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Zusammenfassung 
Ziel des Projektes war die Entwicklung eines Werkzeugs zur Bestimmung der optimalen 
Eigenschaften und Abmessungen von Verglasungen von Gebäuden in Abhängigkeit von einzelnen 
Bauvorhaben auf Basis der SIA380/1 und SIA 2044. Das Tool soll in die bekannte Software Lesosai, 
einer Software zur Bestimmung der Energiebilanz von Gebäuden, integriert werden. 

Gemäss SIA 380/1 wird die Energiebilanz monatlich berechnet und zu einem jährlichen Energieverlust 
oder -gewinn addiert. Für das Wohnen ist aber nicht nur die Energiebilanz wichtig, auch der Komfort 
und das Raumklima sind wesentliche Faktoren für ein komfortables und nachhaltiges Wohngebäude. 
Diese beiden Faktoren sind in der SIA 2044 definiert. 

Eine Fallstudie wurde durchgeführt, um die Bedeutung von verglasten Elementen in der Gebäudehülle 
und das große Potenzial zur Senkung des Energieverbrauchs durch eine Erhöhung der 
Solarenergiegewinne zu veranschaulichen. Die Gebäudehülle ist als Einheit zu betrachten und ihr 
Design sollte bereits in der Planungsphase eines Bauprojekts optimiert werden. Die Fallstudie zeigte, 
dass vollverglaste Fassaden aus energetischer Sicht nicht unbedingt die optimale Lösung sind, da sie 
in der warmen Jahreszeit zu Überhitzung und erhöhtem Energieverbrauch durch Klimatisierung führen 
können. 

Allerdings ist es schwierig, den besten Parameter-Mix, basierend auf der Energiebilanzberechnung 
SIA 380/1, hinsichtlich der energetischen und wirtschaftlichen Sichtweise zu finden. 

Mit einem Standardansatz in der Software erfordert dies eine sehr komplexe Berechnung, die zu viel 
Zeit und Rechnerleistung in Anspruch nehmen würde, um alle möglichen Kombinationen zu 
berechnen. Das Projektteam fand und implementierte eine Lösung für eine sogenannte 
Vorhersagefunktion, die auf einer mathematischen Wahrscheinlichkeitstheorie nach dem Vorbild der 
Gaußschen Prozesse basiert. Diese Vorhersagefunktion wurde in einem Mathlab-Code implementiert, 
der dann in den Lesosai-Code Delphi übersetzt wurde. Viel Arbeit wurde in die Überprüfung der 
Korrektheit dieser Implementierung investiert. 

Die Ergebnisse des Projekts wurden in Lesosai umgesetzt. Dem Planer oder Architekten stehen damit 
die Daten der optimalen Oberfläche und der Eigenschaften der Verglasung zur Verfügung. 

 

Résumé 
L'objectif du projet était le développement d'un outil permettant de déterminer les caractéristiques et 
dimensions optimales des panneaux de vitrage dans les bâtiments, en fonction de projets de 
construction individuels, sur la base des normes SIA380/1 et SIA 2044. L'outil devra être intégré dans 
Lesosai, un logiciel bien connu pour déterminer le bilan énergétique des bâtiments. 

Grâce à la norme SIA 380/1, le bilan énergétique est calculé mensuellement et additionné à une perte 
ou gain énergétique annuel. Pour le logement, non seulement le bilan énergétique est important, mais 
le confort et la climatisation sont également des facteurs essentiels pour un bâtiment résidentiel 
confortable et durable. Ces deux facteurs sont définis dans la SIA 2044. 

Une étude de cas a été réalisée pour illustrer l'importance des éléments vitrés dans l'enveloppe du 
bâtiment ainsi que le grand potentiel de réduction de la consommation énergétiques par une 
augmentation des gains en énergie solaire. L'enveloppe du bâtiment doit être considérée comme une 
entité à part entière et sa conception doit être optimisée pendant la phase de planification d'un projet 
de construction. L'étude de cas a montré que les façades entièrement vitrées ne sont pas 
nécessairement la solution optimale du point de vue énergétique, car elles peuvent entraîner une 
surchauffe pendant la saison chaude et augmenter ainsi la consommation d'énergie due à la 
climatisation. 
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Cependant, il est difficile de trouver la meilleure combinaison des paramètres concernant les aspects 
énergétique et économique, en se basant sur le calcul du bilan énergétique de la SIA 380/1. 

Avec une approche standard dans le logiciel, cela nécessite un calcul très complexe qui prendrait trop 
de temps pour évaluer toutes les combinaisons possibles. L'équipe du projet a trouvé et mis en œuvre 
une solution sur une fonction dite de prédiction, basée sur la théorie mathématique des probabilités 
modélisée sur des processus gaussiens. Cette fonction de prédiction fut implémentée dans un code 
Mathlab, qui fut ensuite traduit dans le code Delphi du logiciel Lesosai. Beaucoup de travail a été 
consacré à tester l'exactitude de cette mise en œuvre. 

Les résultats du projet ont été mis en œuvre dans Lesosai. Ainsi, l'ingénieur planificateur ou 
l'architecte a à sa disposition les données de surface optimale et les caractéristiques du vitrage.  

 

Summary 
The objective of the project was the development of a tool to determine the optimal characteristics and 
dimensions of glazing panels in buildings in function of individual building projects on the bases of 
SIA380/1 and SIA 2044. The tool should be integrated in Lesosai, a well-known software for 
determining energy balances of buildings. 

Due to SIA 380/1 the energy balance is calculated monthly and added up to a yearly energy loss or 
gain. For housing not only the energy balance is important, but the comfort and the climatization are 
also essential factors for a comfortable and sustainable residential building. These two factors are 
defined in the SIA 2044. 

A case study was carried out to illustrate the importance of glazed elements in the building skin and 
the great potential to decrease energy consumption through an increase in solar energy gains. The 
building skin has to be considered as an entity and its design should be optimized during the planning 
phase of a construction project. The case study showed that fully glazed facades are not necessarily 
the optimal solution from an energetic point of view as it could lead to overheating during the warm 
season and cause increased energy consumption due to air-conditioning. 

However, finding the best parameter mix, based on the SIA 380/1 energy balance calculation, 
regarding the energetical and economical view is difficult. 

With a standard approach in the software it requires a very complex calculation which would take too 
much time to calculate all possible combinations. The project team found and implemented a solution 
on a so-called prediction function, which is based on mathematical probability theory modelled on 
Gaussian processes. This prediction function was implemented in a Mathlab code, which has been 
then translated in the Lesosai code Delphi. A big deal of work has been devoted into testing the 
correctness of that implementation. 

