 �

∑ �𝛹𝛹 �𝑃𝑃𝑛𝑛 ,𝑃𝑃�𝑛𝑛
〈𝛼𝛼𝑞𝑞〉��𝑛𝑛∈Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉 + 𝜆𝜆∑ �𝛽𝛽𝑏𝑏
〈𝛼𝛼𝑞𝑞〉�𝐵𝐵

𝑏𝑏=1  ,      (40) 

where dim(Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉) is the number of training points in the set Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉 , 𝜆𝜆 is the parameter that controls the 

regularization effectiveness, and 𝛹𝛹 �𝑃𝑃𝑛𝑛 ,𝑃𝑃�𝑛𝑛
〈𝛼𝛼𝑞𝑞〉� is the PS as defined above. The minimized function in (40) is indeed 

easily interpretable, since it is the PS penalized by the l1-norm of the coefficient vector.  

The selection of the predictors 𝒙𝒙ℎ
〈𝐻𝐻〉 is performed by exploiting the intrinsic properties of the l1-regularized 

model. In practice, the penalization effect (driven by the value of 𝜆𝜆) sets some estimated parameters in the vector 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 as zero. This is equivalent to performing model selection, since predictors that are multiplied by zero 
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coefficients have no impact on the dependent variable. Obviously, 𝜆𝜆 becomes an important hyper-parameter of the 

PLQR, as greater 𝜆𝜆 values determine more parameters that are set as zero (or, equivalently, more predictors that are 

discarded). Therefore, it is optimized in 10-fold cross-validation across the training dataset 𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 = {𝑃𝑃𝑛𝑛,𝑛𝑛 ∈ Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉 }.  

7.4.5 FORECAST ASSESSMENT: BENCHMARKS AND ERROR INDICES 
The proposed hierarchical probabilistic EV load forecasting model is validated considering its performance 

against several benchmarks. Since the proposal performs forecasts for the low-level regions and forecasts for the 

high-level regions, different benchmarks are developed for the baseline forecasts and for the hierarchical forecasts, 

in order to highlight the improvements brought by the proposal in each stage. The comparative assessment 

framework is based in both cases on the usage of relevant probabilistic error indices [82]. 

Benchmarks for baseline forecasts 

To evaluate the skill of the forecasts provided by the baseline models for the low-level regions (these will be 

indicated as “GBRT baseline”, “QRF baseline” and “QRNN baseline” hereinafter), four benchmarks are introduced.  

The first three benchmarks consist of the application of GBRT, QRF and QRNN models using input predictors 

that are not processed through PCA. These benchmarks are respectively labeled as “GBRT no PCA”, “QRF no PCA” 

and “QRNN no PCA”. They are introduced in the comparative framework in order to evaluate whether the PCA 

yields additive skill to the baseline forecasts, with respect to the case in which raw predictors are directly sent to 

the probabilistic underlying models. To fairly compare the outcomes, the same predictors and the same model 

selection procedure are considered for the GBRT, QRF and QRNN models in the “baseline” and in “no PCA” 

benchmarks.  

The fourth benchmark (BPersB) is a persistence model that is introduced in order to provide a simple, unbiased 

reference. BPersB returns the last observed value in one-step-ahead forecasting: 

 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃𝑖𝑖,ℎ−1 for 𝑞𝑞 = 1, … ,𝑄𝑄,         (41) 

or the homologous value observed the day before in day-ahead forecasting: 

𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃𝑖𝑖 ,ℎ−24  for 𝑞𝑞 = 1, … ,𝑄𝑄.         (42) 

Thus, the predicted value is the same, whatever the quantile nominal coverage is. Although based on a naïve 

approach, this benchmark is often presented in the energy forecasting literature [77] to allow for a straightforward 

evaluation of different models against the same reference. 

Benchmarks for hierarchical forecasts 

Seven benchmarks are introduced with the scope to evaluate the skill of the forecasts provided by the 

hierarchical forecasting system for the high-level region. 
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The first three benchmarks consist of the application of GBRT, QRF and QRNN models to directly forecasts the 

EV load at the high-level region. These benchmarks, respectively labeled as “GBRT direct”, “QRF direct”, and 

“QRNN direct”, are introduced in order to check if a direct approach for forecasting the EV load at the high-level 

region performs better than passing through the baseline forecasts of the component regions. 

The fourth benchmark consists of applying a simple sum-and-sort (SaS) of the homologous baseline predictive 

quantiles returned by the baseline forecasting models [52]. This benchmark performs the simplest combination of 

individual forecasts because it simply sums up the sorted homologous quantiles. It is therefore useful to evaluate it 

against the proposal that considers instead a PLQR-based combination of baseline forecasts, to check whether a 

simplest combination approach would surpass the proposal.  

The fifth benchmark consists of a non-penalized quantile regression model (NPLQR, i.e., with 𝜆𝜆 = 0) using the 

same inputs considered for the PLQR model discussed above. This benchmark is introduced to evaluate whether 

the l1-penalization is useful in order to reduce the importance of uninformative predictors at the high-level 

forecasting. 

The sixth benchmark consists of a PLQR model using only the baseline forecasts, without exploiting the lagged 

high-level EV loads as additional predictors. This benchmark denoted as “PLQR no recency” is added to validate 

the importance of recency effects in hierarchical forecasting. 

The seventh benchmark (HPersB) consists of a persistence model that is again introduced in order to provide a 

simple, unbiased reference. 

Probabilistic error indices 

The skill of probabilistic forecasts is comprehensively evaluated through strictly proper scores [82]. However, 

the reliability of probabilistic forecasts should be separately investigated in order to evaluate if the predictive 

coverages are close to the nominal coverages [83].  

In this paper, the PS is the strictly proper score used to comprehensively evaluate the accuracy of forecasts. The 

PS of forecasts, belonging to a generic index set Ω, is calculated as: 

𝑃𝑃𝑃𝑃 = ∑ � 1
dim(Ω)

∑ 𝛹𝛹 �𝑃𝑃𝑛𝑛 ,𝑃𝑃�𝑛𝑛
〈𝛼𝛼𝑞𝑞〉�𝑛𝑛∈Ω �𝑄𝑄

𝑞𝑞=1 = ∑ � 1
dim(Ω)

∑ �𝑃𝑃𝑛𝑛 − 𝑃𝑃�𝑛𝑛
〈𝛼𝛼𝑞𝑞〉� ∙ �𝛼𝛼𝑞𝑞 − I �𝑃𝑃𝑛𝑛 ≤ 𝑃𝑃�𝑛𝑛

〈𝛼𝛼𝑞𝑞〉��𝑛𝑛∈Ω �𝑄𝑄
𝑞𝑞=1 ,   (43) 

with dim(Ω) the number of points in the set Ω. The PS is therefore a negatively oriented score, since smaller values 

denote more accurate probabilistic forecasts. 

The reliability of forecasts is instead evaluated qualitatively through the reliability diagrams [84], which plot 

the predictive coverages 𝛼𝛼�𝑞𝑞 against the nominal coverages 𝛼𝛼𝑞𝑞, 𝑞𝑞 = 1, . . . ,𝑄𝑄. The predictive coverages of forecasts 

belonging to a set Ω are evaluated as: 
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𝛼𝛼�𝑞𝑞 = 1
dim(Ω)

∑  I �𝑃𝑃𝑛𝑛 ≤ 𝑃𝑃�𝑛𝑛
�𝛼𝛼𝑞𝑞��𝑛𝑛∈Ω  .         (44) 

The closer the diagrams are to the bisector of the positive quadrant, the more reliable are the forecasts.  

Reliability is also evaluated quantitatively through the Percentage Average Absolute Coverage Error (AACE%) 

index, that is: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴% = 100
𝑄𝑄
∑ �𝛼𝛼𝑞𝑞 − 𝛼𝛼�𝑞𝑞�
𝑄𝑄
𝑞𝑞=1  .          (45) 

The AACE% is therefore a negatively oriented index, since smaller values denote more reliable probabilistic 

forecasts. 

7.5. NUMERICAL APPLICATIONS ON REAL-TIME 
GENERATION AND LOAD FORECASTING  

The methods detailed above have been tested by means of numerical simulations performed with respect to an 

actual dataset of measured power produced by a PV system installed at a reconfigurable low voltage distribution 

grid (ReIne laboratory [85]) located in Switzerland and the actual EVnetNL dataset on EV load collected in the 

Netherlands which has been provided for research purposes by the ElaadNL [53].  

7.5.1 APPLICATION OF THE DERIVATIVE PERSISTENCE FORECASTING METHOD  
The derivative persistence forecasting method has been applied to a data set of measured power produced by a PV 

system installed at a reconfigurable low voltage distribution grid (ReIne laboratory [85]) located in Switzerland. 

The generation system has a total capacity of 30 kW and includes four AC/DC power inverters. The data 

considered in this application refer to the measured power at the AC side of one inverter having a capacity of 8.5 

kW. Particularly, the data refer to a measurement set recorded in the period August 24, to December 19, 2019. This 

set of data is useful for testing purposes since it refers to different seasons and represents daily power profiles with 

different degree of variability. Some examples of daily power production are reported in Fig. 6. 
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Fig. 6 - Four days selected among the available measurement data 

The data refer to measurements sampled at intervals of ten minutes (original measurements are sampled at 1 

minute intervals, then the average values over 10 minutes intervals are computed). Based on the historical 

measured data, the real-time forecasting is requested to generate the forecasts of the PV power produced during 

the following 10 minutes (i.e., this is one-step-ahead forecasting with 10 minutes lead time). 

