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1. INTRODUCTION 
This report is a deliverable of the research project DiGriFlex (Real-Time Distribution Grid Control and Flexibility 

Provision under Uncertainties) and is related to the activities to carry out in the framework of the work package 

WP2: “Development of appropriate day-ahead and real-time forecasting systems for renewable generation and 

loads”. In particular, this report includes the results of the research activities carried out within Task 2.1 (“Data 

collection, data pre-processing and exploratory data analysis”) and Task 2.2 (“Development of day-ahead forecasting 

systems for renewable generation and loads”).  

a) With reference to Task 2.1 the activities included: 

- the collection of time series that include both target variables and predictor variables; 

- the description of methods to pre-process the data to eliminate outliers and bad values; 

- the exploratory data analysis in order to discard uninformative predictors. 

b) With reference to Task 2.2 the activities included: 

- the development of methods and models based on multiple linear regression and random forests 

- the identification of the best combination type for the underlying models in the ensemble approach 

- the comparison between the results obtained applying the proposed approach and the ones given by the 

relevant state-of-the-art benchmarks 

Activities in a) included all the data collection and data pre-processing tasks that were necessary to create a large 

robust database of variables which could be exploited to develop forecasting systems for renewable generation and 

loads. Accounting for the fact that the forecasting methodology will be integrated in the grid optimization models 

that are object of the WP3, the data collection and pre-processing targeted variables collected at the site of the 

installation of the test distribution grid of the ReIne laboratory. Other variables that were not available at the site of 

installation of the test distribution grid of the ReIne laboratory were taken from the literature and/or collected at 

different sites, in order to develop the forecasting systems.  

Activities in a) were also devoted at making exploratory data analyses in order to individuate variables that are 

informative for the target variables (either renewable power generation or loads), as per building the input datasets 

for the forecasting systems developed in the Task 2.2. The effort required to individuate the informative variables 

significantly depend on the arrangement of the forecasting system, thus the activities in a) devoted to exploratory 

data analysis were developed in strict interaction with the activities in b) devoted to the development of forecasting 

systems.  

Summarizing, the research activities completed in the Task 2.2 resulted in:  
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i. the collection of large, robust datasets of PV power generation and weather variables at the site of 

installation of the test distribution grid of the ReIne laboratory; 

ii. the collection of large, robust datasets of wind power generation, industrial loads and weather variables 

available from the relevant literature and from public databases; 

iii. the pre-processing of the collected data, aiming at individuating and correcting missing data, bad data 

and outliers; 

iv. the exploratory data analysis to reduce the dimensionality of the input datasets, favoring the 

development of adequate forecasting systems for renewable generation and load. 

Activities in b) included the development of methods and models able to obtain accurate day-ahead forecasting 

for renewable generation (wind and photovoltaic (PV) forecasting) and loads (active and reactive power). In addition, 

also the optimal operation of microgrids in presence of uncertainties is considered and the impact of inputs’ 

forecasting error is analyzed in depth. 

The widely spread of the generation systems based on wind and solar primary sources across MV and LV 

distribution systems lead to the need of methods able to predict the wind and photovoltaic generated power. In fact, 

since the uncertain nature of the solar and wind energy resource, PV and wind power forecasting models are crucial 

in any energy management system for smart distribution networks. On the other hand, industrial load takes a big 

portion of the total electricity demand. Skilled industrial load forecasts allow for optimally exploiting energy 

resources, managing the reserves, and market bidding, which are beneficial to distribution system operators and their 

industrial customers. Despite its importance, industrial load forecasting has never been a popular subject in the 

literature. 

Eventually, for both generation and loads, in relevant literature point forecast and probabilistic forecast are 

proposed. Although point forecasts can suit many scopes, probabilistic forecasts add further flexibility to an energy 

management system and are recommended to enable a wider range of decision making and optimization strategies. 

Thus, in our studies probabilistic forecast are considered. 

Summarizing, the research activities completed in the Task 2.2 resulted in:  

i. the development of a day-ahead probabilistic wind power forecasting based on ranking and combining 

Numeric Weather Predictions (NWPs); 

ii. the development of a Bayesian bootstrap quantile regression model for probabilistic photovoltaic power 

forecasting; 

iii. the development of a multivariate approach for probabilistic industrial load forecasting. 
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With reference to i), the volatility of the wind over large time horizons complicates the generation of skilled, 

reliable wind power forecasts. Exploiting NWPs is generally considered mandatory to increase the skill of 

probabilistic predictions, and forecasts may further be enhanced by adding several spatially-distributed predictions. 

However, feature selection becomes as more complicated and time-consuming as the number of NWPs increases. In 

our study, the power generated by a wind farm is predicted developing a new technique based on ranking and 

combining spatially-distributed NWPs, easing the feature selection and reducing the computational efforts, as well 

as maintaining high the skill of probabilistic forecasts. Several spatially-distributed NWPs, provided for the area 

surrounding the wind farm, are ranked for each individual generator, and the ranked NWPs are combined to form 

an ensemble set of predictors for the probabilistic forecasting model. This ensemble is obtained using three different 

weighted combination approaches. Gradient boosting regression tree models and quantile regression neural networks 

generate probabilistic wind power forecasts. The proposed methodology is applied for day-ahead wind power 

forecasting of individual generators and of the entire wind farm. Numerical experiments carried out on an actual 

wind farm in southern Italy. 

With reference to ii), a probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression 

model is developed. The Bayesian bootstrap is applied to estimate the parameters of a quantile regression model and 

a novel procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation 

of the related coefficients, raising the predictive ability of the final forecasts. Numerical experiments based on actual 

data quantify an enhancement of the performance of up to 2.2% when compared to relevant benchmarks. 

With reference to iii), most existing methods for industrial load forecasting operate on the active power alone, 

partially or totally neglecting the reactive power. We developed a multivariate approach to probabilistic industrial 

load forecasting, which addresses active and reactive power simultaneously. The method is based on a two-level 

procedure, which consists of generating probabilistic forecasts individually for active and reactive power through 

univariate probabilistic models, and combining these forecasts in a multivariate approach based on a multivariate 

quantile regression model. The procedure to estimate the parameters of the multivariate quantile regression model 

is posed under a linear programming problem, to facilitate the convergence to the optimal solution. The proposed 

method is validated using actual load data collected at an Italian factory, under comparison with several probabilistic 

benchmarks.  

This report is the final deliverable of activities carried out for Task 2.1 and 2.2 of DiGriFlex project and referred 

to the Milestone 1.  
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2. OBJECTIVES 
Task 2.1 (“Data collection, data pre-processing and exploratory data analysis”) and Task 2.2 (“Development of 

day-ahead forecasting systems for renewable generation and loads”) are included in work package WP2: 

“Development of appropriate day-ahead and real-time forecasting systems for renewable generation and loads” that 

is focused on the forecasting systems of renewable generation and loads developed for different time horizons.  

As reported in the final approved version of Technical Specifications of project, detailed tasks/subtasks of WP2 

are Task 2.1: Data collection, data pre-processing and exploratory data analysis and Task 2.2: Development of day-

ahead forecasting systems for renewable generation and loads. 

The objective of the first task is to create large, robust datasets of variables which could be exploited to develop 

the forecasting systems for renewable generation and load. The dataset building creation requires i) to collect data 

from dedicated measurement systems and/or from accessing databases published in the relevant literature, ii) to pre-

process these data in order to clean them from missing data, bad data and outliers, and iii) to make exploratory data 

analysis in order to reduce the dimensionality of the input datasets, removing variables that are uninformative for 

the target variables (either renewable power generation or load).  

The objective of the Task 2.2 consists in identifying the most suitable techniques for the day-ahead forecast of 

the power produced by production plants from renewable sources (in particular from solar and wind sources) and 

the power required by the loads. In the Technical Specifications of project it is specified that probabilistic techniques 

(for example, Bayesian methods or ensembles of probabilistic methods) should be considered and compared with 

benchmarks. In particular, the methods must be based on the proper combination (ensemble) of multiple linear 

regression models and random forests due to their versatility and ease of implementation. An additional objective is 

the comparison between the results obtained applying the proposed approach and the ones given by the relevant 

state-of-the-art benchmarks. 

 

3. STATE OF THE ART 
Current practices in renewable energy forecasting and load forecasting are very heterogeneous. This Section 

reviews the state of the art on energy forecasting, starting from a classification of the methodologies and going into 

the details of the existing approaches. 
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3.1. CLASSIFICATION OF FORECASTING MODELS 
The diversity in forecasting needs has a direct, intuitive consequence: no forecasting method is universally able 

to fit any purpose, but it has to be selected case by case on the basis of particular needs. The classifications of 

forecasting methods straightforwardly follows the diversity in terms of end user needs.  

The first classification is made in terms of forecast lead time. Indeed, actions on power systems are performed on 

different time lines: e.g., improvement, replacement or realization of new infrastructures are planned several years 

before, while optimal management of distributed energy resources distribution grids is scheduled some minutes to 

some hours before [1,2].  

Few papers [3] classify forecasting methods in 2 categories (short-term and long-term); however, the most 

complete practice is to individuate Very Short-Term Forecasting (VSTF), Short-Term Forecasting (STF), Medium-

Term Forecasting (MTF), and Long-Term Forecasting (LTF) methods [4-8]. 

VSTF lead times range up to 24 hours; they are usually involved in power balancing and system optimal 

management and control. The influence of external variables (e.g., ambient temperature for load forecasting) is 

limited in this kind of applications, and therefore is often overlooked. VSTF partially covers the pre-scheduling of 

distribution grids, object of WP2.2, and it fully covers the real-time control of distribution grids, object of the WP2.3. 

STF lead times range from 24 hours ahead to two weeks ahead; they are usually involved in power balancing for 

acquiring appropriate reserve, market participation, and system optimal management. STF partially covers the pre-

scheduling of distribution grids, object of WP2.2. 

MTF lead times range from 2 weeks to 3 year ahead; this wide interval of time makes MTF methods useful for 

market participation, system optimal management, and planning. Social and economic factors should be carefully 

investigated in MTF, especially for monthly and yearly scenarios. 

LTF lead times start from 3 years and reach 20 (or more) years. These forecasts are involved in power system 

planning, and weather, social and economic long-term evaluations are mandatory in order to cope with evolutionary 

trends. 

Table 4.1.1 associates forecasting methods, classified in terms of lead times, to corresponding needs [8]. 

A second classification involves the output of forecasting methods. This comes from the different risks linked to 

power system tasks that require forecasts to be completed.  

 

 

Table 4.1.1 - Utility of forecasting methods in power system operation needs 
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Classification 
of forecasting 
methods 

Power system operation need 

Power 
balancing 

Participation 
to electrical 

markets 

Optimal 
management 
and control 

Planning 

VSTF yes no yes no 
STF yes yes yes no 
MTF no yes yes yes 
LTF no no no yes 

 

Let’s think of a wind plant owner, who wants to sell energy on electrical markets [9]. He has to submit a selling 

offer, stating the (exact) amount of energy he will be able to produce; in several Countries, he is penalized if the 

resulting production is too far from the declared one. If he disposes of a forecasting method that provides only a 

single value of wind power as output, the plant owner has no other choice than submitting a selling offer of as much 

energy as the forecasted one. Instead, if he disposes of a forecasting tool that provides more values, or the probability 

distribution of wind powers, he can manage the forecasts and make the best choice for his needs. 

In this context, deterministic forecasts provide as output only a single value of the variable of interest (point 

forecast). Probabilistic forecasts provide as output analytical distributions such as Probability Distribution Functions 

(PDFs), Cumulative Density Functions (CDFs), sampled distributions (discrete probabilities), quantiles, or moments 

of the predictive distribution (e.g., mean, variance and skewness) [10]. Note that the variable of interest is still treated 

as a random entity in both frameworks: the main difference is that a single value is given as forecast of the variable 

of interest in deterministic framework, while more values, or a function, are given as forecast of the variable of 

interest in probabilistic framework.  

Probabilistic forecasts are generally preferable, since they provide also information about the uncertainty linked 

to the forecast itself. Therefore, they allow the risk assessment and the optimal selection of a single value, on the 

basis of different frameworks [11,12]. Indeed, it is always possible to extract a single, spot-value (e.g., the mean value 

of the predictive distribution) from probabilistic forecasts, while the reciprocal is obviously not valid. The main 

drawbacks of probabilistic forecasts are the increase of method complexity, and their greater computational burden. 

Then, if the forecast end user gains no benefit in having a probabilistic forecast, deterministic methods are still the 

best choice. 

It is worth noting that probabilistic methods sometimes rely on an underlying deterministic method [13,14]; e.g., 

some parameters of the predictive probabilistic distribution could be set from the output value of a deterministic 

method. In this case, improving the performance of the underlying deterministic method is compulsory in order to 

increase the overall quality of the probabilistic forecasts. Thus, research efforts in the deterministic framework are 

always encouraged. 
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A third classification of forecasting methods is based on the characteristics of models involved in the forecasting 

method, and consequently on the solving procedure. The common classification is in terms of parametric and non-

parametric methods.  

Parametric methods are based on models that are univocally identified as several numerical parameters are 

known; e.g., a predictive analytical Gaussian distribution is univocally identified when its mean and variance are 

known. Therefore, solving a parametric forecasting method consists in finding estimations of unknown parameters, 

usually by minimizing or maximizing assigned objective functions (i.e., by minimizing an error index). In the 

particular case of parametric probabilistic methods, usually the problem of finding a prior probabilistic 

characterization of the variable of interest through a specific PDF has to be solved [13].  

Non-parametric methods, instead, rely on the idea that forecasting future dynamics can be achieved by analogy 

with past dynamics. Indeed, the variable under study is not assessed through an analytic model, instead it is forecasted 

by means of a procedure that “learns” from the past. Note that the “non-parametric” definition could be misleading. 

It does not mean that no parameters are involved in non-parametric methods; indeed, some involved parameters 

could identify the order of the model, rather than the model itself. 

In non-parametric methods, however, the complexity of the models (i.e., the number of parameters) grows with 

the dimension of the problem and, theoretically, is not constrained. The more the inputs (i.e., the elements of the 

training set) fed to the non-parametric method, the larger is the number of parameters to be estimated. Therefore, 

the structure of the model itself “grows” as the training set enlarges. On the other hand, the structure of models in 

parametric methods is fixed with the dimension of the problem; the same number of parameters has to be estimated, 

regardless of the size of the training set.  

The fourth and last classification is based on the approach used to build and solve the forecasting problem. 

Statistical approaches rely on measurement data acquired in the past to produce forecasts for the future, starting from 

the assumption that past conditions are informative for the future. Physical approaches rely instead on a specific 

formulation of the problem under study in a rigorous fashion, by exploiting mathematical formulas based on physical 

principles. Hybrid approaches can be a combination of statistical approaches, physical approaches, or statistical and 

physical approaches together. 
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3.2. SURVEY ON FORECASTING SYSTEMS FOR RENEWABLE 

GENERATION AND LOADS      
In the last two decades, hundreds of papers have dealt with energy forecasting and proposed a wide variety of 

forecasting systems. The literature review is conveniently conducted upon relevant surveys that have been published 

through the last decade. 

Among the energy forecasting ones, load forecasting is the oldest topic tackled by researchers, especially 

considering LTF scenarios used for planning purposes [15]. Spatial load forecasting applied in this context allowed to 

get insight regarding where, when and how much load would grow during years. Although some research practices 

in this context belong to the last century, some of them are still operational practices in power industry [16]. 

However, it is only in the last 20 years that short-term load forecasting gained importance and attention due to the 

pushed pursue of the excellence in operating distribution and transmission systems. Early researches focused on the 

application of Artificial Neural Networks (ANNs) for short-term load forecasting, due to their easy implementation 

from a black-block perspective. Nevertheless, ANNs have been proved to suffer from flaws in theory and practice 

[17], thus other forecasting approaches such as time series models and regression-tree-based models have gained 

popularity as well. In these early approaches on load forecasting, the problem has been tackled within deterministic 

frameworks. Only in the last decade probabilistic load forecasting become consolidated [8], although far from being 

exhaustive due to the complexity of the probabilistic predictions and due to the increasing requests for accuracy and 

calibration even at low-aggregation load levels (e.g., for smart meters at residential or commercial building load levels 

[18]). 

Renewable energy forecasting is definitely younger than load forecasting, as the widespread diffusion of 

renewable power generators occurred only in the last 15 years. Wind power forecasting initially gained the greatest 

attention due to the bigger installed power and the high volatility of the primary source (i.e., the wind speed). To 

keep the systems balanced, it was clear that wind power forecasts would be needed for lead times in the VSTF and 

in the STF horizons [19,20]. The volatility of wind speed also pushed get interactions among energy forecasters and 

meteorologists, and two important consequences arose from that: 

i) the shift towards probabilistic wind power forecasting since weather forecasts are typically provided by 

probabilistic Numeric Weather Prediction (NWP) models [21,22]; 

ii) the development of parallel approaches based on physical and statistical models for wind power forecasting 

[23], which merged in the current state-of-the-art that incorporates both in wind power forecasting systems.  
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Solar and photovoltaic (PV) forecasting did not become a topic earlier than 2010. Following the teachings of wind 

power forecasting, the approaches directly considered external weather data, and particularly camera-based (for 

VSTF), satellite-based (for VSTF and STF) and NWP-based (for STF) inputs [24]. The current practices include these 

inputs in top-performing models, also in probabilistic contexts (although less maturity than wind power forecasting 

is evident).   

From the literature review, forecasting combination and ensemble combination have recently arose as the 

frontiers in research. The two terms usually have the same meaning in energy forecasting, although the term 

“ensemble” takes its origin from ensemble weather modeling that returns NWPs.  

The most common approach in ensemble forecasting is stacking. It refers to the combination of the outputs of 

different forecasting models using a custom approach. This combination can aim at maximizing or minimizing a 

particular loss function, or simply by using the outputs of individual forecasting models as inputs of another model.   

Forecast combination itself is not a new topic, as it was first discussed in late 1960s [25], but only recent works 

analyzed in details the pros and cons of stacking combinations [26-28]. Notable applications of stacking forecast 

combination and ensemble approaches are in load forecasting (e.g., combination of point forecasts [29] and of 

predictive quantiles [30]), with relevance also in disaggregated smart meter load forecasting [31], and in renewable 

energy forecasting (e.g., combination of predictive distributions [32] and predictive quantiles  [33] for PV 

forecasting).   

Other approaches to ensemble forecasting use the diversification in the data space and parameter space to quantify 

the uncertainty associated with a forecasting model, in a similar way as for the trajectories drawn for building 

ensemble NWPs by perturbing the initial conditions and making the system separately [34]. Notable examples of the 

ensemble space diversification include: 

i) bootstrapping: it is a sampling technique consists of resampling the data used to train the models with 

replacement, in order to obtain datasets having the same size of the original data, that however differ from the 

original data, although mimicking the original data to retain their statistical properties; 

ii) bagging (or bootstrap aggregating): it consists of training the same forecasting model several times, on different 

training datasets; these different training datasets are obtained by bootstrapping (i.e., resampling with replacement) 

the original training dataset, maintaining the same size. The outputs of these different models can be averaged in 

order to obtain point forecasts or treated as a predictive sampled distribution of the target variable; 

 iii) boosting: it consists of iteratively training weak models, adding them in order to build a final strong model. 

Each weak model fits the training data that however is re-weighted at each iteration; points of the training data that 

have been fitted with poor performances by the previous weak models are weighted for a greater value, whereas 
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points of the training data that have been fitted well receive a smaller weight. Therefore, the underlying idea of the 

boosting approach is that the iterative addition of a weak model compensates the shortcomings of the previous weak 

models, returning a strong forecasting model.  

Eventually, a relevant outcome of the literature review determines the importance of the spatial-temporal 

analysis in the development of a forecasting system. This problem is prone to be tackled from a hierarchical 

perspective, proceeding by a series of successive merges of prediction made at a different level of aggregation [35,36]. 

In hierarchical forecasting, the information contained at low-level aggregation (for example, the load at the HV/MV 

nodes in a HV network, or the load of small regions) is used to predict at high-level aggregation (for example, the 

overall load of the entire HV network, or the overall load of a geographic region). Hierarchical methodologies to 

merge probabilistic forecasts have been recently applied with success [37-39]. They are however still challenging, 

mostly because the problem is usually formulated as a nonlinear and non-convex optimization problem, so that global 

optimality cannot be guaranteed and the combined results may be worse than individual forecasts [40].  

In the following, a specific survey on relevant papers on these topics involved in PV power forecasting, wind 

power forecasting and industrial load forecasting is presented together with the open questions and challenges that 

arose from the literature review and that are tackled by the research carried out during this project. 

 

3.2.1. SELECTED LITERATURE AND OPEN CHALLENGES ON PHOTOVOLTAIC POWER 

GENERATION 

As stated above, literature reviews and competition surveys [40-43] indicate a varied state-of-the-art, although 

the number of contributions devoted to probabilistic PV power forecasting is much smaller than that in the 

deterministic framework. Considering that a single spot value can always be extracted from probabilistic forecasts 

while the opposite is clearly unfeasible, research and contributions in the latter are highly recommended and only 

probabilistic PV power forecasting research is considered in this sub-Section. 

Probabilistic PV power forecasting systems range from pure statistical models to hybrid physical-statistical 

models. High-performance solutions are based on Quantile Regression (QR) models [33,44,45], machine learning 

approaches (such as Gradient Boosting Regression Trees (GBRTs) [46], Quantile Regression Forests (QRFs) [33,47,48] 

and Quantile K-Nearest Neighbors (QKNN) [49]). It is worth noting that, although the analytic formulation of QR 

models is much simpler than machine learning approaches, QR predictions still are somehow competitive in most 

cases. For example, these models proved their effectiveness also in recent energy forecasting competitions [40,50], 
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since the forecasting systems developed by the highest-ranking teams were based on these nonparametric 

probabilistic models. 

Generally speaking, the integration of NWPs into PV power forecasting models is quite mandatory to improve 

predictions, particularly for large time horizons [42]. Usually several weather variables are available to forecasters, 

and thus model selection (i.e., the selection of the most informative predictors for the final model) is typically applied 

to discard uninformative inputs. To further maximize the exploitation of the available input data, ensemble 

approaches (either boosting, stacking or bagging) [43] have been applied with success in probabilistic energy 

forecasting [32,33,43,51-53]. New trends in probabilistic PV power forecasting indeed individuate the probabilistic 

combination of individual forecasts as a suitable solution, in order to improve the accuracy of the results [32,33] 

Probabilistic forecast combination is not as straightforward as it seems to be at first inspection. Contrarily to 

combining point forecasts, for which the simple weighted averaging is often a plausible solution, combining 

probabilistic forecasts is a much more challenging task: the combined probabilistic forecasts indeed must retain 

adequate properties in terms of reliability and sharpness [32,54], and the main features of a probabilistic forecast 

(e.g., the ascending order of predictive quantiles) must be retained also by the combined forecasts [32]. Relevant 

literature has addressed these aspects under different points of view [43]. Individual probabilistic forecasts can be 

indeed merged: i) by a combination of the predictive cumulative distribution functions [32]; or ii) by a combination 

of the predictive quantiles [55]. Nevertheless, within these two approaches types, several strategies and architectures 

can be developed to combine forecasts; so there is room for further investigation and improvement. 

 

3.2.2. SELECTED LITERATURE AND OPEN CHALLENGES ON WIND POWER GENERATION 

Wind forecasters almost unanimously agree that exploiting NWPs enhances the skill of forecasts for short-term 

horizons (e.g., day ahead horizon), as stochastic-only forecasting systems usually perform well only for very-short 

lead times (e.g., 1-hour ahead), gradually losing relevance as the lead times increases. On the other hand, the 

availability of accurate NWPs has grown in the last years, thanks to the efforts in atmospheric modeling and in 

satellite acquisitions, as well as predictions of many weather variables are nowadays made available by weather 

institutions [56], and they can be used as input predictors of forecasting systems.  