The results of the project have been implemented in Lesosai. Thus, the planning engineer or architect 
has the data of optimal surface and characteristics of glazing at his disposal.  
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Anhang 
Presentation of Flavio Foradini (E4tech Software SA.) at the conference "windays 2019" in Biel/Bienne 
on 29th March 2019. 
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1  The Setting and Goals 

1.1 Introduction 

The company EPFL (Ecole Polytechnique Fédérale de Lausanne) developed in 1984 the building 
physics software Lesosai. Since 2001 this software is developed and managed from the company 
E4tech Software SA based in Lausanne, Switzerland. This enables soft- ware engineers and building 
physicist to calculate the energy balance of a building and based on these data, to apply for a 
Minergie certificate or similar. The energy balance calculation is based on the SIA 380/1 [2], where all 
parameters and limit values are defined and described. The energy balance is calculated monthly and 
added up to a yearly energy loss or gain. 
For housing not only the energy balance is important, but the comfort and the climatization are also 
essential factors for a comfortable and sustainable residential building. These two factors are defined 
in the SIA 2044 [5]. The hourly calculation based on the SIA 2044 makes it necessary to have an 
enormous processing power for the calculation of all the parameters needed. 
Due to this fact the Lesosai developer implemented a prediction function denoted by 𝑝𝑝 in their soft- 
ware, which permits to calculate the energy balance values much faster. The prediction function 𝑝𝑝 has 
been implemented in a test version in the Lesosai software. We will choose a probabilistic point of 
view of our problem in order to achieve a fast calculating prediction function 𝑝𝑝. A necessary part of this 
project is to test the prediction function 𝑝𝑝 wether it runs without any bugs or errors. 
As a next step the E4tech team wants to upgrade the software with another feature, which is very 
helpful especially engineers and building physicists. With this application the user is able to find the 
best parameter mix by testing various combinations of the parameters to achieve their goals. 
 
Finding the best parameter mix, based on the SIA 380/1 energy balance calculation, regarding the 
energetical and economical view is not easy, especially for inexperienced engineers and building 
physicists. Considering that fact the E4Tech team wants to upgrade their well-known software Lesosai 
with a new and very handy feature. This application gives the user the possibility to vary different 
parameters and calculate the energy balance of a building in planning. The application gives them the 
best design. Due to the fact that it is a very complex calculation the software would take too much time 
to calculate all possible combinations. Therefore, the E4Tech team has implemented a prediction 
function 𝑝𝑝, which is based on mathematical probability theory modelled on Gaussian processes. 
The prediction function 𝑝𝑝 is implemented in a Mathlab code, which has been translated in the Lesosai 
code Delphi. A big deal of work is devoted into testing the correctness of that implementation. The 
results show that the implementation of the so-called prediction function is done accurately and that 
the pred function itself is well implemented in Delphi and works fine. 
 

1.2 Basics of energy balance of buildings 

In recent years, glazed components in the building skin have gained more and more importance in 
modern architectural design. Buildings with large windows or completely glazed facades are no rarities 
in today's built environment any more. Increased demand for large glazed components with low 
thermoconductive properties has led to important research efforts and to modern windows with improved 
structural and thermal performances. 

At the same time, our society faces new challenges with an energy turnaround that aims at reducing the 
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consumption of fossil fuels including nuclear energy. Given that the energy consumption for heating 
constitutes a major part of the total energy consumption in many developed countries – heating 
represents more than 30% of the total energy consumption in Switzerland [1] – new research efforts are 
needed to help reducing the energy need of contemporary households. It is therefore important to 
consider not only the technical aspects of the facade components, as for instance the windows, but also 
the building skin as an entity. In addition to other energy-saving strategies, the improvement of the 
facade design of new buildings from an energetic point of view is a promising approach to contribute to 
the energy turnaround challenge. Well-designed building skins with strategically located glazed 
elements improve considerable the gained solar energy and reduce therefore the needed heating 
energy. 

In the next section we present a case study showing the influence of various building skin components 
on the thermal performance of a reference building. The main objective is the illustration of the order of 
possible energy savings due to an energetically improved design of the building. Further, we present an 
optimization strategy that allows finding an optimal facade design with respect to the energy 
consumption for heating. Integrated into a software tool, this approach provides engineers early on 
during a project with the possibility of finding a better building skin design, which means that they are 
able to determine building skin parameters that generate the best energy balance possible. 

The energy consumption for heating of a building depends on various factors such as the geographic 
location, surrounding topography and buildings, orientation and the shape and size of the building, 
building insulation, thermal capacity of the building, transmission losses, light transmission, summer 
heat protection, heating and cooling energy requirements, energy needs for lighting, and the sources of 
energy used. The energy needed for heating is generally computed by determining the energy balance 
of the building including energy losses and gains, which is given by 

𝑓𝑓 = (𝑄𝑄𝑇𝑇 + 𝑄𝑄𝑉𝑉) − 𝜂𝜂𝑔𝑔(𝑄𝑄𝐼𝐼 + 𝑄𝑄𝑆𝑆) 

where 𝑓𝑓 = 𝑄𝑄ℎ is the required annual energy for heating, 𝑄𝑄𝑇𝑇 is the energy loss by transmission, 𝑄𝑄𝑉𝑉 the 
energy loss by ventilation, 𝜂𝜂𝑔𝑔 the energy conversion efficiency, 𝑄𝑄𝐼𝐼 the internal energy gain, and 𝑄𝑄𝑆𝑆 the 
solar energy gain. The quantities 𝑄𝑄𝑇𝑇 ,𝑄𝑄𝑉𝑉 , 𝜂𝜂𝑔𝑔,𝑄𝑄𝐼𝐼 ,𝑄𝑄𝑆𝑆 depend on a high number of parameters. Hence the 
energy balance 𝑓𝑓 = 𝑄𝑄ℎ can be calculated depending on these parameters such as for example 

 

𝑥𝑥1 = (area of windows north) 

𝑥𝑥2 = (area of windows south) 

𝑥𝑥3 = (shade coefficient north) 

𝑥𝑥4 = (shade coefficient south) 

𝑥𝑥5 = (g-value windows north) 

𝑥𝑥6 = (g-value windows south). 

⋮                   ⋮ 

𝑥𝑥𝑘𝑘 = (last parameter involved) 
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For small buildings in planning the number of parameters 𝑘𝑘 ∈ ℕ can get already very high such as 𝑘𝑘 =
60 or 𝑘𝑘 = 100. This adds to the complexity of finding the optimal building skin design (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ ℝ𝑘𝑘. 
We are looking the optimal building skin design which by definition is a vector (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ ℝ𝑘𝑘 that 
minimizes the energy balance function 

 

 

𝑓𝑓:ℝ𝑘𝑘 → ℝ 

 

 

This function has been computer simulated by E4Tech within the framework of the software Lesosai. 
The aim of any civil engineer is to find the best parameter design (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) for which the energy balance 
𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) is minimal. To do so one has to insert all possible vectors (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) and calculate the value 
𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) and pick the vector that gives the minimal energy balance. However, there is a Problem: 
The calculation of the energy balance 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) performed in Lesosai is time expensive. That’s why 
we need to have a strategy in Lesosai that delivers an optimal building skin design in reasonable time.   