To validate the proposed approach and highlight its peculiarities in terms of real-time estimation, the forecasted 

values of power are compared with those of the persistence method of which the proposal is an improvement and 

ARMA method which is recognized as popular statistical tool for time series analysis forecast. 

ARMA model considers the lagged past values and errors as [6]: 

𝑦𝑦�(𝑘𝑘) = �  φ𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑦𝑦(𝑘𝑘 − 𝑖𝑖) + �  θ𝑖𝑖

𝑞𝑞

𝑖𝑖=1

𝑒𝑒(𝑘𝑘 − 𝑖𝑖) (46) 

where 𝑦𝑦(𝑘𝑘 − 𝑖𝑖) and 𝑒𝑒(𝑘𝑘 − 𝑖𝑖) are the lagged past values and errors, with 𝑝𝑝 and 𝑞𝑞 parameters and  φ𝑖𝑖 and  θ𝑖𝑖 

coefficients of the model. In this application, to derive these coefficients the system identification toolbox of 

Matlab® has been used [86]. The values 𝑝𝑝 = 1 and 𝑞𝑞 = 2 have been used since in this application they generally 

gave the best results.  Approaches for the ARMA model development based on Akaike Information Criterion or 

Bayesian Information Criterion, or based on the auto-ARIMA function in R environment, may show slightly 

different results, but are not presented in these experiments for brevity. 

To check the accuracy of the proposed approach, the performance metrics summarized in Tab. 1 are used [10], [87].  
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TAB.1 PERFORMANCE METRICS 

Symbol Metric 

• MAE 1
𝑁𝑁
�|𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)|
𝑁𝑁

𝑘𝑘=1

 

• NMAPE 100
1
𝑁𝑁
�

|𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)|
𝑃𝑃𝑛𝑛

𝑁𝑁

𝑘𝑘=1

 

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 100 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1,..,𝑁𝑁

�
|𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)|

𝑦𝑦(𝑘𝑘)
� 

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �
1
𝑁𝑁
�(𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘))2
𝑁𝑁

𝑘𝑘=1

 

 

The mean absolute error (MAE) assesses the average distance between the measured values, 𝑦𝑦(𝑘𝑘) and the model 

predictions,  𝑦𝑦�(𝑘𝑘), of the 𝑁𝑁 forecasted values; normalized mean absolute percentage error (NMAPE) evaluates the 

magnitude of the prediction error normalized with respect to the system capacity (𝑃𝑃𝑛𝑛); compared to the MAPE, 

median absolute percentage error (MdAPE) is used since it is less sensitive to outliers; root mean square error 

(RMSE) is useful since it penalizes large errors. 

The proposed forecasting method has been iteratively applied to all the available days. With reference to days of 

Fig. 6 (i.e., Aug. 25, Sept. 7 and Dec. 19, 2019), the results of the proposed forecasting method are reported in Fig. 

7, Fig. 8, and Fig. 9, respectively. For comparison purposes, the forecasted values of persistence and ARMA model 

are also reported. 

 
Fig. 7 - Comparison among measurements and different forecasting models (day August 25, 2019)  
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Fig. 8 - Comparison among measurements and different forecasting models (day September 7, 2019) 

 

 
Fig. 9 - Comparison among measurements and different forecasting models (day December 19, 2019) 

 
Fig. 10 - Zooms of the comparison among measurements and different forecasting models (August 25, 2019) 

 

In the case of Fig. 7, the daily profile of the power production shows small variations, thus obtaining the typical 

profile of the PV power. Based on a rough analysis, the three models provide quite similar results. However, by 

analyzing the zooms of the figure reported in Fig. 10, the proposed approach always provides a slightly better 

prediction compared to the persistence model. In the zooms, it also appears that these improvements slightly 
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decrease when the variability of the power increases. In these circumstances, the prediction of the proposed 

approach is also batter than the ARMA approach, as shown in Fig. 10.a) and Fig. 10.b). During the periods when 

the power profile shows smaller variations (Fig. 10.c), the ARMA model allows predicting with a significant better 

accuracy. The case of Fig. 8 refers to a power daily profile with large variability. In this case a rough analysis shows 

how the prediction errors of all forecasting models increase and, particularly, the differences between the 

persistence and the proposed approaches seem smaller than the case of Fig. 7 – even though the curve of the 

proposed approach is closest to the curve of the real measured values. Fig. 9 refers to the case of a low production 

scenario. Compared to the persistence model, the proposed approach still provides a slightly more accurate 

forecast. The ARMA approach shows a significant error in the period when fast variations appear. In order to 

better investigate on the accuracy of the proposed method, the performance metrics shown in Tab. 1 are evaluated 

for the three methods with reference to daily forecasting horizons. The results related to the days of Fig. 6 are 

reported in Tab. 2. 

The results of Tab. 2 confirm the qualitative analyses of Figs. 7 - 10. Indeed, with reference to the day August 25, 

2019, the values that all metrics assume in the case of the proposed approach are lower than those assumed by the 

persistence method. Compared to the persistence model, the NMAPE and MdAPE of the proposed model are 16% 

and 22% lower, respectively. The values of RMSE and MAE also show better performance of the proposed 

approach. It is interesting to note that in case of the day August 25, 2019 the ARMA model allows obtaining an 

accuracy better than the persistence model and worse than the proposed approach. With reference to the other 

days of the measured data, this generally happens in the days characterized by small variability.  

In the case of the day September 7, 2019, the prediction errors of all the three forecasting methods are larger, 

compared to the previous considered day. In this case also, the metrics of the proposed approach are better than 

those of the persistence model, even if the differences among methods decrease. Regarding the NMAPE, both the 

proposed and the persistence allow containing the error within 4%, whereas the ARMA approach implies errors 

larger than 39%. In this case, the large error of ARMA is due to the high variability of the power during the day. 

This error slightly reduces on the day December 19 for which similar considerations can be drawn regarding the 

comparison of the three methods. The unique exception is for the MdAPE, since the value it assumes in the case of 

the proposed approach is slightly larger than that assumed in the case the persistence approach is applied. 
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TAB.2 PERFORMANCE COMPARISON 

Model MAE [W] 
NMAPE 

[%] 

MdAPE 

[%] 
RMSE [W] 

day August 25, 2019 

Persistence 127.36 1.50 3.79 224.94 

Proposed 105.92 1.25 2.96 191.54 

ARMA 120.26 1.41 3.02 212.55 

day September 7, 2019 

Persistence 334.58 3.94 15.13 593.57 

Proposed 318.99 3.75 14.94 569.12 

ARMA 467.43 5.50 20.40 891.78 

day December 19, 2019 

Persistence 108.95 1.28 7.43 249.43 

Proposed 104.35 1.23 8.53 240.81 

ARMA 221.50 2.61 13.99 540.07 

 

 

The same analysis has been repeated for all the days of the available measured data. The results, which are not 

reported here for the sake of conciseness are coherent with those of Tab. 2. Particularly, the skill score, 𝑠𝑠𝑠𝑠, has 

been evaluated which is defined as [9]: 

𝑠𝑠𝑠𝑠 = 1 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝

 (47) 

being 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 referred to the persistence and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 referred to the test approach. The skill score is typically used 

to compare a test forecasting approach to the persistence model. In the case analysed in this application, the mean 

value assumed by the skill score is 0.0026 and its maximum value is 0.14, thus demonstrating a generalized 

improvement of the proposed approach compared to the persistence model. As expected, the skill score of the 

ARMA is negative, showing the inaccuracy of this model compared to the persistence in the regard of the real-time 

forecasting. This is aligned to the literature, such as in [9]. Moreover, still referring to the peculiarities relevant to 

the real-time forecasting, it has to be noted that ARMA approach implies computational time hugely larger than 

the one implied by the proposed or persistent model.  



 
  

 
 
 

43 
 

7.5.2 APPLICATION OF THE CAPUTO-DERIVATIVE  FORECASTING METHOD  
The proposed forecasting method has been applied to a data set of measured PV power produced by the GECAD N 

system installed in Portugal at the Instituto Superior de Engenharia do Porto/Politécnico do Porto [88]. The 

installation power is 10 kW. The data refer to the period July 27, 2016-November 16, 2016, with a sampling time of 

one minute. Regarding the validation metrics, in addition to those reported in Tab. 1, the following metrics were 

used to validate the method:  

- the relative Root Mean Squared Error (rRMSE) which evaluates the RMSE normalized with respect to the 

mean value of the measured values: 

𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫            1
𝑦𝑦�
�1
𝑁𝑁
∑ (𝑦𝑦�𝑘𝑘 − 𝑦𝑦𝑘𝑘)2𝑁𝑁
𝑘𝑘=1  

 

(48) 

- the Pearson correlation coefficient (R) which is based on the method of covariance and gives a measure of 

the correlation between the forecasted and measured values has been also included for the sake of 

completeness even if it is less suited for evaluating forecasting methods: 

𝐑𝐑             
1
𝑦𝑦� ∑ �𝑦𝑦�𝑘𝑘−𝑦𝑦���(𝑦𝑦𝑘𝑘−𝑦𝑦�)𝑁𝑁

𝑘𝑘=1

�∑ �𝑦𝑦�𝑘𝑘−𝑦𝑦���
2 ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦�)𝑁𝑁

𝑘𝑘=1
2𝑁𝑁

𝑘𝑘=1

 
 

(49) 

 

where 𝑦𝑦� and 𝑦𝑦�� are the average value of the measured dataset and of the forecasted dataset, respectively.  