Getting the most from the available data to increase the skill of wind power forecasts is an object of energy data 

analysis. Exploiting spatially-distributed NWPs for an area surrounding the wind farm has been proved to be an 

efficient solution to further add skill [57-59]. However, adding too many predictors to the models could involve the 

risk of overfitting the data thus losing forecast skill. Standard techniques to reduce overfitting are based on 

dimensionality reduction [60,61] and feature selection (or feature engineering) [57,61-63], which are often 
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accomplished through validation, leave-one-out cross-validation or k-fold cross-validation frameworks. These latter 

procedures usually are computationally intensive, particularly when many NWPs are candidate predictors [64], as it 

can happen when handling spatially-distributed NWPs for an area surrounding the wind farm. This poses an arduous 

challenge to the development of forecasting systems in which models are re-trained as new observations become 

available.  

 

3.2.3. SELECTED LITERATURE AND OPEN CHALLENGES ON INDUSTRIAL LOAD FORECASTING 

The literature on probabilistic load forecasting has expanded recently [8], and the focus has switched to 

nonparametric modeling [42]. Relevant probabilistic load forecasting systems are based on QR models [65] and QR 

averaging [66], QRFs [67] (also within optimal combination frameworks [68]), or GBRTs [69]. These models have 

been extensively applied either at sub-station or at smart-meter nodes; nevertheless, the performance of a forecasting 

system may drop when the target load is the demand of an industrial factory. This is due to the particular features 

which influence the industrial demand [67], due to the particular seasonal patterns of the industrial load profiles 

[70], and due to the smaller relative importance of the ambient temperature to predict industrial load [71]. The only 

recommended path to increase the accuracy of industrial load forecasts is to develop ad-hoc forecasting systems, 

accounting for all of these specific features [72]. 

Forecasters usually target the only active power, partially or totally disregarding reactive power. This choice may 

be considered obsolete nowadays due to i) the increased computer performance, which eases the generation of 

reactive power forecasts, and ii) the spread of smart grid tools, which manage and operate networks by the active 

and reactive power flows. For example, Volt/VAr optimization [73], harmonic compensation [74] and optimal energy 

dispatch [75,76] tools require prior estimations of the nodal reactive power. The multitude of power converters 

distributed across the grids can be controlled to compensate reactive power locally [77], increasing the total power 

transmission capacity of the grid and reducing losses [78]. It is also worth mentioning that reactive power support is 

an ancillary service, remunerated in several countries [79]. Improved frameworks for reactive power markets, either 

coupled with active power market [80] or developed within a probabilistic framework [81], have been proposed in 

relevant literature. Despite the rising interest of practitioners in reactive power management, the literature on 

reactive power forecasting slowly adapts to the practical needs. Reactive power forecasts are usually built by post-

processing active power forecasts, on the basis of practitioners’ experience or by average-power-factor corrections. 

Only a few papers directly deal with reactive power forecasting. The majority of literature is based on the application 

of artificial neural networks, either at domestic nodes [82], disaggregated levels [83] or at bulk supply nodes [84]. 

Other models applied to reactive power forecasting are fuzzy approaches [85], piecewise linear regression models 
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[70], time series [86], and support vector regression [70]. These research papers evidence that correctly modeling the 

mutual correlation between active and reactive power allows enhancing the performance of the forecasting system 

[70], suggesting for additional research in this sense. 

 

4. RESULTS OF ACTIVITIES FOR TASK 2.1 
The Task 2.1 focuses on data collection, data pre-processing and exploratory data analysis activities that are 

carried out in order to create large, robust databases of variables which could be exploited to test the performance of 

the forecasting systems that will eventually be used to predict energy at the site of the installation of the test 

distribution grid of the ReIne laboratory. 

 

4.1. DATA COLLECTION  
Several datasets are used for the activities related to the WPs 2.1 and 2.2 and presented in this Deliverable. These 

datasets are related to the target variables (loads and renewable generated power) and external variables (i.e., weather 

data) used as additional inputs of the forecasting systems. 

Dataset_PVI1: this dataset includes PV power measurements taken at the 30-kWp PV installation (PVI1) 

equipped with 4 8.5-kWp inverters which is part of the test distribution grid of the ReIne laboratory. Due to its 

recent installation, the data collection started on August 24, 2019 with a 1-minute time resolution. The utilization 

of these data for validating and testing the PV power forecasting models is unfeasible at the progress stage of the first 

year of project activities due to the relatively short operation life of the PV system, therefore this dataset is not 

included in experimental frameworks.   

Dataset_PVI2: this dataset includes PV power measurements taken at a second PV installation (PVI2), located 

close to the test distribution grid of the ReIne laboratory. PVI2 was monitored since January 1, 2016 until December 

31, 2018 at a 1-minute time resolution. The related data are used for the initial validation of the PV power forecasting 

systems.  

Dataset_PVI3: this dataset consists of zone-1 PV power data published in the framework of the Global Energy 

Forecasting Competition 2014 [40] at an unspecified location in Australia. Data span April 1, 2012 to June 30, 2014 

with an hourly resolution. This dataset is included in the experimental frameworks in order to generalize the 

performance testing of the proposed forecasting systems. 
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Dataset_WG: this dataset includes wind power measurements collected at a wind farm located in southern Italy. 

The wind farm is constituted by ten 3-MVA generators. Wind power was measured at each generator throughout 

three years, with 10-minute acquisitions. 

Dataset_indust_load: this dataset includes industrial load data (active and reactive powers) collected at an Italian 

factory that manufactures transformers. The factory operates on two work shifts during weekdays (Monday-Friday), 

on a single work shift during Saturdays, and it is closed on Sundays. Energy meters collect electrical data at fourteen 

single loads, at four LV power distribution feeders, and at the point of common coupling to the main MV network 

(i.e., the aggregate load of the factory). The time resolution of the data metering is 15 minutes. The layout of the 

industrial LV distribution system is illustrated in Fig. 5.1, where the buses of the monitored loads are in red font. 

The aggregate load is monitored at bus 3, and the four LV power distribution feeders are monitored at buses 5, 26, 

43 and 66. 

 
Figure 5.1. Layout of the industrial LV distribution system at which Dataset_indust_load was collected. 

 

Dataset_weath_PV: a dedicated weather station is installed at the location of the test distribution grid of the 

ReIne laboratory. This station collected weather data at the same time resolution and for the same time periods of 

the PV power data contained in Dataset_PVI1 and Dataset_PVI2, allowing their usage as exogenous variables for PV 

power forecasting models. Twenty-six variables are monitored in this way. 

Dataset_weath_WG: this dataset includes absolute wind speeds and wind directions measured at each of the ten 

generators related to Dataset_WG. Wind data were collected throughout three years with 10-minute acquisitions, 

for the same time intervals of those related to Dataset_WG, allowing their usage as exogenous variables for wind 

power forecasting models. 
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Dataset_weath_ECMWF: weather forecast data are gathered from the European Centre for Medium-range 

Weather Forecasts (ECMWF) [56] for the locations and the time intervals corresponding to Dataset_PVI1, 

Dataset_PVI2, Dataset_PVI3 and Dataset_WG. Requests are prepared in Python3.7 and sent via the ECMWF 

Application Programming Interface (API). Forecasts for nine variables are obtained in this way. These data are 

related to the noon run (i.e., forecasts are issued at 12:00 A.M. of day D-1 for the entire day D) and to the midnight 

run (i.e., forecasts are issued at 12:00 P.M. of day D-1 for the entire day D). This differentiation in the weather 

forecast lead time allows developing models diversified for day-ahead control and real-time control of the distributed 

energy resources. In particular, the forecasts related to the noon run are used for the forecasting models aimed at the 

pre-scheduling control of the distribution grids, whereas the forecasts related to the midnight run are used for the 

forecasting models aimed at the real-time control of the distribution grids. 

 

4.2. DATA PRE-PROCESSING: CLEANSING  
The considered datasets are initially cleaned as an initial analysis revealed some potential outliers, missing and 

bad data. If not corrected, these data may significantly deteriorate the performance of the forecasting systems.  

One of the principal objectives of the pre-processing activity is therefore to correct and remove this harmful 

effect by cleansing the data. Bad and missing data are easy to be individuated by visual inspection. Potential outliers 

instead are more subtle, since they cannot be immediately individuated by visual inspection. A slight modification 

of the Tukey’s test [87] has been applied in order to individuate potential outliers. Tukey’s test acts by examining 

and individuating data which lie beyond a specific band of tolerance, in which the null hypothesis can be rejected. 

For the generic variable 𝑦𝑦, the band of tolerance is individuated through its lower bound 𝑦𝑦𝑇𝑇,𝑙𝑙𝑙𝑙𝑙𝑙 and upper bound 

𝑦𝑦𝑇𝑇,𝑢𝑢𝑢𝑢: 

 

𝑦𝑦𝑇𝑇,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦〈0.25〉 − 3 ∙ (𝑦𝑦〈0.75〉 − 𝑦𝑦〈0.25〉)  

𝑦𝑦𝑇𝑇,𝑢𝑢𝑢𝑢 = 𝑦𝑦〈0.75〉 + 3 ∙ (𝑦𝑦〈0.75〉 − 𝑦𝑦〈0.25〉)         (1) 

 

where 𝑦𝑦〈0.25〉 and 𝑦𝑦〈0.75〉 are respectively the 0.25-quantile (25-percentile) and the 0.75-quantile (75-percentile) of 

the samples collected in the entire dataset. With reference to the PV and load datasets, due to the strong seasonality 

of the PV power data patterns and of the load patterns (which suggests heteroskedasticity), the Tukey’s test has been 

differentiated for each hour of the day, accounting for different sample quantiles during the 24 hours of the day. 
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Potential outliers, bad data and missing data are treated in the same manner for each dataset, i.e., they are entirely 

discarded.  

It is important to note that the only dataset not considered in the cleaning stage is the Dataset_weath_ECMWF, 

since the weather forecasts are already pre-processed by the ECMWF source. 

 

4.3. DATA PRE-PROCESSING: AVERAGING  
In all the considered experimental frameworks, the time resolution is one hour. An important objective of the 

data pre-processing activity is therefore to average values collected at different time resolution (for example, 1 minute 

for the Dataset_PVI2 of 10 minutes for the Dataset_WG) in order to obtain hourly data. This has been performed in 

R environment using the lubridate package [88]. In presence of too many removed data (i.e., beyond 30% of the total 

observations in the considered hour), the entire hourly value is set at the mean value from the two nearest hourly 

values. In presence of fewer removed data (i.e., less than 30% of the total observations in the considered hour), the 

entire hourly value is set at the mean value of the sub-hour observations within the considered hour. 

It is important to note that ECMWF weather forecasts are already provided at hourly time resolution by the 

original source, therefore data averaging activity has not been developed on them.  

 

4.4. DATA PRE-PROCESSING: NORMALIZATION  
The last objective of the data pre-processing activity is to normalize hourly values in the range 0-1. This 

accommodation is usually necessary when the ranges in which the considered variables are included are very 

different. Although some forecasting models are insensitive to data normalization, other models may be significantly 

affected by the lack of normalization. All the data are normalized in order to be used in any case. The normalized 

value 𝑦𝑦�ℎ of the generic variable 𝑦𝑦 occurred at hour ℎ is: 

 

𝑦𝑦�ℎ = 𝑦𝑦ℎ−𝑦𝑦min
𝑦𝑦max−𝑦𝑦min

 ,           (2) 

 

where 𝑦𝑦ℎ is the value observed at hour ℎ, and 𝑦𝑦min and 𝑦𝑦max are respectively the minimum and maximum values 

observed in the entire dataset. 
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4.5. EXPLORATORY DATA ANALYSIS  
The database resulting from the data pre-processing activities consists of hourly observations of target variables 

(load, PV powers and wind powers) several exogenous weather variables. In order to reduce the dimensionality of 

the problem, an exploratory data analysis has been carried out to individuate exogenous variables which are 

informative for each target variable power, and those which are uninformative.  

To avoid redundancy, in this sub-Section we present only the exploratory data analysis performed to individuate 

potential relationship between the PV power in Dataset_PVI2 and the ECMWF weather forecasts. Further 

information regarding specific exploratory data analysis are presented case-by-case in the experimental result 

Sections of this Deliverable. 

The exploratory data analysis performed to individuate potential relationship between the PV power in 

Dataset_PVI2 and the ECMWF weather forecasts is performed via graphical inspection of relative scatter plots. As 

an example, scatter plots of the normalized PV power versus the normalized ECMWF clear-sky irradiance forecasts 

(Fig. 5.2a) and versus the normalized ECMWF solar irradiance forecasts (Fig. 5.2b) evidence clear relationship among 

these variables. Nevertheless, this relationship is not steady across the hour of the day, as patterns clearly differ 

considering, for example, 12 A.M., 9 A.M., and 6. P.M in the figures. From the graphical inspection of Fig. 5.2, it is 

suggested to add normalized ECMWF clear-sky irradiance forecasts and normalized ECMWF solar irradiance 

forecasts as candidate predictors of PV power forecasting models and to add a dummy variable to differentiate among 

the hours of the day.  

  
Figure 5.2. Scatter plots of the normalized PVI2 power versus the normalized ECMWF clear-sky irradiance forecasts (a) and versus the 

normalized ECMWF solar irradiance forecasts (b) for three different hours of the day. 
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The exploratory data analysis also allows discarding some variables which cannot be considered informative for 

predicting PV power. As significant example, Fig. 5.3 shows the scatter plots of the normalized PV power versus the 

normalized ECMWF forecasts of wind speed at 10 m. No clear relationship can be evidenced from this plot, as the 

cloud of points is very irregular. Also, there are no clear patterns differentiated among the hours of the day. For this 

reason, it can be considered safe to discard normalized ECMWF forecasts of wind speed at 10 m in predicting PVI2 

power, thus reducing the dimensionality of the problem. 

 
Figure 5.3. Scatter plots of the normalized PVI2 power versus the normalized ECMWF forecasts of wind speed at 10 m, for three different hours 

of the day. 

 

5. RESULTS OF ACTIVITIES FOR TASK 2.2 
The Task 2.2 focuses on the development of day-ahead forecasting systems for renewable generation and loads. 

With this reference, in the following Sections the following results are described: 

i. the development of a Bayesian bootstrap quantile regression model for probabilistic photovoltaic power 

forecasting 

ii. the development of a day-ahead probabilistic wind power forecasting based on ranking and combining 

Numerical Weather Predictions  

iii. the development of a multivariate approach for probabilistic industrial load forecasting. 
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5.1. DEVELOPMENT OF DAY-AHEAD FORECASTING 

SYSTEMS FOR PHOTOVOLTAIC POWER GENERATION 
Generally speaking, the integration of NWPs into PV power forecasting models is quite mandatory to improve 

predictions, particularly for large time horizons [42]. Usually several weather variables are available to forecasters, 

and thus model selection (i.e., the selection of the most informative predictors for the final model) is typically applied 

to discard uninformative inputs. To further maximize the exploitation of the available input data, ensemble 

approaches [43] such as bagging, boosting and stacking have been applied with success in probabilistic energy 

forecasting [32,33,43,51-53]. The research activity presented in this Section provides a contribution to probabilistic 

ensemble PV power forecasting within the bagging framework, based on the interaction between a Quantile 

Regression (QR) model and a Bayesian bootstrap. A Bayesian bootstrap is the Bayesian analogue for bootstrapping, 

originally presented in [89]. Bayesian models have been applied with success in probabilistic energy forecasting 

[13,90,91], although applications of Bayesian bootstrap are still very rare. Thus further contributions are worthy of 

attention.  

Like other bootstrapping techniques, the Bayesian bootstrap can improve the probabilistic forecasts by using 

resampled data with replacement, which allows for differentiating the output predictions. In the forecasting system 

presented below, the Bayesian bootstrap works analytically to find the posterior distributions of the QR model 

parameters, thus differentiating itself from the traditional bootstrap which instead relies on random picks among the 

available input data. A procedure to extract an optimal point from the posterior distributions of the QR model 

parameters is specifically developed, and this procedure is added to the forecasting system, in order to generate the 

final PV power forecasts for the target forecast horizon.  

The proposal is validated using Dataset_PVI2 and Dataset_PVI3, together with the corresponding NWPs 

contained in Dataset_weath_ECMWF and Dataset_weath_PV [40]. Extensive numerical experiments, based on these 

data and NWPs provided by an external source [56], are presented. Several related benchmarks are also presented to 

validate the accuracy of the forecasts under comparative analyses. 

To avoid verbosity in the analytic formulations, the symbols are consistent within the following sub-Sections 

6.1.1, 6.1.2 and 6.1.3 only.  
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5.1.1. MODELS AND METHODS 

The proposed PV power forecasting system based on Bayesian Bootstrap Quantile Regression (BBQR) is illustrated 

in Figure 6.1.1. The inputs of the system are NWPs 𝑵𝑵𝑵𝑵 and historical measured PV power data 𝑷𝑷. The proposed 

forecasting system consists of three stages. 

The first stage is model selection, i.e., the selection of the most informative predictors among the available pool 

of predictors. This is performed by evaluating the performance of multiple QR models having different combinations 

of predictors, and by picking the model which returns the smallest error. Inputs are therefore pooled in order to 

form predictor data 𝑿𝑿 (i.e., independent variables in the QR model) which is informative for the PV power (i.e., the 

dependent variable in the QR model). Data are then partitioned into training datasets 𝑷𝑷𝑡𝑡𝑟𝑟𝑎𝑎 and 𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡 (a 1 × 𝑇𝑇 vector 

and a 𝑇𝑇 × 𝑀𝑀 matrix, respectively), and into validation datasets 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣  and 𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣  (a 1 × 𝑉𝑉 vector and a 𝑉𝑉 × 𝑀𝑀 matrix, 

respectively). 

 
Fig. 6.1.1. Schematic procedure of the forecasting system based on Bayesian bootstrap quantile regression 

 

Training data thus contains 𝑇𝑇 occurrences which are used only to train models, whereas validation data contains 

𝑉𝑉 occurrences for model selection to develop and refine the forecasting system. 𝑀𝑀 is the number of predictors 

contemplated in the generic QR model, which therefore has 𝑀𝑀 + 1 parameters.  

Multiple QR models are trained, and predictions for the validation period are issued with each model. Since 

predictions are given in terms of predictive quantiles, the Pinball Score (PS) [92] is considered in order to select the 

best model. In particular, the QR model returning the smallest PS for the validation period is considered as the most 
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skilled, and is selected as the underlying QR model for the remainder of the system. For notation, the underlying 

QR model selected in this first stage of the system has 𝑀𝑀∗ predictors and 𝑀𝑀∗ + 1 parameters. 

The second stage consists of applying Bayesian bootstrapping over the selected underlying QR model, in order to 

estimate the posterior distribution of the parameters of the QR model. Specifically, the Bayesian bootstrap returns 𝑅𝑅 

samples extracted from each of the 𝑀𝑀∗ + 1 posterior distributions of the 𝑀𝑀∗ + 1 parameters of the QR model. As will 

be shown later, these samples are extracted from a multivariate Dirichlet distribution. A Monte Carlo sampling 

method then extracts 𝑅𝑅 samples (𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉) of predictive 𝛼𝛼𝑞𝑞-quantiles of PV power for the target horizon ℎ.  

The third and last stage consists of extracting a single value 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉∗ from the 𝑅𝑅 samples of predictive quantiles of 

PV power for each coverage, in order to generate the prediction of PV power for the target horizon. A procedure 

dedicated to this purpose, based on the optimization of the sample 𝜏𝜏𝑞𝑞-quantile of 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉, is developed and presented 

here. The entire predictive distribution of the final probabilistic PV power forecasts can be obtained by iteration for 

𝑄𝑄 predictive quantiles.  

The models and the stages of the forecasting system are discussed below. 

 

1) Quantile regression modeling 

A QR model links the target variable (i.e., the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power at the target time horizon 

ℎ) to predictors 𝒙𝒙ℎ = {𝑥𝑥1ℎ , … , 𝑥𝑥𝑀𝑀ℎ} related to the time horizon ℎ but available at the forecast origin ℎ − 𝑘𝑘. The 

forecast lead time is indicated by 𝑘𝑘. This document focuses on day-ahead forecasting with hourly time resolution, 

assuming that forecasts are issued at midnight of day D-1 for the entire day D (i.e., 𝑘𝑘 = 1, … ,24), although the 

proposal can also be applied to other short-term PV power forecasting frameworks. Note that theoretically 24 models 

should be developed (i.e., one for each hour of the day), but since the PV power production is deterministically zero 

during the night, only the 16 models corresponding to lead times 𝑘𝑘 = 5, … ,20 are considered. In order to lighten the 

notation, we will not make reference to the forecast lead time 𝑘𝑘 in the symbols although the methodological section 

is related to a specific lead time 𝑘𝑘. 

The link imposed by the generic QR model for the PV power 𝛼𝛼𝑞𝑞-quantile is: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝛽̂𝛽0

〈𝛼𝛼𝑞𝑞〉 + ∑ 𝛽̂𝛽𝑚𝑚
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑥𝑥𝑚𝑚ℎ

𝑀𝑀
𝑚𝑚=1 ,              (6.1.1) 
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where 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = �𝛽̂𝛽0
〈𝛼𝛼𝑞𝑞〉, … , 𝛽̂𝛽𝑀𝑀

〈𝛼𝛼𝑞𝑞〉� are the 𝑀𝑀 + 1 estimated values of model parameters 𝜷𝜷〈𝛼𝛼𝑞𝑞〉 = �𝛽𝛽0
〈𝛼𝛼𝑞𝑞〉, … ,𝛽𝛽𝑀𝑀

〈𝛼𝛼𝑞𝑞〉�. Note 

that (6.1.1) is linear with the parameters, although some predictors can be obtained as multiplicative terms between 

two or more variables (this allows the introduction of interaction effects among variables [14]). 

Parameters are estimated in the training step by minimizing an error score on known data (i.e., supervised 

training). The PS fits this purpose well, since it can be applied directly on predictive quantiles and, for this reason, it 

is applied to evaluate the accuracy of PV power forecasts. The minimization problem is: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = argmin
𝜷𝜷〈𝛼𝛼𝑞𝑞〉

𝑃𝑃𝑃𝑃 �𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡,𝑷𝑷�𝑡𝑡𝑡𝑡𝑡𝑡
〈𝛼𝛼𝑞𝑞〉�,              (6.1.2) 

 

where 𝑃𝑃𝑃𝑃 �𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡,𝑷𝑷�𝑡𝑡𝑡𝑡𝑡𝑡
〈𝛼𝛼𝑞𝑞〉� is the PS of the 𝑇𝑇 forecasts 𝑷𝑷�𝑡𝑡𝑡𝑡𝑡𝑡

〈𝛼𝛼𝑞𝑞〉 issued for the training period of length 𝑇𝑇, calculated with 

respect to the actual occurrences of PV power in the training set 𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡 = {𝑃𝑃𝑡𝑡1 , … ,𝑃𝑃𝑡𝑡𝑇𝑇}.  

Although it is not directly explained in (6.1.2), the forecasts 𝑷𝑷�𝑡𝑡𝑡𝑡𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 are obtained from (1), and thus they are 

functions of 𝜷𝜷〈𝛼𝛼𝑞𝑞〉 and are dependent on the 𝑇𝑇 × 𝑀𝑀 matrix 𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡 which contains the corresponding predictors for the 

training period. It is: 

 

𝑷𝑷�𝑡𝑡𝑡𝑡𝑡𝑡
〈𝛼𝛼𝑞𝑞〉 = 𝒇𝒇𝑄𝑄𝑄𝑄�𝜷𝜷〈𝛼𝛼𝑞𝑞〉|𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡�,                 (6.1.3) 

 

and therefore (6.1.2) can be rewritten in compact form as: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = 𝑮𝑮(𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡,𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡),                  (6.1.4) 

 

where 𝑮𝑮(∙) is a function obtained by combining (6.1.2) and (6.1.3). 

 

2) First stage: Model selection 

In the first stage of the proposed forecasting system, the optimal model is selected among a pool of candidates, 

which differ in the predictors used to generate the predictions. NWPs and 1-day lagged PV power, together with 

their coupled interactions, form the pool of candidate predictors. The considered NWPs are: total cloud coverage, 

clear-sky irradiance, total irradiance, total precipitation, pressure and air temperature [56]. Two hypotheses are 

added to reduce the search dimension for the optimal model: i) if a coupled interaction is a predictor of the model, 
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the two individual variables are forced to occur in the model; ii) only models containing NWPs of total cloud 

coverage, clear-sky irradiance and total irradiance are considered because of their recognized importance in PV 

power forecasting.  