 

1.3 Thermal performance of buildings: a case study 

The various losses and gains have multiple causes. For instance, the wall, the windows and the roof 
contribute to the loss by transmission, and various household appliances, the lighting and the room 
occupation add to the internal energy gain.  

The energy losses and gains of this case study are computed following the guidelines of the SIA 380/1 
norm [2]. A detailed description is beyond the objective of this work. 

The potential of an improved building skin for decreasing the heating energy consumption of residential 
houses is illustrated in this case study. The reference building is a typical single-family home with a first 
floor built in masonry and a second floor with a wooden structure. It is located in Lajoux in Switzerland 
at an altitude of 1020m above sea level. The principal properties are summarized in Table 1. 
 
Properties Value 
Living area (reference area) [m2] 225.6 
Area of building skin [m2] 451.2 
Area of vertical facade [m2] 214 
Area of glazed elements [m2] 31.8 
Area of south-oriented facade [m2] 70 
Area of glazed elements in south-oriented facade [m2] 20 
Shade coefficient of south-oriented facade 0.77 

Table 1: Properties of reference building 

It can be expected that the type of window and glasses, the insulating property of the wall, and the share 
of the glazed area in the south-oriented facade are some of the most influential factors for the energy 
balance of the building. In addition, the location of the building is of great importance for the heating 
energy consumption as well as for the energy-saving potential of clever building skin designs. The 
influence of these main factors is here analysed by computing the energy balance for the reference 
building with two different window types, two different glazing elements, two different areas of glazed 
elements in the south-oriented facade, two different types of wall insulation, and at two different 
locations. In total, this results in 32 different cases, which are then compared with respect to their need 
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of heating energy. 

The two different types of windows used in this case study are summarized in Table 2.  
 
Description Conductance of 

frame [W/m2K] 
Area share 

of glass 
PVC window 1.45 0.79 
Wood/Aluminum window 1.46 0.88 

Table 2: Properties of windows used in the case study 

 
Description Conductance  

[W/m2K] 
Psi value 

[W/mK] 
Energetic 

transmission 
Insulated double-glazed 1.1 0.05 0.6 

Insulated triple-glazed 0.6 0.04 0.5 
Table 3: Properties of window glasses used in the case study 

Furthermore, the share of glazed elements in the south-oriented facade is modified from 28%, which 
corresponds to a facade of a typical family home, to 45%, where the entire top floor is equipped with 
glazed elements. The two different types of wall insulations present conductances of 0.14 W/m2K and 
0.06 W/m2K. The energy balance is computed for the reference building at two locations. The first 
location, Lajoux, is in a mountainous region at an altitude of 1020m above sea level, whereas the second 
location, Neuchâtel, is at a much lower altitude (480m). 

 

1.4 Results and the discussion of the study case 

The results of the energy balance computation of the reference building at Lajoux are shown in  
Figure 1. 

As expected, the wood/aluminium windows (in this particular case) and the triple-glazed windows result, 
compared to their counterparts, in slightly lower energy needs for heating. This is due to lower 
conductance values and lower share of the frame area, which lead both to lower energy losses through 
the windows. However, the effect of both factors, the window type and the glass type, is considerably 
smaller than the energy saving achieved with more insulated (thicker) walls and larger shares of the 

Figure 1: Required annual heating energy for reference building at Lajoux 



OPTIVITRAGE - Optimisation du choix des éléments vitrés dans la construction 

12/41 

south-oriented glazed area.  

Similar results are observed for the energy balance of the reference building located in Neuchatel, as 
shown by Figure 2. In both cases, the energy savings with more insulated walls and larger south-oriented 
windows are essential and can reach values up to 50% of the total heating energy consumption of a 
household.  

This case study illustrates the importance of glazed elements in the building skin and the great potential 
to decrease energy consumption through an increase in solar energy gains. However, several aspects, 
which complexify the problem of finding an optimal building skin design for minimal energy consumption, 
have been neglected so far. First of all, the presented energy balance computations are based on a 
monthly estimated of energy losses and gains. In reality, however, large temperature variations occur 
within the duration of a month. The interaction of these variations and the thermal inertia of the building 
make the problem nonlinear and the computation of the annual energy consumption more challenging. 

Moreover, one could think that a building with a fully glazed south-oriented facade and without any 
windows in the north-oriented facade is the optimal solution. This approach, however, would most 
probably lead to overheated buildings during the summer months, which then would require another 
energy-consuming technology: air-conditioning. It is therefore likely that the optimal building skin design 
with respect to minimizing heating/cooling energy needs is not an extreme case (e.g., fully glazed 
facade). Finding such a (near-)optimal design is not a trivial problem, considering its nonlinear nature, 
and needs well adapted methods. One such strategy is presented in the following section. 

It is also worth noting that an optimal building skin design resulting in minimal energy consumption might 
not necessarily be “the” optimal solution if other aspects, such as living comfort, structural feasibility, and 
construction cost are considered. 

 

1.5 Conclusion 

We have shown that glazed elements in the building skin have an essential effect on the energy 
balance of the building. It was illustrated that windows in the south-oriented facade can contribute 
favourably to the objective of decreasing energy consumption for heating by gaining additional solar 
energy. In order to be able to benefit from the solar energy, the building skin has to be considered as 
an entity and its design should be optimized during the planning phase of a construction project. We 
further highlighted that fully glazed facades are not necessarily the optimal solution from an energetic 
point of view as it could lead to overheating during the warm season and cause increased energy 
consumption due to air-conditioning. 

Figure 2: Required annual heating energy for reference building at Neuchâtel 
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1.6 Goal and strategy 

We finally propose to start the optimization procedure with sampling plans of the type of latin 
hypercubes and analysed the potential improvement of their space-filling character with an 
evolutionary process as explained further in the chapter on mathematical methods. 
 

2 The Mathematical Methods 

2.1 Mathematical Setting 

The SIA 380/1 norm proposes a function 𝑓𝑓:ℝ𝑘𝑘 → ℝ being the annual energy of a building in planning. 
The input vectors 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ ℝ𝑘𝑘 mainly consist of building skin parameters. The energy balance 
𝑓𝑓:ℝ𝑘𝑘 → ℝ  has been implemented and computer simulated in the software Lesosai. This simulation 
follows the calculations suggested by the SIA 380/1 norm. The calculation of the simulated energy 
balance 𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is time expensive which makes it a hard task to find the input vector that 
minimizes the energy balance function 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). We want to minimize the computer simulated 
energy balance 𝑓𝑓(𝑥𝑥) over all possible input vectors 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ ℝ𝑘𝑘 knowing the observed values 
 

𝑦𝑦1 = 𝑓𝑓(𝑥𝑥1),  𝑦𝑦2 = 𝑓𝑓(𝑥𝑥2), … ,  𝑦𝑦𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) 
 
at any sample set containing input vectors {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘   where any input vector in the sample set  
𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) ∈ ℝ𝑘𝑘 consists of 𝑘𝑘 building skin parameters. In order to minimize the function 𝑓𝑓:ℝ𝑘𝑘 →
ℝ we model it as a Gaussian process and extract some prediction function 𝑝𝑝:ℝ𝑘𝑘 → ℝ which 
approximates the energy function 𝑓𝑓 given the observed values {𝑦𝑦1, … ,𝑦𝑦𝑛𝑛}.  We present an algorithm 
that will deliver the prediction function 𝑝𝑝 ≈ 𝑓𝑓 that approximates the energy balance. The advantage of 
𝑝𝑝 is that it is not time expensive to calculate the approximated energy balance values 𝑝𝑝(𝑥𝑥). 
 