Some examples of daily power production are reported in Fig. 11 with reference to two days characterized by 

regular and irregular weather conditions (i.e., September 24 and September 12, respectively). 

 

Fig. 11 - Measured PV power profile of the 59th day, September 24 (a) and of the 47th day, September 12 (b) 
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The following experiments refer to different time intervals which are relevant to real-time applications for 

distribution networks operation, that are one minute, five minutes and ten minutes. Since the original 

measurements are sampled at one-minute intervals, with the aim to handle also the other considered time scales, 

the average values of the measurements over five-minute and ten-minute intervals were computed.  

Based on the historical measured data, the real-time forecasting is requested to generate the forecasts of the PV 

power produced during the following one minute, five minutes and ten minutes (i.e., this is one-step-ahead 

forecasting with one-, five- and ten-minute lead time, respectively). In the following subsections, the results of the 

application of the proposed Caputo-derivative method are reported together with a comparison with the other 

considered forecasting techniques to evaluate the accuracy of the results.  

Forecasting output 

With reference to the daily PV power profiles reported in Fig. 11, the results of the forecasted profiles carried out 

by applying the proposed Caputo-derivative method are reported in Figs. 12, 13 and 14 which refer to different 

lead times (which in the application correspond to the forecasting time horizons) and different numbers of past 

samples used for the forecast:  

− one-minute lead time and 30 samples 

− five-minute lead time and 12 samples 

− ten-minute lead time and 12 samples. 

In the three cases, a value of 𝑛𝑛𝑘𝑘 equal to one has been assumed. Tab. 3 reports the performance indices evaluated 

on those single days.  

The analysis of the results reported in Tab. 3 evidences that, with reference to the regular day (59th day, September 

24), the forecasting indices have quite good values. They assume slightly worse values in the case of the irregular 

day (47th day, September 12), however, still being acceptable. The values of the indices in the case of one-minute 

lead time are generally better than those assumed in the case of five-minute and ten-minute lead times. This is an 

expected result since, by increasing the lead time, accuracy reduces. Particularly, it can be observed that the index 

R reaches a value very close to one in the case of one-minute lead time for both days. Its approximation to one still 

remains in the case of five-minute lead time and it assumes acceptable values in the case of ten-minute lead time. 
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TAB.3 PERFORMANCE INDICES EVALUATED ON THE TWO CONSIDERED DAYS 

Lead time 

 

Samples 

 

RMSE 

[W] 

MAE 

[W] 
NMAPE [%] rRMSE [%] 

 

rMBE x1e-4 [%] 
R 

59th day, September 24 

1 min 30 (30 min) 46.8903 21.5152 0.2152 0.026 -1.3899 0.9996 

5 min 12 (60 min) 143.5294 71.5451 0.7155 0.0805 3.8048 0.9971 

10 min 12 (120 min) 271.0762 140.0803      1.4008     0.1510         10.8921 0.9895 

47th day, September 12 

1 min 30 (30 min) 121.0304 57.6087 0.5761 0.0653 -2.3560 0.9976 

5 min 12 (60 min) 221.9227 130.9621 1.3096 0.1185 9.9717 0.9921 

10 min 12 (120 min) 317.0545 199.5311 1.9953 0.1681 36.1401 0.9839 

 

Figs. 12-17 a) show the comparison of measured and forecasted power profiles for the two days and for the three 

considered lead times. Figs. 12-17 b) show the relative normalized errors, which is evaluated as:  

𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 = 𝑦𝑦�𝑘𝑘−𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘

. (50) 

 
Fig. 12 - Forecast results for day #59 – 1 min lead time:  photovoltaic power values (a) and normalized error (b) 
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Fig. 13 - Forecast results for day #47 – 1 min lead time: photovoltaic power values (a) and normalized error (b) 

 
Fig. 14 - Forecast results for day #59 – 5 min lead time:  photovoltaic power values (a) and normalized error (b) 

 
Fig. 15 - Forecast results for day #47 – 5 min lead time:  photovoltaic power values (a) and normalized error (b) 
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Fig. 16 - Forecast results for day #59 – 10 min lead time:  photovoltaic power values (a) and normalized error (b) 

 
Fig. 17 - Forecast results for day #47 – 10 min lead time:  photovoltaic power values (a) and normalized error (b) 

 

The profiles reported in Fig. 12 confirm the results reported in Tab. 3. More specifically, the analysis of the figures 

evidences how measured and forecasted profiles almost overlap in the case of one-minute lead time for both the 

considered days with very low values of the normalized errors. The overlapping remains in the case of five-minute 

lead time with still contained values of the error and slightly reduces in the case of ten-minute lead time with 

higher values of the error. Regarding the error profile of the one-minute lead time forecasting, some spikes can be 

observed in correspondence of the irregular points of the power profile (Fig. 12.b). The same behavior can be 

observed in the case of five-minute and ten-minute lead times with slightly larger spikes.  

A sensitivity analysis was performed to evaluate the effect of the choice of 𝑛𝑛𝑘𝑘 on the forecasting performance. The 

results are reported in Fig. 18, with reference to the days #47 (Figs. 18.a, 18.b and 18.c) and #59 (Figs. 18.d, 18.e 

and 18.f), where the values of RMSE and NMAPE are reported versus nk. In the figure, the results are reported 
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referring to the three lead times, i.e., one minute (Figs. 18.a and 18.d), five minutes (Figs. 18.b and 18.e) and ten 

minutes (Figs. 18.c and 18.f). 

 
Fig. 18 - RMSE and NMAPE variations vs. 𝑛𝑛𝑘𝑘 values for day #47 – 1 min lead time (a), – 5 min lead time (b) and – 10 

min lead time (c) and for day #59 – 1 min lead time (d), – 5 min lead time € and – 10 min lead time (f) 

 

Fig. 18 shows that better performance of the proposed method is obtained for low values of 𝑛𝑛𝑘𝑘. In particular, the 

minimum values of RMSE and NMAPE are reached always for 𝑛𝑛𝑘𝑘 = 1, except for the NAMPE of Fig. 18.d where 

the minimum value is reached for 𝑛𝑛𝑘𝑘 = 2. By increasing the value of  𝑛𝑛𝑘𝑘 the values of the indices increase. The 

same considerations can be drawn for the other metrics whose values are not reported here for brevity.  

 

Performance evaluation of the forecasting 

In this Section, the performance of the procedure has been evaluated by comparing its accuracy with that obtained 

by means of the i) persistence, ii) derivative-persistence and iii) ARMA methods. The comparison includes also a 

sensitivity analysis with respect to the past samples used for the forecasting. More specifically, the persistence and 

derivative-persistence methods require a fixed number of past samples, that are one and three, respectively.  

In what follows, the results of one-minute (Tab. 4), five-minute (Tab. 5) and ten-minute (Tab 6) lead time 

forecasting are reported. In the tables all the indices described above are reported except for the MAE since, in this 

application, it can be derived by multiplying the NMAPE by 100 being 10 kW the size of the plant. 

Regarding the past samples, for the ARMA and Caputo-derivative methods, a number of past samples equal to 

seven (seven minutes), 15 (15 minutes) and 30 (30 minutes) have been assumed in the case of one-minute lead 
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time. For the Caputo-derivative method also the case of three samples (three minutes) has been considered in order 

to allow comparison to the derivative-persistence method. In the case of five- and ten-minute lead times, still with 

reference to ARMA and Caputo-derivative methods, a larger lag time has been considered by using 12 (60 minutes) 

and 24 (120 minutes) samples in the case of five-minute lead time, and 12 (120 minutes) samples in the case of ten-

minute lead time. The choice of the past samples used in the tables for comparing the various methods is due to the 

minimum number of samples required by each method for the forecasting. In particular, the persistence method 

operates by using only one previous sample, the derivative persistence needs exactly three samples, the Caputo-

derivative needs three samples, at least. Caputo-derivative can also operate with different, greater numbers of past 

samples. ARMA also can operate with different number of samples, typically better operating with a higher 

number and, in the application proposed in this paper, seven has been found to be the minimum number of 

samples required. In the tables, to have a more complete comparison of the results obtained by using the Caputo 

derivative and ARMA, the results obtained by using three different values of numbers of samples for the 

forecasting are proposed. 

The results reported in the tables show the efficacy of the proposed method for the real-time forecasting of the PV 

power. Generally, all of the considered methods show comparable performance with slightly different results. 

Particularly, in some circumstances the proposed method shows the best results depending on the number of 

samples considered in the forecast. 

With reference to one-minute lead time, the results of Tab. 4 evidence that, the forecast carried out by using the 

Caputo-derivative method with three samples performs better than the persistence method in terms of RMSE. 

Regarding R it has the same value assumed in the case of persistence. Furthermore, the value of rMBE is better that 

the value it assumes with both the derivative-persistence and persistence approaches. Derivative-persistence 

method gives results better than those obtained by applying the persistence method regarding the NMAPE index. 

