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Zusammenfassung 
Invasive energetische Sanierungsansätze an Wohngebäuden sind oft anspruchsvoll in Bezug 

auf Anfangsinvestitionen und Umsetzungszeit, während schnelle und wirtschaftliche 

Energieoptimierungsmaßnahmen meist eine attraktivere und machbarere Strategie darstellen. 

Daher ist eine quantitative Studie erforderlich, um die Maßnahmen zu identifizieren, die unter 

Berücksichtigung variabler Wetterbedingungen zu den höchsten Energieeinsparungen führen. 

In dieser Arbeit wird ein künstliches neuronales Netzwerk über einen vom Energo-Verband zur 

Verfügung gestellten Datensatz trainiert und die komplexe Beziehung 

"Optimierungsmaßnahmen-Energieeinsparung" als Blackbox modelliert. Sensitivitätsindizes 

werden durch das trainierte Netzwerk berechnet, um den Einfluss jeder Maßnahme auf die 

Variabilität des Energieverbrauchs zu analysieren und zu quantifizieren, wobei gegenseitige 

Wechselwirkungen berücksichtigt werden.  

Das trainierte Surrogatmodell liefert hochgenaue Vorhersagen der Energieeinsparungen 

ausgehend von den Wetterbedingungen und dem Vektor der angewandten 

Optimierungsmaßnahmen innerhalb des analysierten Zeitfensters. Darüber hinaus wird eine 

quantitative Analyse vorgeschlagen, um die Effektivitätsbereiche der einzelnen 

Optimierungsmaßnahmen zu ermitteln, wobei sowohl Modell- als auch meteorologische 

Unsicherheiten berücksichtigt werden. 

Zusammenfassend beschreibt die Studie eine Methodik, die auf der Anwendung von 

Surrogatmodellen basiert, mit dem Ziel, die effektivsten Energieoptimierungsmaßnahmen zu 

identifizieren, die die Definition von effizienteren und wirtschaftlicheren Wartungsplänen 

ermöglichen. 

Résumé 
Les approches de rénovation énergétique invasive sur les bâtiments résidentiels sont souvent 

exigeantes en termes d'investissement initial et de temps de mise en œuvre, tandis que les 

mesures d'optimisation énergétique rapides et économiques représentent la plupart du temps 

une stratégie plus efficace et réalisable. Il est pourtant très intéréssant d’analyser ce type de 

mesures sur le plan quantitatif afin d’identifier l'ensemble des actions conduisant aux 

économies d'énergie les plus importantes compte tenu de certains conditions. Dans cette étude 

de recherche, un réseau de neurons artificiel est développé sur un ensemble de données fournies 

par l'association Energo, et la relation complexe "Mesures d'optimisation - Économies 

d'énergie" est modélisée sous forme de « black boxe ». Des indices de sensibilité sont calculés 

par le réseau formé pour analyser et quantifier l'influence de chaque mesure sur la variabilité 

de la consommation d'énergie, en tenant compte des interactions mutuelles.  

Le meta-modèle d’apprentissage fournit des prévisions très précises des économies d'énergie à 

partir des conditions météorologiques et du vecteur des mesures d'optimisation appliquées dans 

la fenêtre temporelle analysée. En outre, une analyse quantitative est proposée pour identifier 

les plages d'efficacité de chaque mesure d'optimisation, en tenant compte à la fois des 

incertitudes du modèle et des incertitudes météorologiques. 
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En conclusion, l'étude décrit une méthodologie basée sur l'adoption de meta-modèle dans le but 

d'identifier les mesures d'optimisation énergétique les plus efficaces permettant l’élaboration 

de plans de maintenance plus performantes et plus économiques. 

Summary 
Invasive energy retrofitting approaches on residential buildings are often demanding in terms 

of initial investment and implementation time, while fast and economic energy optimization 

measures represent most of the time a more attractive and feasible strategy. A quantitative study 

is therefore needed to identify the set of actions leading to the highest energy savings accounting 

for variable weather conditions. In this work, an Artificial Neural Network is trained over a 

dataset provided by the Energo association, and the complex relation “Optimization measures-

Energy Saving” is modeled as black-box. Sensitivity indexes are computed through the trained 

network to analyze and quantify the influence of each measure on the variability of the energy 

consumption, accounting for mutual interactions.  

The trained surrogate model provides highly accurate predictions of the energy savings starting 

from the weather conditions and the vector of applied optimization measures within the 

analyzed time-window. In addition, a quantitative analysis is proposed in order to identify 

intervals of effectiveness of each optimization measure, taking into account both uncertainties 

due to the model and meteorological factors. 

In conclusion, the study describes a methodology based on the adoption of surrogate models 

with the aim of identifying the most effective energy optimization measures allowing the 

definition of more efficient and economic maintenance plans.  

Main findings 
The proposed approach has been shown to be effective in identifying energy optimization 

actions with the greatest potential, given the uncertainty involved. Focusing on the two best 

low-cost optimization measures, a potential total monthly saving greater than  2*104 kWh can 

be reached by each one with a reduced variance, value to be considered on the whole analyzed 

building stock. In terms of best macro-categories of intervention, the highest median savings 

are reported for the Furnace setpoint temperature (≈1.83*104  kWh) and the Heating schedule 

time (≈1.65*104  kWh) activities, with the lowest efficacy values reached by the Ventilation 

category ( ≈ -0.5*104  kWh) and activities related to hydraulic adjustments and hot water 

schedule time, 0.5*103  kWh and 0.35*104  kWh respectively. Finally, focusing on the hot water 

production process, temperature regulations (≈ 0.91*104 kWh) are more energy efficient if 

compared with the hydraulic interventions on the circulation system (≈ 0.05*104 kWh). In 

percentage terms, the best single optimization measures analyzed manage to achieve a median 

potential monthly savings of just under 2%, which is about four times higher than the median 

value of all recorded underconsumption events. Quantifying potential energy savings in terms 

of confidence intervals, and thus not just taking a qualitative approach, is a major achievement. 

This was made possible by a robust data-driven model calibrated on real historical data 

collected systematically for more than 5 years by Energo.  
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1 Introduction 

1.1 Background information and current situation 

The Positive Gap Project is part of a wider series of studies and research projects developed by 

SUPSI in collaboration with other organizations operating on the national territory.  In 

particular, it is worth mentioning that many activities, carried out by SUPSI and the Energo 

Association, aim at the development of new methodologies for monitoring and for reaching a 

more effective energy optimization. The GAPxPLORE1 project developed between 2017 and 

2019 in collaboration with the University of Geneva and the Minergie, CECE and Energo 

Associations, represents one clear example of this specified line of research  

Thanks to the GAPxPLORE project it has been possible to analyze the energy performance gap 

(EPG) between measured and calculated energy consumption in the Swiss residential sector. 

This project confirmed the existence of a significant EPG depending on the thermal quality of 

the building. It was also possible to quantify the EPG by defining median, maximum and 

minimum values according to the type of building.   

The quoted study also highlighted limitations such as the nature of the energy values that are 

compared (the type of energy consumption, weighting factors adopted, etc.). Besides, it was 

particularly difficult to evaluate energy consumption based on different approaches and 

databases. 

Starting from the results obtained from previous research activities, the characterization of the 

EPG must be able to be detailed on the basis of energy consumption monitored continuously 

and systematically. The focus in this perspective shifts to the operational phase of the building, 

during which consumption can be optimized. This approach employes real consumption data, 

structured and connected to changes in climatic conditions, allowing increasingly accurate 

modelling of building consumption and reducing the gap between design and operation. 

 Energo 

Energo is a swiss association of public and private institutions. It helps to significantly reduce 

the energy consumption and energy costs of buildings. Since its foundation in 2001 within the 

framework of the SwissEnergy program, energo has become a leading competence center for 

energy efficiency throughout Switzerland. Energo's mission is to provide independent, tailor-

made analyses and advice on the optimization and modernization of building services. 

1.2 Purpose of the project 

The building stock represents one of the main contributions to the final Swiss national energy 

demand. Indeed, in Switzerland more than 40% of energy consumption and about one third of 

climate-damaging CO2 emissions are caused by the buildings sector. The widespread adoption 

                                                      
1 Cozza S., Chambers J., Geissler A.,Wesselmann K., Gambato C., Branca G., Cadonau G., Arnold 

L., Martin K. Patel M.K. (2019). GAPxPLORE: Energy Performance Gap in existing, new, and 

renovated buildings, Swiss Federal Office of Energy SFOE 
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of low efficient heating supply systems, coupled with a optimized maintenance strategy, leads 

to a large potential for energy consumption reduction. 

An invasive retrofitting approach aimed at increasing the energy efficiency, such as the building 

envelope renovation or replacement of an energy production unit, is often demanding in terms 

of initial investment and implementation time. In this case, the payback time of the energy-

saving investment is often longer than the lifetime of the element, hence why most of the times, 

low-investment cost optimization measures (LICOM) represent a more attractive and feasible 

strategy to reduce energy consumption in buildings while ensuring a profitable return on 

investment.  

The LICOM effectiveness can be quantified through the concept of performance gap [1] that 

refers to the difference in terms of energy consumptions between the measured and the 

predicted value, this last quantified through a regression model calibrated on measured energy 

performance over a sufficiently long period of time (in general 3 years) and corrected for the 

variation in outdoor temperature. Performance gap is calculated and provided directly by 

ENERGO.   

A quantitative study is therefore required to identify the LICOMs leading to the highest energy 

savings independantly of the effects of different meteorological conditions. Indeed, particular 

climatic conditions can affect the building stock’s energy consumption regardless of the 

selected set of LICOMs and this effect should be separated. 