The underlying QR model selected under these hypotheses is the one which minimizes the PS across the 𝑄𝑄 

quantile coverages, i.e., the same optimal combination of 𝑀𝑀∗ predictors is selected for the 𝑄𝑄 considered quantile 

coverages. To avoid overfitting, the minimum PS is evaluated on the validation dataset 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 = {𝑃𝑃𝑣𝑣1 , … ,𝑃𝑃𝑣𝑣𝑉𝑉}, which is 

not used for training the model.  

 

3) Second stage: Bayesian bootstrap quantile regression 

Like traditional bootstrapping techniques, the Bayesian bootstrap can improve the probabilistic forecasts by using 

resampled data with replacement, which allows for differentiating the output predictions. The Bayesian bootstrap is 

specifically applied on the underlying QR model selected in the previous stage, in order to evaluate the posterior 

distribution of the 𝑀𝑀∗ + 1 parameters. As shown in the remainder of this subsection, BBQR consists of extracting 

weights from a Dirichlet distribution 𝑅𝑅 times (once for each bootstrap replicate), building 𝑅𝑅 multinomial 

distributions using the occurrences and the weights, sampling with replacement from these 𝑅𝑅 distributions and 

calculating 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 from (2)-(4) on the bootstrapped data. Therefore, the posterior distribution of the QR model 

parameters is given by 𝑅𝑅 samples 𝜷𝜷�1
〈𝛼𝛼𝑞𝑞〉, … ,𝜷𝜷�𝑀𝑀∗+1

〈𝛼𝛼𝑞𝑞〉  for each parameter, and from these samples it is eventually obtains 

the bagged samples 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power. 

To facilitate the presentation of the BBQR formulation, a brief recap on traditional bootstrapping [93,94] is 

provided. 

The 𝑇𝑇 × (𝑀𝑀∗ + 1) occurrence matrix 𝒀𝒀𝑡𝑡𝑡𝑡𝑡𝑡 = [𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡′    𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡] is initially obtained from the transposed training set 

𝑷𝑷𝑡𝑡𝑡𝑡𝑡𝑡′  and the corresponding 𝑇𝑇 × 𝑀𝑀∗ matrix 𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡. The 𝑛𝑛th row vector 𝒚𝒚𝑡𝑡𝑛𝑛 = {𝑃𝑃𝑡𝑡𝑛𝑛 , 𝑥𝑥1𝑡𝑡𝑛𝑛 , … , 𝑥𝑥𝑀𝑀𝑡𝑡𝑛𝑛
∗ }, taken from the 

occurrence matrix 𝒀𝒀𝑡𝑡𝑡𝑡𝑡𝑡, contains the target variable and the predictors at the time step 𝑡𝑡𝑛𝑛. It may be viewed as an 

item coming from some generic, unknown multinomial distribution 𝐹𝐹(𝒚𝒚), with 𝑇𝑇 available realizations (i.e., past 

occurrences) 𝒚𝒚𝑡𝑡1 , … ,𝒚𝒚𝑡𝑡𝑇𝑇.  

 As shown earlier, the estimated parameters 𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 of the QR model come from (6.1.4), and therefore they can be 

viewed as a function of 𝑮𝑮[𝐹𝐹(𝒚𝒚)]: 

 

𝜷𝜷�〈𝛼𝛼𝑞𝑞〉 = 𝑮𝑮[𝐹𝐹(𝒚𝒚)].                     (6.1.5) 
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In bootstrap (either traditional or Bayesian [93,94]), the unknown distribution 𝐹𝐹(𝒚𝒚) is searched for among 

distributions of the type 𝐹𝐹𝑇𝑇(𝒚𝒚): 

 

𝐹𝐹𝑇𝑇(𝒚𝒚) = ∑ 𝜔𝜔𝑡𝑡𝑛𝑛 ∙ 𝛿𝛿𝒚𝒚𝑡𝑡𝑛𝑛
𝑇𝑇
𝑛𝑛=1 ,                  (6.1.6) 

 

where 𝛿𝛿𝒚𝒚𝑡𝑡𝑛𝑛  is a degenerate probability measure for the 𝑛𝑛th vector 𝒚𝒚𝑡𝑡𝑛𝑛 of occurrences, and 𝜔𝜔𝑡𝑡𝑛𝑛 is an assigned weight. 

For consistency, the weights must satisfy the following conditions: 

 

 ∑ 𝜔𝜔𝑡𝑡𝑛𝑛
𝑇𝑇
𝑛𝑛=1 = 1,  𝜔𝜔𝑡𝑡𝑛𝑛 ≥ 0 ∀𝑛𝑛 = 1, … ,𝑇𝑇.           (6.1.7) 

 

In a traditional bootstrap, the function 𝑮𝑮[𝐹𝐹(𝒚𝒚)] is estimated upon 𝑅𝑅 distributions 𝐹𝐹𝑇𝑇
〈1〉(𝒚𝒚), … ,𝐹𝐹𝑇𝑇

〈𝑅𝑅〉(𝒚𝒚). With 

reference to the generic 𝑟𝑟th replicate, the functional 𝑮𝑮�𝐹𝐹𝑇𝑇
〈𝑟𝑟〉(𝒚𝒚)� is calculated using the weights 𝝎𝝎〈𝑟𝑟〉 = {𝜔𝜔𝑡𝑡1

〈𝑟𝑟〉, … ,𝜔𝜔𝑡𝑡𝑇𝑇
〈𝑟𝑟〉}, 

that are obtained by a random extraction from the multinomial distribution: 

 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇; 1/𝑇𝑇, 1/𝑇𝑇, … ,1/𝑇𝑇).                 (6.1.8)  

 

and normalizing by 𝑇𝑇.  

The Bayesian bootstrap differs from the traditional bootstrap since the bootstrapped weights 𝜔𝜔𝑡𝑡1
〈𝑟𝑟〉, … ,𝜔𝜔𝑡𝑡𝑇𝑇

〈𝑟𝑟〉 are not 

obtained by random extraction from distribution (6.1.8). Instead, the vector 𝝎𝝎 = {𝜔𝜔𝑡𝑡1 , … ,𝜔𝜔𝑡𝑡𝑇𝑇} is the object of 

Bayesian analysis, which aims at evaluating a posterior distribution 𝑝𝑝(𝝎𝝎|𝒀𝒀𝑡𝑡𝑡𝑡𝑡𝑡) of this vector of weights, given 

occurrence data 𝒀𝒀𝑡𝑡𝑡𝑡𝑡𝑡. A prior distribution 𝑝𝑝(𝝎𝝎) should be imposed upon the parameters 𝝎𝝎 to start the Bayesian 

inference [93,94]. A convenient choice is to select a Dirichlet distribution, which is a conjugate prior for the 

multinomial distribution of 𝒚𝒚 [93,94]. In such a case, the posterior distribution 𝑝𝑝(𝝎𝝎|𝒀𝒀𝑡𝑡𝑡𝑡𝑡𝑡) is itself a Dirichlet 

distribution, 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(1, … ,1; 1, … ,1) [93]. This allows applying a Monte Carlo sampling method to get the Bayesian 

bootstrapped samples 𝜷𝜷�1
〈𝛼𝛼𝑞𝑞〉, … ,𝜷𝜷�𝑀𝑀∗+1

〈𝛼𝛼𝑞𝑞〉  of the 𝑀𝑀∗ + 1 estimated parameters of the QR model. The steps are: 

i) 𝑅𝑅 multivariate samples 𝝎𝝎〈1〉, … ,𝝎𝝎〈𝑅𝑅〉 are independently extracted from the Dirichlet distribution 

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(1, … ,1; 1, … ,1); 

ii) 𝑮𝑮�𝐹𝐹𝑇𝑇
〈1〉(𝒚𝒚)�, … ,𝑮𝑮�𝐹𝐹𝑇𝑇

〈𝑅𝑅〉(𝒚𝒚)� are calculated applying (6.1.2)-(6.1.4); 
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iii) 𝑅𝑅 Bayesian bootstrapped samples 𝜷𝜷�1
〈𝛼𝛼𝑞𝑞〉, … ,𝜷𝜷�𝑀𝑀∗+1

〈𝛼𝛼𝑞𝑞〉  for each of the 𝑀𝑀∗ + 1 parameters of the QR model are 

obtained using (6.1.5). From these samples, it obtains 𝑅𝑅 samples of the predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 of PV power by 

applying (6.1.1). The set of these samples are indicated with 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉. 

 

4) Third stage: Extraction of a single value from the Bayesian bootstrapped predictive PV power 

The 𝑅𝑅 samples 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉 of the predictive 𝛼𝛼𝑞𝑞-quantile of PV power can be interpreted as probabilistic predictions for 

the predictive quantile. Sample quantiles and confidence intervals of the predictive 𝛼𝛼𝑞𝑞-quantile of PV power can 

therefore be estimated from 𝑷𝑷�ℎ
〈𝛼𝛼𝑞𝑞〉. Since it will be of use later, the generic sample 𝜏𝜏𝑞𝑞-quantile estimated from 𝑷𝑷�ℎ

〈𝛼𝛼𝑞𝑞〉 

is denoted by 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉〈𝜏𝜏𝑞𝑞〉.  

Probabilistic PV power forecasts are usually given in terms of predictive distribution or a set of predictive 

quantiles at different coverage levels, and the redundancy given by multiple samples for each quantile level can lead 

to misinterpretation of the results in practical utilization of forecasts. A dedicated procedure is developed in this 

research activity to reduce the redundancy of the forecasts by extracting a single value from the samples of the 

predictive 𝛼𝛼𝑞𝑞-quantile of PV power. This single value is treated as the final predictive 𝛼𝛼𝑞𝑞-quantile 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉∗ of PV power 

returned by BBQR. The procedure effectively exploits the information contained in the available 𝑅𝑅 samples, in order 

to further improve the final probabilistic forecasts.  

The single value 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉∗ is the sample quantile extracted from 𝑷𝑷�ℎ

〈𝛼𝛼𝑞𝑞〉 as: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉∗ = 𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉〈𝜏𝜏𝑞𝑞∗ 〉,                    (6.1.9) 

 

where the specific coverage 𝜏𝜏𝑞𝑞∗  of this sample quantile is the object of an optimization problem aimed at minimizing 

the PS of the final forecasts calculated on the validation set 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 , i.e.: 

 

𝜏𝜏𝑞𝑞∗ = argmin
𝜏𝜏𝑞𝑞

𝑃𝑃𝑃𝑃 �𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 ,𝑷𝑷�𝑣𝑣𝑣𝑣𝑣𝑣
〈𝛼𝛼𝑞𝑞〉〈𝜏𝜏𝑞𝑞〉�.            (6.1.10) 

 

Note that this procedure is made independent for each quantile coverage 𝛼𝛼1, … ,𝛼𝛼𝑄𝑄 , for simplicity. Therefore, 

possible quantile crossing in the final PV power forecasts is corrected by post-processing the results with simple 

sorting in ascending order across the 𝑄𝑄 coverages.  
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5.1.2. EXPERIMENTAL FRAMEWORK AND RESULTS 

This section presents the experimental framework, in terms of benchmarks and the error indices used to assess 

the validity of the proposal and to compare the probabilistic forecasts, and the outcomes of the experimental results. 

 

1) Benchmarks 

Five benchmarks are considered to provide a fair comparison of the results. They are listed below. 

Simple QR (SQR): the first benchmark [10, 16] is introduced to be used as a reference in which each predictive 

quantile is directly provided as a single value, rather than by passing through the bootstrap. This allows assessing 

whether the bootstrap is effective or not in improving forecasts. To provide a fair comparison, the same model 

selection procedure presented in Section 6.1.1 within the framework of the proposed forecasting system based on 

BBQR is also adopted for SQR. 

Traditional Bootstrap QR (TBQR): the second benchmark [95] is introduced in order to evaluate if the Bayesian 

bootstrap is more effective than the traditional bootstrap in increasing the skill of the final forecasts. For fair 

comparison, the same QR model selection procedure, the same Monte Carlo sampling method and the same 

procedure to extract a single value from the 𝑅𝑅 samples, presented in Section 6.1.1, are applied to TBQR. 

Quantile Regression Neural Network (QRNN) and Gradient Boosting Regression Tree (GBRT): the third and 

fourth benchmarks of QRNN [96] and GBRT [97] are introduced to provide independent references that do not come 

from QR-based models.  

QRNN is formulated to simultaneously predict several PV power quantiles to reduce the quantile crossing effect 

[96]. The basic neural network architecture used to develop QRNN is the multilayer perceptron with a single hidden 

layer. Hyperparameter optimization is performed through a validation procedure on the validation dataset 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 , to 

maintain statistical fairness with the other models. QRNN is implemented using the qrnn package in R [98]. 

GBRT is developed individually for each considered quantile, and the predictions are post-processed in a sorting 

procedure to avoid quantile crossing. Also in this case, the hyperparameter optimization is performed through a 

validation procedure on the validation dataset 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 , to maintain statistical fairness with the other models. GBRT is 

implemented using the gbm package in R [99]. 

Seasonal Persistence Model (SPM): the fifth benchmark is based on the underlying daily periodicity of the PV 

power pattern driven by the rotation of the Earth around its own axis. In practice, each predictive quantile is the PV 

power observed the day before: 
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𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝑃𝑃ℎ−24.                      (6.1.11) 

 

This benchmark is added in order to provide a naive, unbiased reference for comparison. 

 

2) Error indices 

Two error indices are used to quantify the accuracy of the forecasts. The first index is the abovementioned PS, 

which is a strictly proper score [92] that simultaneously addresses the reliability and the sharpness of forecasts. Its 

formulation is: 

 

𝑃𝑃𝑃𝑃 �𝑃𝑃ℎ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� = �𝛼𝛼𝑞𝑞 − I �𝑃𝑃ℎ ,𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�� ∙ �𝑃𝑃ℎ − 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉�,       (6.1.12) 

 

where the indicator function I �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� is: 

 

 I �𝑃𝑃ℎ ,𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉� = �

1   𝑖𝑖𝑖𝑖 𝑃𝑃ℎ ≤ 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉

0   𝑖𝑖𝑖𝑖 𝑃𝑃ℎ > 𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉

.            (6.1.13) 

 

A comprehensive PS can be obtained averaging across multiple forecast issues (e.g., the 𝑉𝑉 issues in the validation 

set) and summing over the 𝑄𝑄 quantiles. PS is negatively oriented, so a smaller PS indicates better forecasts. The 

Normalized PS (NPS) is provided in our numerical experiments to get scale-independent results. It is: 

 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑃𝑃𝑃𝑃�𝑃𝑃ℎ,𝑃𝑃�ℎ

〈𝛼𝛼𝑞𝑞〉�

𝑃𝑃�rated
,                      (6.1.14) 

 

where 𝑃𝑃rated is the rated power of the PV system.   

The second error index is the Average Absolute Coverage Error (AACE), and it addresses the reliability of the 

forecasts, i.e., the correspondence between the estimate and the nominal coverages of the predictive quantiles 

[23,42]. Because of its intrinsic properties, it can only be formulated for multiple forecast issues. For sake of clarity it 

is referred in (6.1.15) to the validation set (although it can be easily adapted to other data sets). In such a case, the 

estimated 𝛼𝛼𝑞𝑞-coverage 𝛼𝛼�𝑞𝑞 is: 
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𝛼𝛼�𝑞𝑞 = 1
𝑉𝑉
∙ ∑ I �𝑃𝑃𝑣𝑣𝑛𝑛 ,𝑃𝑃�𝑣𝑣𝑛𝑛

〈𝛼𝛼𝑞𝑞〉�𝑉𝑉
𝑛𝑛=1 ,                 (6.1.15) 

 

and the Absolute Coverage Error (ACE) on the nominal 𝛼𝛼𝑞𝑞-quantile is: 

 

𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉 = �𝛼𝛼𝑞𝑞 − 𝛼𝛼�𝑞𝑞�.                      (6.1.16) 

 

The AACE across the 𝑄𝑄 coverages can be obtained as a percentage value as: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴% = 100
𝑄𝑄
∙ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴〈𝛼𝛼𝑞𝑞〉𝑄𝑄

𝑞𝑞=1 .               (6.1.17) 

 

The AACE is negatively oriented, so a smaller AACE indicates more reliable forecasts. 

 

 

3) Data and forecasting framework 

The proposed forecasting system is assessed using Dataset_PVI2 and Dataset_PVI3.  

Data are normalized in the 0-1 range to accommodate for the very different intervals spanned by the variables, 

and they are partitioned in three subsets. Dataset_PVI2 is split into a training set spanning February 1, 2016 to 

December 31, 2017 (i.e., 𝑇𝑇 = 16800), a validation set covering first six months of 2018 (i.e., 𝑉𝑉 = 4344), and a test 

set only used to assess the accuracy of forecasts, covering the remaining five months of 2018 (i.e., 3672 forecast 

issues). Similarly, Dataset_PVI3 is split into a training set from April 1, 2012 to October 31, 2013 (i.e., 𝑇𝑇 = 13896), 

a validation set covering the following five months (i.e., 𝑉𝑉 = 3624), and a test set covering the remaining three 

months of 2014 (i.e., 2184 forecast issues).  

The number 𝑅𝑅 of bootstrapped is searched for in the range 1000-10000, considering the size of the two datasets. 

Four tests with 𝑅𝑅 = 1000, 2000, 5000, 10000 were run, and the performances in these four cases were checked on 

the validation datasets 𝑷𝑷𝑣𝑣𝑣𝑣𝑣𝑣 . A good compromise was found by selecting 𝑅𝑅 = 5000 for both datasets. 5000 is the value 

used eventually to predict the PV power in the test periods. 

Forecasts are issued for 𝑄𝑄 = 19 nominal quantile coverages 𝛼𝛼1, … ,𝛼𝛼19 = 0.05, … ,0.95. All forecasts are developed 

in the R environment, exploiting packages quantreg [100] and bayesboot [101], qrnn [98] and gbm [99]. The extensive 

results for Dataset_PVI2 are presented below, whereas the results for Dataset_PVI3 are presented in a more compact 

form, to avoid verbose presentation. 
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4) Results for Dataset_PVI2 

The outcome of the first stage of the proposed forecasting system determines the model selected for the specific 

PV system. For Dataset_PVI2, the selected model is: 

 

𝑃𝑃�ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝛽̂𝛽0

〈𝛼𝛼𝑞𝑞〉 + 𝛽̂𝛽1
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ + 𝛽̂𝛽2

〈𝛼𝛼𝑞𝑞〉 ∙ 𝑡𝑡𝑡𝑡ℎ + 𝛽̂𝛽3
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ + 𝛽̂𝛽4

〈𝛼𝛼𝑞𝑞〉 ∙ 𝑃𝑃ℎ−24 + 𝛽̂𝛽5
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ ∙ 𝑡𝑡𝑡𝑡ℎ + 

              +𝛽̂𝛽6
〈𝛼𝛼𝑞𝑞〉 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ ∙ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ + 𝛽̂𝛽7

〈𝛼𝛼𝑞𝑞〉 ∙ 𝑡𝑡𝑡𝑡ℎ ∙ 𝑃𝑃ℎ−24,           (6.1.18) 

 

where 𝑡𝑡𝑡𝑡𝑡𝑡ℎ, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ and 𝑡𝑡𝑡𝑡ℎ are NWPs of total cloud coverage, clear-sky irradiance and total irradiance, respectively. 

The number of predictors of the selected model is therefore 𝑀𝑀∗ = 7.  

The forecast results for the test set of Dataset_PVI2 are shown in Table 6.1.1 via NPS (summed across the 𝑄𝑄 = 19 

quantiles and averaged through the test set) and AACE. BBQR returns a NPS smaller than SQR, TBQR, QRNN, GBRT 

and SPM benchmarks by 2.2%, 0.6%, 5.4%, 1.4% and 51.0%, respectively. Bootstrapping increases the accuracy of 

forecasts, since both the bootstrapped methods (BBQR and TBQR) outperform SQR, although the Bayesian-based 

procedure slightly outperforms the traditional bootstrapping procedure in terms of NPS. 

 

Table 6.1.1 Forecast results for the test set of Dataset_PVI2 

Method NPS [-] AACE [%] 
BBQR 0.2547 2.22 
SQR 0.2604 5.41 

TBQR 0.2562 2.38 
QRNN 0.2692 5.08 
GBRT 0.2583 5.72 
SPM 0.5193 - 

 

Further details on the skill of forecasts can be evaluated from the results of the experiments. Figure 6.1.2 shows 

the NPS, averaged through the test set of BBQR, SQR and TBQR forecasts for each nominal quantile level. Figure 

6.1.3 shows the NPS (summed across the 𝑄𝑄 = 19 quantiles and averaged through the test set) of BBQR, SQR and 

TBQR forecasts versus the forecast lead time. The similar patterns illustrated in these two figures are determined by 

the same underlying QR model used in all three forecasting methods. It can be determined that peak NPS occurs for 

middle coverage levels, whereas the NPS changes with the lead time for two reasons: i) forecasts inevitably tend to 

lose accuracy as lead time increases, and ii) the “bell-shaped” PV power patterns have small errors in proximity to 

dawn and dusk.   
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Fig. 6.1.2. NPS of probabilistic forecasts versus the nominal quantile coverage for the test set of Dataset_PVI2. 

 
Fig. 6.1.3. NPS of probabilistic forecasts versus the forecast lead time for the test set of Dataset_PVI2. 

 

BBQR forecasts are also the most reliable, as the AACE is reduced by 59%, 6.7%, 56.3% and 61.2%, with respect 

to SQR, TBQR, QRNN and GBRT, respectively. SPM AACE is not presented, since SPM forecasts are the same for 

each quantile coverage. To compare the probabilistic QR-based forecasts in detail, Figure 6.1.4 shows the reliability 

diagrams, outlining the estimated coverages versus nominal, of BBQR, SQR and TBQR. Both  BBQR and TBQR show 

similar patterns, with slightly overestimated coverages in the range 0.5 to 0.8. However, the SQR coverages are 

overestimate for all nominal levels. 
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In order to provide a graphical interpretation of the PV power forecasts versus time, Figure 6.1.5 shows the BBQR 

prediction intervals for one week of the test period. Prediction intervals are given for rates 90%, 50% and 10%, and 

they are plotted together with the actual PV power. 

 
Fig. 6.1.4. Reliability diagrams of the QR-based probabilistic forecasts for the test set of Dataset_PVI2. 

 
Fig. 6.1.5. BBQR prediction intervals during one week of the test set of Dataset_PVI2. 

 

5) Results for Dataset_PVI3 
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The results for Dataset_PVI3 are presented in a more compact form, to avoid duplication. Table 6.1.2 shows the 

NPS and AACE for BBQR and the benchmarks. As seen, BBQR returns an NPS that is smaller than the benchmarks 

for this dataset, too. The respective reductions are around 4.7%, 2.4%, 6.3%, 2.0% and 53.4%, compared to SQR, 

TBQR, QRNN, GBRT and SPM. Bootstrapping is again proved to increase the accuracy of forecasts since both 

bootstrapped methods (BBQR and TBQR) outperform the SQR. The Bayesian-based procedure slightly outperforms 

the traditional bootstrapping procedure in terms of NPS. 

The AACE of BBQR forecasts is again the smallest, accounting for reductions of 41.3%, 7.7%, 30.4% and 34.9% 

with respect to SQR, TBQR, QRNN and GBRT, respectively. Figure 6.1.6 shows the reliability diagrams of the 

probabilistic QR-based forecasts. BBQR and TBQR show similar patterns, with slightly overestimated coverages in 

the range 0.5 to 0.8, whereas the SQR coverages are underestimated for all nominal levels. 

 

Table 6.1.2 Forecast results for the test set of Dataset_PVI3 

Method NPS [-] AACE [%] 
BBQR 0.2364 2.50 
SQR 0.2480 4.26 

TBQR 0.2422 2.71 
QRNN 0.2522 3.59 
GBRT 0.2412 3.84 
SPM 0.5078 - 

 

 
Fig. 6.1.6. Reliability diagrams of the QR-based probabilistic forecasts for the test set of Dataset_PVI3. 