The Caputo-derivative also shows good performance when applied with 7, 15 and 30 samples compared to all of 

the other approaches. Particularly, the case of 30 samples gives the best results. This reveals the ability of the 

method to catch the history of the variable to be forecasted. It can be noted that, though appliable, the ARMA 

method doesn’t give good results in the case of seven samples. By increasing the number of samples, better results 

are obtained even if they are still worse than those obtained by applying the Caputo-derivative. The results of 

ARMA also show that increasing the number of past samples, a better forecast is obtained, thus reflecting a better 

estimation of the lag coefficients. 
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TAB.4 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 1 MIN 

Method Samples 
RMSE 

[W] 

NMAPE 

[%] 

rRMSE 

[%] 

rMBE 

x1e-4 [%] 
R 

 

Persistence 

 

1 (1 min) 

 

208.7251 

 

0.5652 

 

0.1569 

 

-0.2435 

 

0.9902 

Derivative-persistence 3 (3 min) 213.1019 0.5616 0.1602 -15.5737 

 

0.9898 

 

Caputo-derivative 3 (3 min) 208.7246 0.5650 0.1569 -0.0660 0.9902 

 

ARMA 

 

7 (7 min) 

 

8885.6795 

 

1.1072 

 

6.6780 

 

237.5481 

 

0.1607 

15 (15 min) 249.3366 0.6933 0.1874 -2.5908 0.9860 

30 (30 min) 224.5512 0.6332 0.1688 -1.3241 
0.9886 

 

Caputo-derivative 

 

7 (7 min) 208.7249 0.5651 0.1569 -17.9810 0.9902 

15 (15 min) 208.7248 0.5651 0.1569 -14.8004 0.9902 

30 (30 min) 208.7243 0.5651 0.1569 -0.0424 
0.9902 

 

 

With reference to the five-minute lead time (Tab. 5), by using three samples for the forecast, it still appears that 

the Caputo-derivative provides the best results in term of RMSE, and rRMSE, and the same value of the persistence 

in terms of R, while the derivative-persistence gives the best results in terms of NMAPE. By increasing the number 

of samples (7 and 12) the Caputo-derivative provides the best results for all of the indices except for the NMAPE 

for which the derivative-persistence still performs better. By further increasing the number of samples (24) the 

values of the indices slightly worsen. 
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TAB.5 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 5 MIN 

Method Samples  
RMSE 

 [W] 

NMAPE  

[%] 

rRMSE  

[%] 

rMBE 

x1e-4 [%] 
R 

Persistence 1 (5 min) 

 

247.1509 

 

1.1333 

 

0.1844 

 

-1.7182 

 

0.9860 

 

Derivative-persistence 3 (15 min) 

 

254.6339 

 

1.0987 

 

0.1899 

 

-44.6768 

 

0.9852 

 

Caputo-derivative 3 (15 min) 247.1354 1.1324 0.1843 -0.6815 0.9860 

 

ARMA 

 

7 (35 min)  

 

366.8468 

 

1.5179 

 

0.2736 

 

172.1750 

 

0.9702 

12 (60 min) 294.2581 1.3303 0.2195 92.5553 0.9808 

24 (120 min) 270.9479 1.2632 0.2021 165.900 0.9839 

 

Caputo-derivative 

7 (35 min)  247.1362 1.1328 0.1843 -0.7143 0.9860 

12 (60 min) 247.1303 1.1325 0.1843 0.5965 0.9860 

24 (120 min) 247.1524 

 

1.1328 0.1844 3.6058 0.9860 

 

 

TAB.6 PERFORMANCE INDICES EVALUATED FOR THE WHOLE FORECASTING PERIOD WITH LEAD TIME 10 MIN 

 

Method Samples 
RMSE 

[W] 

NMAPE 

[%] 

rRMSE 

[%] 

rMBE 

x1e-4 [%] 
R 

 

Persistence 

 

1 (10 min) 

 

284.0675 

 

1.6205 

 

0.2106 

 

-5.0788 
0.9814 

 

 

Derivative-persistence 

 

3 (30 min) 

 

283.6419 

 

1.5412 

 

0.2103 

 

-76.5393 

 

0.9812 
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Caputo-derivative 3 (30 min) 283.9904 1.6183 0.2106 -2.3452 0.9814 

 

ARMA 

 

7 (70 min) 

 

388.2195 

 

2.0239 

 

0.2878 

 

316.5226 

 

0.9683 

12 (120 min) 345.4801 1.8939 0.2562 319.1121 
0.9752 

 

Caputo-derivative 

 

7 (70 min) 283.9578 1.6183 0.2105 -0.1360 0.9814 

12 (120 min) 283.9036 1.6177 0.2106 4.0855 
0.9814 

 

 

The results in Tab. 6 (ten-minute lead time) generally confirm the above considerations regarding the forecasts 

with three samples, except for RMSE and rRMSE which are better in the case of the derivative-persistence method. 

In both cases, however, they are better (RMSE) or equal (rRMSE) than the values they assume in the case of 

persistence. For other numbers of samples, the Caputo-derivative provides the best results in terms of rRMBE and 

the same value of the persistence for R while the derivative-persistence method proves to be always the best 

approach in terms of the other indices.  

With reference to the different number of past samples used for the forecast, the Caputo-derivative shows always a 

robust behaviour. Compared to the ARMA method, in fact, it shows only slight performance variations with 

varying number of used past samples. Particularly, R is not affected at all by the variation of the number of past 

samples as well as it happens for NMAPE and rRMSE in the case of one-minute lead time. This means that, even 

not appropriate the choice of the number of past samples, the Caputo-derivative method gives always quite 

accurate results. 

The proposed Caputo-derivative forecasting method was also applied to the dataset used in this document at the 

aim of forecasting the maximum PV power. The results obtained showed accuracy comparable as that discussed in 

the above sections. With respect to the dataset SI1, as an example, the results related to day #15 are reported in Fig. 

19.a) A zoom referring to part of the day characterized by high irregularity is reported in Fig. 19.b). The accuracy 

of the proposed forecasting method and its feasibility clearly appear. 



 
  

 
 
 

53 
 

 

(a) 

 

(b) 

Fig. 19 - Comparison of Caputo-derivative method applied to the maximum PV power and actual 
measurements (a) and its zoom (b) 

 

7.5.3 APPLICATION OF THE BAYESIAN BOOTSTRAPPING  
Bayesian bootstrap in probabilistic PV power forecasting is applied to a data set of measured power produced by 

the PV system installed at the already mentioned reconfigurable low voltage distribution grid (ReIne laboratory 

[85]) located in Switzerland. 

The NWPs used in the experiments are taken from the European Centre for Medium-range Weather Forecast 

(ECMWF) [89]. All the NWPs belong to the midnight run, i.e., they are issued at midnight and cover the 24 hours 

of the following day. 

All the data are averaged to obtain an hourly time resolution. They are normalized to their respective minimum 

and maximum values to be processed by the forecasting models. 

Data are stored from February 1, 2016 to November 30, 2018, for a total number of 24816 occurrences. In these 

experiments, the training set covers until January 31, 2018 and it is Ω〈𝑡𝑡𝑡𝑡〉 = {𝑡𝑡: 1 ≤ 𝑡𝑡 ≤ 17544}, whereas the test set 
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covers the remaining months in 2018 and it is Ω〈𝑡𝑡𝑡𝑡〉 = {𝑡𝑡: 17545 ≤ 𝑡𝑡 ≤ 24816}. The validation set Ω〈𝑣𝑣𝑣𝑣〉 used in the 

OQ-BB procedure to optimize the extraction of the final prediction from the sample Bayesian bootstrap 

distribution is applied on a rolling monthly window: for example, the validation set Ω〈𝑣𝑣𝑣𝑣〉 = {𝑡𝑡: 16801 ≤ 𝑡𝑡 ≤

17544} that corresponds to data in January 2018 is used to optimize the extraction of the final prediction for 

February 2018, the validation set Ω〈𝑣𝑣𝑣𝑣〉 = {𝑡𝑡: 17545 ≤ 𝑡𝑡 ≤ 18264} that corresponds to data in February 2018 is 

used to optimize the extraction of the final prediction for March 2018, and so on.  

The 1-hour-ahead probabilistic forecasts are generated by 𝑄𝑄 = 19 predictive quantiles at nominal coverages 

𝛼𝛼1, … ,𝛼𝛼19 = 0.05,0.10, … ,0.90,0.95. The sample size of the Bayesian bootstrap distribution is 𝑅𝑅 = 100 and is kept 

at this value for all the experiments. All forecasts are generated using an i7-6700HQ CPU @2.60GHz equipped 

with 16 GB RAM in R, with the packages bayesboot [90], quantreg [91], qrnn [92] and gbm [93]. In any case, the 

time required to generate forecasts was in line with the requirements driven by the 1-hour lead time. Table 3 

shows the PS, the AACE and the PINAW obtained using the Bayesian-bootstrap-based forecasting systems and the 

benchmarks, averaged across the test set. Bold values in Table 7 indicate the best performance for each model 

family.  