1.3 Objectives and methods 

The identification of a robust ranking associated with the analyzed LICOMs represents a 

challenging computational task under several points of view.  

To increase the robustness of the results the applied methodology should be based on a 

sufficiently large dataset of consistent energy consumption records, adopted LICOMs and 

weather indicators, referring to well-tracked building stock. Moreover, the employed data must 

cover the longest possible time-window in order to account for multiple boundary conditions 

that can affect the final figures. 

The data collection task has been completed thanks to our collaboration with the Energo 

association, whose energy consumption monitoring activity since many years allows the 

acquisition of relevant data on different building types with a detailed tracking of performed 

LICOMs. 

Once the required dataset is defined, a preliminary analysis must be carried out to identify 

adequate time-windows in which we can compute the total energy savings knowing the 

corresponding set of applied LICOMs. Another difficulty is that multiple LICOMs are often 

adopted within the same time-window, hence an advanced computational approach is needed 

to quantify the contribution of each of them to the final output of interest. 

In the presented work, an artificial neural network (ANN) [2] is employed to model and analyze 

the complex relation “LICOMs vs Energy saving”. Indeed, correlation coefficients cannot be 

derived directly from the initial dataset since the energy consumption in a fixed time-window 

is simultaneously affected by multiple LICOMs. Basic assumptions cannot be chosen at first 

due to the lack of studies in the technical literature on the topic. What we found is that the 

validated ANN can separately model each input-output relation, hence it can be efficiently 

employed to perform advanced sensitivity analyses by creating synthetic data. 
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Sensitivity indexes [3] are computed to quantify the influence of each input on the variability 

of the analyzed output, while, a more quantitative analysis is then performed to identify the 

most probable variability range of the energy saved by each LICOM accounting for different 

uncertainty sources. 
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2 Data 

2.1 Dataset features 

The analyzed building stock is characterized by a consistent dataset of consumption and 

optimization data for a time window longer than four years. 

Positive and negative energy savings are structured in a specific database in which the following 

information is listed: 

• Start Date of the event 

• End Date of the event 

• Performance gap found 

• Economic gap calculated 

• ID of the building case 

The optimization measures undertaken on the followed building stock are reported in a different 

database,  with the following main data fields: 

• Date 

• Description of the measures (the “LICOMs”) 

• Category of intervention 

• ID building 

The selected building stock provides well-populated and coherent data within a sufficiently 

long global time window. More specifically, a total of maximum 5000 energy consumption 

events can be obtained from the chosen dataset, however, the total events employed will be 

reduced depending on the analysis contraints. The observations have to be furtherly grouped in 

a reduced time window to increase the computational efficiency, keeping the meaningfullness 

of both causes and effects. Additional details on the adopted methodology will be provided in 

the next sections. 

Furthermore, to account for the influence of the weather conditions on the energy savings, an 

additional database is employed.  This includes: 

• Ambient temperature 

• Wind Speed 

• Solar irradiation 

• Humidity 

• Rainfall 

The daily average of each parameter is exported from the archive of the MeteoSwiss ground-

level monitoring networks, through the IDAWEB2 web platform. 

                                                      
2 https://gate.meteoswiss.ch/idaweb 
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Figure 1 Dataset and features 

2.2 Optimization measures classes 

The activity of data structuring, cleaning and filtering is based on the master thesis [4] and the 

energy savings this project is focused on are due to ensure heating and hot water, mainly 

because these represent the most reliable data.  

The heterogeneity of the possible optimization measures (LICOMs) requires their grouping in 

predefined classes which will simplify the whole numerical analysis. In this regard, a total of 

63 classes are adopted, partially following the work [4]. They are listed in Table 1 and can be 

further grouped into 13 main categories. A brief description of each LICOM category is 

provided in Table 2. 

In the 5 years of monitoring taken as a reference, the data collected by ENERGO were not 

equally consistent with the various details of the optimization measure. In particular, it was 

possible to characterize the type of intervention, identifying specific classes, while additional 

details (e.g. on the setpoints regulation or the heating curve change) were fragmentary and not 

standardized. For this reason, the adopted approach does not account for detailed adjustments, 

but rather focuses on quantifying the effectiveness of each intervention class, with the 

assumption that all operations are guaranteed internal comfort and thus, in the numerical model 

each intervention is associated with a binary input in a specific time-window of analysis 

(applied - not applied). 

2.3 Preliminary analysis of the events 

The consumption events, recorded over a 5 years period, can be analyzed in terms of total 

duration (days) and gap with respect the energy signature (kWh). 
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Figure 2 shows the global distribution in terms of duration of all the recorded consumption 

events, whether they are over- or under-consumption. The median value appears to be around 

40 days, while a duration that overcomes 100-120 days seems quite rare. 

In addition, it is also interesting to analyse the evolution of the consumption events duration as 

the period of the year changes. From Figure 2B, that shows the event duration distribution per 

each month, it can be observed how the median value increases in the summer while the 

variance of the distributions seems to increase in december.  

Table 1 List of analyzed LICOMs 
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Table 2 Description of each LICOM category 

 

While the second aspect is less significative in statistical terms, probably in part linked to the 

specific wheater conditions, the first aspect can be explained in more operational terms. 

Analysing Figure 3, it can be seen that the optimization measures undertaken in the summer 

months have an increasing and therefore more lasting optimization potential as the colder 

months approach. In contrast, LICOMs applied just before summer, generally generate shorter 

average consumption events. 
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Figure 2 Raincloud plots (Distribution and boxplot) of the recorded consumtpion events duration, (a) global and (b) per month  

 

 

Figure 3 Evolution of the optimization potential due to the heating use variability 

The preliminary analysis of the events dataset can be further detailed by separating the 

distributions per type of event, namely an over or underconsumption. Figure 4A reports the 

difference in terms of duration, underlying how the overconsumption events result to be shorter, 

with a median value lower than 40 days. This is due to the intervention of the operator who, 

following constant monitoring, acts when an overconsumption event occurs. One of Energo's 

objectives is precisely to intervene as soon as possible in order to minimise the duration of any 

over-consumption, although there is an operating limit of around two weeks due to the 

monitoring frequency and the timing of reception and intervention. 

On the other hand, in terms of energy efficieny (Figure 4B), the overconsumption events show 

a median value around 5’000 kWh (per event) while in case of underconsumption this value 

increases until 7’000 kWh. 

In terms of under-consumption, the value of 7’000 kWh corresponds to a saving of about 2l of 

oil equivalent per m2 for the entire building stock analysed (92 buildings with an average 



 

17/51 

surface area of about 6’200 m2). This value corresponds to the potential average saving 

statistically recorded by the energo database of approx. 8% of the initial consumption. 

 

Figure 4 Raincloud plots (distribution and boxplot) of the (a) duration and (b) energy saving of the recorded consumtpion events, per type 

Finally, Figure 5 shows both the total number and the total energy consumption of the recorded 

events, distinguished per month and type. It is clear how the number of events decreases in the 

summer months and then reaches pick values in the winter (around 300 underconsumption 

events per month). A similar pattern can be identified in Figure 5B, showing the higher global 

energy underconsumptions in November, December and January, with an average of about -

7*106 kWh per month (computed as the sum of the underconsumption events). 

 

Figure 5 (a) Total number of events and (b) total over/underconsumptions [kWh] per month 

It should be noted that ENERGO does not use a tracking system related to indoor space usage. 

Therefore, it was not possible to make explicit and analyze the influence of occupant behavior 

on the effectiveness levels of various optimization measures. Nevertheless, the monitoring 

activity over a long period (5 years) has allowed collecting data on energy consumption that in 

practice corresponds to a multitude of different scenarios of occupation and space usage. This 

aspect makes the results obtained more robust because they are implicitly associated with 

different boundary conditions, but without offering the possibility to quantify how and to what 

extent user behavior has greater effects on energy performance. 
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2.4 Building stock 

The initial dataset employed for the numerical analysis is based on a residential building stock 

of 92 units located in the canton Geneva. 

In total, 175 properties are covered by the energy efficiency activity, where "property" means 

a single flat or, as is more often the case, an aggregate of flats. Table 3 reports some statistics 

on the consumption events characterizing the analyzed properties over a period of 5 years.  

In terms of total energy performance gap, 165 (94%) properties show a global 

underconsumption (5 years), with a maximum and minimum value of 715’613 kWh and 1’815 

kWh, respectivley. On the other side, 10 properties (6%) show a global overconsumption, that 

reach the maximum value of 480’392 kWh in one case, however this last property has to be 

considered as an outlier since the second wrost case show an overconsumption of  “only” 

57’911 kWh. The table reports details even on the amount of events per single property with 

the associated median duration (median value refers to the set of over- and under-consumption 

events recorded for the specific property). On this regards more general statistics  have been 

explored in the previous paragraph. 

Referring to the entire building stock during the analyzed 5-years period, a global energy 

underconsumption of 14’264’497 kWh is reached (26’602’138 kWh underconsumed and 

12’337’641 kWh overconsumed), with a total of 1’698 underconsumption events and 1’270 

overconsumption events.  