 

5.1.3. DISCUSSION 
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The results obtained in the experiments denote the ability of BBQR to slightly increase the performance of the 

probabilistic predictions. Compared to traditional bootstrap approaches, the NPS is reduced in the range from 0.6% 

to 2.4%, and the overall reliability is slightly increased. The proposed method also performs well when compared 

with the state-of-the-art consolidated probabilistic models in energy forecasting, such as QRNN and GBRT. 

These promising results indicate the applicability of Bayesian bootstrap techniques for estimating the parameters 

of different models, thus not limiting the analysis to QR-based models, in order to consolidate the technique in 

probabilistic energy forecasting.  

Some limitations apply to the type of prior and posterior distributions of the parameter. As shown in the 

methodology section, although conjugate priors ease the process of Bayesian bootstrap sampling, numerical methods 

(e.g., Metropolis-Hastings or Gibbs sampling) can be applied to draw samples from the posterior distributions of 

parameters even if the prior is not conjugate, thus allowing for generalizing the approach under different 

assumptions. 

 

5.2. DEVELOPMENT OF DAY-AHEAD FORECASTING 

SYSTEMS FOR WIND POWER GENERATION 
Forecasters almost unanimously agree that exploiting NWPs enhances the skill of wind power forecasts for short-

term horizons (e.g., day ahead horizon), as stochastic-only forecasting systems usually perform well only for very-

short lead times (e.g., 1-hour ahead), gradually losing relevance as the lead times increases. On the other hand, the 

availability of accurate NWPs has grown in the last years, thanks to the efforts in atmospheric modeling and in 

satellite acquisitions, as well as predictions of many weather variables are nowadays made available by weather 

institutions [56], and they can be used as input predictors of forecasting systems. Getting the most from the available 

data to increase the skill of wind power forecasts is an object of energy data analysis. Exploiting spatially-distributed 

NWPs for an area surrounding the wind farm has been proved to be an efficient solution to further add skill [57-59]. 

However, adding too many predictors to the models could involve the risk of overfitting the data thus losing forecast 

skill. Standard techniques to reduce overfitting are based on dimensionality reduction and feature selection (or 

feature engineering) [57,60-63], which are often accomplished through validation, leave-one-out cross-validation or 

k-fold cross-validation frameworks. These latter procedures usually are computationally intensive, particularly when 

many NWPs are candidate predictors [64], as it can happen when handling spatially-distributed NWPs for an area 
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surrounding the wind farm. This poses an arduous challenge to the development of forecasting systems in which 

models are re-trained as new observations become available.  

In this research activity, we develop a simplified technique for feature selection in wind forecasting, based on 

ranking and combining spatially-distributed NWPs available for a given area surrounding the wind farm. We also 

develop a forecasting methodology to generate probabilistic forecasts of wind power on the basis of such a simplified 

technique.  

Since wind farms usually cover a large area, in the proposed methodology NWPs are ranked in-sample and 

combined for each of the wind turbines, in order to provide more skilled forecasts for each individual generator. We 

expect that this approach may increase the exploitation of the information contained in all of the available NWPs 

and in the available individual-generator measured data, compared to the traditional case in which only the NWPs 

related to the specific location of the wind turbine are used.  

The main advantage of the proposed procedure is that ranking NWPs by their in-sample accuracy reduces the 

risk of overfitting the training data, which would be a compelling problem if all of the available NWPs are naively 

added as predictors of the probabilistic model. This technique simplifies the feature selection for the underlying 

model which generates the forecasts. In addition, a single set of fictitious NWPs, gathered from an opportune 

combination of actual NWPs, is built to reduce the dimensionality of the problem. 

In particular, two different NWP in-sample ranking procedures are proposed. One is based on the accuracy of 

absolute wind speed, and the other one is based on the combined accuracy of u- and v-components of the wind 

speed. The latter procedure is specifically tested in this research activity, due to the high influence of wind direction 

on wind generation. 

Once NWPs are ranked in-sample, an ensemble (fictitious) set of NWP is obtained from the weighted 

combination of ranked NWPs. Three different approaches are developed to estimate the weights of the combination, 

in order to search for the most suitable solution and to provide diversity. 

Two types of model are considered to predict wind generation. One is based on GBRT [97], due to the good 

performance shown during energy forecasting competitions [40]. The other is based on QRNN [96], due to the 

promising result obtained by neural networks in probabilistic energy forecasting. Selecting two theoretically 

dissimilar types of models allows testing the effectiveness of the NWP ranking and combination procedure in a fair, 

model-free manner. The proposed methodology is applied for day-ahead wind power forecasting of individual 

generators and of the entire wind farm.  

In summary, the main contributions of this research activity are: 
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- the proposal of ranking and combining NWPs by their in-sample accuracy on individual wind generators, 

to form an ensemble set of predictors for the probabilistic forecasting model. Ranked predictors are put in 

an ensemble, which is a fictitious set of NWPs formed through three different weighted combination 

approaches; 

- the comparison between two ranking procedures, the first based on in-sample accuracy of the absolute wind 

speed and the second based on in-sample combined accuracy of u- and v-components of the wind speed; 

- the development of a new forecasting methodology based on this proposal, through the integration of the 

ranking procedure, of the combination approach, and either GBRT or QRNN models; 

- the development of experimental results on an actual wind farm, composed of ten individual generators.  

To avoid verbosity in the analytic formulations, the symbols are consistent within the following sub-Sections 

6.2.1, 6.2.2 and 6.2.3 only.  

 

5.2.1. MODELS AND METHODS 

The probabilistic wind power forecasting methodology developed in this research activity is based on the proposal 

of ranking NWPs by their in-sample accuracy for each individual generator within the considered wind farm, and 

of combining them in a weighted combination approach. The scheme of the methodology is presented in Figure 

6.2.1, and it includes five stages.  

In the first stage of the methodology, the wind farm is characterized by identifying the location of individual 

generators and the data available from measurement stations installed at each generator. The exploratory data 

analysis allows to individuate the geographical matches among the 𝑁𝑁𝑠𝑠 available sets 𝑵𝑵𝑵𝑵𝑵𝑵1,𝑵𝑵𝑵𝑵𝑵𝑵2, … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑠𝑠 of 

NWPs and each of the 𝑁𝑁𝑔𝑔 wind generators. NWPs are usually provided by weather forecasting services for 

elementary grid squares that have a fixed latitude-longitude resolution. It is here assumed that one NWP set is 

available for each elementary grid square of the globe, possibly partitioning the entire globe. Since each wind 

generator is located within a unique elementary grid square, it is possible to individuate the 𝐺𝐺2 neighbor elementary 

grid squares surrounding each wind generator, assuming that these elementary grid squares form a composite grid 

square having a side of 𝐺𝐺. The corresponding 𝐺𝐺2, related to the 𝐺𝐺2 neighbor elementary grid squares surrounding 

each wind generator, are stored in 𝑁𝑁𝑔𝑔 datasets 𝑵𝑵𝑵𝑵𝑵𝑵1∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔
∗ , which are the outputs of the first stage of 

the methodology. Note that 𝐺𝐺 is a hyper-parameter of the forecasting system, which is optimized in a cross-validation 

scheme. It is hereinafter assumed that NWPs include predictions of the absolute wind speed, and possibly of the u- 

and v-components of wind speed. 
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Fig. 6.2.1. Scheme of the proposed wind power forecasting methodology. 

 

In the second stage of the methodology, the spatially-distributed NWPs, available for the composite grid square 

surrounding individual generators, are ranked by the in-sample accuracy either of the absolute wind speed or of the 

u- and v-components of wind speed. The outputs of this stage are 𝑁𝑁𝑔𝑔 ranked datasets 

𝑵𝑵𝑵𝑵𝑵𝑵1,𝑟𝑟𝑟𝑟𝑟𝑟
∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2,𝑟𝑟𝑟𝑟𝑟𝑟

∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔,𝑟𝑟𝑟𝑟𝑟𝑟
∗ . 

In the third stage of the methodology, ranked NWPs are appropriately combined to form 𝑁𝑁𝑔𝑔 ensemble (fictitious) 

datasets 𝑵𝑵𝑵𝑵𝑵𝑵1,𝑒𝑒𝑒𝑒𝑒𝑒
∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2,𝑒𝑒𝑒𝑒𝑒𝑒

∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒
∗ , which are used as predictors of either GBRT or QRNN probabilistic 

model in the fourth stage of the methodology. In this research activity, three different combination approaches are 

considered to form the ensemble datasets. They are based on weighted average combinations of the NWPs.  

In the fourth stage of the methodology, GBRT or QRNN probabilistic models forecast the power generated by 

individual turbines. These models exploit lagged wind power, lagged wind speed, the ensemble (fictitious) NWPs 
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returned by the third stage of the methodology, and calendar variables (hour of the day, day of the month and month 

of the year) to account for the possible seasonality of the wind power patterns. The outputs of the fourth stage of the 

methodology are the forecasts 𝑷𝑷�1,𝑷𝑷�2, … ,𝑷𝑷�𝑁𝑁𝑔𝑔 of individual wind generators, given by predictive quantiles.  

In the fifth stage of the methodology, the individual forecasts are aggregated to get the forecast 𝑷𝑷�𝑤𝑤𝑤𝑤 of the power 

produced by the entire wind farm.  

Details on the five stages are reported in the following subsections. 

 

1) Exploratory data analysis 

The exploratory data analysis aims at individuating correspondences among the available sets of NWPs and the 

data measured at each of the 𝑁𝑁𝑔𝑔 wind generators. Due to its strict interaction with the proposal, it is presented here 

rather than in Section 5.5, although these activities were performed in the framework of the Task 2.1. 

NWPs consist of predictions, provided by external weather forecasting institutions [56], of many weather 

variables. Only some of them are usually considered suitable candidate predictors for the wind power. To avoid 

unnecessary complexity, 7 variables [102] are considered in this proposal: pressure 𝑎𝑎𝑎𝑎, precipitation 𝑡𝑡𝑡𝑡, cloud cover 

𝑐𝑐𝑐𝑐, temperature 𝑎𝑎𝑎𝑎, u-component of wind speed 𝑢𝑢𝑢𝑢, v-component of wind speed 𝑣𝑣𝑣𝑣, and absolute wind speed 𝑠𝑠.  

NWPs are usually provided by weather forecasting services for elementary grid squares that have a fixed latitude-

longitude resolution (e.g., 0.1x0.1 or 0.25x0.25 degrees of latitude-longitude). These elementary grid squares partition 

the entire globe, so that forecasts are theoretically available for the entire globe. Intuitively, spatially-distributed 

NWPs lose relevancy for the wind power of a specific wind generator as much as the related elementary grid is 

farther from the wind generator.  

It is here assumed that 𝑁𝑁𝑠𝑠 sets 𝑵𝑵𝑵𝑵𝑵𝑵1,𝑵𝑵𝑵𝑵𝑵𝑵2, … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑠𝑠 of NWPs are available for a reasonably-wide area around 

the wind farm. Each set is a 𝑁𝑁 × 7 matrix, where 𝑁𝑁 is the total number of historical NWP instances. For the generic 

𝑘𝑘th set, the 𝑛𝑛th row has the form: 

 

𝑵𝑵𝑵𝑵𝑵𝑵𝑘𝑘𝑛𝑛 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘𝑛𝑛,1 , … ,𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘𝑛𝑛,7� = �𝑎𝑎𝑎𝑎�𝑘𝑘𝑛𝑛 , 𝑡𝑡𝑡𝑡�𝑘𝑘𝑛𝑛 , 𝑐𝑐𝑐𝑐� 𝑘𝑘𝑛𝑛 , 𝑎𝑎𝑎𝑎�𝑘𝑘𝑛𝑛 ,𝑢𝑢𝑢𝑢�𝑘𝑘𝑛𝑛 , 𝑣𝑣𝑣𝑣�𝑘𝑘𝑛𝑛 , 𝑠̂𝑠𝑘𝑘𝑛𝑛�.    (6.2.1) 

 

Feature engineering may solve the problem of selecting only the most relevant sets of the available NWPs for the 

purpose of wind power forecasting, but it is very computationally challenging since it requires validation or cross-

validation over a very large number of different combinations of predictors. This complicates the development of 

forecasting systems in which models are dynamically re-trained as new observations become available.  
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To cope with this problem by a simplified technique, in the first stage of the proposed methodology we propose 

to geographically match the available NWPs with individual wind generators, based on their spatial location. Each 

wind generator is located within a unique elementary grid square, which is individuated from the match between 

latitude-longitude coordinates of generators and latitude-longitude coordinates of elementary grid squares. It is 

straightforward to individuate 𝐺𝐺2 elementary grid squares which surround each wind generator, assuming that these 

elementary grid squares form a composite grid square having side 𝐺𝐺 and assuming that the central elementary grid 

square is the one corresponding to the location of the wind generator. Note that some of the elementary grid squares 

may be overlapped for different generators, on the basis of the spatial distribution of the generators within the wind 

farm. By applying this approach, feature engineering simply collapses into the search for an optimal value of the 

integer 𝐺𝐺, which is a hyper-parameter of the forecasting methodology. The spatial resolution of the available NWPs 

and the latitude at which the wind farm is located determine reasonable values among which 𝐺𝐺 should be searched: 

if NWPs are too sparse and the wind farm is sufficiently far from the poles, it is redundant to search 𝐺𝐺 among too 

large values. For example, if NWPs are provided for elementary grid squares of 0.25x0.25 degrees of latitude and 

longitude and latitude is around 45°N, a value 𝐺𝐺 = 10 would approximately correspond to a composite grid square 

of about 250x200 km2. Since in most applications 𝐺𝐺 can be searched within small, positive integers, a simple grid 

search procedure is applied to optimize it in 10-fold cross-validation. 

The exploratory data analysis is performed for each of the 𝑁𝑁𝑔𝑔 generators of the wind farm, so that 𝑁𝑁𝑔𝑔 NWP 

datasets related to the 𝐺𝐺2 neighbor elementary grid squares surrounding each generator can be individuated. These 

𝑁𝑁𝑔𝑔 datasets 𝑵𝑵𝑵𝑵𝑵𝑵1∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔
∗ , which are 𝑁𝑁 × 7 × 𝐺𝐺2 tensors, and they are the outcomes of the first stage of 

the proposed methodology. They are individually ranked in the second stage of the proposed methodology, as shown 

in the next Section. 

 

2) Ranking NWPs for individual wind generators 

Exploiting spatial information by ranking and combining NWPs has been successfully exploited in several energy 

forecasting applications [57-59,103]. In the second stage of the methodology, the 𝑁𝑁𝑔𝑔 datasets of spatially-distributed 

NWPs are ranked by their in-sample accuracy. Practically, the data contained in each tensor 

𝑵𝑵𝑵𝑵𝑵𝑵1∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔
∗  are ordered across the third dimension of the tensor, returning 𝑁𝑁𝑔𝑔 ranked datasets 

𝑵𝑵𝑵𝑵𝑵𝑵1,𝑟𝑟𝑟𝑟𝑟𝑟
∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2,𝑟𝑟𝑟𝑟𝑟𝑟

∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔,𝑟𝑟𝑟𝑟𝑟𝑟
∗ , which are 𝑁𝑁 × 7 × 𝐺𝐺2 tensors too. The ranking is performed by analyzing the 

in-sample accuracy either of the absolute wind speed or of the u- and v-components of wind speed, to provide and 

assess diversification in the approaches. In particular, the second procedure is tested since it accounts also for wind 

direction, which particularly affects wind generation. The two procedures are presented below. 
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Ranking procedure by absolute wind speed: Ranking NWPs by the in-sample wind speed accuracy is quite 

straightforward. We refer hereinafter to the generic individual generator 𝑖𝑖.  

Assuming that 𝑁𝑁𝑡𝑡𝑡𝑡 NWP instances are reserved to evaluate the in-sample accuracy, and that the corresponding 

wind speed 𝑠𝑠𝑖𝑖1 , … , 𝑠𝑠𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡  are measured at the 𝑖𝑖th individual generator during the same time intervals, the in-sample 

wind speed Mean Squared Errors (MSEs) are calculated as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑠𝑠) = 1
𝑁𝑁𝑡𝑡𝑡𝑡

∙ ∑ �𝑠𝑠𝑖𝑖𝑛𝑛 − 𝑠̂𝑠𝑖𝑖𝑛𝑛,𝑗𝑗�
2𝑁𝑁𝑡𝑡𝑡𝑡

𝑛𝑛=1 , 𝑗𝑗 = 1, … ,𝐺𝐺2,      (6.2.2) 

 

where 𝑠̂𝑠𝑖𝑖𝑛𝑛,𝑗𝑗 is the wind speed NWP at time 𝑛𝑛, contained in the tensor 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖∗ and related to the 𝑗𝑗th elementary grid 

square (i.e., the 𝑗𝑗th slot on the third dimension of the tensor).  

The ranked dataset 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟∗  is obtained straightforwardly by ordering the 𝐺𝐺2 MSEs in ascending order and 

mirroring the sort also over the third dimension of the tensor 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖∗. 

Ranking procedure by u- and v-components of wind speed: Ranking NWPs by the in-sample accuracy of u- and 

v-components of wind speed is less straightforward, since there are two variables to deal with. 

Assuming that the u-components 𝑢𝑢𝑢𝑢𝑖𝑖1 , … ,𝑢𝑢𝑢𝑢𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡  and the v-components 𝑣𝑣𝑣𝑣𝑖𝑖1 , … , 𝑣𝑣𝑣𝑣𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡  of wind speed are measured 

during the same time intervals of the NWP instances, two in-sample MSEs are calculated: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑢𝑢𝑢𝑢) = 1
𝑁𝑁𝑡𝑡𝑡𝑡

∙ ∑ �𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑢𝑢�𝑖𝑖𝑛𝑛,𝑗𝑗�
2𝑁𝑁𝑡𝑡𝑡𝑡

𝑛𝑛=1 , 𝑗𝑗 = 1, … ,𝐺𝐺2,     (6.2.3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑣𝑣𝑣𝑣) = 1
𝑁𝑁𝑡𝑡𝑡𝑡

∙ ∑ �𝑣𝑣𝑣𝑣𝑖𝑖𝑛𝑛 − 𝑣𝑣𝑣𝑣�𝑖𝑖𝑛𝑛,𝑗𝑗�
2𝑁𝑁𝑡𝑡𝑡𝑡

𝑛𝑛=1 , 𝑗𝑗 = 1, … ,𝐺𝐺2,     (6.2.4) 

 

where 𝑢𝑢𝑢𝑢�𝑖𝑖𝑛𝑛,𝑗𝑗  and 𝑣𝑣𝑣𝑣�𝑖𝑖𝑛𝑛,𝑗𝑗are respectively the NWPs of the u-component and v-component of wind speed at time 𝑛𝑛, 

contained in the tensor 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖∗ and related to the 𝑗𝑗th elementary grid square (i.e., the 𝑗𝑗th slot on the third dimension 

of the tensor).  

In this case, the ranked dataset 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟∗  is obtained straightforwardly by ordering the combined value 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑢𝑢𝑢𝑢𝑢𝑢) of these two MSEs: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑢𝑢𝑢𝑢𝑢𝑢) = 𝑘𝑘𝑢𝑢𝑢𝑢 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑢𝑢𝑢𝑢) + 𝑘𝑘𝑣𝑣𝑣𝑣 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑣𝑣𝑣𝑣),  𝑗𝑗 = 1, … ,𝐺𝐺2,   (6.2.5) 
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in ascending order and mirroring the sort also over the third dimension of the tensor 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖∗. Theoretically, the 

weights 𝑘𝑘𝑢𝑢𝑢𝑢 and 𝑘𝑘𝑣𝑣𝑣𝑣 assigned to the two MSEs could be different in situations in which there is a prevalent direction 

of the wind speed, in order to give more influence on the prevalent direction. Optimal values for these weights could 

be searched as well in the hyper-parameter optimization procedure. In this proposal, in order to keep the framework 

as much general and simple as it can be, we use same weights for the two MSEs (i.e., 𝑘𝑘𝑢𝑢𝑢𝑢 = 𝑘𝑘𝑣𝑣𝑣𝑣 = 1/2), assuming 

that the MSEs of the u- and v-components of the wind speed bring the same information to generate forecasts. 

 

3) Combination of the ranked NWPs for individual wind generators 

The data contained in the ranked datasets are furthermore manipulated in the third stage of the methodology to 

create 𝑁𝑁𝑔𝑔 ensemble datasets 𝑵𝑵𝑵𝑵𝑵𝑵1,𝑒𝑒𝑒𝑒𝑒𝑒
∗ ,𝑵𝑵𝑵𝑵𝑵𝑵2,𝑒𝑒𝑒𝑒𝑒𝑒

∗ , … ,𝑵𝑵𝑵𝑵𝑵𝑵𝑁𝑁𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒
∗ , which are 𝑁𝑁 × 7 matrices used as predictors of the 

probabilistic model considered in the fourth stage. 

The ensemble sets are obtained as a weighted average of the 𝐺𝐺2 NWPs, where the weights depend on the rank 

(the highest ranks correspond to the greatest weights) [102]. In particular, the element 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟,𝑐𝑐
∗  of 𝑵𝑵𝑵𝑵𝑵𝑵𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒∗  at 

row 𝑟𝑟, column 𝑐𝑐 is: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟,𝑐𝑐
∗ = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐,𝑗𝑗

∗𝐺𝐺2
𝑗𝑗=1 ,  𝑟𝑟 = 1, … ,𝑁𝑁 and 𝑐𝑐 = 1, … ,7.   (6.2.6) 

 

Note that weights 𝑤𝑤𝑖𝑖𝑗𝑗  are the same for all of the considered weather variables contained in the NWP datasets. 

We develop three different combination approaches to estimate weights and to get the ranked NWPs. They are 

presented below. 

Equally-Spaced Weighted Combination (ESWC): In this approach the weights are equally spaced and sum up to 

one. The greatest weight is assigned to the top-ranked NWP, and the smallest weight is assigned to the lowest-ranked 

NWP [102]. For the 𝑖𝑖th wind generator, the 𝑗𝑗th estimated weight 𝑤𝑤�𝑖𝑖𝑗𝑗  is: 

 

𝑤𝑤�𝑖𝑖𝑗𝑗 =
𝐺𝐺2−𝑟𝑟𝑖𝑖𝑗𝑗+1

∑ 𝑘𝑘𝐺𝐺2
𝑘𝑘=1

,  𝑗𝑗 = 1, … ,𝐺𝐺2,       (6.2.7) 

 

where 𝑟𝑟𝑖𝑖𝑗𝑗 is the rank of the NWP related to the 𝑗𝑗th elementary grid square (i.e., the 𝑗𝑗th slot on the third dimension of 

the tensor) surrounding the 𝑖𝑖th wind generator. 
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Rank-Relevant Weighted Combination (RRWC): In this approach the weights are inversely-proportional to the 

values of the in-sample MSEs, which have led to the ranking order (thus, either 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑠𝑠) or 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗(𝑢𝑢𝑢𝑢𝑢𝑢)). Weights 

sum up to one in this case too. For the 𝑖𝑖th wind generator, the 𝑗𝑗th estimated weight 𝑤𝑤�𝑖𝑖𝑗𝑗  is: 

 

𝑤𝑤�𝑖𝑖𝑗𝑗 =
1
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗�

∑ 1
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑘𝑘
�𝐺𝐺2

𝑘𝑘=1
, 𝑗𝑗 = 1, … ,𝐺𝐺2.        (6.2.8) 

 

In-sample MSE Weighted Combination (IMWC): In this approach the weights are estimated by optimizing the 

in-sample MSE, either of the ensemble absolute wind speed or of the ensemble u- and v-components of wind speed. 