2.2 Gaussian Processes  

Gaussian processes are studied very well and hence many codes and implementations already exist. 
Gaussian processes will enable us to come up with a prediction function 𝑝𝑝:ℝ𝑘𝑘 → ℝ and quantify the 
uncertainty of our prediction, which is a desirable measure of uncertainty. We view the annual energy 
balance 𝑓𝑓 as a Gaussian process being a function of the type 
 

𝑓𝑓:ℝ𝑘𝑘 × 𝛺𝛺 → ℝ 
 
meaning that the random vector �𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2), … , 𝑓𝑓(𝑥𝑥𝑛𝑛)� is Gaussian for any choice of input vectors  
{𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘 . Here  𝛺𝛺 is some non-specified probability space and  𝑓𝑓(𝑥𝑥𝑖𝑖):𝛺𝛺 → ℝ is interpreted as a 
random variable. Hence the computer simulated function is viewed as a random output 𝑓𝑓(𝑥𝑥𝑖𝑖) =
𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜔𝜔) for some elementary event 𝜔𝜔 ∈ 𝛺𝛺. For a fixed event 𝜔𝜔0 ∈ 𝛺𝛺 the function 𝑥𝑥 ↦ 𝑓𝑓(𝑥𝑥,𝜔𝜔0) is called 
realization of 𝑓𝑓. The computer simulated energy balance function 𝑓𝑓:ℝ𝑘𝑘 → ℝ is seen as a random 
phenomenon yielding functions 𝑥𝑥 ↦ 𝑓𝑓(𝑥𝑥,𝜔𝜔0) as realisations. The important thing about Gaussian 
processes is that they are characterized by its mean and covariance functions. The mean function of 
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a Gaussian process is a function 𝜇𝜇:ℝ𝑘𝑘 → ℝ defined by the expectation value of the random variable 
𝑓𝑓(𝑥𝑥):𝛺𝛺 → ℝ denoted by 𝜇𝜇(𝑥𝑥) = 𝔼𝔼�𝑓𝑓(𝑥𝑥)� ∈ ℝ. A finite set of input vectors  {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘 is called 
sample plan. A sample plan defines a random vector 𝑋𝑋 = �𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2), … , 𝑓𝑓(𝑥𝑥𝑛𝑛)� with mean vector 
𝜇𝜇 = 𝔼𝔼(𝑋𝑋) ∈ ℝ𝑛𝑛. The covariance matrix attached to the random vector 𝑋𝑋 = �𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2), … , 𝑓𝑓(𝑥𝑥𝑛𝑛)� of 
a sample plan is given by 

 

𝛴𝛴𝑋𝑋𝑋𝑋 = �
𝜎𝜎11 ⋯ 𝜎𝜎1𝑛𝑛
⋮ ⋱ ⋮
𝜎𝜎𝑛𝑛1 ⋯ 𝜎𝜎𝑛𝑛𝑛𝑛

� 

 
where the coefficients are defined as the covariance  
 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝔼𝔼 �𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓�𝑥𝑥𝑗𝑗�� − 𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗  
 
of the random variables 𝑓𝑓(𝑥𝑥𝑖𝑖)  and 𝑓𝑓�𝑥𝑥𝑗𝑗� viewed as random variables and 𝜇𝜇𝑖𝑖 = 𝔼𝔼�𝑓𝑓(𝑥𝑥𝑖𝑖)� and 𝜇𝜇𝑗𝑗 =
𝔼𝔼�𝑓𝑓(𝑥𝑥𝑖𝑖)� are the respective means. Now we pick an input vector 𝑥𝑥0 ∈ ℝ𝑘𝑘\{𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  } with random 
variable  𝑌𝑌 = 𝑓𝑓(𝑥𝑥0):𝛺𝛺 → ℝ and mean  𝜇𝜇𝑌𝑌 = 𝔼𝔼(𝑌𝑌) = 𝔼𝔼�𝑓𝑓(𝑥𝑥0)� and observe the joint random vector 
(𝑌𝑌,𝑋𝑋) = (𝑓𝑓(𝑥𝑥0),𝑓𝑓(𝑥𝑥1) … , 𝑓𝑓(𝑥𝑥𝑛𝑛)) whose covariance matrix is given by 
 

Σ = �Σ𝑌𝑌𝑌𝑌 Σ𝑌𝑌𝑌𝑌
Σ𝑋𝑋𝑋𝑋 Σ𝑋𝑋𝑋𝑋

� ∈ ℝ(𝑛𝑛+1)×(𝑛𝑛+1)  

 
where 𝛴𝛴𝑌𝑌𝑌𝑌 = �𝜎𝜎𝑌𝑌𝑋𝑋1 , … ,𝜎𝜎𝑌𝑌𝑋𝑋𝑛𝑛� is a lying vector with components  
 

𝜎𝜎𝑌𝑌𝑋𝑋𝑖𝑖 = 𝔼𝔼�𝑓𝑓(𝑥𝑥0)𝑓𝑓(𝑥𝑥𝑖𝑖)� − 𝜇𝜇0 𝜇𝜇𝑖𝑖     and     𝛴𝛴𝑌𝑌𝑌𝑌 = 𝔼𝔼(𝑓𝑓(𝑥𝑥0)𝑓𝑓(𝑥𝑥0) − 𝜇𝜇0𝜇𝜇0. 
 
By definition one easily calculates that  𝛴𝛴𝑌𝑌𝑌𝑌 = 𝛴𝛴𝑋𝑋𝑋𝑋. 
 