Table 3 Energy consumption events per propriety 
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8 -310576 -480725 170149 16 12 -17128 7893.5 43.5 35.5 

9 -308494 -563334 254840 16 10 -27293 10193.5 38.5 31 

10 -272852 -371043 98191 9 6 -6157 9328.5 36 36 

11 -258903 -312053 53150 8 5 -6161 9636 37.5 42 

12 -201493 -248829 47336 11 7 -16786 4469 88 47 

13 -199406 -280458 81052 9 6 -8674 6727 27 34 

14 -197284 -217090 19806 12 6 -9452.5 3596 54 32.5 
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15 -188187 -304593 116406 12 10 -18541 8176.5 42 36.5 

16 -172469 -214068 41599 12 8 -8060 3704.5 58.5 36 

17 -168274 -438819 270545 10 13 -12796.5 16393 41 38 

18 -159635 -283377 123742 6 5 -19339.5 26484 68 81 

19 -157707 -225345 67638 13 6 -15097 8542 34 38.5 

20 -157322 -249223 91901 12 11 -7216.5 7790 56 31 

21 -157009 -256647 99638 15 5 -8757 3920 64 35 

22 -156773 -236604 79831 14 5 -6989.5 11726 44.5 50 

23 -150247 -332543 182296 11 15 -10252 6778 78 40 

24 -145936 -186689 40753 20 12 -7256.5 3287.5 41 32 

25 -141650 -222257 80607 7 6 -14447 13469.5 65 68 

26 -135602 -226396 90794 10 6 -4270 17526 32.5 86 

27 -134733 -251985 117252 7 10 -24361 5271.5 122 45.5 

28 -129803 -160909 31106 9 7 -6184 2912 63 27 

29 -129510 -424384 294874 18 14 -15444 15904.5 44.5 36.5 

30 -129463 -173905 44442 15 9 -4566 4830 46 31 

31 -127930 -221648 93718 14 8 -9725.5 6906 62 63 

32 -127686 -156369 28683 8 5 -13543.5 4596 118.5 49 

33 -126522 -420898 294376 10 10 -28188.5 21449.5 50.5 54 

34 -125868 -169424 43556 7 5 -19495 6744 96 51 

35 -125226 -193075 67849 12 6 -12778 4613 62 38.5 

36 -124199 -169966 45767 9 7 -14342 5442 83 39 

37 -122471 -149522 27051 4 4 -21545.5 6188 98 67 

38 -121063 -162193 41130 14 7 -9636 6458 52.5 45 

39 -119337 -188281 68944 11 8 -9455 6131 37 52 

40 -108643 -121839 13196 9 3 -8382 3892 75 64 

41 -108566 -184331 75765 8 8 -15714.5 5255.5 98.5 57.5 

42 -107615 -137348 29733 10 1 -10295.5 29733 39 71 

43 -107463 -149522 42059 11 6 -6164 4750.5 51 54.5 

44 -104806 -181466 76660 9 9 -8971 5339 55 38 

45 -104050 -118654 14604 8 5 -10943.5 2379 62.5 32 

46 -98255 -137587 39332 7 6 -12456 6867.5 123 87 

47 -97694 -115341 17647 13 5 -1960 3463 43 48 

48 -97600 -161387 63787 13 5 -9167 16622 51 73 

49 -97374 -174450 77076 14 10 -9074.5 5516.5 52.5 41.5 

50 -95600 -161969 66369 15 8 -8087 6787 47 38 

51 -94099 -102089 7990 8 1 -6969 7990 34 45 

52 -93834 -102673 8839 8 3 -9925.5 2778 43 23 

53 -90299 -150652 60353 12 9 -7408.5 6061 57 34 

54 -89680 -153701 64021 16 13 -7010 3348 44.5 33 

55 -86447 -144839 58392 9 9 -4600 6371 42 33 
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56 -85149 -120639 35490 8 6 -13253 6839 103 50 

57 -84783 -150353 65570 9 7 -15637 8068 44 35 

58 -83823 -104192 20369 4 3 -4138 6974 61 60 

59 -82462 -96295 13833 5 4 -17049 3475 77 37.5 

60 -80745 -95422 14677 5 3 -3629 4723 29 24 

61 -79385 -103622 24237 12 7 -7252 3226 45.5 32 

62 -78087 -92007 13920 4 2 -23540 6960 125 91 

63 -78068 -117826 39758 8 10 -10885 3232 59 37.5 

64 -78039 -91619 13580 9 2 -7584 6790 35 34.5 

65 -77842 -131990 54148 17 8 -6575 5279 42 42.5 

66 -77362 -140354 62992 10 10 -6696 4132 45 33.5 

67 -77011 -90608 13597 7 3 -14170 2374 41 29 

68 -75782 -121870 46088 11 10 -6698 3470.5 77 28 

69 -75586 -87709 12123 6 4 -12025.5 2703 43.5 24 

70 -74883 -106328 31445 11 4 -8345 8251 52 38 

71 -73399 -129568 56169 11 4 -9750 10599.5 51 57 

72 -73113 -113750 40637 7 3 -13313 6987 48 35 

73 -72707 -81481 8774 4 5 -2033.5 1733 49 57 

74 -71707 -122237 50530 3 6 -38557 2535 101 34 

75 -71469 -103607 32138 4 5 -17052.5 6204 87 27 

76 -70611 -121514 50903 8 5 -8626.5 11212 36 32 

77 -66098 -101144 35046 8 7 -6311 3963 74.5 51 

78 -65885 -116621 50736 9 3 -7129 18429 73 98 

79 -62495 -62809 314 6 1 -4118 314 57 19 

80 -60975 -91532 30557 13 9 -4364 1554 56 37 

81 -60767 -133967 73200 13 7 -7053 4354 46 35 

82 -59701 -73429 13728 9 6 -8413 1518.5 66 29 

83 -58433 -110930 52497 4 6 -11808 3240.5 43.5 24.5 

84 -56874 -84871 27997 9 6 -6651 3809.5 73 33.5 

85 -56739 -84208 27469 16 8 -4019 2258.5 49 43.5 

86 -56213 -263610 207397 9 13 -16203 15195 34 29 

87 -54425 -100720 46295 13 12 -4385 1873 39 36.5 

88 -52990 -152247 99257 11 8 -15397 8330.5 59 45 

89 -52938 -116175 63237 3 3 -5410 5633 54 66 

90 -52814 -100503 47689 5 5 -11851 8781 89 35 

91 -51664 -92317 40653 10 9 -7598.5 3559 42.5 37 

92 -50750 -96028 45278 11 11 -3806 2776 50 47 

93 -50606 -59582 8976 12 4 -2816 1685 38 35 

94 -50174 -132172 81998 15 11 -6265 4414 56 61 

95 -49552 -55747 6195 6 1 -10889 6195 70 99 

96 -49412 -83955 34543 11 7 -4452 2737 65 44 
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97 -47354 -380469 333115 7 8 -50446 11134 62 32.5 

98 -47091 -148896 101805 11 7 -5605 9801 33 46 

99 -46707 -63359 16652 7 3 -3190 5672 64 54 

100 -45953 -67943 21990 9 7 -7345 3169 47 35 

101 -45891 -128284 82393 9 10 -6069 4132.5 66 35.5 

102 -45135 -90849 45714 10 11 -3829 1306 96.5 36 

103 -45064 -179772 134708 13 12 -7840 6335.5 43 34.5 

104 -43632 -61941 18309 11 6 -4421 2717 64 39 

105 -43299 -74776 31477 11 7 -6084 2525 42 45 

106 -42094 -81080 38986 12 9 -3985 2996 57.5 47 

107 -41121 -109289 68168 11 12 -7945 4011 42 37 

108 -41053 -172004 130951 14 9 -6531 9489 38.5 51 

109 -37987 -40067 2080 2 4 -20033.5 472.5 131 24.5 

110 -37877 -58792 20915 11 6 -5497 2949 49 40 

111 -37713 -58211 20498 9 2 -3701 10249 32 37 

112 -37345 -47623 10278 3 3 -14190 4383 68 32 

113 -37201 -46524 9323 2 5 -23262 2073 93 30 

114 -36719 -70152 33433 10 8 -2626 2442 46 43.5 

115 -36383 -63728 27345 12 6 -2055 2502 39 39 

116 -36061 -80084 44023 9 4 -11013 9902 54 58 

117 -35925 -102172 66247 14 12 -5283 3231 45 41 

118 -35853 -75359 39506 9 11 -6311 4154 74 45 

119 -35705 -96664 60959 10 13 -3386.5 3548 47.5 32 

120 -35288 -124582 89294 19 16 -6875 3707 38 32.5 

121 -35065 -122347 87282 12 13 -5183.5 4880 44.5 35 

122 -34234 -66665 32431 18 11 -2546.5 1422 34.5 29 

123 -34234 -37718 3484 16 4 -1747.5 1038.5 36.5 36.5 

124 -33935 -51706 17771 3 2 -3325 8885.5 46 47 

125 -33802 -49246 15444 8 11 -2162.5 1026 52.5 36 

126 -32155 -49870 17715 8 6 -5125.5 2224 51.5 31 

127 -31591 -48647 17056 13 8 -3362 1871 42 38.5 

128 -30735 -50758 20023 7 9 -4767 2580 60 30 

129 -30419 -147878 117459 17 15 -7223 2906 41 33 

130 -29244 -35508 6264 6 4 -3203.5 1039.5 44 34 

131 -28148 -45253 17105 4 4 -10610.5 4081 50.5 31 

132 -28066 -50598 22532 8 6 -1708.5 3585.5 38.5 41.5 

133 -27274 -45642 18368 5 5 -7993 3092 60 47 

134 -27137 -51713 24576 8 7 -6327 2227 61 40 

135 -24670 -70983 46313 10 7 -5218.5 5790 32.5 42 

136 -24517 -133557 109040 9 10 -10736 7661.5 49 50.5 

137 -24130 -444462 420332 17 13 -20008 25492 42 35 
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138 -24001 -66673 42672 13 9 -1733 2985 36 34 