In this case we do not constrain weights to sum up to one. For the 𝑖𝑖th wind generator, considering respectively the 

ensemble absolute wind speed or the ensemble u- and v-components of wind speed, the estimated weights 𝒘𝒘�𝑖𝑖  are: 

 

𝒘𝒘�𝑖𝑖 = argmin
𝒘𝒘𝑖𝑖

1
𝑁𝑁𝑡𝑡𝑡𝑡

∙ ∑ �𝑠𝑠𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
∗ − 𝑠𝑠𝑖𝑖𝑛𝑛�

2𝑁𝑁𝑡𝑡𝑡𝑡
𝑛𝑛=1 ;        (6.2.9) 

𝒘𝒘�𝑖𝑖 = argmin
𝒘𝒘𝑖𝑖

1
𝑁𝑁𝑡𝑡𝑡𝑡

∙ ∑ 𝑘𝑘𝑢𝑢𝑢𝑢 ∙ �𝑢𝑢𝑢𝑢𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
∗ − 𝑢𝑢𝑢𝑢𝑖𝑖𝑛𝑛�

2 + 𝑘𝑘𝑣𝑣𝑣𝑣 ∙ �𝑣𝑣𝑣𝑣𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
∗ − 𝑣𝑣𝑣𝑣𝑖𝑖𝑛𝑛�

2𝑁𝑁𝑡𝑡𝑡𝑡
𝑛𝑛=1 ,    (6.2.10) 

 

where 𝑠𝑠𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
∗ ,𝑢𝑢𝑢𝑢𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

∗  and 𝑣𝑣𝑣𝑣𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
∗  depend on weights 𝒘𝒘𝑖𝑖 , as it is shown in (6.2.6). 

 

4) Gradient boosting regression tree 

In the fourth stage of the methodology, the power generated by each individual wind turbine is probabilistically 

forecasted through a dedicated model. We validate the proposal using either GBRT or QRNN models to generate 

individual forecasts. 

GBRT models are based on regression trees, which forecast the target variable (in this proposal, the power 

produced by an individual wind generator) grouping past observations by splitting on training data predictors [97]. 

At the root of the tree, all the training data are in the same group. A non-overlapping condition is posed upon a 

predictor, and branches grow from the split node. Children data subsets are individuated through the split, and they 

do not contain overlapping data. The local optimal condition for the split is searched by minimizing the MSE related 

to the children data subsets. 

For the 𝑖𝑖th generator, a regression tree iteratively fits the power residuals 𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖 of a weak learner 𝑃𝑃�𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒙𝒙𝑖𝑖) 

until convergence over the minimization of a loss function 𝜓𝜓𝑖𝑖�𝑃𝑃𝑖𝑖 , 𝑓𝑓𝑖𝑖(𝒙𝒙𝑖𝑖)� is reached (i.e., the relative improvement 

given by the last iteration is smaller than an assigned threshold). 𝒙𝒙𝑖𝑖 is the vector containing the predictors of the 
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model (selected among lagged wind power, lagged wind speed, ensemble NWPs returned by the previous stage of 

the methodology, and calendar variables such as hour of the day, day of the month and month of the year, to account 

for the possible seasonality of the wind power patterns) for the 𝑖𝑖th generator. At iteration 𝑚𝑚 = 0, the function 𝑓𝑓𝑖𝑖
(0)(𝒙𝒙𝑖𝑖) 

is initialized at a constant value 𝜌𝜌�𝑖𝑖
(0) given by: 

 

𝜌𝜌�𝑖𝑖
(0) = argmin

𝜌𝜌
∑ 𝜓𝜓𝑖𝑖(𝑃𝑃𝑖𝑖𝑛𝑛 ,𝜌𝜌) 𝑁𝑁𝑡𝑡𝑡𝑡
𝑛𝑛=1 .        (6.2.11) 

 

For subsequent iterations 𝑚𝑚 > 0, the negative gradients of the loss function evaluated in 𝑓𝑓𝑖𝑖
(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛� are 

calculated for 𝑛𝑛 = 1, … ,𝑁𝑁𝑡𝑡𝑡𝑡: 

 

𝑔𝑔𝑖𝑖𝑛𝑛 = −�
𝜕𝜕𝜓𝜓𝑖𝑖�𝑃𝑃𝑖𝑖𝑛𝑛 ,𝑓𝑓𝑖𝑖

(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛�� 

𝜕𝜕𝑓𝑓𝑖𝑖
(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛�

�
𝑓𝑓𝑖𝑖

(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛�=𝑓̂𝑓𝑖𝑖
(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛�

.      (6.2.12) 

 

A regression tree 𝑇𝑇(𝒙𝒙𝑖𝑖) is fitted upon predictors 𝒙𝒙𝑖𝑖1 , … ,𝒙𝒙𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡  and corresponding outcomes 𝑔𝑔𝑖𝑖1 , … ,𝑔𝑔𝑖𝑖𝑁𝑁𝑡𝑡𝑡𝑡 , and the 

gradient descent step size 𝜌𝜌�𝑖𝑖
(𝑚𝑚) is estimated as:  

 

𝜌𝜌�𝑖𝑖
(𝑚𝑚) = argmin

𝜌𝜌
∑ 𝜓𝜓𝑖𝑖�𝑃𝑃𝑖𝑖𝑛𝑛 , 𝑓𝑓𝑖𝑖

(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑛𝑛� + 𝜌𝜌 ∙ 𝑇𝑇(𝒙𝒙𝑖𝑖)� 𝑁𝑁𝑡𝑡𝑡𝑡
𝑛𝑛=1 ;      (6.2.13) 

 

the weak learner at the 𝑚𝑚th iteration is then updated as: 

 

𝑓𝑓𝑖𝑖
(𝑚𝑚)�𝒙𝒙𝑖𝑖𝑡𝑡� = 𝑓𝑓𝑖𝑖

(𝑚𝑚−1)�𝒙𝒙𝑖𝑖𝑡𝑡� + 𝜌𝜌�𝑖𝑖
(𝑚𝑚),        (6.2.14) 

 

and, given a threshold 𝜏𝜏, the algorithm stops when 𝜌𝜌�𝑖𝑖
(𝑚𝑚) < 𝜏𝜏, returning the prediction 𝑃𝑃�𝑖𝑖 = 𝑓𝑓𝑖𝑖

(𝑚𝑚)(𝒙𝒙𝑖𝑖). In order to 

generate probabilistic forecasts, the loss function 𝜓𝜓𝑖𝑖�𝑃𝑃𝑖𝑖 , 𝑓𝑓𝑖𝑖(𝒙𝒙𝑖𝑖)� is the PS, defined in Section 6.1.2. PS is a function of 

the quantile coverage 0 ≤ 𝛼𝛼𝑞𝑞 ≤ 1, so forecasts can be given by 𝑄𝑄 predictive quantiles 𝑃𝑃�𝑖𝑖ℎ
〈𝛼𝛼1〉, … ,𝑃𝑃�𝑖𝑖ℎ

〈𝛼𝛼𝑄𝑄〉 for the target 

time horizon ℎ. 

 

5) Quantile regression neural network 

QRNN is the other model used in the proposal to forecast the power generated by each individual wind turbine.  
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The QRNNs used for this purpose are extensions of Monotone Quantile Regression Neural Networks (MQRNNs), 

specifically adapted in order to simultaneously target multiple predictive conditional quantiles, avoiding quantile 

crossing [98]. The neural network architecture considered for MQRNN is the Multi-Layer Perceptron (MLP) with 

single hidden layer. For its formulation, the 𝑖𝑖th generator is considered hereinafter. In traditional MQRNNs, the 

predictors 𝒙𝒙𝑖𝑖 are separated into two groups: one group contains the 𝐴𝐴 predictors 𝑥𝑥𝑎𝑎1,𝑖𝑖 , … . , 𝑥𝑥𝑎𝑎𝐴𝐴,𝑖𝑖 having a monotone 

increasing link with the target variable, and the other group contains the remaining 𝐵𝐵 predictors 𝑥𝑥𝑏𝑏1,𝑖𝑖, … . , 𝑥𝑥𝑏𝑏𝐵𝐵,𝑖𝑖. The 

predictive conditional 𝛼𝛼𝑞𝑞-quantile returned by the MQRNN for the target time horizon ℎ is obtained as function of 

these predictors related to target time horizon ℎ, as it follows: 

 

𝑃𝑃�𝑖𝑖ℎ
〈𝛼𝛼𝑞𝑞〉 = 𝛾𝛾 �∑ �𝜂𝜂 �∑ 𝑥𝑥𝑎𝑎𝑛𝑛,𝑖𝑖ℎ ∙ 𝑒𝑒

𝜔𝜔�𝑎𝑎𝑛𝑛,𝑗𝑗
〈𝛼𝛼𝑞𝑞〉

𝐴𝐴
𝑛𝑛=1 + ∑ 𝑥𝑥𝑏𝑏𝑛𝑛,𝑖𝑖ℎ ∙ 𝜔𝜔�𝑏𝑏𝑛𝑛,𝑗𝑗

〈𝛼𝛼𝑞𝑞〉𝐵𝐵
𝑛𝑛=1 + 𝜎𝜎�𝑗𝑗

〈𝛼𝛼𝑞𝑞〉� ∙ 𝑒𝑒𝛿𝛿
�
𝑗𝑗
〈𝛼𝛼𝑞𝑞〉

�𝐽𝐽
𝑗𝑗=1 + 𝛽̂𝛽〈𝛼𝛼𝑞𝑞〉�,  (6.2.15) 

  

where 𝜂𝜂(∙) is the function operated at the level of the neurons of the hidden layer (in this proposal, it is the sigmoid 

hyperbolic tangent function illustrated in Figure 6.2.2), 𝐽𝐽 is the number of neurons in the hidden layer, 𝛾𝛾(∙) is a non-

decreasing function operated upon the outputs of the hidden layer (it is an inverse link function from generalized 

linear modeling, and in this proposal it is kept as the identity function), 𝝎𝝎�𝑗𝑗
〈𝛼𝛼𝑞𝑞〉 is the vector of 𝐴𝐴 + 𝐵𝐵 parameters 

estimated at the level of the 𝑗𝑗th neuron within the hidden layer for the 𝛼𝛼𝑞𝑞-quantile, 𝜹𝜹�〈𝛼𝛼𝑞𝑞〉 and 𝝈𝝈�〈𝛼𝛼𝑞𝑞〉 are two vectors 

of 𝐽𝐽 estimated parameters for the 𝛼𝛼𝑞𝑞-quantile, and 𝛽̂𝛽〈𝛼𝛼𝑞𝑞〉 is a scalar estimated parameter for the 𝛼𝛼𝑞𝑞-quantile.  

The parameters 𝝎𝝎�𝑗𝑗
〈𝛼𝛼𝑞𝑞〉,𝜹𝜹�〈𝛼𝛼𝑞𝑞〉,𝝈𝝈�〈𝛼𝛼𝑞𝑞〉 and 𝛽̂𝛽〈𝛼𝛼𝑞𝑞〉 are estimated by minimizing the PS loss function 𝜓𝜓𝑖𝑖�𝑃𝑃𝑖𝑖 , 𝑓𝑓𝑖𝑖(𝒙𝒙𝑖𝑖)�, 

defined in Section 6.1.2, for the given nominal quantile coverage 𝛼𝛼𝑞𝑞. In order to avoid quantile crossing in the 

training stage, the QRNNs used in this proposal simultaneously accounts for all the parameters across multiple 

quantile coverages, i.e., the parameters are estimated simultaneously for all of the considered quantile coverages [98]. 

This is performed by applying partial monotonicity constraints on the corresponding predictors (i.e., 
𝜕𝜕𝑃𝑃𝑖𝑖

〈𝛼𝛼𝑞𝑞〉

𝜕𝜕𝑥𝑥𝑎𝑎𝑛𝑛
≥ 0), as 

both 𝜂𝜂(∙) and 𝛾𝛾(∙) are smooth non-decreasing functions [98]. 
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Fig. 6.2.2. Sigmoid hyperbolic tangent function used in the QRNN. 

 

6) Aggregation of individual predictions 

Forecasts provided for individual wind generators can be used per se or aggregated to form the probabilistic power 

forecast of the wind farm. Aggregating probabilistic predictions is not a trivial task [32]. The simple sum-and-sort of 

predictive quantiles is often effective to aggregate probabilistic predictions, although it sometimes may return slightly 

over-dispersed forecasts [32]. In this proposal we primarily use sum-and-sort to aggregate forecasts, as it appears to 

be a suitable solution on the basis of our experiments. This choice allows avoiding unnecessary complications and 

keeping the methodology as much simple as it can be.  

The predictive 𝛼𝛼𝑞𝑞-quantiles of the power generated by the wind farm is: 

 

𝑃𝑃�𝑤𝑤𝑤𝑤ℎ
〈𝛼𝛼𝑞𝑞〉 = ∑ 𝑃𝑃�𝑖𝑖ℎ

〈𝛼𝛼𝑞𝑞〉𝑁𝑁𝑔𝑔
𝑖𝑖=1 ,  𝑞𝑞 = 1, … ,𝑄𝑄,       (6.2.16) 

 

and they are eventually ordered to maintain statistical consistency (i.e., non-decreasing sorting) among predictive 

quantiles. 

It is worth noting that some other aggregation solutions might be exploited as well, as they may return better 

aggregated forecasts for the wind farm. In this proposal a solution for the forecast aggregation, considering a 

Weighted Combination (WC) of individual predictive quantiles [68], is investigated and compared to the simple 

sum-and-sort. In particular, the WC predictive 𝛼𝛼𝑞𝑞-quantile of the power generated by the wind farm is: 

 

𝑃𝑃�𝑤𝑤𝑤𝑤ℎ
〈𝛼𝛼𝑞𝑞〉 = ∑ 𝜑𝜑�𝑖𝑖

〈𝛼𝛼𝑞𝑞〉 ∙ 𝑃𝑃�𝑖𝑖ℎ
〈𝛼𝛼𝑞𝑞〉𝑁𝑁𝑔𝑔

𝑖𝑖=1 , 𝑞𝑞 = 1, … ,𝑄𝑄,        (6.2.17) 

 



 
  
 

 
 

48 
 

where the weight parameters 𝜑𝜑�𝑖𝑖
〈𝛼𝛼𝑞𝑞〉 are optimized by minimizing the PS of the aggregated forecasts in a dedicated 

training window. The considered WC procedure does not account for any constraint upon the weight parameters, 

and it is assumed that potential crossing quantiles are sorted in a result post-process. 

 

5.2.2. EXPERIMENTAL FRAMEWORK AND RESULTS 

This section presents the experimental framework, in terms of benchmarks and the error indices used to assess 

the validity of the proposal and to compare the probabilistic forecasts, and the outcomes of the experimental results. 

 

1) Benchmarks 

We present several benchmarks in order to evaluate and compare the skill of the forecasts generated by the 

proposal. Each benchmark has a specific purpose, to evaluate single improvement brought by the proposal. Some of 

these benchmarks do not consider NWP ranking, in order to understand if and how much ranking NWPs adds skill 

to forecasts. Some of these benchmarks consider standard approaches for the feature selection and naïve approaches 

for unbiased comparison. 

Single location (SL) NWP: in this benchmark, only the highest-ranked NWP set for the individual generator is 

considered within the vector 𝒙𝒙 of predictors of the probabilistic forecasting model (either GBRT or QRNN). This 

benchmark aims at assessing the improvement brought by additional spatially-distributed NWPs in the surrounding 

area. 

Average (AVG) NWP: in this benchmark, the entire pool of NWPs available for 𝑁𝑁𝑠𝑠 elementary grid squares are 

simply averaged, in order to form fictitious NWPs for the considered area. These NWPs are considered within the 

vector 𝒙𝒙 of predictors of the probabilistic forecasting model. This benchmark aims at assessing the improvement 

brought by differentiating the weights associated to the spatially-distributed NWPs in the surrounding area, rather 

than putting them all together in a simple average structure. 

K-fold Cross-Validation (KCV) NWPs: in this benchmark, the entire pool of NWPs available the elementary grid 

squares surrounding the area are added as candidate predictors for either GBRT or QRNN models. Feature 

engineering is performed on this large set of candidate predictors through a 10-fold cross-validation procedure, in 

order to select only the most relevant ones to generate forecasts. This benchmark is based on a very standard 

technique which is used frequently in probabilistic forecasting, and thus it is expected to return skilled forecasts 

(probably even more skilled than the proposed technique). Nevertheless, it can be very time-consuming, particularly 

for many weather variables considered in the NWP sets. 
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Direct Wind Farm Forecast (DWFF): in this benchmark, the power generated by the wind farm is directly 

forecasted without transiting for forecasts of individual generators. In this case, we use the average NWPs as 

predictors of the probabilistic forecasting model. This benchmark has the purpose to investigate if and how much 

passing through individual predictions for individual generators increases the skill of forecasts. 

Persistence Method (PM): this is a naïve benchmark added to provide unbiased results for a fair comparison. This 

benchmark assumes the wind power to be constant throughout the entire lead time so that each of the 𝑄𝑄 predictive 

quantiles is the same of the last observed value. 

 

2) Error indices 

Probabilistic forecasts are evaluated through a strictly proper score (the PS defined in Section 6.1.2) and by 

inspecting their reliability (i.e., the correspondence among estimated and nominal coverages) through reliability 

diagrams and through the AACE index defined in Section 6.1.2).  

 

3) Data and forecasting framework 

In the numerical experiments we assess the performance of the proposal as it was used to participate in day-ahead 

electrical markets. We use actual data collected at a wind farm located in southern Italy (Dataset_WG and the 

corresponding NWPs in Dataset_weath_WG). The wind farm is constituted by 10 3-MVA generators. Active power, 

absolute value of wind speed and wind direction have been measured at each generator throughout three years, with 

10-minute acquisitions. The first two years are used for training the models, and the last year is completely reserved 

for testing. Data are post-processed to eliminate bad data and to average values to obtain data at hourly time 

resolution, since 1 hour is the bidding time slot in Italian day-ahead electrical market. 

In summary, 𝐻𝐻 = 8760 forecast instances are issued for each of the 365 days of the test year. Forecasts are 

generated using the gbm [99] and the qrnn [98] packages in R environment. 

We start from a pool of 𝑁𝑁𝑠𝑠 = 121 sets of NWPs provided for the area containing the wind farm, split into an 

11x11 elementary-grid-square partition. For sake of clearness, these sets of NWPs are numbered from 1 (upper-left 

elementary grid square) to 121 (bottom-right elementary grid square), by rows (so that the set number 11 is at the 

upper-right elementary grid square). 

The value for 𝐺𝐺, optimized in the cross-validation process, is 𝐺𝐺 = 5. 

In the framework of the Task 2.1, an exploratory data analysis is performed to check the validity of calendar 

variables, accounting for the possible seasonality of wind power patterns. As a significant example, Figure 6.2.3 shows 

the scatter plots of the power generated by the wind farm versus the hour of the day (a), the day of the month (b) 
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and the month of the year (c). The average wind power calculated for each class is shown in the same figures as a red 

line. From the scatter plots, we recognized only a slightly relevant pattern considering the hour of the day. 

Nevertheless, since the NWPs are developed 13 to 36 hours ahead, adding the class variable accounting for the hour 

of the day can be beneficial in order to allow the forecasting model to discern NWPs issued for different forecast lead 

times. Vice versa, class calendar variables accounting for the day of the month and for the month of the year are 

discarded, since they seemed not to add much information to predict wind power in the considered experiments. 

 
Fig. 6.2.3. Scatter plots of the power generated by the wind farm versus the hour of the day (a), the day of the month (b) and the month of the 

year (c). 

 

4) Results of the ranking stage 

To avoid unnecessary redundancy, we report the results of the ranking stage only for the first wind generator 

(𝑖𝑖 = 1). Table 6.2.1 shows the list of ranked NWPs, ranked by the absolute wind speed (Case 1) or by the u- and v-

components of wind speed (Case 2). Note that the NWP for the location of the first generator is the set number 75. 

The ranking stage results are compared to the outcomes of feature engineering by 10-fold cross validation for 

method KCV on GBRT and QRNN models. Actually, the KCV procedure allows selecting only the most informative 

among all of the seven variables (pressure, precipitation, cloud cover, temperature, u-component of wind speed, v-

component of wind speed, and absolute wind speed) considered in the NWPs. In Table 6.2.1, however, only the 

identifying number of the wind speeds selected through KCV are reported, to avoid unnecessary verbosity and to 

provide a direct comparison with the results of the NWP ranking procedures. Apparently, there are no extraordinary 

dissimilarities between these approaches, suggesting that the proposal of ranking NWPs might be able to keep track 

of the relevant information contained in the available NWPs in generating forecasts. 

 

Table 6.2.1. Results of the ranking stage and results of feature engineering for the first individual generator. 

 Number of NWP sets Required time 

Ranked NWPs: Case 1 75-76-65-85-64-74-86-77-66-88-96-99- 
87-95-84-63-55-54-53-73-97-98-52-62-51 

<1 s 
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Ranked NWPs: Case 2 
75-65-76-64-66-74-85-86-77-99-63-54- 

96-53-95-87-84-88-52-73-97-62-55-98-51 
<1 s 

Feature engineering on GBRT 
(selected wind speed) 

75-76-86-99-77-63-85 51.1 hours 

Feature engineering on QRNN 
(selected wind speed) 

75-76-96-77-84-65-64-86-74 72.8 hours 

 

5) GBRT forecast results 

PS and ACE values for the GBRT forecasts of the power generated by the 10 individual generators and for the 

aggregated wind farm are in Table 6.2.2. Bold values indicate the smallest PS for each generator and for the wind 

farm.  

Table 6.2.2. Day-ahead GBRT forecast results for individual generators and for the aggregated wind farm. Bold values indicate the most skilled 
forecasts. 

Method Index 
Generator Wind 

farm 1 2 3 4 5 6 7 8 9 10 

ESWC 
Case 1 

PS [MW] 13.45 13.02 12.67 16.21 15.51 13.62 13.10 13.46 12.43 12.04 124.51 

AACE [%] 3.02 3.45 2.97 1.09 1.23 2.65 2.07 1.53 2.43 2.60 3.19 

RRWC 
Case 1 

PS [MW] 13.49 13.01 12.63 16.20 15.52 13.57 13.00 13.42 12.38 12.02 124.24 

AACE [%] 2.52 3.16 2.82 0.94 1.59 2.99 2.17 1.32 2.42 2.54 3.32 

IMWC 
Case 1 

PS [MW] 13.39 13.08 12.80 15.90 15.39 13.65 13.15 13.10 12.24 12.06 125.14 

AACE [%] 2.98 2.27 2.40 1.42 1.44 2.38 1.70 1.74 2.92 2.40 2.28 

ESWC 
Case 2 

PS [MW] 13.50 13.08 12.71 16.27 15.59 13.66 13.12 13.48 12.47 12.06 124.92 

AACE [%] 2.80 3.44 2.98 1.29 1.67 3.02 2.12 1.31 2.21 2.38 3.22 

RRWC 
Case 2 

PS [MW] 13.48 13.03 12.64 16.23 15.56 13.58 13.01 13.43 12.38 12.02 124.36 

AACE [%] 2.66 3.04 2.84 1.06 1.55 2.89 2.31 1.10 2.07 2.49 3.28 

IMWC 
Case 2 

PS [MW] 13.51 13.13 12.72 15.91 15.30 13.61 13.08 12.92 12.19 12.01 124.16 

AACE [%] 2.45 3.20 3.20 2.34 1.46 2.48 2.52 1.55 2.03 1.97 2.58 

SL 
PS [MW] 13.69 13.45 13.18 17.03 16.24 14.21 13.57 13.66 12.64 12.46 128.40 

AACE [%] 3.19 3.38 2.53 0.68 1.26 2.66 2.36 1.36 2.43 2.07 2.47 

AVG 
PS [MW] 13.99 13.52 13.23 16.72 16.02 14.07 13.69 13.93 12.87 12.53 127.29 

AACE [%] 2.59 3.08 2.44 1.16 1.47 2.83 1.88 1.40 2.36 2.65 3.24 

KCV 
PS [MW] 13.29 12.96 12.66 15.88 15.45 13.56 13.15 13.15 12.27 12.02 124.18 

AACE [%] 3.76 4.24 2.89 1.64 1.15 1.78 2.21 2.35 2.18 2.05 2.90 

DWFF 
PS [MW] - - - - - - - - - - 127.55 

AACE [%] - - - - - - - - - - 2.99 

PM 
PS [MW] 37.94 38.09 37.05 44.62 43.03 38.48 37.83 36.42 36.00 34.29 375.86 

AACE [%] - - - - - - - - - - - 

 

Regarding the individual generators, RRWC Case 1 and IMWC Case 2 generate the most skilled forecasts 

respectively for 2 and 4 generators, whereas KCV generate the most skilled forecasts for the other 4 generators. Even 

if the proposals are based on a simplified technique for feature selection, which requires a negligible amount of time 
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to complete, they still can sometimes outperform KCV, which is a standard and comprehensive technique for feature 

selection, which however is much more computationally intensive. 