2.3 Statistical Prediction 

Given that the values 𝑓𝑓(𝑥𝑥1), … , 𝑓𝑓(𝑥𝑥𝑛𝑛) are calculated by the computer simulated program and let 𝑥𝑥0 ∈
ℝ𝑘𝑘\{𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  } be a new input vector that has not been calculated yet. We want to guess the values 
𝑓𝑓(𝑥𝑥0) without running it through the computer simulated calculation. Since we interpret the computer 
simulated function as an Gaussian process 𝑓𝑓:ℝ𝑘𝑘 × 𝛺𝛺 → ℝ and the outcomes as a random variables 
𝑋𝑋1 = 𝑓𝑓(𝑥𝑥1), … ,𝑋𝑋𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) we may predict or guess 𝑓𝑓(𝑥𝑥0). But first we need to define what a good 
guess or an optimal prediction is. In the framework of Gaussian processes this is done as follows: A 
function 𝑝𝑝:ℝ𝑘𝑘 → ℝ is called prediction function of 𝑌𝑌 = 𝑓𝑓(𝑥𝑥0) given 𝑋𝑋1 = 𝑓𝑓(𝑥𝑥1), … ,𝑋𝑋𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) if for all 
functions 𝑔𝑔:ℝ𝑘𝑘 → ℝ the inequality 
 

𝔼𝔼 ��𝑌𝑌 − 𝑝𝑝(𝑋𝑋)�2� ≤  𝔼𝔼 ��𝑌𝑌 − 𝑔𝑔(𝑋𝑋)�2� 
 
holds. Here 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) and 𝑔𝑔(𝑋𝑋) = 𝑔𝑔(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) are random variables defined by 𝑝𝑝(𝑋𝑋) = 𝑝𝑝 ∘ 𝑋𝑋 
and 𝑔𝑔(𝑋𝑋) = 𝑔𝑔 ∘ 𝑋𝑋. It is a fundamental mathematical theorem that the prediction function 𝑝𝑝:ℝ𝑘𝑘 → ℝ of 
𝑌𝑌 = 𝑓𝑓(𝑥𝑥0) given 𝑋𝑋1 = 𝑓𝑓(𝑥𝑥1), … ,𝑋𝑋𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) is uniquely determined by the formula 
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𝑝𝑝(𝑥𝑥) = 𝜇𝜇𝑌𝑌 + 𝛴𝛴𝑌𝑌𝑌𝑌𝛴𝛴𝑋𝑋𝑋𝑋−1(𝑥𝑥 − 𝜇𝜇𝑋𝑋) 
 
 
being the core object of your research project. Note that the lying vector  
 Here 𝛴𝛴𝑋𝑋𝑋𝑋−1 is the inverse matrix of the covariance matrix of 𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) and 𝛴𝛴𝑌𝑌𝑌𝑌 is the lying vector 
described above. Note that a considerable time is taken in to account by the computer in order to 
calculate the inverse 𝛴𝛴𝑋𝑋𝑋𝑋−1.  
 

2.4 A model for the prediction function 

Given a sample plan {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘 and having calculated only the outputs  
 

𝑦𝑦1 = 𝑓𝑓(𝑥𝑥1),  𝑦𝑦2 = 𝑓𝑓(𝑥𝑥2), … ,  𝑦𝑦𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) 
 
of the sample plan (still not knowing the whole of 𝑓𝑓) we want to make assumption on the mean 𝜇𝜇𝑌𝑌 and 
the mean vector oft he inputs 𝜇𝜇𝑋𝑋 = �𝜇𝜇𝑋𝑋1 , … , 𝜇𝜇𝑋𝑋𝑛𝑛� ∈ ℝ

𝑛𝑛. Another assumption we make is on the 
coefficients 𝜎𝜎𝑖𝑖𝑖𝑖 of the covariance matrix ΣXX. We choose these coefficients to be so called radial basis 
functions (RBF) defined by 
 
 

𝜎𝜎𝑖𝑖𝑖𝑖 = exp�−�𝜃𝜃𝑘𝑘�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗�
2

𝑛𝑛

𝑘𝑘=1

�  

 
 
where the vector 𝜃𝜃 = (𝜃𝜃1, … ,𝜃𝜃𝑛𝑛) ∈ ℝ𝑛𝑛 conists of co called hyperparameters. We now turn our interest 
to the mean. We assume the Gaussian process to be stationary, i.e. that the mean function μ(𝑥𝑥) =
𝔼𝔼�𝑓𝑓(𝑥𝑥)� = 𝜇𝜇 is constant for all 𝑥𝑥 ∈ ℝk. After that assumption we define estimated mean by  
 
 
 

𝜇𝜇� =
𝟏𝟏𝑡𝑡ΣXX−1𝑦𝑦
𝟏𝟏𝑡𝑡ΣXX−1𝟏𝟏

 

 
  
where 𝑦𝑦 = �𝑓𝑓(𝑥𝑥1), 𝑓𝑓(𝑥𝑥2), … , 𝑓𝑓(𝑥𝑥𝑛𝑛)� ∈ ℝ𝑛𝑛 and 𝟏𝟏 = (1,1, … ,1) ∈ ℝ𝑛𝑛. The estimated mean is obtained by 
making a linear ansatz and minimizing the mean squared error. This method is also known as Kriging 
the mean. With these choices maid we get the optimal predictor  
 
 

𝑝𝑝(𝑥𝑥) = 𝜇𝜇� + 𝛴𝛴𝑌𝑌𝑌𝑌𝛴𝛴𝑋𝑋𝑋𝑋−1(𝑥𝑥 − 𝜇𝜇�) 
 
 
which depends on the sample plan {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘 and the hyperparameters 𝜃𝜃 = (𝜃𝜃1, … ,𝜃𝜃𝑛𝑛) ∈ ℝ𝑛𝑛. 
Note that the components of the lying vector 𝛴𝛴𝑌𝑌𝑌𝑌(𝑥𝑥) = �𝜎𝜎𝑌𝑌𝑋𝑋1 , … ,𝜎𝜎𝑌𝑌𝑋𝑋𝑛𝑛� depends on 𝑥𝑥 ∈ ℝ𝑘𝑘. The exact 
formula is given further below. 
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𝜎𝜎𝑌𝑌𝑋𝑋𝑖𝑖(𝑥𝑥) = exp �−�𝜃𝜃𝑘𝑘|𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑖𝑖|2
𝑛𝑛

𝑘𝑘=1

�  

 
 
We have modelled the optimal predictor which will approximated the energy balance  
 
 

𝑝𝑝 ≈ 𝑓𝑓 
 
 
where the prediction function 𝑝𝑝 approximates the energy function 𝑓𝑓 in a satisfactory way if the sample 
plan {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ ℝ𝑘𝑘 has good space filling properties, whose meaning will be explained in the next 
section. Finding the optimal hyperparameters 𝜃𝜃 = (𝜃𝜃1, … , 𝜃𝜃𝑛𝑛) ∈ ℝ𝑛𝑛 is also a topic that will be of 
concern. 
 

2.5 Construction of the best sample plan as the best latin hypercube 

Note that the computer simulated energy balance 𝑓𝑓:ℝ𝑘𝑘 → ℝ will not be defined on the whole of the 
Euclidean space ℝ𝑘𝑘. Most components 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ ℝ in the input vector 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) ∈ ℝ𝑘𝑘 will be positive 
or have lower and upper bounds, i.e. 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ [𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖] . This means that the computer simulated energy 
balance 𝑓𝑓 is defined on a design domain defined by the hypercube 
 

𝐷𝐷 ≔ [𝑎𝑎1, 𝑏𝑏1] × ⋯× [𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘] ⊂ ℝ𝑘𝑘 . 
 