139 -23698 -32227 8529 6 3 -4353 1200 61.5 35 

140 -23382 -159647 136265 15 11 -8997 9130 50 48 

141 -22324 -113002 90678 7 5 -8502 6379 64 60 

142 -21954 -38704 16750 10 5 -3277 1491 47.5 28 

143 -21904 -34109 12205 8 3 -3115.5 3078 40 47 

144 -21829 -60168 38339 18 11 -1380.5 3042 31.5 46 

145 -21740 -178443 156703 8 10 -8568.5 6626 67.5 57 

146 -21628 -65652 44024 10 8 -5816.5 4122 46 32.5 

147 -21397 -31067 9670 9 6 -4072 284 72 25 

148 -20723 -47421 26698 9 12 -4346 1775.5 79 32.5 

149 -20711 -154454 133743 11 15 -7619 5820 44 48 

150 -19345 -76283 56938 8 5 -3722 5098 61 57 

151 -19212 -59038 39826 6 1 -7630 39826 36.5 85 

152 -18958 -23291 4333 4 3 -5283.5 955 50.5 33 

153 -18934 -36893 17959 16 9 -1883 1776 45 31 

154 -17707 -27451 9744 13 7 -791 838 36 27 

155 -14411 -54678 40267 7 6 -8657 2861 78 38 

156 -14063 -188659 174596 12 12 -7701.5 11490 36.5 46.5 

157 -13984 -73619 59635 6 5 -8835.5 7947 30.5 45 

158 -8929 -20679 11750 5 4 -2707 3289 34 34.5 

159 -7819 -32162 24343 10 6 -2127.5 3073 41.5 54.5 

160 -7317 -60039 52722 5 6 -9760 6349 39 37 

161 -5898 -13334 7436 6 4 -1789 1740 39 42 

162 -5816 -81556 75740 6 6 -12798.5 7560.5 52.5 40.5 

163 -5388 -22368 16980 11 6 -1721 2783 33 38 

164 -2850 -75835 72985 10 12 -2621.5 3579.5 41 59.5 

165 -1815 -24694 22879 9 6 -2129 3207.5 33 34 

166 2463 -60170 62633 11 16 -2113 2210 39 29.5 

167 4397 -26642 31039 5 6 -3179 3934 34 29.5 

168 5459 -49491 54950 8 13 -5302 2549 37.5 32 

169 5725 -41418 47143 8 11 -5106 3813 34 30 

170 10529 -23707 34236 4 9 -4769.5 3232 37 27 

171 11475 -64758 76233 7 9 -6287 4889 47 52 

172 27209 -26083 53292 6 6 -3697.5 5029.5 38.5 45 

173 52978 -101833 154811 7 11 -17123 10889 51 34 

174 57911 -46781 104692 4 6 -11857.5 13791.5 47 73.5 

175 480392 -340733 821125 20 22 -5034.5 4118 39.5 30 

  
∑ ∑ ∑ ∑ ∑ 

Global 
Median 

Global 
Median 

Global 
Median 

Global 
Median 

  -14264497 -26602138 12337641 1698 1270 -7257 4596 48 38 
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3 Procedures and methodology 

The adopted approach is based on an ANN by wich sensitivity indexes are computed to quantify 

the relevance of each optimization measure on the energy consumption of the whole building 

stock. The data-driven methodology needs of a preliminary stage for the filtering and cleaning 

of the collected data, required for the construction of a suitable training dataset used during the 

calibration of the selected surrogate model. The quantification of the sensitivity indexes is 

followed by the identification of performance ranges for the analysed LICOMs, in order to 

provide a meaningful result for understanding the levels of energy efficiency that can be 

achieved with low-cost optimisation measures. Pre and post-processing stages are therefore 

required (Figure 6) both to calibrate the inputs for the proposed computational approach and to 

extract the main quantitative findings from the final numerical results. 

 

Figure 6 Main project stages 

3.1 Correlation analysis 

A preliminary study is carried out by computing the correlation between a quantitative measure 

of the consumption energy savings (ES) and the employed classes of optimization measures 

(OM). The numerical analysis is performed by identifying only one time-window ∆Ts, by which 

the global period of analysis ∆T is divided. Therefore, a total of ∆T/∆Ts observations are 

obtained and for each one both the causes and effects are identified in ∆Ts. The computed 

Figure 7 Global time-window structure for the correlation analysis 
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correlation is affected by the selected ∆Ts, since different intermediate time-windows 

correspond to different OM frequency vectors Ξ and ESs. Hence a correlation vector is 

computed for each identified optimization measure by varying the corresponding ∆Ts. The 

median value of computed vector is extrapolated, together with the associated variance, in order 

to provide a more robust assessment of the most important measures. As previously specified, 

this numerical approach is not able to account for the overlapping phenomenon, and more 

advanced methodologies would be required to account for complex interactions. Moreover, the 

accuracy of the obtained correlation vector is reduced due to the missed differentiation in terms 

of time-windows between input (Ξ) and output (ES). 

3.2 Surrogate model 

A more advanced numerical methodology is required to model complex interactions between 

all inputs. Metamodel based approaches [5,6] can capture more insights from black-box 

physical models and are therefore suitable for analyzing hidden non-linear interdependencies.  

 ANN 

Over the past years, ANNs have experienced a relevant growth in popularity thanks to their 

easy implementation and flexibility linked with the capability of learning complex and non-

linear relations within the analyzed problem. In general, the structure of an ANN tries to 

simulate the human brain network of neurons. More specifically, we can identify three different 

typologies of nodes, namely, input – hidden – output node, as shown in Figure 8. In addition to 

an input and output layer, we can have one or more hidden layers that increase the network 

capability of modeling high non-linear input-output patterns.   

 

 

Figure 8 ANN structure 

Thus, the ANN is characterized by a set of nodes (or neurons) that can be distributed on a single 

hidden layer or more (deep learning problems). Each neuron zh, in the hidden layer h, receives 



 

25/51 

one or more inputs x that are multiplied by proper weights w (connections in Figure 8) and 

simply summed before feeding the neuron. Below its mathematical formulation:  

 
1

in

h hp p h

p

z w x b


    1 

where ni represents the number of inputs, while bh is the bias term. The non-linearity of the 

input-output relation is taken into account by the so-called activation function. Different 

activation functions can be adopted, the one used for this study is the hyperbolic tangent 

sigmoid, that is continuous, differentiable and bounded between 1 and -1. In case of one single 

hidden layer, the input data go through the first hidden activation function for each hidden 

neuron and then they are processed by another activation function to produce the final 

prediction ty .  

In case of a supervised problem, the learning process aims at tuning the weights parameters in 

order to minimize the square of the residuals between the predicted values ty and the training 

data ty : 
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with n equal to the cardinality of the training dataset. In this regard, the back-propagation 

algorithm represents a key element of the training stage since it allows computing the partial 

derivative of the loss function L for every weight and bias of the network and thus the adoption 

of a gradient-based optimization algorithm. For further details on the learning process refer to 

[2]. 

 Time-window based approach 

The adopted numerical approach requires the definition of four different time windows to 

extract data from each dataset, namely: 

 

 ∆T0 - Time-window to shift each observation 

 ∆T1 - Time-window for the screening of optimization measures  

 ∆T2 - Time-window for the screening of the energy savings and weather data 

 ∆T – Global time-window of analysis 

 

The use of a different time-window for each specific optimization measure does not lead to a 

feasible numerical approach. Hence, the proposed methodology is based on a three-dimensional 

time-window vector, Γ=[∆T0, ∆T1, ∆T2], that is employed to compute the frequency vectors of 

the applied LICOMs Ξ; the data weather vector Θ; and the corresponding ES, respectively. 

More specifically, as shown in Figure 9, each i-th observation of the training dataset is defined 

by computing Ξ over the time-window ∆T1; while Θ and the corresponding energy savings over 

∆T2. Figure 10 reports for example the normalized vectors Θ and ES for a specific Γ.  
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Moreover, each observation is temporally shifted of ∆T0, this allows increasing the dimension 

of the training dataset without including duplications. The total time-window of analysis can be 

computed as follow: 

 

 0 1 2T n T T T      3 

 

 

Figure 9 Time-windows scheme 
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Figure 10 Θ and ES vectors for a selected global time-window 

In particular, since ∆𝑇1 and ∆T2 (a few days) are negligible with respect to the total ∆𝑇  (years) 

the ratio  
∆𝑇

∆𝑇0
≈ 𝑛 is almost equal to the total number of observations. 

3.3  Sensitivity analysis 

 

In this section, a brief introduction to global sensitivity analysis (GSA) [3] is carried out. GSA 

is employed to rank the analysed OMs by using artificial samples generated from a set of trained 

ANNs. 

The GSA is based on a decomposition of the variance of each output parameter resulting from 

variations of the input parameters xi, i=1,2,..N in the range of interest. 

Let Y be the output of a deterministic model ( )f X . Assuming mutually independent inputs, the 

variance of Y can be expressed as [7]: 

12...

1

( ) ( ) ( ) ( )
d d

i ij d

i i j

Var Y D Y D Y D Y
 

       4 

where ( ) [ ( | )]
i

D Y Var E Y X  and [ ( | , )] ( ) ( )
ij i j i j

D Var E Y X X D Y D Y   . The first order Sobol’ 

indexes express the contribution of each input i on the output variance and can be calculated as: 

( )

( )

i
i

D Y
S

Var Y
   5 

In addition, when the problem dimensionality d increases, the so-called total indexes [3] can be 

introduced to account also for interactions effects: 
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where   represents all the possible input combinations and ( ) / ( )
ij ij

S D Y Var Y . 