TAB.7 PERFORMANCE OF THE PROBABILISTIC FORECASTS AVERAGED ACROSS THE TEST SET. BOLD VALUES 

INDICATE THE BEST PERFORMANCE FOR EACH MODEL FAMILY   

Model family Bootstrap Forecasting system 
Error score/index 

PS [-] AACE [%] PINAW10 [-] PINAW90 [-] 

LQR 

Bayesian 
LQR-SM-BB 0.184 2.89 0.713 11.637 

LQR-OQ-BB 0.183 1.42 0.632 11.980 

Traditional 
LQR-SM-TB 0.184 2.79 0.699 12.012 

LQR-OQ-TB 0.184 2.09 0.675 12.365 

None LQR-NB 0.186 2.99 0.749 12.312 

GBRT 

Bayesian 
GBRT-SM-BB 0.188 3.91 0.560 7.938 

GBRT-OQ-BB 0.185 0.97 0.675 11.481 

Traditional 
GBRT-SM-TB 0.192 3.10 0.684 8.289 

GBRT-OQ-TB 0.190 1.23 0.731 11.705 

None GBRT-NB 0.194 4.11 0.830 12.172 

QRNN 

Bayesian 
QRNN-SM-BB 0.188 3.64 0.797 7.135 

QRNN-OQ-BB 0.186 2.02 0.716 10.200 

Traditional 
QRNN-SM-TB 0.187 3.89 0.831 7.427 

QRNN-OQ-TB 0.186 2.08 0.782 8.985 
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None QRNN-NB 0.189 3.68 0.827 7.461 

PM1 0.522 - - - 

PM2 0.595 - - - 

 

The reliability diagrams are shown for the LQR-OQ-BB, the GBRT-OQ-BB and the QRNN-OQ-BB in Figure 20(a), 

20(b) and 20(c), respectively. The graphical inspection of the reliability diagrams denotes that forecasts are 

calibrated, as the estimated coverages tend to lie along the bisector curve. GBRT-OQ-BB forecasts only marginally 

deviate from the ideality, as confirmed by the smallest AACE index (0.97%) reported in Table 7.  

 
Fig. 20 - Reliability diagrams of the LQR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-

BB forecasts (c). 

 

LQR-OQ-BB forecasts, GBRT-OQ-BB forecasts and QRNN-OQ-BB forecasts during the first two weeks of the test 

period are plotted versus time and compared to the actual PV power in Figure 21(a), 21(b) and 21(c), respectively. 
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Fig. 21 - LQR-OQ-BB forecasts (a), GBRT-OQ-BB forecasts (b), and QRNN-OQ-BB forecasts (c) during the 

first two weeks of the test period. 
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- Results for Dataset_SI1 

The results for Dataset_SI1 are presented for a case study that was arranged to suit the real-world experimental 

framework of the optimization models. In particular, the LQR-SM-BB forecasting system was adapted to generate a 

point forecast of the maximum power producible by a controllable PV system. Since the proposal was developed 

within  a probabilistic framework, only one nominal quantile coverage (𝛼𝛼 = 0.5) is considered as the point output 

of the methodology. The forecasts are issued two-step-ahead, for all the 144 ten-minute sub-intervals of the day; 

NWPs were not included as candidate predictors. For Dataset_SI1, the selected underlying LQR model is: 

𝑃𝑃�ℎ
〈𝛼𝛼〉 = 𝛽̂𝛽0

〈𝛼𝛼〉 + 𝛽̂𝛽1
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−144

〈𝛼𝛼〉 + 𝛽̂𝛽2
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−2

〈𝛼𝛼〉 + 𝛽̂𝛽3
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−3

〈𝛼𝛼〉 + 𝛽̂𝛽4
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−4

〈𝛼𝛼〉 + 𝛽̂𝛽5
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−5

〈𝛼𝛼〉 + 𝛽̂𝛽6
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−6

〈𝛼𝛼〉 + 
         +𝛽̂𝛽7

〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−144
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−2

〈𝛼𝛼〉 + 𝛽̂𝛽8
〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−144

〈𝛼𝛼〉 ∙ 𝑃𝑃ℎ−6
〈𝛼𝛼〉 .      

(50) 

The number of predictors of the selected model is therefore 𝑀𝑀𝑡𝑡𝑡𝑡 = 8, and two of them are obtained as 
interacting predictors.  

Table 8 shows the MAE and the RMSE calculated for the point forecasts of the maximum PV power, obtained 

through the LQR-SM-BB and the Persistence Model, during one day (144 forecast issues) of the test period 

characterized by adverse weather conditions. As seen, LQR-SM-BB returns a MAE (RMSE) that is about 8.8% 

(8.0%) smaller than the benchmark for this dataset, too. Fig. 22 shows the maximum PV power pattern and the 

forecasted values. 

TAB.8 FORECAST RESULTS FOR ONE DAY (144 FORECAST ISSUES) OF THE TEST SET OF DATASET_SI1 

Method MAE [-] RMSE [-] 
LQR-SM-BB 5.53 12.58 

PM 6.07 13.67 

 
Fig. 22 - Fig. LQR-SM-BB predictions during one day, characterized by adverse weather conditions, of the test 

set of Dataset_SI1. 
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7.5.4 APPLICATION OF THE HIERARCHICAL PROBABILISTIC ELECTRIC VEHICLE 

LOAD FORECASTING  
The data used for the experiments are discussed in Section 7.2 and span three years from July 1, 2015 to June 30, 

2018. As discussed above, for the particular structure of the hierarchical forecasting system it is necessary to 

reserve a portion (individuated by the index set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐵𝐵〉 ) of the available data to train the baseline models and another 

portion (individuated by the index set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 )  to train the hierarchical PLQR model upon the predictions generated 

by the baseline models. To allow the out-of-sample assessment of the forecasting skill in the experimental 

framework, it is also mandatory to reserve some data (individuated by the index set Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) only to test the 

performance of the forecasting system.  

In the experiments presented here, Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐵𝐵〉  includes roughly 50% of the available data, Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐻𝐻〉   includes roughly 30% of 

the available data and Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 includes roughly 20% of the available data. The first one and half year (July 1, 2015 to 

December 31, 2016) is reserved for training the baseline models (i.e, making up the set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐵𝐵〉  of 13200 points). 

Another year of data (the entire year 2017) is reserved to train the hierarchical model (i.e., making up the set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉  

of 8760 points). The remaining half year (first six months of 2018) is reserved for testing the results (i.e., making up 

the set Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  of 4344 points).  

In the framework considered in this research, baseline forecasts are issued for the training set Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉  and the test set 

Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , therefore the error indices and diagrams are calculated on the set Ω = {Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 ,Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}. Hierarchical forecasts are 

issued for the test set Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  only, therefore the error indices and diagrams are calculated on the set Ω = Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

Probabilistic forecasts for low-level and high-level regions are provided by 𝑄𝑄 = 9 predictive quantiles at 0.1, 0.2, 

..., 0.9 nominal coverages. Two different forecasting frameworks, i.e., hour-ahead forecasting (with lead time 𝑘𝑘 = 1 

hour) and day-ahead forecasting (with forecast origin at midnight of the day before the actual energy consumption, 

and lead times 𝑘𝑘 = 1,2, … ,24 hours), are considered in the experiments in order to evaluate the proposal in 

different practical implementations. 

Assessment of hour-ahead baseline forecasts 

Table 9 shows the PS and the AACE% of hour-ahead baseline probabilistic forecasts, averaged on the set Ω =

{Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 ,Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}. Bold values in Table 9 denote the smallest achieved indices for each region. The AACE% of BPersB is 

not presented, since this persistence-based benchmark generates the same predictive quantiles for each nominal 

coverage. 

The baseline forecasts generated with the PCA pre-processing are more skilled than the corresponding “no PCA” 

forecasts in three upon four regions. The PS improvements are in the ranges 1% to 7.5% (Noordoost region), 1.5% 
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to 11% (Rijnmond region), and 2% to 9% (Zuidoost region). Utrecht region is the only exception to this behavior; 

it is worth noting however that the PS of GBRT forecasts is practically the same with (14.47 kWh) and without 

(14.46 kWh) PCA.  

On average across the four regions, the GBRT baseline returns the most accurate forecasts, although GBRT, QRF 

and QRNN baseline forecasts give PS that are very close in all the four low-level regions. The improvement with 

respect to the seasonal BPersB ranges from 36% to 43%. 

 

TAB.9 RESULTS OF HOUR-AHEAD BASELINE FORECASTS AT LOW-LEVEL REGIONS. 

Model 

Low-level region 

Noordoost Rijnmond Utrecht Zuidoost 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

GBRT baseline 18.07 1.55 22.30 1.67 14.47 2.94 17.51 1.40 

QRF baseline 18.15 1.40 22.54 0.20 14.71 2.86 17.55 0.68 

QRNN baseline 18.17 1.94 22.38 2.12 14.56 2.48 17.48 1.84 

GBRT no PCA 18.23 2.06 22.64 3.18 14.46 2.37 17.90 1.35 

QRF no PCA 18.55 3.11 23.33 3.44 14.73 1.36 18.40 2.05 

QRNN no PCA 19.64 4.66 25.12 6.54 15.23 2.39 19.17 5.00 

BPersB 28.34 - 38.84 - 22.85 - 30.75 - 

*The most favorable value of the performance index in each column is highlighted in bold font 

 

In order to evaluate the reliability of the hour-ahead baseline forecasts and as an example of the obtained results, 

Figure 23 shows the reliability diagrams of the GBRT, QRF and QRNN hour-ahead baseline forecasts for the EV 

load of Noordoost region, plotted against the ideal reliability bisector. The diagrams are very close to the ideal 

bisector, with the only exception of the extreme left and right coverages of the QRNN forecasts, which are 

respectively underestimated and overestimated.  