Note that for any building in planning the design domain has to be determined separately by the civil 
engineers. According to local conditions, cost calculation and owner desires the design domain may 
be choose differently in any situation.  
We want to choose a sample plan 𝑋𝑋 ≔ {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ 𝐷𝐷 that covers the design domain 𝐷𝐷 best. We 
choose the sample plans 𝑋𝑋 ≔ {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ 𝐷𝐷 to be in the category of latin hypercubes. In order to 
explain the notion of latin hypercube we divide any factor 𝐼𝐼𝑖𝑖 = [𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖] in subintervals 
 

𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑖𝑖1 ∪ ⋯∪ 𝐼𝐼𝑖𝑖𝑖𝑖 . 
 
Any permutation 𝜎𝜎: {1, … ,𝑛𝑛} → {1, … ,𝑛𝑛} determines subcubes in 𝐷𝐷 denoted by 
 

𝑄𝑄𝜎𝜎 = 𝐼𝐼1𝜎𝜎(1) × ⋯× 𝐼𝐼𝑘𝑘𝑘𝑘(𝑛𝑛) 
 
that cover the design domain, i.e. 𝐷𝐷 = ⋃𝜎𝜎 𝑄𝑄𝜎𝜎 where the union runs over all permutations 𝜎𝜎.  
A sample plan 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ 𝐷𝐷 is called latin hypercube if the following is satisfied 
 

i. Any input vecor of the sample plan 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  } lies in the interior of some subcube 𝑄𝑄𝜎𝜎. 
ii. The components of any pair of different input vectors 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗 must lie in different subcubes. 

 
In the next picture one can see a two-dimensional example of a latin hypercube. The sample plan 𝑋𝑋 =
{𝑥𝑥1, … , 𝑥𝑥10} consists of ten two-dimensional vectors represented by bullets. The condition (i) says that 
any bullet must lie inside a square. Condition (ii) says that the projections of any to bullets to the x-axis 
or y-axis must be different: 
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As you can see in Figure 3 there are some regions in the design domain 𝐷𝐷 that are not sampled well. 
We would like to “measure” how well a sample plan fills the space. To do so we will work with the 
Euclidean distance 
 

||𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|| = ���𝑥𝑥𝑖𝑖ℓ − 𝑥𝑥𝑗𝑗ℓ�
2

𝑘𝑘 

ℓ=1

 

 
where 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) ∈ D and 𝑥𝑥𝑗𝑗 = �𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝑗𝑗� ∈ 𝐷𝐷. The set of distances occurring in the sample 
plan 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  } denoted by {||𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|| ∶ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋} is written as an ordered set 
 

𝑑𝑑1 < 𝑑𝑑2 < ⋯ < 𝑑𝑑𝑚𝑚 
 
are called the distances occurring in 𝑋𝑋 with frequentnesses  
 

𝑛𝑛1 < 𝑛𝑛2 < ⋯ < 𝑛𝑛𝑚𝑚. 
 
Note that 𝑛𝑛𝑖𝑖(𝑋𝑋) is the number of distances 𝑑𝑑𝑖𝑖(𝑋𝑋) occuring in the sample plan  𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} 
measured in the Euclidean norm. Now there is a function due to Morris and Mitchell [Reference], 
which measures the space filling property of a sample plan 𝑋𝑋. Let 𝑞𝑞 ∈ ℕ be a natural integer. The 
Moris-Mitchell function is defined on sample plans 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  }  ⊂ 𝐷𝐷 via 
 
 

𝑋𝑋 ↦ 𝛷𝛷𝑞𝑞(𝑋𝑋) = ��𝑛𝑛ℓ

𝑚𝑚

ℓ=1

𝑑𝑑ℓ
−𝑞𝑞 �

1
𝑞𝑞

 

 
 
The smaller the value 𝛷𝛷𝑞𝑞(𝑋𝑋) attached to some sample plan 𝑋𝑋 is, the better the space filling property of 
𝑋𝑋 is. This means that we must find sample plans that are latin hypercubes and that minimize the 
Moris-Mitchel function 𝑋𝑋 ↦ 𝛷𝛷𝑞𝑞(𝑋𝑋). The third and last space fillingnes property is measured by the 
minimax-principle. We start with the initial set of 𝑁𝑁 ∈ ℕ different sample plans 
 

Figure 3: Two-dimensional Latin hypercube with 10 sample points. As one can see any input vector lies in the 
interior some subcube satisfying (i). Any two input vectors have different vertical and horizontal components. 
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𝑆𝑆0 = {𝑋𝑋1, … ,𝑋𝑋𝑁𝑁} 
 
such that any sample plan consists of 𝑛𝑛 input vectors 𝑋𝑋𝑖𝑖 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} ⊂ 𝐷𝐷. We define first subsets of 
the initial collection by 
 

𝑆𝑆1𝑚𝑚𝑚𝑚𝑚𝑚 = {𝑋𝑋 ∈ 𝑆𝑆0| 𝑑𝑑1(𝑋𝑋) 𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 
𝑆𝑆1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = {𝑋𝑋 ∈ 𝑆𝑆1𝑚𝑚𝑚𝑚𝑚𝑚| 𝑛𝑛1(𝑋𝑋) 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}. 

 
Note that the sampling plans in 𝑆𝑆1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚maximize 𝑑𝑑1 and among the plans for which this is true, 
minimize 𝑛𝑛1. We recursively define  
 
 

𝑆𝑆ℓ𝑚𝑚𝑚𝑚𝑚𝑚 = {𝑋𝑋 ∈ 𝑆𝑆ℓ−1 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| 𝑑𝑑ℓ(𝑋𝑋) 𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑆𝑆ℓ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = {𝑋𝑋 ∈ 𝑆𝑆ℓ𝑚𝑚𝑚𝑚𝑚𝑚| 𝑛𝑛ℓ(𝑋𝑋) 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}. 
 
 
This construction yields a filtration of collections of sampling plans 
 

𝑆𝑆0 ⊃ 𝑆𝑆1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⊃ 𝑆𝑆2 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⊃ ⋯ ⊃ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 
Any sample plan 𝑋𝑋∗ ∈ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is called minimax of 𝑆𝑆0 = {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} also written 𝑋𝑋∗ ∈ 𝑆𝑆0. 
 

2.6 Evolutionary operation 

We proceed by an evolutionary method used in biology: We pick a latin hypercube (called parent) and 
perturb it a 𝑃𝑃 number of times yielding a population (called offsprings). Among this population of 
mutations, we pick the latin hypercube that minimizes the Moris-Mitchell function 𝛷𝛷𝑞𝑞(𝑋𝑋) for some fixed 
𝑞𝑞 ∈ ℕ. We start now with the above constructed minimal latin hypercube and iterate this procedure 𝑁𝑁 
times that yields a minimum over all 𝑁𝑁 generations denoted by 𝑋𝑋𝑞𝑞.  
 