The training dataset is employed to define a set of discrete probability mass functions (PMFs) 

based on which the artificial dataset for sensitivity analyses is generated. For example, Figure 

11 shows the PMFs associated with nine analyzed optimization measures. The probability of 

occurrence of each LICOM within the selected time window 1T  is reported, thus by modifying 

1T  the discrete probability will change accordingly. 

Unfortunately, the use of a single optimal ANN for computing sensitivity indexes leads to 

reduced robustness in the results. This is due to the uncertainty that affects the surrogate model 

calibration coming from both architecture definition and weights initialization. To account for 

this drawback a set of multiple ANNs is adopted to compute a distribution of sensitivity indexes 

associated with each LICOM. It is worth specifying that the training and calibration stage of 

surrogate models always lead to epistemic uncertainty due, for instance, to the selection of the 

optimal hyperparameters.  

 

 

Figure 11 PMFs associate with nine LICOMs showing the probability of occurrence 
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4 Calibration stage 

4.1 Time-windows calibration  

The definition of a training dataset, starting from a row database of LICOMs and energy 
consumptions, requires the adoption of a specific vector Γ. In this regard, ∆𝑇0, ∆𝑇1 and ∆𝑇2 
should be selected trying to capture as many as possible LICOMs in ∆𝑇1 and coherent 
corresponding effects in ∆𝑇2, increasing at the same time ∆𝑇0. A grid search approach is 
employed to tune the vector Γ by maximizing the accuracy of the network.  Figure 12 shows 
the evolution of the coefficient of determination R2 obtained by exploring multiple 
combinations of ∆𝑇0, ∆𝑇1 and ∆𝑇2, more specifically, each of the three graphs corresponds to a 
different value of ∆𝑇0. Finally, the vector Γ has been selected considering these results 
combined with expert elicitation (Table 4) 

 

 

Figure 12 Grid search approach for the vector Γ calibration 

∆T0 ∆T1 ∆T2 

2 days 15 days 30 days 

 

Table 4 Vector Γ adopted for the analysis 

The global time window ∆𝑇 (Equation 3) for the training dataset definition goes from the 

beginning of 2013 to the end of 2018, for a total of 2’191 days and around 1’100 observations.  

Table 5 provides statistical details on the occurrences of each LICOM considering five different 

time-windows. It is clear how the majority of the measures shows a relatively low frequency 

(less than one occurrence per ∆T), even increasing the associated time-window. Moreover, the 

high standard deviations indicate that the LICOMs are highly sparse, increasing the difficulty 

in analyzing their relative effectiveness. Finally, the mean and standard deviations of the 

energy-saving reported in Table 5 are computed in a time-window translated of ∆T with respect 

to each LICOM. 
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Time window [days] 20 40 60 80 100 

LICOM 
Occurrences 

Mean Std Mean Std Mean Std Mean Std Mean Std 

'BOILER_CHANGE' 0.039 0.253 0.079 0.359 0.080 0.400 0.158 0.501 0.214 0.516 

'BURNER_OPT' 0.390 0.672 0.763 1.025 1.160 1.491 1.526 1.611 2.143 1.792 

'FURNACE_1_OFF' 0.104 0.307 0.211 0.474 0.320 0.557 0.421 0.769 0.571 0.640 

'FURNACE_CHANGE' 0.065 0.248 0.132 0.343 0.200 0.408 0.263 0.562 0.357 0.488 

'FURNACE_OPT' 0.299 0.630 0.605 1.001 0.920 1.382 1.211 1.584 1.643 1.727 

'HEATING_CIRC_TIME' 0.052 0.276 0.105 0.388 0.120 0.440 0.211 0.535 0.286 0.561 

'HEATING_CURVE' 6.026 7.090 11.947 11.779 17.800 17.325 23.895 21.008 33.143 25.376 

'HEATING_CURVE_HIGH' 0.818 1.604 1.632 2.665 2.400 3.629 3.263 4.544 4.500 5.682 

'HEATING_CURVE_LOW' 0.766 1.413 1.447 2.226 2.200 3.000 2.895 4.081 4.214 4.865 

'HEATING_CURVE_PARALLEL' 0.584 1.239 1.184 1.768 1.720 2.283 2.368 2.499 3.214 2.722 

'HEATING_HYST' 0.026 0.160 0.053 0.226 0.080 0.400 0.105 0.459 0.143 0.352 

'HEATING_LIFTING' 0.208 0.468 0.368 0.675 0.560 0.870 0.737 0.933 1.143 1.280 

'HEATING_NIGHT_LOWERING' 0.026 0.160 0.053 0.324 0.080 0.400 0.105 0.459 0.143 0.352 

'HEATING_OFF' 0.312 1.195 0.632 1.746 0.960 2.111 1.263 2.353 1.714 2.384 

'HEATING_ON' 0.273 1.284 0.553 1.796 0.840 2.173 1.105 2.447 1.500 2.694 

'HEATING_T_OFF' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HEAT_CIRC_CHANGE' 0.039 0.195 0.079 0.273 0.120 0.332 0.158 0.375 0.214 0.414 

'HEAT_CIRC_POWER' 0.429 1.409 0.868 2.673 1.320 3.262 1.737 3.739 2.357 3.364 

'HEAT_HYDRO_BALANCE' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'HEAT_MAINT' 0.247 0.517 0.500 0.726 0.760 0.970 1.000 1.054 1.357 1.710 

'HEAT_RAD_INSUL' 0.013 0.114 0.026 0.162 0.040 0.200 0.053 0.229 0.071 0.258 

'HEAT_TIME_CONST' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_CIRC_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_CIRC_POWER' 0.130 0.817 0.263 1.155 0.400 1.443 0.526 1.645 0.714 1.839 

'HW_HYST' 0.390 0.876 0.789 1.492 1.200 1.414 1.579 1.953 2.143 1.558 

'HW_LIFTING' 0.312 0.782 0.605 1.220 0.920 1.412 1.211 1.751 1.714 2.031 

'HW_MAINT' 0.078 0.315 0.158 0.437 0.160 0.374 0.316 0.582 0.429 0.458 

'HW_PUMP_AUTO' 0.052 0.276 0.105 0.388 0.160 0.473 0.211 0.535 0.286 0.594 

'HW_TIME' 1.156 1.702 2.289 3.153 3.400 2.872 4.579 4.312 6.357 4.271 

'HW_TIME_LOAD' 0.714 1.394 1.395 2.553 2.080 2.100 2.789 3.425 3.929 3.091 

'HW_T_GUIDE' 2.844 3.142 5.684 4.743 8.640 6.885 11.368 7.697 15.643 9.855 

'HW_T_GUIDE_DAY' 0.662 0.982 1.342 1.599 2.040 2.226 2.684 2.730 3.643 3.203 

'HW_T_GUIDE_NIGHT' 0.468 0.736 0.947 1.161 1.440 1.502 1.895 2.025 2.571 1.993 

'HW_T_METER_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_T_OFF' 0.299 0.762 0.526 1.246 0.800 1.190 1.053 1.747 1.643 1.877 

'HW_T_ON' 0.416 0.937 0.816 1.608 1.240 1.763 1.632 2.060 2.286 2.314 

'MAINT_SOLAR' 0.338 0.788 0.684 1.141 1.040 1.695 1.368 2.060 1.857 2.434 

'OTHER' 1.000 1.298 1.947 2.053 2.880 2.862 3.895 3.230 5.500 4.586 

'REGUL_AUTO' 0.117 0.396 0.237 0.590 0.320 0.627 0.474 0.772 0.643 0.990 
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'REGUL_CHANGE' 0.208 0.408 0.421 0.642 0.600 0.816 0.842 1.068 1.143 1.069 

'REGUL_DAY' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'REGUL_MANU' 0.078 0.270 0.158 0.437 0.240 0.523 0.316 0.671 0.429 0.910 

'REGUL_T' 13.948 14.758 27.158 22.957 40.720 31.490 54.316 36.748 76.714 51.657 

'REGUL_THERM_VALVE_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'REGUL_TIME' 2.208 4.053 4.211 6.593 6.320 6.638 8.421 9.430 12.143 10.350 

'REGUL_T_BOILER' 0.506 1.253 1.026 1.896 1.560 2.830 2.053 2.877 2.786 2.874 

'REGUL_T_DAY' 4.247 4.843 8.342 7.778 12.320 10.703 16.684 13.941 23.357 16.822 

'REGUL_T_DAY_ECO' 1.013 1.936 1.974 2.964 3.000 3.742 3.947 4.339 5.571 6.012 

'REGUL_T_MAIN' 0.481 1.008 0.947 1.314 1.440 1.685 1.895 1.912 2.643 2.444 

'REGUL_T_MAX_AERO' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'REGUL_T_MAX_BOILER' 0.377 0.946 0.763 1.731 1.160 1.491 1.526 2.294 2.071 1.792 

'REGUL_T_MIN_BOILER' 0.130 0.469 0.263 0.644 0.400 0.866 0.526 0.964 0.714 1.543 

'REGUL_T_NIGHT' 5.221 6.688 10.132 10.655 15.280 14.002 20.263 16.556 28.714 24.101 

'REGUL_T_NIGHT_ECO' 1.273 2.275 2.579 3.422 3.920 4.453 5.158 4.729 7.000 6.947 

'REGUL_T_NIGHT_OFF' 0.104 0.502 0.184 0.692 0.280 0.843 0.368 0.955 0.571 1.060 

'REGUL_T_NIGHT_ON' 0.065 0.375 0.105 0.509 0.160 0.624 0.211 0.713 0.357 0.799 

'REGUL_T_OFF' 0.312 0.977 0.579 1.388 0.880 1.787 1.158 1.979 1.714 2.748 

'REGUL_T_ON' 0.104 0.528 0.158 0.679 0.240 0.831 0.316 0.946 0.571 1.056 

'REGUL_WINTER-MODE' 0.104 0.416 0.211 0.577 0.320 0.748 0.421 0.838 0.571 0.990 

'VENTIL_GV' 0.065 0.296 0.132 0.414 0.200 0.577 0.263 0.653 0.357 0.724 

'VENTIL_HC' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'VENTIL_HEAT_ROOM' 0.078 0.270 0.158 0.370 0.240 0.523 0.316 0.582 0.429 0.828 

'VENTIL_PV' 0.156 0.400 0.289 0.515 0.400 0.707 0.579 0.902 0.857 1.113 

  Mean Std Mean Std Mean Std Mean Std Mean Std 

Energy saving [kWh] 195771 394576 326774 462162 461009 699454 587312 673102 724443 955076 

 

Table 5 Statistical details on the LICOMs occurrence 

4.2 Surrogate model calibration  

 

The optimization of the ANN architecture follows a Trial and error approach. In particular, the 

number of hidden layers is fixed at one. As to explain this choice, many research works have 

shown how a single hidden layer is sufficient for a wide range of computational problems [e.g. 