Figure 24 shows the GBRT (Figure 24(a)), QRF (Figure 24(b)) and QRNN (Figure 24(c)) baseline forecasts against 

the actual EV load of Noordoost region during the second week of the test period. 
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Fig. 23 - Reliability diagrams of the hour-ahead baseline forecasts for the EV load of Noordoost region. 
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Fig. 24 - GBRT (a), QRF (b), and QRNN (c) hour-ahead baseline forecasts and actual EV load of Noordoost 

region during the 2nd week of the test period. 
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Assessment of hour-ahead hierarchical forecasts 

Table 10 shows the PS and the AACE% of hour-ahead hierarchical probabilistic forecasts averaged on the set Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

Bold values in Table 10 denote the smallest achieved indices for each low-level model. The AACE% of HPersB is 

not presented since this persistence-based benchmark generates the same predictive quantiles for each nominal 

coverage. 

The PLQR proposal returns the smallest PS no matter which is the underlying probabilistic model used for 

generating the low-level EV load forecasts. It is also the most reliable model in two upon three cases. 

The hierarchical approach returns more skilled forecasts than the “direct” approach by about 3.5% PS (QRF case) 

up to about 8% PS (GBRT case). As expected, the simple sum-and-sort (SaS) of homologous quantiles proves to be 

less skilled and very unreliable, as the AACE% is always beyond 7%. Results of the hierarchical approach without 

penalization (NPLQR) and without recent observations (PLQR no recency) are very close, but still are 

outperformed by the PLQR proposal. The improvement with respect to the persistence-based HpersB is about 54% 

in the three considered cases.  

TAB.10  RESULTS OF HOUR-AHEAD HIERARCHICAL FORECASTS AT HIGH-LEVEL REGION. THE MOST 

FAVORABLE VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT 

Model 

GBRT QRF QRNN 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PLQR proposal 41.57 1.07 41.35 0.36 42.13 1.75 

Direct 45.29 1.63 42.91 1.42 43.59 1.95 

SaS 46.62 7.29 48.92 9.50 44.92 8.17 

NPLQR 43.38 1.45 44.18 0.88 42.68 1.14 

PLQR no recency 43.28 1.74 44.09 0.83 42.63 1.49 

HPersB 89.87 - 89.87 - 89.87 - 

 

In order to evaluate the reliability of the hour-ahead hierarchical forecasts and as an example of the obtained 

results, Figure 25 shows the reliability diagrams of the PLQR proposal applied on GBRT, QRF and QRNN baseline 

forecasts, plotted against the ideal reliability bisector. In this case, the diagrams are all very close to the ideal 

bisector, no matter which is the underlying probabilistic model; the QRF-based hierarchical forecasts deviate less 

than the others from the ideal line.    
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Fig. 25 - Reliability diagrams of the PLQR hour-ahead forecasts for the high-level EV load. 

 

Figure 26 respectively shows the PLQR forecasts applied on GBRT (Figure 26(a)), QRF (Figure 26(b)) and QRNN 

(Figure 26(c)) baseline forecasts against the actual high-level EV load during the second week of the test period.    
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Fig. 26 - Hour-ahead PLQR on GBRT (a), QRF (b), and QRNN (c) baseline forecasts and actual high-level EV 

load during the 2nd week of the test period. 
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Assessment of day-ahead baseline and hierarchical forecasts 

Day-ahead baseline and hierarchical forecasts are assessed in this sub-Section in a more compact form, as they are 

intended for comparative purposes. Table 11 shows the PS and the AACE% of day-ahead baseline probabilistic 

forecasts averaged on the set Ω = {Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐻𝐻〉 ,Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}. Bold values in Table 11 denote the smallest achieved indices for 

each region. The AACE% of BPersB is not presented, since this persistence-based benchmark generates the same 

predictive quantiles for each nominal coverage. 

The baseline forecasts generated with the PCA pre-processing are more skilled than the corresponding “no PCA” 

forecasts in all the four regions. The PS improvements are in the ranges 0% to 5% (Noordoost region), 0.5% to 9% 

(Rijnmond region), 0.5% to 5% (Utrecht region), and 1.5% to 9.5% (Zuidoost region). On average, the GBRT 

baseline returns the most skilled forecasts for the four regions, although GBRT, QRF and QRNN baseline forecasts 

give PS that are very close in all the four low-level regions. The improvement with respect to the BPersB ranges 

from 39% to 40%, which are values close to the hour-ahead case, indicating that the proposal is efficient in all the 

considered short-term forecasting horizons. 

 

TAB.11  RESULTS OF DAY-AHEAD BASELINE FORECASTS AT LOW-LEVEL REGIONS. THE MOST FAVORABLE 

VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT 

Model 

Low-level region 

Noordoost Rijnmond Utrecht Zuidoost 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

GBRT baseline 27.60 3.51 32.25 2.92 20.65 4.53 25.56 1.89 

QRF baseline 27.87 3.28 32.78 2.63 21.12 4.82 25.54 1.19 

QRNN baseline 27.79 3.81 32.92 4.93 20.61 4.06 26.24 1.83 

GBRT no PCA 27.60 3.25 32.35 3.03 20.74 4.85 25.94 1.99 

QRF no PCA 28.15 3.98 33.34 2.91 21.17 4.07 26.19 1.79 

QRNN no PCA 29.13 4.80 36.20 5.59 21.77 4.32 29.03 7.77 

BPersB 45.18 - 52.73 - 33.86 - 42.53 - 

 

Table 12 shows the PS and the AACE% of day-ahead hierarchical probabilistic forecasts averaged on the set Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

Bold values in Table 12 denote the smallest achieved indices for each low-level model. The AACE% of HPersB is 
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not presented, since this persistence-based benchmark generates the same predictive quantiles for each nominal 

coverage. 

The PLQR proposal returns the smallest PS no matter which is the underlying probabilistic model used for 

generating the low-level EV load forecasts. It is also the most reliable model in two upon three cases. These 

outcomes match what was evidenced for the hour-ahead scenario. 

The hierarchical approach returns more skilled forecasts than the “direct” approach by about 6.5% PS (GBRT case) 

up to about 9.5% PS (QRNN case). As expected, the simple sum-and-sort of homologous quantiles (SaS) proves to 

be less skilled and very unreliable, as the AACE% is always beyond 8%. Results of the hierarchical approach 

without penalization (NPLQR) and without recent observations (PLQR no recency) are very close, but still are 

outperformed by the PLQR proposal. The improvement with respect to the persistence-based HPersB is about 39% 

in the three considered cases, which is a smaller improvement than the one obtained in the hour-ahead scenario, 

although still suggesting that the proposal enables skilled forecasts in the entire day-ahead scenario.  

 

TAB.12 RESULTS OF DAY-AHEAD HIERARCHICAL FORECASTS AT HIGH-LEVEL REGION. THE MOST FAVORABLE 

VALUE OF THE PERFORMANCE INDEX IN EACH COLUMN IS HIGHLIGHTED IN BOLD FONT. 

Model 

GBRT QRF QRNN 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PS  

[kWh] 

AACE% 

[%] 

PLQR proposal 69.64 1.32 69.88 1.38 70.47 1.54 

Direct 74.44 1.69 75.47 1.14 77.82 2.03 

SaS 74.43 8.13 76.32 8.65 77.42 8.77 

NPLQR 71.57 2.16 73.30 1.64 72.86 1.56 

PLQR no recency 71.40 1.86 73.29 1.69 73.34 1.69 

HPersB 114.85 - 114.85 - 114.85 - 

 

Figure 27 shows the reliability diagrams of the PLQR proposal applied on GBRT, QRF and QRNN baseline 

forecasts, plotted against the ideal reliability bisector. All forecasts are very reliable, and they follow the same 

pattern across the nominal coverages.  
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Fig. 27 - Reliability diagrams of the PLQR day-ahead forecasts for the high-level EV load. 

 

8. COMPARISON WITH EXPECTED RESULTS 
The activities related to Task 2.1 dealt with the design of databases of variables which allowed creating the 

dataset to be used to test the performance of the forecasting systems. 

The activities related to Task 2.3 focused on the development of the real-time forecasting system. Several 

methods have been proposed and those based on data-driven ensemble approaches were exploited and validated to 

be used in the experimental stages of the project.  

The activities related to the Task 2.4 allowed refining and revisiting the real-time forecasting systems with respect 

to the requirements of the optimization framework curried out in the other WPs. 

Part of these activities were carried out in strict interaction with the partner University of Naples Parthenope 

for the data collection, data pre-processing and exploratory data analysis and for the theoretical development of the 

forecasting systems, and with the partner HEIG-VD for the acquisition of measurements available at the test 

distribution network at the ReIne laboratory. 

The results obtained in this phase are coherent to the expected results. 
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APPENDIX  
In this Section the baseline models used in the methods shown in the report are briefly recalled.  

 

Linear Quantile Regression model  

An LQR model allows estimating the cumulative distribution function of the PV power by means of a linear 

relationship between the power and informative predictors [19]. The linear relationship is established between the 

predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power and the predictors 𝒛𝒛ℎ = {𝑧𝑧ℎ,1, … , 𝑧𝑧ℎ,𝑁𝑁} through a set of model parameters 

𝜷𝜷〈𝛼𝛼𝑞𝑞〉 = �𝛽𝛽0
〈𝛼𝛼𝑞𝑞〉, … ,𝛽𝛽𝑁𝑁

〈𝛼𝛼𝑞𝑞〉� which have to be estimated. Both quantile and predictors refer to the time horizon ℎ, and 

the forecast lead time 𝑘𝑘 is assumed for predictors, i.e., their values are available at ℎ − 𝑘𝑘, that is the forecast origin. 