(1) Start with a latin hypercube 𝑋𝑋1 ⊂ 𝐷𝐷 and change this latin hypercube randomly in order to get a 
population 𝑆𝑆1

𝑃𝑃𝑃𝑃𝑃𝑃 = {𝑋𝑋11,𝑋𝑋12, … ,𝑋𝑋1𝑃𝑃} of latin hypercubes and pick the one 𝑋𝑋1
𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆1

𝑃𝑃𝑃𝑃𝑃𝑃 among 
this population with the minimal value 𝛷𝛷𝑞𝑞(𝑋𝑋). The parameter 𝑃𝑃 ∈ ℕ is called the population 
number and is the number of mutated individuals in the evolutionary operation  

  
(2) We start with 𝑋𝑋1

𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆1
𝑃𝑃𝑃𝑃𝑃𝑃 of Step (1) and create a new population of latin hypercubes 𝑆𝑆2

𝑃𝑃𝑃𝑃𝑃𝑃 as 
in Step (1) where we pick the sample plan 𝑋𝑋2

𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆2
𝑃𝑃𝑃𝑃𝑃𝑃 with minimal value 𝛷𝛷𝑞𝑞(𝑋𝑋) among this 

population. We iterate this procedure 𝑁𝑁 ∈ ℕ times to get a finite set of latin hypercubes 
{𝑋𝑋1

𝑝𝑝𝑝𝑝𝑝𝑝, … ,𝑋𝑋𝑁𝑁
𝑝𝑝𝑝𝑝𝑝𝑝}. The last latin hypercube 𝑋𝑋𝑞𝑞 = 𝑋𝑋𝑁𝑁

𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃 that occurred by minimizing 𝛷𝛷𝑞𝑞(𝑋𝑋) 

among all 𝑆𝑆𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃 populations. 

 
 

(3) We perform Step (1) and Step (2) for different values 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑀𝑀 which yields a collection of 
sample plans 𝑆𝑆0 = {𝑋𝑋𝑞𝑞1 ,𝑋𝑋𝑞𝑞2 , … ,𝑋𝑋𝑞𝑞𝑀𝑀} within the category of latin hypercubes.  

 
(4) We choose a minimax 𝑋𝑋∗ ∈ 𝑆𝑆0 which is called best latin hypercube. 
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The best latin hypercube palys an important role this research project. The prediction function  
 

𝑝𝑝:𝐷𝐷 ⊂ ℝ𝑘𝑘 → ℝ 
 
depends on the sample plan 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} ⊂ 𝐷𝐷 which is from now on choose to be the best latin 
hypercube constructed in the procedure defined by Step (1) to Step (4).  
 

3 Implementation of the prediction function in Lesosai 

3.1 Implementation first version for the customers 

We implemented in Lesosai the possibility to do a multi-calculation as first step of the project. This first 
implementation was based did not use the mathematical algorithms studied in this project. This step 
was needed to have a Lesosai adapted to start the calculations defining limits and steps on value.  
This first implementation is usable only with the SIA380/1 that is a monthly calculation but not usable 
with hourly calculations as defined in SIA2044. 
 
Start screen: 

Calculations options: 
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1. Choice of comparison indicators (results for various thermal & environmental calculations, 
depending on the standard selected in Lesosai). Currently, it is only possible to perform 
predictions using a single indicator. 

2. List of building elements (walls, floors, windows, etc.) 
3. Properties of currently selected element (2) 
4. When selecting a property (3), the user can enable it. When enabled, a property becomes a 

variable.   
5. The minimum and maximum values of this property as well as the incremental steps must be 

defined. 
6. Start the algorithm 

 
This first implementation is used since more than 2 years from the customers from Lesosai. 
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3.2 Implementation of the algorithms for the project 

The second step in the project was to introduce the previsions algorithms for the project. 

 
This implementation allowed to test the methodology and gives the possibilities to check the 
influence of the different parameters.  
Changed points from the first implementation: 
 
4. When selecting a property (3), the user can enable it. When enabled, a property becomes a 

variable.  The minimum and maximum values of this property as well as the incremental steps 
must be defined. They are not used for prediction but we will use them to know which 
combinations of parameters we will try to predict results for once the surrogate model has 
been developed. There is no limit on the number of properties that can become variable. In 
the tests we made, we worked with a low number of variables (two or three). In the above 
example, the windows area and Gp values as well as the external walls U-value are set up as 
variable. 

5. When checking the “results prediction” checkbox, some starting parameters have to be 
defined in order to build the hypercube and setup the prediction algorithm.  When this 
checkbox is not checked, each possible combination of parameter is calculated, no predictions 
are made. Both modes can be used successively in order to get prediction and calculated 
results for the same combinations of parameters and evaluate the quality of the predictions.  

6. Start the algorithm 
7. Improve predictions if results are not good enough by adding new simulated combinations 
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Creating the best possible starting hypercube 

  
 
Developing surrogate model 

 
 
Results 

 
1. Column in blue: predicted results for the indicator chosen 
2. Columns in white: variable parameters. Each row of the table corresponds to a combination of 

parameters 
3. Go back to previous screen in order to try to improve the prediction by performing new 

simulations and adding some new points 
4. Create a new Lesosai variant which will take the same parameters as the selected row in the 

above table 
5. Export results to Excel. 

This version is not available to customers.  
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3.3 Final implementation for the customers 

In 2019 we will make the step 3.2 available to the customers, we are improving the ergonomics giving, 
for example, a graphically possibility of analysis: 
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4 Testing the influence parameters of the best latin 
hypercube bestln 

There are two possible approaches to work out whether parameter have an influence on a function or 
not. One way is to study the properties of the function, the other is to calculate multiple variants of 
function values of the function with different choices of parameters in order to compare the values with 
respect to the change of parameters.  
Since we have not too much control on the algorithm bestln we chose to just vary the possible 
parameters, construct the best latin hypercube and generate the prediction function based on the best 
latin hypercube.  
 

4.1 Experimental approach 

The construction of the best latin hypercube bestln and the prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 are both 
implemented in Delphi within the framework of Lesosai. Hence, we have done all calculation within the 
software Lesosai. Before the calculation can start a building model (as a study case) has to be created 
with respect to which one can perform the calculation. E4Tech already had such a building in planning 
to test the dependence of the implementation bestln. In this study case E4Tech suspects that the 
prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷:ℝ3 → ℝ has a big deviation from the energy balance 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷:ℝ3 → ℝ. Since 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 is 
a bad approximation of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 it is expected that changes in the bad setting have a bigger influence than 
changes of the parameters in a sufficiently good setting. As next we explain the components of the 
input vector 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ∈ ℝ3. Any input vector consists of the building parameters 
 
 

𝑥𝑥1 = (total area of windows) contained in [2,10] 

𝑥𝑥2 = (window 𝑔𝑔𝑝𝑝 value) contained in [2,10]  

𝑥𝑥3 = (wall 𝑈𝑈 value) contained in [0.1,0.7]. 