8,9], while the number of neurons is considered variable. The final configuration we have 

chosen is therefore characterized by one layer, sixty-eight input neurons and fifty hidden 

neurons.  
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Figure 13 ANN performances in the training, test and validation stage 

The training dataset is divided into three parts: 75% training, 12.5% validation and 12.5% test. 

Figure 13 reports the correlation coefficient R for each stage of the calibration process while 

Figure 14 shows a comparison between the test observations and the outputs predicted by the 

final ANN. Both graphs demonstrate the goodness of the adopted surrogate model for 

approximating the whole phenomenon. 

In particular, any observation of over- or under-consumption events should always refer to the 

time windows adopted in the network calibration phase. In this case, and in the following of the 

report,  every energy gap refers to the consumption events recorded in the 30 days following 

the application of a set of optimization measures. 

Indeed, following a rule of thumb, two variables (in this case predicted values and targets 

values) can be defined as strongly correlated if R is between 0.7 and 0.89 [10]. In particular, it 

results: 

 0.00 < R < 0.10  Negligible correlation  

 0.10 < R < 0.39  Weak correlation 

 0.40 < R < 0.69  Moderate correlation 

 0.70 < R < 0.89  Strong correlation 

 0.90 < R < 1.00  Very strong correlation 

The output energy saving (Figure 14) is reported in a normalized form between -0.8 and 0.8 to 

standardize the different input units. The normalisation process was carried out using the 

mapminmax() function in Matlab which calculates the normalised input (y) from the real value 

(x) once the range of variation (ymax and ymin) is imposed. The formula is given below:  
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𝑦 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗
𝑥 − 𝑥𝑚𝑖𝑛

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 𝑦𝑚𝑖𝑛 

7 

 

 

Figure 14 Comparison between ANN predictions and test observations 
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5 Evaluation of results to date 

5.1 First sensitivity indexes distribution 

The robustness of the sensitivity analysis is affected by the uncertainty of the model architecture 

and the apporximation of the calibration process. More specifically, the weights in Equation 1 

are randomly initialized before the optimization starts, leading to different accuracy for 

different seeds even keeping the same ANN architecture.  

In this regard, as discussed and proposed in [11], a set of optimal ANNs is defined and multiple 

sensitivity analyses are performed to identify a distribution of indexes for each LICOM. Figure 

16 reports the mean and median values of the indexes with the probability boxes defined by the 

25th and the 75th percentiles. 

A total of 150 ANNs are pre-selected and for each of them, a minimum of 10’000 scenarios is 

generated (each scenario is characterized by a set of applied LICOMs) for a total of model 

evaluations equal to 𝑁 = 𝑛 ∗ (𝑀 + 1). Considering 63 inputs (M) and 10’000 samples (n) the 

analysis requires 9,6*106 model runs. Latin Hypercube Sampling method [12] is employed for 

the samples’ generation. 

 

 

Figure 15 Process of evaluating the distribution of sensitivity indexes by accounting for the uncertainty in the model definition 

The results in terms of correlation coefficients [14], defined in section 3.1, have shown low 

robustness and accuracy when compared with the results provided by the sensitivity analysis 

based on uncoupled LICOM’ effects. From Figure 16 we can identify the top five median 

indexes: 

 

1. REGUL_TIME 

Time in [h/day] when the heating is turned ON. This includes modifications of the day/night 

or week/weekend heating schedule. Example: 6h00-22h00 each day => 16 h/day.  

 

2. HW_T_OFF 

Hot water heating temperature stop, in [°C]. Depending on the possibilities available to set 

the hot water temperature, it is possible to activate heating e.g. at 45°C (HW_T_ON) and 
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switch off at 55°C (HW_T_OFF). By doing that the boiler use is improved, the on/off are 

reduced, and the efficiency of the making of hot water is improved. 

 

3. HEATING_CURVE 

Heating curve slope change, which is a classical LICOM. When heating a building, a 

heating curve is identified, meaning one chooses at which temperature of the heating fluid 

(in radiators, or floor heating, etc.) should be heated according to the outside temperature. 

E.g. with a slope of 1.5, for 10°C outside temperature, circuit water will be heated at 38°C, 

for -10°C outdoor temperature, circuit water will be heated at 60°C. Thus, changes to heat 

curves allow playing with much delicacy with the mid-cold and cold weather conditions. 

Changes in heating curves could concern the slope, angle, or parallel shift. 

 

 

Figure 16 Box-plot of the first-order sensitivity indexes for each LICOM 



 

36/51 

4. REGUL_T_MAX_BOILER 

Maximum boiler setpoint temperature, in [°C]. It means changing the maximum setpoint 

temperature of the boiler for DHW. Therefore, it limits the furnace (e.g. at 75°C) instead of 

letting the furnace going up to 100°C e.g. The furnace burns at a more efficient and constant 

level. 

 

5. REGUL_T_DAY 

Heating day setpoint temperature, in [°C]. This parameter is essential during a daily 

schedule when heating is switched on and during winter months. This represents the most 

frequent LICOM applied, certainly because it has some visible effect and it is easily doable 

and often it is not set properly in the default settings of an installation. 

 

It is important to specify that the identified five LICOMs are not the most effective in absolute 

terms, the highest indexes do not mean the highest energy savings. In the following stage of 

the project, a more quantitative analysis is required to identify trustable intervals of the most 

probable savings reachable by each LICOM. 

Sensitivity analysis does not differentiate between positive and negative contributions to the 

final energy performances. Indeed, the computed indexes should be read as a quantitative 

measure describing the effects of each input (LICOM) on the output variability (energy 

savings), both in the case of under or overconsumption.  

5.2 Interval analysis 

 Energy-saving and event duration 

The use of a surrogate model acting as a black-box allows us to analyse the most likely 

variability intervals of the outputs of interest in relation to the specific optimization measures 

implemented, namely the performance delta versus energy signature and, secondly, duration of 

the consumption event.  

The uncertainty propagated through the neural network mainly takes into account two aspects, 

namely meteorological variability and uncertainty in the initialisation of the network itself. The 

considered sources of uncertainty are therefore linked to both physical and modelling aspects.  

An artificial dataset of more than 1’000 observations is generated for each specific LICOM, in 

which only the analyzed optimization measure is applied with variable wheater conditions and 

model parameters (network weights). Hence, for each LICOM a total of 1’000 predicted 

performance gaps is collected and three percentiles are computed (25th,50th,75th). In this 

analysis, only LICOMs with an adequate occurrence rate are considered. 

Figure 17 reports the percentiles associated with each measure, identifying the most probable 

interval of energy saved, referring to the consumption events associated with the single LICOM. 

In the same graph, the predicted intervals are reported together with the median value of all the 

underconsumption events recorded in the original Energo dataset. 
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Figure 17 Most probable energy saving interval (25th – 50th – 75th percentiles) for different LICOM 

The two LICOMs that show the highest median value with a lower variance are the 

Regul_Winter-mode (median energy saving ≈ 2.5*104 kWh and standard deviation ≈ 0.5*104 

kWh) and Regul_T_Max_boiler (median energy saving ≈ 2.3*104 kWh and standard deviation 

≈ 0.3*104 kWh). In particular, Regul_T_max_boiler shows a relatively higher sensitivity index 

as well, enhancing its primary role in efficiently improving the energy performances. 
 

 

Figure 18 Probability of success 
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The Regul_Winter-mode LICOM sets the summer/winter heating limit by defining the outside 

temperature at which the heating switches from on to off. The frequency of this LICOM is 

consistent with the type of intervention, knowing that not all installations allow this regulation. 

This measure has a great effect because the number of days during the year when the outside 

temperature is between 10 and 20°C (mid-season) is large compared to the number of cold days 

and the number of hot days. Therefore, delaying the switching on of the heating and anticipating 

its switching off, while always guaranteeing the correct level of indoor comfort, is essential in 

terms of savings compared to other low-cost actions. 

The Regul_T_Max_boiler LICOM sets the maximum boiler temperature by adjusting the 

reference temperature level at which the burner ends its heating cycle. By limiting the maximum 

boiler temperature on systems with high hot water load set points, the primary temperatures 

will be limited, resulting in significant savings. In older buildings, reducing this temperature 

has a greater influence because it reduces heat loss through transmission (uninsulated ducts). It 

is also important to relate this regulation to the heat emission system (radiators or floor) and the 

type of production (e.g. oil boiler with or without condensation), preserving the functionality 

of the system and the quality of the hot water production (in case of combined storage). 