For ease of notation, in what follows the forecast lead time 𝑘𝑘 is not included in the symbols. The linear relationship 

imposed by a generic QR model is provided by: 

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉� = 𝛽𝛽0

〈𝛼𝛼𝑞𝑞〉 + ∑ 𝛽𝛽𝑛𝑛
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑧𝑧ℎ,𝑛𝑛

𝑁𝑁
𝑛𝑛=1  ,                 (51) 

 

where the vector  𝜷𝜷〈𝛼𝛼𝑞𝑞〉 = �𝛽𝛽0
〈𝛼𝛼𝑞𝑞〉, … ,𝛽𝛽𝑁𝑁

〈𝛼𝛼𝑞𝑞〉� includes the 𝑁𝑁 + 1 parameters of the LQR model. The estimated values 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 of 𝜷𝜷〈𝛼𝛼𝑞𝑞〉 derive from the model training obtained by the minimization of a proper score evaluated respect to a 

known data set (i.e., the supervised training set that includes 𝑀𝑀𝑡𝑡𝑡𝑡 training PV power samples 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 = {𝑃𝑃𝑡𝑡 , 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑡𝑡〉} 

and the corresponding predictors 𝒁𝒁〈𝑡𝑡𝑡𝑡〉 = {𝒛𝒛𝑡𝑡 , 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑡𝑡〉}.  

The PS is used for this purpose. PS is a score calculated on the training samples 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 and on the corresponding 

𝑀𝑀𝑡𝑡𝑡𝑡 𝛼𝛼𝑞𝑞-quantiles 𝑷𝑷〈𝑡𝑡𝑡𝑡〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑡𝑡〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉� = �𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�, 𝑡𝑡 ∈ Ω〈𝑡𝑡𝑡𝑡〉� given by the LQR model: 

 

𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝑷𝑷〈𝑡𝑡𝑡𝑡〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑡𝑡〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�� = 1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 =  

1
𝑀𝑀𝑡𝑡𝑡𝑡

∑ �𝛼𝛼𝑞𝑞 − I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��� ∙ �𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡

〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,      (52) 

 

where I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�� is the indicator function that depends on condition in the brackets: 

 I �𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�� = �

1   if 𝑃𝑃𝑡𝑡 ≤ 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�

0   if 𝑃𝑃𝑡𝑡 > 𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛𝑡𝑡  | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉�.

           (53) 
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The estimated parameter vector 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 is eventually given by: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = argmin
𝜷𝜷〈𝛼𝛼𝑞𝑞〉

 𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝑷𝑷〈𝑡𝑡𝑡𝑡〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑡𝑡〉 | 𝜷𝜷〈𝛼𝛼𝑞𝑞〉��,       (54) 

 

i.e., it is a function of 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 and 𝒁𝒁〈𝑡𝑡𝑡𝑡〉: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉�.          (55) 

 

The LQR predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the time horizon ℎ, returned by using the estimated 

parameters, consequently depends on 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 and 𝒁𝒁〈𝑡𝑡𝑡𝑡〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ | 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉�� = 𝛽̂𝛽0

〈𝛼𝛼𝑞𝑞〉 + ∑ 𝛽̂𝛽𝑛𝑛
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑧𝑧ℎ,𝑛𝑛

𝑁𝑁
𝑛𝑛=1 .        (56) 

 

Gradient Boosting Regression Trees  

G GBRTs focus on the functional dependence 𝑓𝑓〈𝛼𝛼𝑞𝑞〉(∙) between the response variable (the predictive 𝛼𝛼𝑞𝑞-quantile 

of PV power)  𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 and the corresponding predictors 𝒛𝒛ℎ:  

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ) .           (57) 

 

Assuming 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 to be unknown, the predictive 𝛼𝛼𝑞𝑞-quantile of PV power depends on the function 𝑓𝑓〈𝛼𝛼𝑞𝑞〉, i.e., 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ

〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝑓𝑓〈𝛼𝛼𝑞𝑞〉) . An estimation 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 of 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 can be obtained by minimizing the PS over the training data 

[94]: 

 

𝑓𝑓〈𝛼𝛼𝑞𝑞〉 = argmin
𝑓𝑓〈𝛼𝛼𝑞𝑞〉

  𝑃𝑃𝑃𝑃�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝑷𝑷〈𝑡𝑡𝑡𝑡〉,〈𝛼𝛼𝑞𝑞〉�𝒁𝒁〈𝑡𝑡𝑡𝑡〉 | 𝑓𝑓〈𝛼𝛼𝑞𝑞〉�� .            (58) 

 

The iterative procedure for solving (48) starts at iteration 𝑗𝑗 = 0 by initializing 𝑓𝑓〈0〉 at the constant value: 

 

𝑓𝑓〈0〉
〈𝛼𝛼𝑞𝑞〉 = 𝜌𝜌�〈0〉

〈𝛼𝛼𝑞𝑞〉 = argmin
𝜌𝜌

∑ 𝑃𝑃𝑃𝑃[𝑃𝑃𝑡𝑡 ,𝜌𝜌]𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .         (59) 
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The GBRT iterative procedure at the iteration 𝑗𝑗 > 0 uses gradient descent to create new learners and the new 

estimation is made through the negative gradient, that is the negative partial derivative of the PS loss function 

evaluated for the 𝑚𝑚th historical observation 𝑃𝑃𝑡𝑡: 

 

𝑔𝑔𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) = −�

𝜕𝜕𝜕𝜕𝜕𝜕�𝑃𝑃𝑡𝑡,𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)� 

𝜕𝜕𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)

�
𝑓𝑓〈𝑗𝑗−1〉
〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)=𝑓̂𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡)

�.       (60) 

   

The weak learner to make predictions is a regression tree fitted on a random subsample extracted from the 

original data, using the negative gradients as response variables and the predictors as input variables. More 

specifically, the predicted value 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 for the 𝑡𝑡th negative gradient, given the predictors 𝒛𝒛𝑡𝑡, can be written as: 

 

𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) = ∑ 𝑔̅𝑔〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉�

𝑆𝑆
𝑠𝑠=1 ,              (61) 

 

where 𝑔̅𝑔〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 is the average of the negative gradient values contained in the 𝑠𝑠th leaf of the fitted tree, 𝑆𝑆 is the total 

number of leaves, ℛℓ〈𝑠𝑠〉 is the rectangular subspace domain corresponding to the 𝑠𝑠th terminal leaf ℓ〈𝑠𝑠〉, and the 

indicator function assumes value 1 if predictors 𝒛𝒛𝑡𝑡 belong to the subspace ℛℓ〈𝑠𝑠〉 (or, equivalently, if predictors 𝒛𝒛𝑡𝑡 

individuate the 𝑠𝑠th leaf on the fitted tree), and 0 otherwise. At the 𝑗𝑗th iteration the updated weak learner is given 

by: 

  

𝑓𝑓〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 + 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,           (62) 

 

where 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 is the gradient descent step size to update the estimate of 𝑓𝑓〈𝛼𝛼𝑞𝑞〉 at the 𝑗𝑗th iteration. The gradient descent 

is obtained by adding the outcome of the regression tree, 𝜌𝜌 ∙ 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡),  to the previous estimate 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 , in order to 

get an improved estimate, i.e.:  

 

𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = argmin

𝜌𝜌
∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 , 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡) + 𝜌𝜌 ∙ 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡)�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .             (63) 
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Since the value 𝑔𝑔�𝑡𝑡
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛𝑡𝑡) is constant in the terminal leaf individuated by 𝒛𝒛𝑡𝑡 (i.e. it is the average of the negative 

gradient values contained in the unique 𝑠̃𝑠th leaf, ℓ〈𝑠̃𝑠(𝒛𝒛𝑡𝑡)〉, individuated by 𝒛𝒛𝑡𝑡),  the problem in (27) can be solved 

separately for each 𝑠𝑠th leaf subspace [95], yielding the simplified expression [96]:  

 

𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 = argmin

𝜌𝜌
∑ �𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 , 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 (𝒛𝒛𝑡𝑡) + 𝜌𝜌� ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉��𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 .             (64) 

 

Hence, at the 𝑗𝑗th iteration, the updated weak learner can be expressed as: 

  

𝑓𝑓〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉 = 𝑓𝑓〈𝑗𝑗−1〉

〈𝛼𝛼𝑞𝑞〉 + 𝜐𝜐 ∙ ∑ 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 ∙ I�𝒛𝒛𝑡𝑡 ∈ ℛℓ〈𝑠𝑠〉�

𝑆𝑆
𝑠𝑠=1 ,              (65) 

 

where 𝜐𝜐 is the weight of each learner (called shrinkage or leaning rate), whose value is strictly related to the 

optimal number of iterations [97] since smaller values involve more iterations and usually more skilled forecasts 

[98].  

An ending condition for the iterative procedure is reaching values of 𝜌𝜌�〈𝑗𝑗〉
〈𝛼𝛼𝑞𝑞〉,〈𝑠𝑠〉 smaller than a given threshold. 