The relative improvement given by the best method with respect to the PM ranges from 64% to 66%, and it is 

quite stable versus the number of generators. When the proposal outperforms KCV, the PS is reduced up to 1.8%.  

Compared to the methods in which only the highest-ranked NWP (SL) and in which the simple NWP average 

(AVG) are used as predictors, the relative improvements carried out by the proposal are respectively in the ranges 

4.2 to 5.8% and 4.2 to 7.3%. 

The reliability of RRWC Case 1 and IMWC Case 2 is checked and the ACE is always smaller than 3.20%. KCV is 

sometimes less reliable (see the ACE for generator 1 and 2). Figure 6.2.4 shows reliability diagrams obtained through 

RRWC Case 1, IMWC Case 2 and KCV for generator 1. Coverages are always slightly overestimated, and the greatest 

deviation from perfect reliability occurs at proximity to the highest quantile coverages. 

Regarding the forecast for the entire wind farm, IMWC Case 2 generate the most skilled forecasts. The relative 

improvement with respect to KCV is quite small (less than 1%), but it comes also with the advantage of a lighter 

computational effort and with a slightly better reliability. Compared to the PM, the PS of the proposal is about 67% 

smaller, which is a slightly better improvement than for the individual generators. If the power generated by the 

wind farm is forecasted through the direct method (the DWFF), the PS would be about 2.7% greater. Compared to 

the methods in which only the highest-ranked NWP (SL) and in which the simple NWP average (AVG) are used as 

predictors, the relative improvements carried out by the IMWC Case 2 are respectively 4.3% and 2.5%. Figure 6.2.5 

shows reliability diagrams obtained through RRWC Case 1, IMWC Case 2 and KCV for the wind farm. Also in this 

case, coverages are always slightly overestimated. 

In Figure 6.2.6 and in Figure 6.2.7 we show the hourly wind farm power predicted respectively by the IMWC 

Case 2 and by the KCV, for an entire week within the test year, compared to the actual generated power. Forecasts 

are illustrated by the prediction intervals, centered around the median, which may be extracted from predictive 

quantiles (e.g., 80% prediction interval is the interval �𝑃𝑃�𝑖𝑖ℎ
〈0.1〉   𝑃𝑃�𝑖𝑖ℎ

〈0.9〉�). 
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Fig. 6.2.4. GBRT reliability diagrams of RRWC Case 1, IMWC Case 2, and KVC for the first generator. 

 
Fig. 6.2.5. GBRT reliability diagrams of RRWC Case 1, IMWC Case 2, and KVC for the wind farm. 

 
Fig. 6.2.6. IMWC Case 1 GBRT wind farm power forecasts and actual wind farm power during a week within the test year. 
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Fig. 6.2.6. KCV GBRT wind farm power forecasts and actual wind farm power during a week within the test year. 

 

6) QRNN forecast results 

PS and ACE values for the QRNN forecasts of the power generated by the 10 individual generators and by the 

aggregated wind farm are in Table 6.2.3. Bold values indicate the smallest PS for each generator and for the wind 

farm.  

Table 6.2.3. Day-ahead QRNN forecast results for individual generators and for the aggregated wind farm. Bold values indicate the most skilled 
forecasts. 

Method Index 
Generator Wind 

farm 1 2 3 4 5 6 7 8 9 10 

ESWC 
Case 1 

PS [MW] 13.91 13.81 13.42 16.62 16.03 14.24 13.67 14.29 13.17 12.59 131.20 

ACE [%] 2.68 2.91 3.03 4.25 4.32 3.35 2.58 2.89 3.98 3.20 5.28 

RRWC 
Case 1 

PS [MW] 13.97 13.68 13.47 16.61 16.06 14.27 13.78 14.31 13.20 12.61 131.28 

ACE [%] 2.49 2.49 3.30 3.92 3.94 4.05 3.77 2.35 3.80 3.13 5.57 

IMWC 
Case 1 

PS [MW] 13.80 13.51 13.29 16.22 15.75 14.35 13.73 13.87 12.97 12.61 130.58 

ACE [%] 2.45 2.38 2.35 2.92 2.80 3.30 2.65 2.84 3.17 3.47 4.15 

ESWC 
Case 2 

PS [MW] 14.04 14.03 13.50 16.68 16.21 14.31 13.72 14.38 13.28 12.64 131.97 

ACE [%] 2.53 4.52 3.24 3.80 4.35 3.69 2.54 2.86 3.76 3.21 5.63 

RRWC 
Case 2 

PS [MW] 14.00 13.72 13.49 16.65 16.11 14.28 13.72 14.34 13.26 12.62 131.17 

ACE [%] 2.32 3.14 3.23 3.97 4.33 4.04 3.58 2.41 3.88 3.13 5.76 

IMWC 
Case 2 

PS [MW] 14.28 13.50 13.33 16.45 16.05 14.23 13.55 14.24 12.85 12.24 130.08 

ACE [%] 2.89 3.37 2.61 2.81 2.69 2.93 2.25 2.70 3.01 2.25 4.03 

SL 
PS [MW] 14.30 13.99 13.99 17.42 16.75 14.71 14.22 14.62 13.35 13.21 133.65 

ACE [%] 2.63 4.98 2.31 2.13 3.98 3.86 3.51 3.21 4.33 4.48 5.04 

AVG 
PS [MW] 14.50 13.96 13.49 16.68 16.10 14.27 13.77 14.33 13.19 12.63 132.43 

ACE [%] 2.46 4.36 3.19 3.93 4.35 3.93 3.25 2.40 3.24 3.08 5.93 

KCV 
PS [MW] 14.15 13.96 13.17 16.13 16.25 14.45 14.05 13.54 12.84 12.76 130.87 

ACE [%] 4.49 3.96 3.81 3.10 2.96 3.56 4.05 3.93 3.53 3.11 3.75 

DWFF PS [MW] - - - - - - - - - - 137.00 
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ACE [%] - - - - - - - - - - 5.41 

PM 
PS [MW] 37.94 38.09 37.05 44.62 43.03 38.48 37.83 36.42 36.00 34.29 375.86 

ACE [%] - - - - - - - - - - - 

 

Regarding the individual generators, IMWC Case 1 and IMWC Case 2 generate the most skilled forecasts 

respectively for 2 and 4 generators, whereas KCV generate the most skilled forecasts for the other 4 generators. Also 

exploiting QRNN forecasts, even if the proposals are based on a simplified technique for feature selection, they still 

can sometimes outperform KCV, which is a standard and comprehensive technique for feature selection, but much 

more computationally intensive. 

The relative improvement given by the best method with respect to the PM ranges from 60% to 66%, and it is 

quite stable versus the number of generators. When the proposal outperforms KCV, the PS is reduced up to 4.1%.  

Compared to the methods in which only the highest-ranked NWP (SL) and in which the simple NWP average 

(AVG) are used as predictors, the relative improvements carried out by the proposal are respectively in the ranges 

0.1 to 7.3% and 0.3 to 3.3%. 

The reliability of IMWC Case 1 and IMWC Case 2 is checked and the ACE is always smaller than 3.5% (slightly 

worse than GBRT forecasts). Figure 6.2.8 shows QRNN reliability diagrams obtained through IMWC Case 1, IMWC 

Case 2 and KCV for generator 1. For QRNN forecasts, low coverages are overestimated and high coverages are 

underestimated. The greatest deviation from perfect reliability occurs at proximity to the highest quantile coverages, 

which are severely underestimated (see particularly the KCV reliability diagram). 

Regarding the forecast for the entire wind farm, IMWC Case 2 generates the most skilled forecasts also using 

QRNN. The relative improvement with respect to KCV is quite small (less than 1%), but it comes also with the 

advantage of a lighter computational effort and with a slightly better reliability. Compared to the PM, the PS of the 

proposal is about 65.4% smaller, which is a slightly better improvement than for most the individual generators. If 

the power generated by the wind farm is forecasted through the direct method (the DWFF), the PS would be about 

5.3% greater. Compared to the methods in which only the highest-ranked NWP (SL) and in which the simple NWP 

average (AVG) are used as predictors, the relative improvements carried out by the IMWC Case 2 are respectively 

2.7% and 1.8%. Figure 6.2.9 shows QRNN reliability diagrams obtained through IMWC Case 1, IMWC Case 2 and 

KCV for the wind farm. The reliability diagrams appear to be similar to those obtained for the individual generator. 

In Figure 6.2.10 and in Figure 6.2.11 the hourly wind farm power predicted respectively by the IMWC Case 2 

and by the KCV are shown for an entire week within the test year, and compared to the actual generated power. 
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Fig. 6.2.8. QRNN reliability diagrams of RRWC Case 1, IMWC Case 2, and KVC for the first generator. 

 
Fig. 6.2.9. QRNN reliability diagrams of RRWC Case 1, IMWC Case 2, and KVC for the wind farm. 

 
Fig. 6.2.10. IMWC Case 2 QRNN wind farm power forecasts and actual wind farm power during a week within the test year. 
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Fig. 6.2.11. KCV QRNN wind farm power forecasts and actual wind farm power during a week within the test year. 

 

7) Analysis of different solutions for combining individual predictions 

In this sub-Section the simple sum-and-sort solution for the aggregation of individual predictive quantiles is 

compared to the WC solution. Since the WC requires to optimize the weight parameters over a training sample, the 

first half (4380 instances) of the test year considered in previous sub-Section is reserved to optimize the weights, and 

the second half (4380 instances) of the test year is reserved to test the results.  

The error indices calculated on wind farm power forecasts are reported in Table 6.2.4. To avoid unnecessary 

verbosity, only the most skilled methods (RRWC Case 1, IMWC Case 1, IMWC Case 2 and KCV) are considered. 

DWFF and PM results are provided for reference. The results indicate that the availability of individual probabilistic 

forecasts enables an optimized refinement of the forecasts for the aggregated wind farm. 

Comparing the sum-and-sort and WC solutions, the PS slightly decreases using the latter solution (e.g., by about 

1% for the IMWC Case 2 with GBRT model, which shows the smallest PS), but most importantly the reliability of 

forecasts dramatically increases (e.g., the ACE diminishes by about 41%  for the IMWC Case 2), overcoming the 

well-known problem of the over-dispersion of aggregated quantiles. Also with reference to the WC results, the best 

proposal is slightly more skilled than the consolidated KCV using both GBRT or QRNN models. 

 

Table 6.2.4. Day-ahead GBRT and QRNN forecasting results for the aggregated wind farm, considering sum-and-sort and WC solutions. Bold 
values indicate the most skilled forecasts. 

Method Index GBRT  
sum-and-sort 

GBRT  
WC 

QRNN 
sum-and-sort 

QRNN 
WC 

RRWC 
Case 1 

PS [MW] 114.82 114.26 122.88 122.40 

ACE [%] 3.07 1.49 5.21 2.55 

IMWC 
Case 1 

PS [MW] 114.70 114.90 122.62 120.96 

ACE [%] 2.16 1.78 4.53 2.86 
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IMWC 
Case 2 

PS [MW] 113.56 112.72 121.56 119.94 

ACE [%] 3.18 1.87 4.24 3.08 

KCV 
PS [MW] 113.86 112.88 122.22 120.80 

ACE [%] 2.77 1.87 3.91 1.23 

DWFF 
PS [MW] 117.00 129.65 

ACE [%] 2.68 4.51 

PM 
PS [MW] 337.04 

ACE [%] - 

 

5.2.3. DISCUSSION 

Reliable and skilled probabilistic wind power forecasting systems for day-ahead horizons exploit NWPs. In this 

research activity we exploit spatially-distributed NWPs provided for a given area surrounding the wind farm, to 

predict the generation from individual turbines and the aggregated generation of the wind farm. A new simplified 

technique for the feature selection, based on NWP ranking, is specifically developed in order to reduce the 

computational effort, although keeping the skill of forecast at high levels, compared to more standard techniques. 

Two ranking procedures and three combination approaches are investigated. On average the IMWC Case 1 

returned the most skilled forecasts, which are only slightly better (up to 1.8% PS for individual generators, and less 

than 1% PS for the entire wind farm) than a more standard benchmark based on cross-validation feature engineering. 

Nevertheless, the computational time dedicated to data analysis is significantly reduced, easing the exploitation of 

the technique in forecasting systems which dynamically re-train models as new observations become available.  

This research also opens new research perspectives to increase the skill of forecasts. The ranking procedure may 

be adjusted in order to account for the predictive skill of the forecasts in sample. In this case, the procedure could 

not be performed offline and thus it would be more computationally intensive, but it may increase the accuracy of 

forecasts. The aggregation of forecasts for individual generators has been enhanced with solutions more sophisticated 

than the simple sum-and-sort of predictive quantiles, as much as some calibration techniques might allow to further 

reduce the width of prediction intervals. For these reasons, research on the aggregation of probabilistic forecasts is 

strongly encouraged. Eventually, the proposal might also be framed within a forecasting system in which models are 

re-trained as new observations become available, or within multi-objective optimization for the weights of the 

methodology. 
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5.3. DEVELOPMENT OF DAY-AHEAD FORECASTING 

SYSTEMS FOR INDUSTRIAL LOADS 
Probabilistic forecasts are as more relevant to operate power systems as the size of the load is bigger, thus it is 

convenient to develop specific forecasting systems for the most impactful consumers. Industrial factories are perfect 

candidates: for example, more than 40% of the total electrical energy consumed in Italy in a year is delivered to 

industrial systems [104]. Due to the large consumption, owners of large enterprises and large industrial factories may 

have substantial benefits from directly participating to electrical markets and from improving their energy 

management. Industrial microgrids may be realized within large factories, as several manufacturing processes may 

be shed or shifted along time, allowing to optimally exploit distributed energy resources. Therefore, increasing the 

forecasting accuracy for industrial utilities may have positive effects for the operation and the management of the 

whole electrical system and for the owners of the installations.   

Research on probabilistic load forecasting has expanded recently [1], but most methodologies have been 

extensively applied either at sub-station or at smart-meter nodes; nevertheless, the performance of a forecasting 

system may drop when the target load is the demand of an industrial factory. This is due to the particular features 

which influence the industrial demand [14], due to the particular seasonal patterns of the industrial load profiles 

[70], and due to the smaller relative importance of the ambient temperature to predict industrial load [71]. The only 

recommended path to increase the accuracy of industrial load forecasts is to develop ad-hoc forecasting systems, 

accounting for all of these specific features [72]. 

Forecasters usually target the only active power, partially or totally disregarding reactive power. This choice may 

be considered obsolete nowadays due to i) the increased computer performance, which eases the generation of 

reactive power forecasts, and ii) the spread of smart grid tools, which manage and operate networks by the active 

and reactive power flows. For example, Volt/VAr optimization [73], harmonic compensation [74] and optimal energy 

dispatch [75,76] tools require prior estimations of the nodal reactive power. The multitude of power converters 

distributed across the grids can be controlled to compensate reactive power locally [77], increasing the total power 

transmission capacity of the grid and reducing losses [78]. It is also worth mentioning that reactive power support is 

an ancillary service, remunerated in several countries [79]. Improved frameworks for reactive power markets, either 

coupled with active power market [80] or developed within a probabilistic framework [81], have been proposed in 

relevant literature. Despite the rising interest of practitioners in reactive power management, the literature on 

reactive power forecasting slowly adapts to the practical needs. Reactive power forecasts are usually built by post-
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processing active power forecasts, on the basis of practitioners’ experience or by average-power-factor corrections. 

Only a few papers directly deal with reactive power forecasting, although these research papers evidence that 

correctly modeling the mutual correlation between active and reactive power allows enhancing the performance of 

the forecasting system [70]. 

In this research activity, a multivariate approach is developed to forecast the active and reactive power of an 

industrial load. Individual probabilistic forecasting models for active and reactive power are initially developed, 

exploiting exogenous electrical predictors. In the proposed multivariate approach, the individual predictive quantiles 

of active power and reactive power are combined in a novel Multivariate Quantile Regression (MQR) model. The 

multivariate approach is expected to catch residual mutual information between the target variables, increasing the 

accuracy of the final active power and reactive power forecasts. To validate the proposed approach when it is applied 

to different underlying models, QRF and Univariate QR (UQR) models are separately investigated.  

Estimating the MQR parameters consists of minimizing a loss function in the training period. Either a rolling 

window or a fixed-origin window may be used for this purpose. The type of window determines the size and the 

temporal distribution of the training data, and this may affect the accuracy of multivariate forecasts. In the proposal 

presented below, the MQR parameters are re-estimated as new observations become available and the performance 

of the two training schemes are compared by the out-of-sample verification of the final forecasts of active and 

reactive power. The loss-function minimization problem is formulated in this proposal under a linear programming 

form, adapting the trick presented in [105] for UQR to the MQR case. The solution of the loss-function minimization 

problem, therefore, may be provided by applying a linear programming solving algorithm (i.e., the dual simplex).  

In summary, the main contributions of this research activity are: 

1) the adaptation of QRF and UQR models to probabilistic industrial active and reactive power forecasting, 

exploring the validity of exogenous electrical predictors and of industry-related features;  

2) the development of a novel multivariate approach to industrial active and reactive power forecasting, based on 

an MQR refinement of individual predictions; 

3) the specific formulation of the MQR parameter estimation under a linear programming form; 

4) a comparative analysis between the performances of two schemes for training the MQR models dynamically, as 

new observations become available.  

To avoid verbosity in the analytic formulations, the symbols are consistent within the following sub-Sections 

6.3.1, 6.3.2 and 6.3.3 only.  
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5.3.1. MODELS AND METHODS 

The idea behind the multivariate approach was inspired from a previous study on industrial load data that includes 

the correlation analysis [70]. The probabilistic multivariate approach developed in this research activity for 

probabilistic industrial load forecasting consists of two main units: i) the generation of univariate predictive quantiles 

via underlying probabilistic models, and ii) the multivariate combination of active and reactive power predictive 

quantiles. Figure 6.3.1 illustrates the workflow of the proposed multivariate forecasting system.  

 
Fig. 6.3.1. Workflow of the proposed multivariate system for industrial active and reactive power forecasting. 

 

QRF and UQR are alternatively used to generate individual predictive quantiles, in order to validate the proposal 

upon different underlying probabilistic models. QRF and UQR are developed following the outcomes presented in 

[70] for deterministic industrial load forecasting. Particularly, regarding the choice of input predictors, it has been 

noted that industrial load is usually less sensitive to ambient temperature, compared to load at bulk supply nodes in 

transmission systems or compared to the load of commercial and residential buildings. Adding temperatures to the 

models may result in a drop of the performance. Nevertheless, as demonstrated by the correlation analysis in [70], 

specific features of industrial load may be successfully exploited to generate active and reactive power predictions. 

Among them, electrical variables allow enhancing the modeling performance, by catching the mutual correlation 

between active and reactive power. 

Motivated by above, the following predictors are included in the individual QRF and UQR models: 

- Active power is selected as a predictor when targeting the reactive power, and vice versa. 
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- Average values of phase-to-ground voltage amplitudes are selected since they can be informative for 

active and reactive power, as shown in [70].  

- Calendar variables are selected since they are frequently used predictors in load forecasting studies. 

Industrial load time series are often seasonal and heteroscedastic. Dummy calendar variables for hour of 

the day (𝒉𝒉𝒉𝒉𝒉𝒉), the type of day (𝒕𝒕𝒕𝒕𝒕𝒕), and the day of the month (𝒅𝒅𝒅𝒅𝒅𝒅) [70] are exploited to account for 

these characteristics, allowing to differentiate the prediction respectively based on daily seasonality, 

weekly seasonality and monthly seasonality. The variable 𝒅𝒅𝒅𝒅𝒅𝒅, which is not commonly found in load 

forecasting studies, is used here to model maintenance schedules, supply cycles and production cycles 

that may be arranged with monthly periodicity. 

The interaction of calendar variables with other predictors allows differentiating the estimation of model 

parameters upon data that share calendar similarities. This allows for detailed characterization of load patterns. We 

are trying to avoid the situation that all load profiles are treated at the same manner even if they belong to different 

work regimes [72].  

The individual predictive quantiles, returned either by QRF or by UQR models, are combined in the multivariate 

approach by applying a MQR model. The predictors of MQR model are the individual predictive quantiles returned 

either by QRF or by UQR models, and the calendar variables. The interactions among calendar variables and other 

predictors allow catching the seasonality in load patterns both at the underlying and at the multivariate level of the 

forecasting system. 

In the proposed MQR model, the multivariate target variable is defined in ℝ2𝐿𝐿 (𝐿𝐿 predictive quantiles for active 

power and 𝐿𝐿 predictive quantiles for reactive power), and thus it is not a simple bivariate target variable (active and 

reactive power). The multivariate approach is expected to enhance the accuracy of the final forecasts since: i) active 

and reactive power are mutually correlated [70], and this is modeled comprehensively by the multivariate approach; 

ii) MQR is suitable to be dynamically re-estimated as new observations become available, which may increase the 

accuracy of final forecasts. 

In the proposed multivariate approach, the individual probabilistic models are trained only once upon a fixed 

training dataset, whereas the MQR parameters are dynamically re-estimated as new observations become available. 

In this proposal, 70% of the available data is dedicated to train the individual probabilistic models, 15% to train the 

MQR model, and 15% to test the performance of the proposed multivariate approach. Different percentage splits 

could be selected according to the specific situation. MQR parameter estimation is solved by a linear programming 

algorithm, which converges in a period much shorter than the forecast lead time. To investigate different data split 

procedures for determining MQR training data, two schemes for the MQR training schemes are compared: one is 
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based on a rolling window, and the other is based on a fixed-origin window. They are respectively illustrated in 

Figure 6.3.2a and 6.3.2b.  

The next paragraphs briefly recall the underlying QRF and UQR models, and formulate the MQR model for active 

and reactive power forecasting. 

 

 
Fig. 6.3.2. Timeline of the proposed multivariate forecasting system using: rolling window (a); fixed-origin window (b). 

 

1) Quantile regression forests 

Two QRFs (denoted by QRF(P) and QRF(Q)) are used to forecast the active power 𝑃𝑃 and the reactive power 𝑄𝑄, 

respectively, for the target time horizon ℎ. QRFs build predictive quantiles from an ensemble of 𝑇𝑇 regression trees 

which form the forest [106]. To add diversity, each tree of the forest is grown independently from the others.  

The data used to train the QRFs consist of 𝑁𝑁 past observations of the target variable (i.e., the active power 𝑃𝑃 for 

the QRF(P), and the reactive power 𝑄𝑄 for the QRF(Q)), and of the corresponding 𝑁𝑁 vectors of predictors (which form 

matrices 𝑿𝑿(𝑃𝑃) and 𝑿𝑿(𝑄𝑄)). The matrices 𝑿𝑿(𝑃𝑃) and 𝑿𝑿(𝑄𝑄) of predictors respectively for the QRF(P) and QRF(Q) consist of 

lagged active power (such as 𝑃𝑃ℎ−𝑘𝑘 ,𝑃𝑃ℎ−𝑘𝑘−1, … ,𝑃𝑃ℎ−24,𝑃𝑃ℎ−168), lagged reactive power (such as 

𝑄𝑄ℎ−𝑘𝑘,𝑄𝑄ℎ−𝑘𝑘−1, … ,𝑄𝑄ℎ−24,𝑄𝑄ℎ−168), lagged voltage (such as 𝑉𝑉ℎ−𝑘𝑘 ,𝑉𝑉ℎ−𝑘𝑘−1, … ,𝑉𝑉ℎ−24,𝑉𝑉ℎ−168) and calendar variables (𝒉𝒉𝒉𝒉𝒉𝒉ℎ , 

𝒕𝒕𝒕𝒕𝒕𝒕ℎ and 𝒅𝒅𝒅𝒅𝒅𝒅ℎ). Note that lagged variables allow modeling temporal dependencies among variables. These data are 

split into 𝑇𝑇 bagged subsets, and each subset is used to train one tree of the forest. The data cover the period 

corresponding to the red bars in Figure 6.3.2. 