Assuming the uncertainty in the magnitude of the LICOM effectiveness, Figure 18 reports the 

probability of success (meaning the probability of achieving energy savings) for each measures, 

highlighting those with a probability greater than 0.8 or lower than 0.5. Finally, replicating the 

procedure employed to obtain the intervals in Figure 17, it is possible to analyze the variability 

of the consumption events duration (under or overconsumption), here reported in Figure 19. 

Considering the duration intervals of the consumption events, it can be seen that peak values (> 

100 days) are reached by two LICOMs, namely Hw_T_Guide_day and Regul_Winter-mode, 

while the lowest values (<20 days) are associated with the HW_lifting and the Regul_T_off. 

To better analyzing the showed results, Table 6 reports the values of the average sensitivity 

index, average success probability,  median energy saving and median event duration, 

associated to each category defined in Table 1. Each value in Table 6 is computed considering 

all the LICOMs associated to the different categories, reported as well in Figure 17, computing 

the final mean or median.  
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Figure 19 Most probable consumption event duration (25th – 50th – 75th percentiles) due to different LICOM 

There are five categories of intervention that show significant values both in terms of 

sensitivity, success probability and median expected energy savings, namely: 

 Hot water temperature regulation 

 Heating day-night setpoint temperature 

 Heating schedule time 

 Furnace setpoint temperature 

 Heating curve optimization 

Table 6 Results by optimization measure category 

 

Considering the remaining intervention categories, the lowest efficacy values are found for 
ventilation (median saving ≈ -0.5*104  kWh) and activities related to hydraulic adjustments and 
hot water schedule time, 0.5*103  kWh and 0.35*104  kWh respectively. Moreover, regarding 
the hot water production process, the effect in terms of energy savings are more relevant in case 
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of temperature regulations (median saving ≈ 0.91*104  kWh) rather than hydraulic interventions 
on the circulation system (median saving ≈ 0.05*104  kWh). 

It is interesting to note that the interventions linked to the Heat production and storage 

optimization category have a lower average effectiveness if compared to the five categories 

reported above. This indicates, for example, that a structured furnace replacement schedule for 

a large building stock leads to improvements in the energy consumption levels that are not 

comparable to those offered by regular and systematic low-cost optimization measures. 

Therefore, since the furnace replacement occurs mainly due to breakage or degradation, it must 

be considered that such replacement is not a guarantee of obvious energy savings per se but 

must always be accompanied by an appropriate commissioning and optimization of the system.  

In this regard, Table 7 reports the single more effective optimization measure, in terms of 

median saving, for each analyzed category. It can be seen how an optimal regulation on the 

furnace setpoint temperature can potentially lead to energy savings of up to more than twice as 

much as replacing the furnace. 

The furnace replacement, even though it is not exactly a low-cost intervention, has however 

been kept inside the analysis database in order to be able to make comparative analyses with at 

least one type of important invasive intervention. 

Table 7 Most effective optimization measures per category, in terms of median saving [kWh] 

 

It is interesting to note how the act of adjusting the supply, heat production, and space heating 

temperature, shows a higher probability of success than adjusting system timers. Moreover, 

optimization actions based on temperature adjustments do not require detailed technical 

knowledge and can therefore be implemented directly by the building services department in a 

systematic and fast way. 

Table 8 shows the potential monthly percentage savings associated with the various LICOMs. 

This is calculated with respect the median value of actual recorded energy consumption, equal 

to about 1.34 *106 kWh every 30 days, referred to the entire optimized building stock. The table 

reports the 22 LICOMs that reach a monthly potential savings higher than the median value of 

all under-consumption events. It can be seen that the maximum percentage value is just under 

2%. Moreover, applying an energy optimization program based on the first six LICOMs would 

result in a reduction in the energy consumption of approximately 8-9%. This order of magnitude 

corresponds to the figure provided in the preliminary event analysis (Par. 2.3). 

Finally, it is correct to point out that the internal comfort parameter is not directly tracked by 

Energo and so each measure considered should be understood as having guaranteed internal 
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comfort. Moreover, the monthly saving percentage in Table 8 refers to the energy consumption 

recorded during the optimization period and this can lead to slightly overestimate the potential 

effectiveness of about 0.2 - 0.4 percentage points. 

Table 8 Median monthly saving in % 

 
LICOM LICOM Category 

Median monthly 
saving\104 [kWh] 

Median monthly 
saving % 

1 Regul_winter_mode Heating day-night setpoint temperature 2.55 1.91% 

2 Regul_T_max_boiler Furnace setpoint temperature 2.4 1.79% 

3 hw_T_on Hot water temperature regulation 1.8 1.34% 

4 Regul_T_min_boiler Furnace setpoint temperature 1.7 1.27% 

5 Regul_time Heating schedule 1.65 1.23% 

6 heating_lifiting Furnace setpoint temperature 1.6 1.20% 

7 Regul_change Regulation system method 1.6 1.20% 

8 Regul_t_boiler Furnace setpoint temperature 1.6 1.20% 

9 heating_curve Heating curve optimization 1.4 1.05% 

10 heating_curve_parallel Heating curve optimization 1.4 1.05% 

11 hw_T_guide Hot water temperature regulation 1.4 1.05% 

12 hw_T_guide_night Hot water temperature regulation 1.4 1.05% 

13 hw_t_off Hot water temperature regulation 1.35 1.01% 

14 Regul_T_day_eco Heating day-night setpoint temperature 1.3 0.97% 

15 Regul_T_main Heating day-night setpoint temperature 1.3 0.97% 

16 Furnace_change Heat production and storage optimization 1.2 0.90% 

17 hw_time_load Hot water schedule time 1.2 0.90% 

18 Regul_T_night_eco Heating day-night setpoint temperature 1.2 0.90% 

19 burner_opt Heat production and storage optimization 1.00 0.75% 

20 Regul_t_off Heating day-night setpoint temperature 1 0.75% 

21 furnace_opt Heat production and storage optimization 0.9 0.67% 

22 heat_mant Maintanance 0.8 0.60% 
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6 Applicability for non-residential buildings 

The use of a black-box for analyzing the effectiveness of low-cost energy optimization 

measures can be replicated regardless of the category of use of the building under investigation. 

To demonstrate this, it was decided to test the accuracy of a neural network for the prediction 

of over- and under-consumption events, this time for a non-residential building stock. 

In detail, a total of 126 buildings, hosting various private and public companies (e.g. Poste CH, 

Swisscom), were considered, located in eight Swiss cities (Bern, Fribourg, Geneva, Lausanne, 

Neuchatel, Sion, Delemont).  

The Energo dataset available this time covers a 6-year period, from 2014 to 2019, with 2034 

optimization measures. Unlike the previous analyses, this time the preprocessing stage for the 

training database definition is more complex. In fact, although the same configuration of the 

three time-windows is used, the no longer unique location forces us to operate on a total of 32 

data fields dedicated to the weather conditions, having 4 environmental variables (temperature, 

wind speed, humidity and rain level) in eight different cities. 

With regard to the set of optimization measures, no detailed classification (see Table 1) was 

available this time. It was therefore decided to directly use six macro categories of intervention 

already defined in the Energo's data acquisition and classification system, namely: 

 Special installations 

 Electrical installations 

 Interconnected Systems 

 Ventilation 

 Refrigeration installations  

 Heating 

As a preliminary step, the consumption events associated with the new building stock were 

analyzed and then compared with the residential stock. 

Figure 20 and Figure 21 highlight the differences in terms of event duration and occurrence rate 

respectively. It is noticeable that in the administrative stock consumption events have a longer 

average duration, a difference that is accentuated if we focus only on overconsumptions, a 

category for which the delta reaches about 20 days (53 VS 33). In fact, it can be seen that in 

administrative buildings the two distribution of durations (overconsumption and 

underconsumption) are comparable, unlike in residential buildings where overconsumptions 

last clearly less. As reported by Energo, this is mainly due to the greater difficulty in 

administrative buildings to intervene promptly if monitoring shows cases of overconsumption. 



 

43/51 

 

 
Figure 20 Distribution and boxplot of the duration of the recorded consumtpion events per type and building stock 

In terms of occurrence rate, computed as the ratio between the total number of under (or over) 

consumption events and the total number of event in one specific month, Figure 21 shows how 

in the residential sector there is in general a higher occurrence of under-consumption events. In 

addition, the annual evolution of the occurrence rate shows three time intervals in which under-

consumptions far exceed over-consumption events in percentage terms. In particular, these time 

windows seem to coincide with the mid seasons, which by their nature offer less potential for 

energy optimization. 

In addition, around May and September, in residential buildings the heating system is often 

switched off, thus reducing the optimization potential. In the administrative sector, there is no 

net shutdown of the system, but rather targeted action is taken with air conditioning and heating 

according to indoor comfort.  

 

Figure 21 Occurrence rate of the under and overconsumption events per month and building type  

Comparing the average amount of energy that characterizes individual events, it can be seen in 

Figure 22 that both over-consumption and under-consumption events are generally higher in 

administrative buildings. In particular, the savings events show a difference of about 3’800 
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kWh in favour of administrative buildings (-10'412 kWh VS -6'652 kWh), while for the over-

consumptions this gap rises to about 5'500 kWh (9'905 kWh VS 4'396 kWh). The higher median 

values of the energy gaps in the administrative buildings, both positive and negative, depend 

not only on the larger surface of the single property but also on a greater potential for 

optimization. Indeed, in the administrative properties it is possible acting on the heating system 

both at night and on weekends. 