Assuming that this is obtained at the iteration 𝚥𝚥,̅ the prediction is: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝑓𝑓〈𝚥̅𝚥〉

〈𝛼𝛼𝑞𝑞〉) = 𝑓𝑓〈𝚥̅𝚥〉
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ) ,          (66) 

 

and, since it is easy to verify that that 𝑓𝑓〈𝚥̅𝚥〉
〈𝛼𝛼𝑞𝑞〉 is estimated upon training data 𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉, the GBRT predictive 𝛼𝛼𝑞𝑞-

quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the time horizon ℎ, consequently depends on 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 and 𝒁𝒁〈𝑡𝑡𝑡𝑡〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 �𝒛𝒛ℎ | 𝑓𝑓〈𝚥̅𝚥〉

〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉�� = 𝑓𝑓〈𝚥̅𝚥〉
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ).         (67) 

 

Quantile Regression Neural Network  

QRNN exploits a neural network to generate predictive quantiles of PV power. It estimates conditional 

quantiles for specified values of quantile probability using regression equations and reproducing the behaviour of 

human brain to discern among the informative inputs and to produce an output. An efficient approach is the 

Monotone Composite Quantile Regression Neural Network (MCQRNN) proposed in [81] which is based on the 
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Multi-Layer Perceptron (MLP) neural network with partial monotonicity. It assumes the predictive 𝛼𝛼𝑞𝑞-quantile 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power coming from a weighted combination of 𝐿𝐿 hidden layer outputs:  

 

𝑃𝑃ℎ
〈𝛼𝛼𝑞𝑞〉(𝒛𝒛ℎ|𝝑𝝑〈𝛼𝛼𝑞𝑞〉) = ∑ �Φ �∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝑒𝑒

𝛾𝛾𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ1 + ∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝛾𝛾𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ2 + 𝜏𝜏𝑙𝑙
〈𝛼𝛼𝑞𝑞〉� ∙ 𝑒𝑒𝜇𝜇𝑙𝑙

〈𝛼𝛼𝑞𝑞〉
�𝐿𝐿

𝑙𝑙=1 + 𝜀𝜀〈𝛼𝛼𝑞𝑞〉,    (68) 

 

where Φ(∙) is the function applied by each of the 𝐿𝐿 neurons in the network hidden layer (in this paper, the 

hyperbolic tangent function), Ξ1 is the set of indices for predictors monotonically increasing with the predictors, 

Ξ2 is the corresponding set of indices for predictors without monotonicity constraints (note that 𝒛𝒛ℎ = {𝑧𝑧ℎ,𝑐𝑐, 𝑐𝑐 ∈

Ξ1} ∪ {𝑧𝑧ℎ,𝑐𝑐 , 𝑐𝑐 ∈ Ξ2}), and 𝜸𝜸1
〈𝛼𝛼𝑞𝑞〉, … ,𝜸𝜸𝐿𝐿

〈𝛼𝛼𝑞𝑞〉, 𝝁𝝁〈𝛼𝛼𝑞𝑞〉 = {𝜇𝜇1
〈𝛼𝛼𝑞𝑞〉, … , 𝜇𝜇𝐿𝐿

〈𝛼𝛼𝑞𝑞〉}, 𝝉𝝉〈𝛼𝛼𝑞𝑞〉 = {𝜏𝜏1
〈𝛼𝛼𝑞𝑞〉, … , 𝜏𝜏𝐿𝐿

〈𝛼𝛼𝑞𝑞〉}, and 𝜀𝜀〈𝛼𝛼𝑞𝑞〉 are the 

parameters (all included in the vector 𝝑𝝑〈𝛼𝛼𝑞𝑞〉, for clarity of representation) of the QRNN.  

These parameters are once again estimated set by minimizing the PS over a training dataset [81], i.e., by solving 

the following constrained optimization problem: 

 

𝝑𝝑�〈𝛼𝛼𝑞𝑞〉  = argmin
𝝑𝝑〈𝛼𝛼𝑞𝑞〉

∑ 𝑃𝑃𝑃𝑃 �𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�𝑡𝑡∈Ω〈𝑡𝑡𝑡𝑡〉 ,  

s.t.               (69) 

𝜕𝜕𝑃𝑃𝑡𝑡
〈𝛼𝛼𝑞𝑞〉

𝜕𝜕𝑧𝑧𝑡𝑡,𝑐𝑐
≥ 0,     ∀𝑐𝑐 ∈ Ξ1.            

 

It is easy to verify that that parameters 𝝑𝝑�〈𝛼𝛼𝑞𝑞〉 are estimated upon training data 𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉. The QRNN predictive 

𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power for the time horizon ℎ consequently depends on 𝑷𝑷〈𝑡𝑡𝑡𝑡〉 and 𝒁𝒁〈𝑡𝑡𝑡𝑡〉, too:  

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�𝒛𝒛ℎ | 𝝑𝝑�〈𝛼𝛼𝑞𝑞〉�𝑷𝑷〈𝑡𝑡𝑡𝑡〉,𝒁𝒁〈𝑡𝑡𝑡𝑡〉�� = ∑ �Φ �∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝑒𝑒

𝛾𝛾�𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ1 + ∑ 𝑧𝑧ℎ,𝑐𝑐 ∙ 𝛾𝛾�𝑐𝑐,𝑙𝑙
〈𝛼𝛼𝑞𝑞〉

𝑐𝑐∈Ξ2 + 𝜏̂𝜏𝑙𝑙
〈𝛼𝛼𝑞𝑞〉� ∙ 𝑒𝑒𝜇𝜇�𝑙𝑙

〈𝛼𝛼𝑞𝑞〉
�𝐿𝐿

𝑙𝑙=1 + 𝜀𝜀̂〈𝛼𝛼𝑞𝑞〉.  (70) 

 

Quantile Regression Forests 

QRF allows estimating the conditional quantiles of the response variable 𝑃𝑃𝑖𝑖  (in this paper, the EV load at the 𝑖𝑖th 

region) given the predictors 𝒙𝒙𝑖𝑖,ℎ [81]. In this case, conditional quantiles are not obtained by minimizing a loss 

function but rather they are given by building several trees in a random forest. QRFs approximate the value of the 

predictive conditional cumulative distribution 𝐹𝐹�(𝑃𝑃𝑖𝑖,ℎ ≤ 𝑃𝑃∗|𝒙𝒙𝑖𝑖,ℎ) in the point 𝑃𝑃∗ as a weighted mean of the training 

observations that are smaller than 𝑃𝑃∗: 



 
  

 
 
 

74 
 

 

𝐹𝐹�(𝑃𝑃𝑖𝑖,ℎ ≤ 𝑃𝑃∗|𝒙𝒙𝑖𝑖,ℎ) = ∑ �𝜔𝜔𝑛𝑛(𝒙𝒙𝑖𝑖,ℎ) ∙ I�𝑃𝑃𝑖𝑖 ,𝑛𝑛 ≤ 𝑃𝑃∗��𝑛𝑛∈Ω𝑡𝑡𝑡𝑡𝑡𝑡
〈𝐵𝐵〉 ,       (71) 

 

where I�𝑃𝑃𝑖𝑖 ,𝑛𝑛 ≤ 𝑃𝑃∗� is a function which assumes value 1 if  𝑃𝑃𝑖𝑖,𝑛𝑛 ≤ 𝑃𝑃∗, and 0 otherwise. In (71) the weights 𝜔𝜔𝑛𝑛(𝒙𝒙𝑖𝑖,ℎ) 

are given, assuming that there are 𝑇𝑇 trees in the forest, by: 

𝜔𝜔𝑛𝑛(𝒙𝒙𝑖𝑖,ℎ) = 1
𝑇𝑇
∙ ∑

I�𝒙𝒙𝑖𝑖,𝑛𝑛 ∈ ℛ
ℓ〈𝑠𝑠�𝑡𝑡(𝒙𝒙𝑖𝑖,ℎ)〉�

∑ I�𝒙𝒙𝑖𝑖,𝑛𝑛 ∈ ℛ
ℓ〈𝑠𝑠�𝑡𝑡(𝒙𝒙𝑖𝑖,ℎ)〉�𝑛𝑛∈Ω𝑡𝑡𝑡𝑡𝑡𝑡

〈𝐵𝐵〉

𝑇𝑇
𝑡𝑡=1          (72) 

 

where ℛℓ〈𝑠𝑠�𝑡𝑡(𝒙𝒙𝑖𝑖,ℎ)〉 ⊆ ℝ𝐴𝐴 (𝐴𝐴 being the cardinality of predictors) is the rectangular subspace domain corresponding to 

the terminal leaf ℓ〈𝑠̃𝑠𝑡𝑡(𝒙𝒙𝑖𝑖,ℎ)〉 individuated by dropping 𝒙𝒙𝑖𝑖,ℎ down the 𝑡𝑡th tree.  

The predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼𝑞𝑞〉 is the 𝛼𝛼𝑞𝑞-quantile of the continuous predictive cumulative distribution 

𝐹𝐹�(𝑃𝑃𝑖𝑖,ℎ ≤ 𝑃𝑃∗|𝒙𝒙𝑖𝑖,ℎ), defined in terms of probability (equal to 𝛼𝛼𝑞𝑞) of 𝑃𝑃𝑖𝑖,ℎ being smaller than 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼𝑞𝑞〉 for given predictors 

𝒙𝒙𝑖𝑖,ℎ: 

 

𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼𝑞𝑞〉 = inf�𝑃𝑃∗ ∶  𝐹𝐹�(𝑃𝑃𝑖𝑖,ℎ ≤ 𝑃𝑃∗|𝒙𝒙𝑖𝑖,ℎ) ≥ 𝛼𝛼𝑞𝑞�.        (73) 

 

The quantile extraction is iterated 𝑄𝑄 times for different quantile coverages, allowing for generating probabilistic 

forecasts of the EV load at the 𝑖𝑖th region as a set of 𝑄𝑄 predictive quantiles 𝑃𝑃�𝑖𝑖,ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�𝑖𝑖,ℎ

〈𝛼𝛼𝑄𝑄〉.  
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