After training the QRFs, the predictors 𝒙𝒙ℎ
(𝑃𝑃) and the predictors 𝒙𝒙ℎ

(𝑄𝑄), available at the forecast origin ℎ − 𝑘𝑘 but 

related to the target time horizon ℎ, individuate a unique path linking the roots of each tree to one leaf of each tree. 

Predictive quantiles are constructed as weighted averages of the outcomes contained these leaves (i.e., a subset of 

past values of the target variable). The detailed mathematical formulation of QRFs is in [106].  
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The hyperparameters of the QRFs and the best predictor configuration are optimized in 10-fold cross-validation, 

selecting the configuration with the smallest average PS.  

 

2) Univariate quantile regression 

Two UQRs (denoted by UQR(P) and UQR(Q)) are used to forecast the active power 𝑃𝑃 and the reactive power 𝑄𝑄, 

respectively, for the target time horizon ℎ. UQR models allow to estimate predictive quantiles as linear combinations 

of the predictors. The predictive 𝛼𝛼𝑙𝑙-quantile of the generic target variable 𝑧𝑧 (i.e., active power 𝑃𝑃 or reactive power 

𝑄𝑄) is: 

 

𝑧̂𝑧ℎ
(𝛼𝛼𝑙𝑙) = 𝒙𝒙ℎ

(𝑧𝑧) ∙ 𝜸𝜸�(𝛼𝛼𝑙𝑙) ,          (6.3.1) 

 

where 𝜸𝜸�(𝛼𝛼𝑙𝑙) is the vector of coefficients of the model, estimated by minimizing the PL in the training period 

corresponding to the red bars in Figure 6.3.2.  

The PS minimization problem is formulated and solved in the linear programming form presented in [105]. The 

data used to train the UQR consist of 𝑁𝑁 past observations of the target variable (i.e., the active power 𝑃𝑃 for the UQR(P), 

and the reactive power 𝑄𝑄 for the UQR(Q)), and of the corresponding 𝑁𝑁 vectors of predictors (which form matrices 

𝑿𝑿(𝑃𝑃) and 𝑿𝑿(𝑄𝑄)). The matrices 𝑿𝑿(𝑃𝑃) and 𝑿𝑿(𝑄𝑄) of predictors respectively for the UQR(P) and UQR(Q) consist of lagged 

active power (such as 𝑃𝑃ℎ−𝑘𝑘 ,𝑃𝑃ℎ−𝑘𝑘−1, … ,𝑃𝑃ℎ−24,𝑃𝑃ℎ−168), lagged reactive power (such as 𝑄𝑄ℎ−𝑘𝑘 ,𝑄𝑄ℎ−𝑘𝑘−1, … ,𝑄𝑄ℎ−24,𝑄𝑄ℎ−168), 

lagged voltage (such as 𝑉𝑉ℎ−𝑘𝑘 ,𝑉𝑉ℎ−𝑘𝑘−1, … ,𝑉𝑉ℎ−24,𝑉𝑉ℎ−168) and calendar variables (𝒉𝒉𝒉𝒉𝒉𝒉ℎ , 𝒕𝒕𝒕𝒕𝒕𝒕ℎ and 𝒅𝒅𝒅𝒅𝒅𝒅ℎ). 

The best predictor configuration is optimized in 10-fold cross-validation, selecting the configuration with the 

smallest average PS. 

 

3) Multivariate quantile regression 

The MQR is an adaptation of UQR to multiple target variables. It is specifically formulated in this proposal for 

the case of active and reactive power at the time horizon ℎ. Extending (6.3.1) to the bivariate target variable 𝒚𝒚, the 

vector 𝒙𝒙ℎ
(𝑧𝑧) of predictors for the UQR in (6.3.1) becomes a matrix 𝑿𝑿ℎ

(𝛼𝛼𝑙𝑙) of predictors, whereas the vector 𝜸𝜸�(𝛼𝛼𝑙𝑙) of 

parameters for the UQR in (6.3.1) becomes a vector 𝜷𝜷�(𝛼𝛼𝑙𝑙) of parameters having an increased size.  

The vector 𝒚𝒚�ℎ
(𝛼𝛼𝑙𝑙) containing the predictive 𝛼𝛼𝑙𝑙-quantiles 𝑃𝑃�ℎ

(𝛼𝛼𝑙𝑙),𝑄𝑄�ℎ
(𝛼𝛼𝑙𝑙) of active and reactive power is: 

 

𝒚𝒚�ℎ
(𝛼𝛼𝑙𝑙) = �

𝑃𝑃�ℎ
(𝛼𝛼𝑙𝑙)

𝑄𝑄�ℎ
(𝛼𝛼𝑙𝑙)

� = 𝑿𝑿ℎ
(𝛼𝛼𝑙𝑙) ∙ 𝜷𝜷�(𝛼𝛼𝑙𝑙) ,         (6.3.2) 
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where: 

- 𝑿𝑿ℎ
(𝛼𝛼𝑙𝑙) is the following 2 × 2𝐽𝐽 matrix: 

𝑿𝑿ℎ
(𝛼𝛼𝑙𝑙) = �

𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃) 𝟎𝟎1×𝐽𝐽

𝟎𝟎1×𝐽𝐽 𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃)� ,        (6.2.3) 

 

containing the row vector 𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃) of 𝐽𝐽 predictors for the bivariate target variable (univariate forecasts of active and 

reactive power, provided either by QRF or UQR, and calendar variables 𝒉𝒉𝒉𝒉𝒉𝒉ℎ, 𝒕𝒕𝒕𝒕𝒕𝒕ℎ, and 𝒅𝒅𝒅𝒅𝒅𝒅ℎ) and row vector 

𝟎𝟎1×𝐽𝐽 of 𝐽𝐽 zeros. The matrix 𝑿𝑿ℎ
(𝛼𝛼𝑙𝑙) is the same for all of the considered quantiles (i.e., ∀𝑙𝑙 = 1, … , 𝐿𝐿), to avoid unnecessary 

complications in the model selection procedure; 

- 𝜷𝜷�(𝛼𝛼𝑙𝑙) is a 2𝐽𝐽 × 1 vector of the estimated coefficients of the MQR model for the 𝛼𝛼𝑙𝑙-quantile: 

 

𝜷𝜷�(𝛼𝛼𝑙𝑙) = �
𝜷𝜷�𝑃𝑃

(𝛼𝛼𝑙𝑙)

𝜷𝜷�𝑄𝑄
(𝛼𝛼𝑙𝑙)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛽̂𝛽1𝑃𝑃

(𝛼𝛼𝑙𝑙)

𝛽̂𝛽2𝑃𝑃
(𝛼𝛼𝑙𝑙)

⋮
𝛽̂𝛽𝐽𝐽𝑃𝑃

(𝛼𝛼𝑙𝑙)

𝛽̂𝛽1𝑄𝑄
(𝛼𝛼𝑙𝑙)

𝛽̂𝛽2𝑄𝑄
(𝛼𝛼𝑙𝑙)

⋮
𝛽̂𝛽𝐽𝐽𝑄𝑄

(𝛼𝛼𝑙𝑙)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,  𝑙𝑙 = 1, … , 𝐿𝐿.     (6.3.4) 

 

Parameters 𝜷𝜷�(𝛼𝛼𝑙𝑙) are estimated by minimizing the PS in the training period corresponding to the green bars in 

Figure 6.3.2. The training data consist of 𝑀𝑀 observations of active and reactive power until the forecast origin ℎ − 𝑘𝑘. 

𝑀𝑀 is a constant number if the MQR model is trained under a rolling-window scheme, whereas 𝑀𝑀 increases in time 

if the MQR model is trained under a fixed-origin-window scheme.  

An index 𝑜𝑜 = ℎ − 𝑘𝑘 + 1 is defined to ease the analytical formulation. Let 𝑷𝑷 = {𝑃𝑃𝑜𝑜−𝑀𝑀 ,𝑃𝑃𝑜𝑜−(𝑀𝑀−1), … ,𝑃𝑃𝑜𝑜−1} and 𝑸𝑸 =

{𝑄𝑄𝑜𝑜−𝑀𝑀,𝑄𝑄𝑜𝑜−(𝑀𝑀−1), … ,𝑄𝑄𝑜𝑜−1} be the column vectors of the available past active and reactive power (notice that each 

vector contains 𝑀𝑀 values measured until the forecast origin ℎ − 𝑘𝑘). The parameters 𝜷𝜷�(𝛼𝛼𝑙𝑙) in (6.3.3) are estimated by 

solving the following optimization problem, which aims at minimizing the PS over the training data: 

 

𝜷𝜷�(𝛼𝛼𝑙𝑙) = argmin
𝜷𝜷�(𝛼𝛼𝑙𝑙)

∑   �𝑟𝑟𝑃𝑃𝑚𝑚
(𝛼𝛼𝑙𝑙) ∙ �𝛼𝛼𝑙𝑙 − 1 �𝑟𝑟𝑃𝑃𝑚𝑚

(𝛼𝛼𝑙𝑙) < 0�� + 𝑟𝑟𝑄𝑄𝑚𝑚
(𝛼𝛼𝑙𝑙) ∙ �𝛼𝛼𝑙𝑙 − 1 �𝑟𝑟𝑄𝑄𝑚𝑚

(𝛼𝛼𝑙𝑙) < 0���𝑀𝑀
𝑚𝑚=1  ,   (6.3.5) 
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where 𝜷𝜷(𝛼𝛼𝑙𝑙) = �
𝜷𝜷𝑃𝑃

(𝛼𝛼𝑙𝑙)

𝜷𝜷𝑄𝑄
(𝛼𝛼𝑙𝑙)�, as for the estimated values in (6.3.4), and:  

 

𝑟𝑟𝑃𝑃𝑚𝑚
(𝛼𝛼𝑙𝑙) = 𝑃𝑃𝑜𝑜−𝑚𝑚 − 𝒙𝒙𝑜𝑜−𝑚𝑚

(𝑃𝑃𝑃𝑃)𝜷𝜷𝑃𝑃
(𝛼𝛼𝑙𝑙) ,         (6.3.6) 

𝑟𝑟𝑄𝑄𝑚𝑚
(𝛼𝛼𝑙𝑙) = 𝑄𝑄𝑜𝑜−𝑚𝑚 − 𝒙𝒙𝑜𝑜−𝑚𝑚

(𝑃𝑃𝑃𝑃)𝜷𝜷𝑄𝑄
(𝛼𝛼𝑙𝑙) ,         (6.3.7) 

 

are respectively the 𝑚𝑚th residuals of the active and reactive power, i.e., the differences between the 𝑚𝑚th measured 

value and the corresponding value given by the model.  

In this proposal, MQR is extended to multiple quantiles handled simultaneously for the two target variables. In 

the MQR parameter estimation procedure, quantiles are constrained to be in non-diminishing order during the 

training period. This does not guarantee that the predictive quantiles during the test period are in non-diminishing 

order too, however it reduces the need to post-process the results by sorting the predictive quantiles.  

The MQR parameter estimation is formulated hereinafter under a linear programming form, adapting the 

formulation presented in [105] to 𝐿𝐿 quantile levels of active and reactive power: 

 

𝒚𝒚�ℎ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑃𝑃�ℎ

(𝛼𝛼1)

⋮
𝑃𝑃�ℎ

(𝛼𝛼𝐿𝐿)

𝑄𝑄�ℎ
(𝛼𝛼1)

⋮
𝑄𝑄�ℎ

(𝛼𝛼𝐿𝐿)⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 𝑿𝑿ℎ ∙ 𝜷𝜷� ,         (6.3.8) 

 

where the 2𝐿𝐿 × 2𝐽𝐽 ∙ 𝐿𝐿 matrix 𝑿𝑿ℎ is: 

 

𝑿𝑿ℎ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝒙𝒙ℎ

(𝑃𝑃𝑃𝑃) 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽

𝟎𝟎1×𝐽𝐽 𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃) ⋯ 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝒙𝒙ℎ

(𝑃𝑃𝑃𝑃) 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽

𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽 𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃) 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽

𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 𝒙𝒙ℎ
(𝑃𝑃𝑃𝑃) ⋯ 𝟎𝟎1×𝐽𝐽

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 𝟎𝟎1×𝐽𝐽 ⋯ 𝒙𝒙ℎ

(𝑃𝑃𝑃𝑃)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑿𝑿1,ℎ
𝑿𝑿2,ℎ
⋮

𝑿𝑿𝐿𝐿,ℎ
𝑿𝑿𝐿𝐿+1,ℎ
𝑿𝑿𝐿𝐿+2,ℎ
⋮

𝑿𝑿2𝐿𝐿,ℎ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,    (6.3.9) 
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𝜷𝜷� is a 2𝐽𝐽 ∙ 𝐿𝐿 × 1 vector of coefficients: 

 

𝜷𝜷� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜷𝜷�𝑃𝑃

(𝛼𝛼1)

⋮
𝜷𝜷�𝑃𝑃

(𝛼𝛼𝐿𝐿)

𝜷𝜷�𝑄𝑄
(𝛼𝛼1)

⋮
𝜷𝜷�𝑄𝑄

(𝛼𝛼𝐿𝐿)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,           (6.3.10) 

 

and 𝟎𝟎𝑛𝑛×𝑛𝑛 is a 𝑛𝑛 × 𝑛𝑛 matrix of zeros. 

The same notation used before to present the single-quantile MQR is exploited hereinafter. 𝑷𝑷, 𝑸𝑸 and 𝑜𝑜 have the 

same meaning explained before, and 𝑿𝑿(𝑃𝑃𝑃𝑃) is the 𝑀𝑀 × 𝐽𝐽 matrix of past predictors (univariate forecasts of active and 

reactive power, provided by one of the underlying probabilistic models, and calendar variables): 

 

𝑿𝑿(𝑃𝑃𝑃𝑃) = �
𝒙𝒙𝑜𝑜−1

(𝑃𝑃𝑃𝑃)

⋮
𝒙𝒙𝑜𝑜−𝑀𝑀

(𝑃𝑃𝑃𝑃)
� .           (6.3.11) 

 

The parameters in (6.3.10) are obtained as a subset of the solutions 𝒃𝒃� of the following constrained linear 

programming problem: 

 

𝒃𝒃� = argmin
𝒃𝒃

𝒂𝒂′ ∙ 𝒃𝒃            (6.3.12) 

 s.t.  𝑨𝑨 ∙ 𝒃𝒃 = �
[𝑷𝑷]𝐿𝐿×1
[𝑸𝑸]𝐿𝐿×1

� ,      

  𝑏𝑏2𝐽𝐽∙𝐿𝐿+𝑖𝑖 ≥ 0       ∀𝑖𝑖 = 1, … ,4𝐿𝐿 ∙ 𝑀𝑀 , 

  𝑪𝑪 ∙ 𝒃𝒃 ≤ 𝟎𝟎2(𝐿𝐿−1)∙𝑀𝑀×1 , 

where [𝑷𝑷]𝐿𝐿×1 and [𝑸𝑸]𝐿𝐿×1 are the vectors 𝑷𝑷 and 𝑸𝑸 replicated 𝐿𝐿 times, 
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𝒂𝒂 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝟎𝟎2𝐽𝐽∙𝐿𝐿×1
𝛼𝛼1 ∙ 𝟏𝟏𝑀𝑀×1

(1 − 𝛼𝛼1) ∙ 𝟏𝟏𝑀𝑀×1
⋮

𝛼𝛼𝐿𝐿 ∙ 𝟏𝟏𝑀𝑀×1
(1 − 𝛼𝛼𝐿𝐿) ∙ 𝟏𝟏𝑀𝑀×1

𝛼𝛼1 ∙ 𝟏𝟏𝑀𝑀×1
(1 − 𝛼𝛼1) ∙ 𝟏𝟏𝑀𝑀×1

⋮
𝛼𝛼𝐿𝐿 ∙ 𝟏𝟏𝑀𝑀×1

(1 − 𝛼𝛼𝐿𝐿) ∙ 𝟏𝟏𝑀𝑀×1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,         (6.3.13) 

𝒃𝒃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜷𝜷

𝒓𝒓𝑃𝑃
(𝛼𝛼1)

⋮
𝒓𝒓𝑃𝑃

(𝛼𝛼𝐿𝐿)

𝒓𝒓𝑄𝑄
(𝛼𝛼1)

⋮
𝒓𝒓𝑄𝑄

(𝛼𝛼𝐿𝐿)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;            (6.3.14) 

𝒓𝒓𝑃𝑃
(𝛼𝛼𝑙𝑙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 ��𝑃𝑃𝑜𝑜−1 − 𝑿𝑿𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑃𝑃

(𝛼𝛼𝑙𝑙)� ≥ 0� ∙ �𝑃𝑃𝑜𝑜−1 − 𝑿𝑿𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑃𝑃
(𝛼𝛼𝑙𝑙)�

⋮
1 ��𝑃𝑃𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑃𝑃

(𝛼𝛼𝑙𝑙)� ≥ 0� ∙ �𝑃𝑃𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑃𝑃
(𝛼𝛼𝑙𝑙)�

1 ��𝑃𝑃𝑜𝑜−1 − 𝑿𝑿𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑃𝑃
(𝛼𝛼𝑙𝑙)� < 0� ∙ �𝑿𝑿𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑃𝑃

(𝛼𝛼𝑙𝑙) − 𝑃𝑃𝑜𝑜−1�
⋮

1 ��𝑃𝑃𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑃𝑃
(𝛼𝛼𝑙𝑙)� < 0� ∙ �𝑿𝑿𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑃𝑃

(𝛼𝛼𝑙𝑙) − 𝑃𝑃𝑜𝑜−𝑀𝑀�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;     (6.3.15) 

𝑹𝑹𝑄𝑄
(𝛼𝛼𝑙𝑙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 ��𝑄𝑄𝑜𝑜−1 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑄𝑄

(𝛼𝛼𝑙𝑙)� ≥ 0� ∙ �𝑄𝑄𝑜𝑜−1 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑄𝑄
(𝛼𝛼𝑙𝑙)�

⋮
1 ��𝑄𝑄𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑄𝑄

(𝛼𝛼𝑙𝑙)� ≥ 0� ∙ �𝑄𝑄𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑄𝑄
(𝛼𝛼𝑙𝑙)�

1 ��𝑄𝑄𝑜𝑜−1 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑄𝑄
(𝛼𝛼𝑙𝑙)� < 0� ∙ �𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−1 ∙ 𝜷𝜷�𝑄𝑄

(𝛼𝛼𝑙𝑙) − 𝑄𝑄𝑜𝑜−1�
⋮

1 ��𝑄𝑄𝑜𝑜−𝑀𝑀 − 𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑄𝑄
(𝛼𝛼𝑙𝑙)� < 0� ∙ �𝑿𝑿𝐿𝐿+𝑙𝑙,𝑜𝑜−𝑀𝑀 ∙ 𝜷𝜷�𝑄𝑄

(𝛼𝛼𝑙𝑙) − 𝑄𝑄𝑜𝑜−𝑀𝑀�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ;     (6.3.16) 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡𝑿𝑿

(𝑃𝑃𝑃𝑃) 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝟎𝟎𝑀𝑀×𝐽𝐽 [𝑰𝑰𝑀𝑀×𝑀𝑀 −𝑰𝑰𝑀𝑀×𝑀𝑀] 𝟎𝟎𝑀𝑀×2𝑀𝑀 … 𝟎𝟎𝑀𝑀×2𝑀𝑀

𝟎𝟎𝑀𝑀×𝐽𝐽 𝑿𝑿(𝑃𝑃𝑃𝑃) … 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×2𝑀𝑀 [𝑰𝑰𝑀𝑀×𝑀𝑀 −𝑰𝑰𝑀𝑀×𝑀𝑀] … 𝟎𝟎𝑀𝑀×2𝑀𝑀
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝑿𝑿(𝑃𝑃𝑃𝑃) 𝟎𝟎𝑀𝑀×2𝑀𝑀 𝟎𝟎𝑀𝑀×2𝑀𝑀 … [𝑰𝑰𝑀𝑀×𝑀𝑀 −𝑰𝑰𝑀𝑀×𝑀𝑀]⎦
⎥
⎥
⎥
⎤
 ,  (6.3.17) 
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𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎡𝑿𝑿

(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃) 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽

𝟎𝟎𝑀𝑀×𝐽𝐽 𝑿𝑿(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃) … 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝑿𝑿(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃)⎦
⎥
⎥
⎥
⎤

𝟎𝟎(𝐿𝐿−1)∙𝑀𝑀×𝐽𝐽∙𝐿𝐿

𝟎𝟎(𝐿𝐿−1)∙𝑀𝑀×𝐽𝐽∙𝐿𝐿

⎣
⎢
⎢
⎢
⎡𝑿𝑿

(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃) 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽

𝟎𝟎𝑀𝑀×𝐽𝐽 𝑿𝑿(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃) … 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽 𝟎𝟎𝑀𝑀×𝐽𝐽 … 𝑿𝑿(𝑃𝑃𝑃𝑃) −𝑿𝑿(𝑃𝑃𝑃𝑃)⎦
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

            (6.3.18) 

 

In these equations, 𝟏𝟏𝑛𝑛×𝑛𝑛 is a 𝑛𝑛 × 𝑛𝑛 matrix of ones and 𝑰𝑰𝑛𝑛×𝑛𝑛 is the 𝑛𝑛 × 𝑛𝑛 identity matrix. The last line of constraints 

in (6.3.12) is added to avoid quantile crossing in the training period.  

 

5.3.2. EXPERIMENTAL FRAMEWORK AND RESULTS 

This section presents the experimental framework, in terms of benchmarks and the error indices used to assess 

the validity of the proposal and to compare the probabilistic forecasts, and the outcomes of the experimental results. 

 

1) Benchmarks 

The proposed approach is validated in this research activity by comparing its performance to several probabilistic 

benchmarks, briefly presented below.  

Benchmark 1: Persistence method: The first benchmark is a simple method based on the persistence of the target 

variable. Regardless of the forecast lead time 𝑘𝑘, the predictive quantiles returned by the Persistence Method (PM) 

for the target time horizon ℎ are the last observed values of active and reactive power: 

 

𝑃𝑃�ℎ
(𝛼𝛼𝑙𝑙) = 𝑃𝑃ℎ−𝑘𝑘 , 𝑄𝑄�ℎ

(𝛼𝛼𝑙𝑙) = 𝑄𝑄ℎ−𝑘𝑘   ∀𝑙𝑙 = 1, … , 𝐿𝐿       (6.3.19) 

 

Benchmark 2: Quantile regression forest benchmark: The Quantile Regression Forest Benchmark (QRFB) returns 

univariate forecasts of active and reactive power through the QRF(P) and the QRF(Q), respectively. This benchmark is 

introduced to assess the refinement of individual QRF forecasts through an MQR model. In particular, this 

benchmark aims at checking if the score of MQR predictive quantiles is better than the score of univariate QRF 

predictive quantiles in the test period. This would confirm the validity of the multivariate approach applied to QRF 

underlying models.  
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The data used to train the QRF(P) and the QRF(Q) cover the period corresponding to the purple bars in Figure 6.3.2. 

The hyperparameters of the QRFB and the best predictor configuration are optimized in 10-fold cross-validation, 

selecting the configuration with the smallest average PS. 

Benchmark 3: Univariate quantile regression benchmark: The Univariate Quantile Regression Benchmark 

(UQRB) returns univariate forecasts of active and reactive power through the UQR(P) and the UQR(Q), respectively. 

This benchmark is introduced to assess the refinement of UQR forecasts through an MQR model. In particular, this 

benchmark aims at checking if the score of MQR predictive quantiles is better than the score of UQR predictive 

quantiles in the test period. This would confirm the validity of the multivariate approach applied to UQR underlying 

models.  

The data used to train the UQR(P) and the UQR (Q) cover the period corresponding to the purple bars in Figure 

6.3.2. The best predictor configuration is optimized in 10-fold cross-validation, selecting the configuration with the 

smallest average PS. 

2) Error indices 

Two probabilistic error indices are used to assess the results. The first index is the PS, the strictly proper score 

defined in Section 5.1.2, which accounts for the reliability and the sharpness of forecasts [92]. The second considered 

index is the AACE defined in Section 5.1.2, which accounts for the reliability of the forecasts. 