 

Figure 22 Box-plot of the energy gap associated with each consumption event per type and building stock 

In this preliminary analysis, in order to make a consistent comparison between the events in the 

two building stocks, only consumption events due to heating were considered. However, given 

the use in the administrative buildings of categories relating to electrical installations as well, 

and the need to increase the number of events in the training database, in the following part 

both heating and electrical consumption events were considered to test the possible adoption of 

a black-box based on an ANN. 

The goal is to verify the ANN accuracy level on the new building category, in order to be able 

to replicate the same approach used for residential buildings.  

The final training dataset includes a total of 4’483 consumption events that have been spread 

on a sequence of time windows as showed in Figure 9. A one-hidden layer ANN is used with 

an architecture  similar to the residential case. 
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Figure 23 Comparison between the predictions and the target values (a) and R value in the training, testing and validation stage (b) 

The model performances, shown in the Figure 23, demonstrates the ability of the proposed 

approach to also simulate the energy efficiency response of a non-residential building stock 

subject to low-cost optimization measures. In particular, the correlation coefficient R results to 

be 0.92 for the training dataset (0.94 for the residential stock) and 0.81 for the testing dataset 

(0.86 for the residential stock).  

 

Figure 24 Box-plot of the first order sensitivity index for each category of measure analyzed 

Once verified the ability of the model to simulate the response of non-residential buildings, a 

sensitivity analysis is launched, again incorporating the uncertainty associated with the optimal 

network architecture as well as the initialization of the weights. 

Analyzing results in Figure 24, it can be seen that the optimization measures showing a higher 

average sensitivity index are those belonging to the following three-macro categories: Heating, 

Refrigeration installations and Ventilation. 
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Administrative buildings are generally characterized by the presence of ventilation and cooling 

systems that are traditionally not present in residential buildings. The optimization of these two 

systems, according to Figure 24, seems to lead to a higher influence on the energy consumption 

levels than the optimization of electrical installations (circulation pumps, appliances and 

lighting), but still less than the optimization of the heating system. 

With the spread of ventilation systems and the possibility of installing reversible heat pumps at 

the same price as non-reversible heat pumps, it can be expected an increasing presence of 

ventilation and cooling systems in contemporary residential buildings as well. It is therefore 

possible to assume that the optimization of such systems may prove effective in the next future 

even in residential buildings. 

Finally, the residential case study is characterized by a much more detailed database, especially 

regarding the applied measures. At the present status, it is not possible to perform a detailed 

comparison between the results from the residential and administrative buildings, because the 

latter only present details on macro optimization measures. The test done on the administrative 

building stock is mainly focused on demonstrate the accuracy of the network in predicting the 

most probable energy savings with buildings of different use, more details on the measures are 

required to perform a direct comparison with the residential case study. 

  



 

47/51 

7 Future developments 

The proposed computational approach and the obtained results lay the basis for an additional 

development step aimed at structuring a predictive analysis to identify an optimal low-cost 

maintenance plan.  

A balck-box capable of adequately simulating the "LICOM-performance gap" relationship can 

be used to introduce new control variables to build a robust forecasting probabilistic framework. 

For example, just by adding the variable "building" to the model it becomes possible to link the 

success probability of a sequence of measures (with respect a target energy efficiency level) 

with the building characteristics. Figure 25 shows the steps related to this project and the 

additional activities with a view to further developments. 

 

Figure 25 Stages of further development of the present project 

A similar approach would represent the first real attempt to define a set of optimal guidelines 

considering only low invasive and costs effective energy optimization measures adopted during 

the life-cycle. More specifically, the adopted database is able to cover a wide range of 

archetypes giving to the next computational step and adeguate level of applicability. Indeed, 

the existing approaches are mainly calibrated on a single case study (real or simulated) making 

extremaly difficult a generalization of the obtained results. 

Additionally, analyzing potential real impacts of a low-cost optimal intervention scheduling 

system on new testing buildings requires reaching a higher generalization level. The possibility 

of being able to decline the probability of success of an intervention as a function of more 

detailed characteristics of the individual building, would allow to draw up a more effective 

ranking of priority measures. Such aspect would guarantee the definition of a program-ming of 

intervention monitored in a sufficiently long time window to verify the expected improvements 

and in the case to recalibrate in part the preliminary model. 

Finally, the possibility of identifying a probabilistic framework allows us to analyse the risk 

associated with a specific low-cost intervention planning. In particular,  the adoption of a low-

risk based approach is of paramount importance for a competitive and reliable implementation 
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within the activity of an Energy Service Company (ESCO) (Figure 26). Indeed, it is clear that 

a probabilistic-based estimation makes it more viable to practically implement a profitable EPC, 

since the risks taken by the ESCO will be reduced significantly and on the other hand, the 

measure does not impose additional burdens on tenants. 

 

Figure 26 EPC risks reduction by a probability-based approach 
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8 National and international cooperation 

The scientific and technological results focus on the identification and definition of 

optimization measures (LICOMs) with the greatest impact on energy savings. The transfer of 

the results to the market is aimed at "Accelerating the process of energy renovation of buildings 

through the large-scale implementation of optimization measures with the greatest return on 

investment". This is possible with the implementation of support activities carried out during 

the project. 

 

Support group 

The coaching group must be able to assist the research team in transferring the results of the 

project to the market.   

The Positive Gap project support group is composed of:  

 Engineer RCVS (Ing. Roland Connus) for the French-part of Switzerland; 

 Engineer RCVS (Ing. Jonathan Sancisi) for Ticino; 

 Responsible for Energo French-part and Ticino (Joel Lazarus). 

 

Several specific meetings were held during the project. The focus was on data quality and 

reliability, identification and selection of LICOMs related to energy reduction events.  

The contribution of RVCS engineers and technicians was used to better specify the nature of 

the measurements. It was therefore possible to verify the quality of the work on the optimisation 

measures and the related positive gap. The knowledge and practical experience of the support 

team made it possible to detail the significance of the individual optimisation measures, 

particularly those that brought the greatest benefits. 

 

Dissemination 

Regarding the dissemination of the results, the first training course was held on 4.12.2019 for 

the technicians responsible for the operation of the public housing stock facilities in the 

municipality of Chiasso. There was a great interest shown for the energo database and the 

approach to the project's problems, as well as a strong need to identify the most effective low-

cost measures, our LICOMs, leading towards a global energy consumption reduction. On 29 

January 2021 a half-day of further training has been provided in the CAS Building Management 

course at SUPSI, during which the first results of the study and the innovative approach adopted 

will be shown.  

 

Conferences/presentations 

On the 3rd  and 4th  of September 2020, SUPSI in collaboration with Energo was selected to 

present the Positive Gap project at the Status Seminar organized by Brennet in Arau. During 

this conference, interesting comparisons and relations with other projects were made. On the 

21st of October 2021, the final results were presented to the Swiss Federal Energy Office 

through an online meeting.  
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9 Conclusions 

The presented project aims at identifying the most effective low-cost measures in residential 

buildings leading towards a global energy consumption reduction, by accounting for complex 

interdependencies and environmental factors by means of an artifical neural network. 

In the first stage of the project a preprocessing stage of the Energo database was required to 

identify the optimization measures of interest and a building stock with a robust tracking 

activity. Secondly, the dataset was integrated with the time evolution of five weather indicators, 

and organized following the time windows of interest. 

A dedicated numerical model, based on an artifical neural network, was calibrated and adopted 

as black-box in order to simulate separately the effect of each LICOM on the energy 

performances of the analyzed building stock. 

Following the computation of robust sensitivity indexes, a quantitative analysis of the energy 

savings is required in order to associate with each LICOM the most probable interval of energy 

saved (kwh) that accounts for the uncertainty associated with the model itself and the weather 

conditions. Moreover, the proposed numerical model was tested with a different dataset 

representative of non-residential buildings (offices) that have other plant and energy needs. In 

this case, the employed dataset is characterized by different optimization measures leading to 

the definition of only few macro-categories of intervention. 

In terms of performance intervals and refering to an energy saving related to the analyzed 

building stock, the two LICOMs that show the highest median value with a lower variance are 

the Regul_winter-mode (median energy saving ≈ 2.5*104 kWh) and Regul_T_max_boiler 

(median energy saving ≈ 2.3*104 kWh). While, considering macro-categories of intervention, 

the highest median savings are reported for the Furnace setpoint temperature (≈1.83*104  kWh) 

and the Heating schedule time (≈1.65*104  kWh) activities, with the lowest efficacy values 

reached by the Ventilation category ( ≈ -0.5*104  kWh) and activities related to hydraulic 

adjustments and hot water schedule time, 0.5*103   kWh and 0.35*104   kWh respectively. 

Finally, focusing on the hot water production process, temperature regulations (≈ 0.91*104 

kWh) are more energy efficient if compared with the hydraulic interventions on the circulation 

system (≈ 0.05*104 kWh). In percentage terms, the best LICOMs manage to achieve a median 

potential monthly savings of just under 2%, which is about four times higher than the median 

value of all recorded underconsumption events. 

Analyzing the event duration, the range of variation, considering only the consumption events 

most likely to be associated with LICOMs, varies from a minimum of about 20 days to a 

maximum of just over 100 days. The analysis of the duration can be important if one wants to 

optimize and structure a long-term action plan of energy efficiency measures, in order to 

identify the optimal overlapping between different actions. 

In conclusion, the proposed approach is well suited to additional probabilistic analyses that can 

be performed to identify conditional energy savings, for instance depending on a specific 

weather condition and/or performance targets, building a probabilistic framework towards a 

risk-based optimal LICOM schedule. 
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