 

3) Data and forecasting framework 

The data used for the experiments consists of Dataset_indust_load. Three loads with different characteristics are 

selected to validate the proposed multivariate approach: the factory aggregate load, the load of one of the LV power 

distribution feeders, and the load of a painting machine.  

Available data are partitioned to meet the timeline in Figure 6.3.2. The first set, corresponding to the purple bars 

in Figure 6.3.2, is used to train models. It covers 20 months from April 2016 to November 2017: 16 months (from 

April 2016 to July 2017) are exclusively used to train the individual probabilistic models, whereas the remaining 4 

months (from August 2017 to November 2017) are used to train the MQR model. The second set, corresponding to 

the pink bars in Figure 6.3.2, covers 3 months from December 2017 to February 2018 and it is used to test the 

forecasting system. 

Hereinafter the multivariate system with QRF underlying models is denoted by “MQR on QRF”, and the 

multivariate system with UQR underlying models is denoted by “MQR on UQR”. In the numerical experiments, 

hour-ahead forecasts (lead time 𝑘𝑘 = 1) and day-ahead forecasts (lead time 𝑘𝑘 = 24) are generated by 99 predictive 

quantiles at levels 0.01, 0.02, …, 0.99. The two forecasting time horizons are selected in order to fulfill both the real-
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time and the day-ahead purposes of the forecasting systems developed in the project, partially covering also activities 

related to Task 2.3. In this deliverable, hour-ahead forecasts of the aggregate load are thoroughly assessed, and the 

other results are presented with fewer details to avoid verbosity. 

4) Results of hour-ahead aggregate load forecasts 

Table 6.3.1 presents the outcomes of the optimized model selection procedures for the MQR on QRF, for the 

MQR on UQR, for the QRB, and for the QRFB. Pluses indicate selected predictors, minuses indicate discarded 

predictors, and NC indicates variables that have not been considered candidate predictors. Note that the forecasts 

obtained either through the underlying QRF or the underlying UQR are indicated by 𝑃𝑃�ℎ
(𝛼𝛼𝑙𝑙), 𝑄𝑄�ℎ

(𝛼𝛼𝑙𝑙), to avoid 

repetitiveness. Obviously, univariate QRF forecasts are used in the MQR on QRF, and UQR forecasts are used in the 

MQR on UQR. 

Table 6.3.1. Outputs of the model selection procedures 

Candidate 
predictor 

Model 
Candidate 
predictor 

Model 
MQR 

on 
QRF 

MQR 
on 

UQR 

UQRB QRFB MQR 
on 

QRF 

MQR 
on 

UQR 

UQRB QRFB 

UQR(P) UQR(Q) QRF(P) QRF(Q) UQR(P) UQR(Q) QRF(P) QRF(Q) 

𝑃𝑃ℎ−1 NC NC + – + + 𝑉𝑉ℎ−1 NC NC – – – + 
𝑃𝑃ℎ−2 NC NC + – + + 𝑉𝑉ℎ−2 NC NC – – – + 
𝑃𝑃ℎ−3 NC NC + – + + 𝑉𝑉ℎ−3 NC NC – – – + 
𝑃𝑃ℎ−4 NC NC + – + – 𝑉𝑉ℎ−4 NC NC – – – – 
𝑃𝑃ℎ−5 NC NC – – – – 𝑉𝑉ℎ−5 NC NC – – – – 
𝑃𝑃ℎ−6 NC NC – – – – 𝑉𝑉ℎ−6 NC NC – – – – 
𝑃𝑃ℎ−24 NC NC + – + + 𝑉𝑉ℎ−24 NC NC – – – + 
𝑃𝑃ℎ−168 NC NC + – + + 𝑉𝑉ℎ−168 NC NC – – – + 
𝑄𝑄ℎ−1 NC NC – + + + 𝑃𝑃�ℎ

(0.01), 𝑄𝑄�ℎ
(0.01) + + NC NC NC NC 

𝑄𝑄ℎ−2 NC NC – + + + 𝑃𝑃�ℎ
(0.10), 𝑄𝑄�ℎ

(0.10) + + NC NC NC NC 
𝑄𝑄ℎ−3 NC NC – + + + 𝑃𝑃�ℎ

(0.20), 𝑄𝑄�ℎ
(0.20) + + NC NC NC NC 

𝑄𝑄ℎ−4 NC NC – – + – 𝑃𝑃�ℎ
(0.30), 𝑄𝑄�ℎ

(0.30) + + NC NC NC NC 
𝑄𝑄ℎ−5 NC NC – – – – 𝑃𝑃�ℎ

(0.40), 𝑄𝑄�ℎ
(0.40) + + NC NC NC NC 

𝑄𝑄ℎ−6 NC NC – – – – 𝑃𝑃�ℎ
(0.50), 𝑄𝑄�ℎ

(0.50) + + NC NC NC NC 
𝑄𝑄ℎ−24 NC NC – + + + 𝑃𝑃�ℎ

(0.60), 𝑄𝑄�ℎ
(0.60) + + NC NC NC NC 

𝑄𝑄ℎ−168 NC NC – + + + 𝑃𝑃�ℎ
(0.70), 𝑄𝑄�ℎ

(0.70) + + NC NC NC NC 
𝒉𝒉𝒉𝒉𝒉𝒉ℎ + + + + + + 𝑃𝑃�ℎ

(0.80), 𝑄𝑄�ℎ
(0.80) + + NC NC NC NC 

𝒅𝒅𝒅𝒅𝒅𝒅ℎ + + + + + + 𝑃𝑃�ℎ
(0.90), 𝑄𝑄�ℎ

(0.90) + + NC NC NC NC 
𝒕𝒕𝒕𝒕𝒕𝒕ℎ + + + + + + 𝑃𝑃�ℎ

(0.99), 𝑄𝑄�ℎ
(0.99) + + NC NC NC NC 

 

While day-of-the-month may not be important at all in conventional load forecasting studies that cover mostly 

residential loads or aggregate loads that have significant portion of residential usage, it can be a very effective variable 

to capture maintenance schedules, supply cycles and production cycles in industrial load forecasting. From the 

outcomes shown in Table 6.3.1, the calendar variable 𝒅𝒅𝒅𝒅𝒅𝒅 is picked by the model selection procedure.  

To provide a quantitative estimation of the relative importance of the calendar variable 𝒅𝒅𝒅𝒅𝒅𝒅, Table 6.3.2 reports 

the relative predictor importance values, obtained from QRF, for the variables 𝒅𝒅𝒅𝒅𝒅𝒅, 𝒉𝒉𝒉𝒉𝒉𝒉 and 𝒕𝒕𝒕𝒕𝒕𝒕 when considered 
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alone (i.e., without interactions with other variables). Values are relativized to the predictor importance of the 𝒉𝒉𝒉𝒉𝒉𝒉 

variable, which is always the greatest among the three. 

From Table 6.3.2, although the 𝒅𝒅𝒅𝒅𝒅𝒅 variable always has the smallest relative importance, still it is comparable 

to the relative importance of the 𝒕𝒕𝒕𝒕𝒕𝒕 variable, which is instead more frequently used in traditional load forecasting 

studies.  

The error indices obtained for the test period are in Table 6.3.3. With reference to active power, the MQR on 

UQR with fixed-origin window returns the smallest PS. The PS is about 13% smaller than the best benchmark (i.e., 

the UQRB), about 12% smaller than the MQR on QRF with fixed-origin window, and less than 1% smaller than the 

MQR on UQR with rolling window. Forecasts are reasonably reliable as the AACE is smaller than 4%, except for the 

UQRB model which has a large AACE (about 60% greater than MQR-on-UQR forecasts). MQR-on-UQR forecasts 

are also more reliable than the MQR-on-QRF forecasts. The PS of the multivariate approaches on QRF (UQR) is 

smaller than the PM PS by about 15% (22.5%). 

 

Table 6.3.2. Analysis of the relative importance of calendar variables 

Variable 
Load 

Aggregate load Painting machine 
Active power 𝑃𝑃 Reactive power 𝑄𝑄 Active power 𝑃𝑃 Reactive power 𝑄𝑄 

𝒉𝒉𝒉𝒉𝒉𝒉 1 1 1 1 
𝒅𝒅𝒅𝒅𝒅𝒅 0.186 0.198 0.041 0.045 
𝒕𝒕𝒕𝒕𝒕𝒕 0.674 0.260 0.103 0.090 

 

Table 6.3.3. Error indices of hour-ahead aggregate load forecasts 

Model 
Active power Reactive power 

PS [kW] AACE [%] PS [kVAr] AACE [%] 
MQR on QRF, rolling window 512.57 3.86 352.92 3.99 
MQR on QRF, fixed-origin window 511.68 3.91 347.91 2.98 
MQR on UQR, rolling window 453.30 3.22 316.44 2.97 
MQR on UQR, fixed-origin window 451.27 3.04 313.69 2.84 
PM 606.08 - 423.81 - 
UQRB 518.02 7.71 357.94 9.96 
QRFB 522.76 2.77 371.85 2.12 

 

With reference to reactive power, the MQR on UQR with fixed-origin window returns the smallest PS among 

the competitors. The PS is about 12.5% smaller than the best benchmark (i.e., the UQRB), about 10% smaller than 

the MQR on QRF with fixed-origin window, and less than 1% smaller than the MQR on UQR with rolling window. 

Also in this case, forecasts are reasonably reliable as the AACE is smaller than 4%, with the exception for the UQRB 

model which has a too large AACE (about 70% greater than MQR-on-UQR forecasts). Together with their smaller 
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PS, forecasts built by the MQR on UQR are also more reliable than the MQR-on-QRF forecasts. The PS of the 

multivariate approach on QRF (UQR) is smaller than the PM PS by about 18% (26%), respectively.  

In order to give a graphical evaluation of the results, Figures 6.3.3 and 6.3.4 respectively show the prediction 

intervals obtained from MQR-on-UQR hour-ahead predictive quantiles of active and reactive power of the aggregate 

load. Values are plotted for a week of the test period, and compared to the actual load. 

 

 
Fig. 6.3.3. MQR-on-UQR hour-ahead active power forecasts during a week of the test period. 

 
Fig. 6.3.4. MQR-on-UQR hour-ahead reactive power forecasts during a week of the test period. 
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5) Results of hour-ahead forecasts of the carpentry feeder and of the painting machine 

Only the error indices for the forecasts of the carpentry feeder and of the painting machine are discussed, to avoid 

the verbose presentation of the outcomes of the model selection procedure. The error indices averaged during the 

test period are shown in Table 6.3.4. 

With reference to carpentry feeder active power, the MQR on UQR with fixed-origin window returns the 

smallest PS among the competitors. The PS is about 10% smaller than the best benchmark (i.e., the UQRB), about 

8% smaller than the MQR on QRF with fixed-origin window, and less than 1% smaller than the MQR on UQR with 

rolling window. The MQR with rolling window fails to outperform the UQRB. Forecasts generated by MQR-on-

UQR models are less reliable than the forecasts generated by MQR-on-QRF models, although the AACE is smaller 

than 4.20% in all cases. Therefore, forecasts with the smaller PS should be picked over the competitors. 

With reference to painting machine active power, the MQR on QRF with fixed-origin window returns the 

smallest PS among the competitors. The PS is about 6.5% smaller than the best benchmark (i.e., the QRFB), about 

4.5% smaller than the MQR on UQR with fixed-origin window, and less than 1% smaller than the MQR on QRF 

with rolling window. MQR on QRF returns also the most reliable forecasts, thus it is the privileged pick over 

competitors. 

With reference to carpentry feeder reactive power, MQR on UQR returns forecasts slightly more accurate than 

the MQR-on-QRF forecasts. The improvement is however smaller than 1% of the PS, and this is probably due to the 

worse performance of the UQR upon carpentry feeder reactive power. The improvement is mainly imputable to the 

better performance of the UQR upon carpentry feeder active power, which is fruitfully exploited in the multivariate 

approach. Since MQR-on-UQR forecasts are less reliable than MQR-on-QRF forecasts and the PS of the former is 

only slightly smaller than the PS of the latter, the latter could be picked over competitors if reliability matters more 

for the end-user applications.   

With reference to painting machine reactive power, MQR on UQR returns forecasts about 5% more accurate 

than the MQR-on-QRF forecasts. The UQR has worse performance than the QRF both upon active and reactive 

power, and this has implications on the accuracy of the multivariate forecasts. 

On average, the MQR on UQR has better performance than the competitors for the aggregate load and for the 

load of the carpentry feeder, whereas the MQR on QRF outperforms the competitors for the load of the painting 

machine. This can be explained by the nature of the latter load: the painting machine follows an irregular pattern, 

with many zero-load intervals. QRFs appear to better catch the uncertainties of this type of load, and this has 

implications also on the accuracy of the multivariate forecasts build upon QRF underlying models. 
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Table 6.3.4. Error indices of hour-ahead forecasts of the carpentry feeder and of the painting machine 

Model 

Carpentry feeder Painting machine 
Active power Reactive power Active power Reactive power 

PS 
[kW] 

AACE 
[%] 

PS 
[kVAr] 

AACE 
[%] 

PS 
[kW] 

AACE 
[%] 

PS 
[kVAr] 

AACE 
[%] 

MQR on QRF, rolling window 261.31 2.90 193.00 2.41 43.61 1.87 39.28 4.32 
MQR on QRF, fixed-origin window 250.25 2.96 192.74 2.51 43.46 1.81 39.02 4.22 
MQR on UQR, rolling window 231.23 4.18 191.58 4.22 45.75 4.53 41.26 3.88 
MQR on UQR, fixed-origin window 230.97 4.05 191.05 4.80 45.55 3.89 41.10 5.22 
PM 314.80 - 233.60 - 61.48 - 50.95 - 
UQRB 257.42 12.40 215.11 10.14 50.10 5.36 46.00 8.19 
QRFB 266.57 2.43 197.58 4.81 46.47 5.47 40.71 2.48 

 

6) Results of day-ahead load forecasts 

Day-ahead forecasts of aggregate load, of the carpentry feeder, and of the painting machine are assessed in this 

sub-Section. The error indices averaged during the test period are shown in Table 6.3.5. The MQR on UQR with 

fixed-origin window returns the most accurate forecasts among the competitors for the aggregate load and for the 

carpentry feeder. Compared to the MQR on QRF with fixed-origin window, the PS improvements are about 7% for 

the aggregate active power, 5% for the aggregate reactive power, 10% for the carpentry feeder active power, and 

10.5% for the carpentry feeder reactive power. Compared to the best univariate benchmarks, the improvements are 

greater than 12.5%. The AACE of MQR on UQR with fixed-origin window is smaller than 4.50% in all of the 

considered cases.   

The MQR on QRF with fixed-origin window returns the most accurate forecasts among the competitors for the 

load of the painting machine. Compared to the MQR on UQR with fixed-origin window, the PS improvements are 

about 2% and 1% for the active and reactive power, respectively. Compared to the best univariate benchmarks (i.e., 

the QRFB), the improvement is about 6% for both active and reactive power. In the case of reactive power 

forecasting, the AACE of MQR on QRF models is over 6.50%, so that MQR on UQR with fixed-origin window could 

be picked over it if reliability significantly matters for the end-user applications.  

The PM PS of day-ahead forecasts is about 3÷4 times the PM PS of hour-ahead forecasts (see Tables 6.3.3 and 

6.3.4). Nevertheless, the PSs of day-ahead forecasts built by the multivariate approaches instead are only 1.7÷2.5 

times the MQR PS of hour-ahead forecasts. This suggests that the proposed multivariate approach is more skilled 

than a naïve approach in handling longer-term forecasting. 

 

Table 6.3.4. Error indices of day-ahead forecasts 

Model 

Aggregate load Carpentry feeder Painting machine 
Active power Reactive power Active power Reactive power Active power Reactive power 
PL 

[kW] 
CE 
[%] 

PL 
[kVAr] 

CE 
[%] 

PL 
[kW] 

CE 
[%] 

PL 
[kVAr] 

CE 
[%] 

PL 
[kW] 

CE 
[%] 

PL 
[kVAr] 

CE 
[%] 
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MQR on QRF,  
rolling window 

1281.46 4.85 873.09 3.52 485.62 6.49 427.31 5.13 74.45 2.32 79.47 8.41 

MQR on QRF,  
fixed-origin window 

1162.21 3.29 835.79 4.16 484.82 6.55 424.04 4.98 74.35 3.08 79.32 6.66 

MQR on UQR,  
rolling window 

1105.48 3.95 798.93 4.10 444.05 5.58 380.42 2.82 76.38 4.15 80.74 6.36 

MQR on UQR,  
fixed-origin window 1081.23 3.34 793.00 4.39 437.19 4.46 379.12 3.01 75.92 4.02 80.27 5.00 

PM 2458.38 - 1656.41 - 987.81 - 840.99 - 140.98 - 149.14 - 
UQRB 1239.04 6.01 904.22 7.13 518.85 6.03 437.99 5.71 85.01 4.25 92.32 4.19 
QRFB 1330.80 11.26 917.65 6.94 511.36 4.31 462.30 5.86 79.12 7.70 84.52 5.79 

 

5.3.3. DISCUSSION 

This research activity proposes a new contribution to probabilistic industrial load forecasting. A multivariate 

approach is proposed to model the physical, mutual correlation between active and reactive power.  

Univariate predictive quantiles of active and reactive power are built either by QRF or by UQR. These forecasts 

are passed to an MQR model, which returns multivariate forecasts of active and reactive power in the form of 

predictive quantiles. The MQR model simultaneously addresses the two target variables, considering also different 

quantile levels. The MQR parameters are estimated by solving a linear programming problem in which inequality 

constraints avoid quantile crossing occurrences. Two MQR training schemes, either based on a fixed-origin window 

or on a rolling window, are compared in the experiments. The proposal is validated using electrical data of three 

industrial loads, monitored at an actual Italian factory.  

Numerical experiments suggest that the MQR training scheme with fixed-origin window returns a smaller PS, 

and in most cases also a smaller AACE, than the corresponding rolling-origin window counterpart. Whether the 

QRF or the UQR are the underlying probabilistic models used to build univariate forecasts, the MQR enhances the 

skills of final forecasts. This enhancement ranges from 6% to 13.5%, compared to the univariate benchmarks. The 

MQR on QRF is the best pick for two loads (the factory aggregate and the load of a feeder), whereas the MQR on 

UQR is the best pick for the other load (a painting machine).  

Future research on the applications of probabilistic industrial load forecasting are encouraged, mainly with 

reference to the development of decision-making tools for intelligent participation to electrical markets and to the 

development of management and control strategies in industrial microgrids. 
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6. COMPARISON WITH EXPECTED RESULTS 
With reference to the Task 2.1 and the Task 2.2 of the Digriflex project, the expected results at the end of the 

Milestone 1 include: 

a) Task 2.1: 

- collection of time series that include both target variables and predictor variables; 

- description of methods to pre-process the data to eliminate outliers and bad values; 

- exploratory data analysis in order to discard uninformative predictors. 

b) Task 2.2: 

- development of methods and models based on multiple linear regression and random forests 

- identification of the best combination type for the underlying models in the ensemble approach 

- comparison between the results obtained applying the proposed approach and the ones given by the 

relevant state-of-the-art benchmarks. 

The activities related to Task 2.1 allowed to create large, robust databases of variables which could be exploited 

to test the performance of the forecasting systems used to predict energy at the site of the installation of the test 

distribution grid of the ReIne laboratory. 

The activities related to Task 2.2 allowed to develop forecasting systems of renewable generation and loads for 

the considered day-ahead time horizons. As expected, the developed forecasting systems were based on data-driven 

ensemble approaches, as they are flexible and versatile tools. Eventually, the proposed methodologies were validated 

and their effectiveness was demonstrated under realistic uncertainty sources, exploiting the databases built through 

the activities related to Task 2.2. 

Part of these activities were carried out in strict interaction with the partner University of Naples Federico II for 

the data collection, data pre-processing and exploratory data analysis and for the theoretical development of the 

forecasting systems, and with the partner HEIG-VD for the acquisition of measurements available at the test 

distribution network at the ReIne laboratory. 

In summary, the activities developed by University of Naples Parthenope in Milestone 1, illustrated above, 

allowed to fully reach the objectives expected in Task 2.1 and Task 2.2 of the DiGriFlex project. The activities will 

continue, in strict interaction with the partners, during the Task 2.4 in order to adapt the forecasting systems to the 

feedbacks provided by the two-level optimization strategy and to the validation results that are object of the WP3.  
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7. DELIVERABLES 
The deliverables of the research activities related to Task 2.1 and Task 2.2 consist of this technical document, as 

expected per the Technical Specifications of the DiGriFlex Project, and of the following scientific papers published 

on international journals and proceedings of international conferences: 

1) A. Bracale, P. Caramia, G. Carpinelli, P. De Falco, “Day-ahead probabilistic wind power forecasting based 

on ranking and combining NWPs,” International Transactions on Electrical Energy Systems, vol. 30, no. 7, 

e12325, 2020. 

2) A. Bracale, P. Caramia, P. De Falco, T. Hong, “A multivariate approach to probabilistic industrial load 

forecasting,” Electric Power Systems Research, vol. 187, 106430, 2020. 

3) M. Bozorg, A. Bracale, P. Caramia, G. Carpinelli, M. Carpita, P. De Falco, “Bayesian bootstrap quantile 

regression for probabilistic photovoltaic power forecasting,” Journal of Protection and Control of Modern 

Power Systems, vol.5, 21, pp. 1-12, 2020. 

 

8. PROFILES OF HUMAN RESOURCES 
The researchers of the University of Naples Parthenope who participated at the research activities related to Task 

2.1 and Task 2.2 are: 

- Pierluigi Caramia, Full Professor of Power Systems 

- Antonio Bracale, Associate Professor of Power Systems 

- Pasquale De Falco, Researcher of Power Systems 

 

9. DIFFUSION OF THE RESULTS 
The results of the research activities related to Task 2.1 and Task 2.2 have been published in the following 

scientific papers in international journals and in proceedings of international conferences: 

1) A. Bracale, P. Caramia, G. Carpinelli, P. De Falco, “Day-ahead probabilistic wind power forecasting based 

on ranking and combining NWPs,” International Transactions on Electrical Energy Systems, vol. 30, no. 7, 

e12325, 2020. 

2) A. Bracale, P. Caramia, P. De Falco, T. Hong, “A multivariate approach to probabilistic industrial load 

forecasting,” Electric Power Systems Research, vol. 187, 106430, 2020. 
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3) M. Bozorg, A. Bracale, P. Caramia, G. Carpinelli, M. Carpita, P. De Falco, “Bayesian bootstrap quantile 

regression for probabilistic photovoltaic power forecasting,” Journal of Protection and Control of Modern 

Power Systems, vol.5, 21, pp. 1-12, 2020. 

 

10. CONCLUSIONS 
The research activities discussed in this document focused on the development of day-ahead forecasting systems 

for renewable generation and loads. A dedicated task aimed at building the input datasets by collecting and pre-

processing available data. The forecasting systems have been developed by exploiting ensemble techniques within 

probabilistic frameworks.  

The major contributions of the research activities related to Task 2.1 and Task 2.2 can be summarized as follows: 

i. the collection of large, robust datasets of PV power generation, wind power generation and industrial 

loads; 

ii. the pre-processing of the collected data, aiming at individuating and correcting missing data, bad data 

and outliers; 

iii. the exploratory data analysis to reduce the dimensionality of the input datasets, favoring the 

development of adequate forecasting systems for renewable generation and load; 

iv. the development of a Bayesian bootstrap quantile regression model for probabilistic PV power 

forecasting; 

v. the development of a day-ahead probabilistic wind power forecasting based on ranking and combining 

NWPs; 

vi. the development of a multivariate approach for probabilistic industrial load forecasting. 

In summary, the activities developed by University of Naples Parthenope in Milestone 1, illustrated above, 

allowed to fully reach the objectives expected in Task 2.1 and Task 2.2 of the DiGriFlex project. The activities will 

continue, in strict interaction with the partners, during the Task 2.4 in order to adapt the forecasting systems to the 

feedbacks provided by the two-level optimization strategy and to the validation results that are object of the WP3.  
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