 
The design domain of this study case is then determined by the three-dimensional hypercube 
 

𝐷𝐷 = [2,10] × [0.1,0.7] × [0.1,0.7] ⊂ ℝ3. 
 
Now note that we will take a partition of [2,10] of step length 1 and partitions of the two intervals 
[0.1,0.7] of step length 0.1 respectively. This leads to 441 different input vectors are called 
investigation plan and is denoted by 
 

𝐺𝐺 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥441} ⊂ 𝐷𝐷. 
 
The investigation plan is a grid distributed over the cube 𝐷𝐷 = [2,10] × [0.1,0.7] × [0.1,0.7] ⊂ ℝ3. We will 
test now the function on every input vector 𝑥𝑥𝑖𝑖 ∈ {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥441} which yields 441 values for  
 

𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖)    and    𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖)   respectively. 
 
These 441 input vectors for each function are investigated. A big part in the understanding of the big 
picture is the fact that 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 depends on the best latin hypercube bestln used to define it. We want to 
change the parameters used to define bestln and see for which parameters 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 becomes the best 
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prediction of 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷. In order to measure the differences 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖) and 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖) we will introduce a bunch of 
statistical quantities. The absolute difference function and the relative difference function defined via  
 
 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖) − 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖)          and          𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) =
𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖) − 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖)

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖)
 

 
 
The mean difference of the hole investigation plan 𝐺𝐺 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥441} is defined via 
 
 

𝑚𝑚�𝐺𝐺 =
1

441
�𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)
441

𝑖𝑖=1

 

 
 
The standard deviation of the whole investigation plan 𝐺𝐺 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥441}  is defined by 
 
 

𝑠𝑠𝐺𝐺 = �∑ (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) −𝑚𝑚�)2441
𝑖𝑖=1

441
 

 
 
We also consider the interval [𝑚𝑚� − 𝑠𝑠𝐺𝐺 ,𝑚𝑚� + 𝑠𝑠𝐺𝐺]. Note that the chance that a measured quantity lies in 
the interval [𝑚𝑚� − 𝑠𝑠𝐺𝐺 ,𝑚𝑚� + 𝑠𝑠𝐺𝐺] is 66%.  
 

4.2 Influence parameters 

Since the best latin hypercube bestln is constructed by the evolutionary process described above we 
have the following parameters that can be choosen. 
 
 

𝑃𝑃 = (Population) 

𝑁𝑁 = (Iteration)  

𝑛𝑛 = (combination) 

where the combination 𝑛𝑛 is the number of input vectors in any latin hypercube.  
Since bestln depends on the triple (𝑛𝑛,𝑃𝑃,𝑁𝑁) so does the prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 . That is why we denote 
it by 
 

𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁):ℝ3 → ℝ 
 
yielding for any triple (𝑛𝑛,𝑃𝑃,𝑁𝑁) a prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁). We want to find the best triple such 
that the prediction function approximates 
 

𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁) ≈ 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 
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the energy balacance best. By theoretical consideration all three parameters have a monotone rising 
influence. The parameter combination 𝑛𝑛 has the biggest influence, since the more input vectors we 
have in the design domain 𝐷𝐷 the exacter 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁) is going to approximate 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷. The theory shows 
that the prediction function converges towards the energy balance 
 

𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁) → 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷     for    𝑛𝑛 → ∞  
 
However, increasing the combination 𝑛𝑛 will not necessarly lead to a better latin hypercube if the 
population 𝑃𝑃 and the iteration 𝑁𝑁 because the spacefilling property of the best latin hypercube would 
not increase sufficiently. As it is not possible to get lower with our choices, convergence is the only 
option. There is a major flaw in making the combination 𝑛𝑛 arbitrarily big: It will take a long time to 
generate the best latin hypercube bestln ! The increase of the population 𝑃𝑃 and 𝑁𝑁 make the prediction 
function also better but have an upper limit, where the time cost becomes too expensive.  
 

4.3 Testing tables 

We investigate the prediction function in dependence on the combination. We plug in the values 
 

𝑛𝑛 = 10 𝑛𝑛 = 20 𝑛𝑛 = 30 𝑛𝑛 = 40 𝑛𝑛 = 50 𝑛𝑛 = 60 𝑛𝑛 = 70 
 
where the population 𝑃𝑃 = 50 and the iteration 𝑁𝑁 = 20 are fixed.  
 

 (n,P,N) (10,50,20) (20,50,20) (30,50,20) (40,50,20) (50,50,20) (60,50,20) (70,50,20) 
                

𝑚𝑚�𝐺𝐺 0.434% 0.074% -0.004% 0.026% 0.035% 0.072% 0.149% 

𝑠𝑠𝐺𝐺 4.10% 0.93% 0.32% 0.23% 0.18% 0.53% 0.57% 

                

𝑚𝑚�𝐺𝐺 + 𝑠𝑠𝐺𝐺 4.536% 1.002% 0.313% 0.258% 0.212% 0.603% 0.719% 

𝑚𝑚�𝐺𝐺 − 𝑠𝑠𝐺𝐺 -3.669% -0.854% -0.320% -0.205% -0.143% -0.459% -0.422% 

max (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) 22.066% 5.500% 1.582% 1.219% 1.280% 3.551% 3.935% 

min (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) -10.587% -2.937% -1.901% -0.768% -0.653% -2.327% -2.661% 
Table 4: Relative difference by changing combination 

 
We see that if the number of combinations is chosen to be 𝑛𝑛 = 30 we get the best prediction possible.  
As next we investigate the prediction function in dependence on the population. We plug in the 
values 
 

𝑃𝑃 = 10 𝑃𝑃 = 30 𝑃𝑃 = 50 𝑃𝑃 = 70 𝑃𝑃 = 90 𝑃𝑃 = 110 𝑃𝑃 = 130 
 
where the population 𝑛𝑛 = 20 and the iteration 𝑁𝑁 = 20 are fixed.  
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 (n,P,N) (20,10,20) (20,30,20) (20,50,20) (20,70,20) (20,90,20) (20,110,20) (20,130,20) 
                

𝑚𝑚�𝐺𝐺 -0.133% -0.813% 0.074% -0.014% -0.025% 0.005% -0.017% 

𝑠𝑠𝐺𝐺  0.93% 2.64% 0.93% 1.11% 1.13% 0.88% 1.11% 
                

𝑚𝑚�𝐺𝐺 + 𝑠𝑠𝐺𝐺  0.797% 1.829% 1.002% 1.094% 1.105% 0.881% 1.094% 

𝑚𝑚�𝐺𝐺 − 𝑠𝑠𝐺𝐺  -1.064% -3.454% -0.854% -1.122% -1.154% -0.871% -1.129% 

max (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) 4.782% 5.813% 5.500% 9.893% 5.977% 5.921% 4.214% 

min (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) -3.654% -16.121% -2.937% -3.648% -5.149% -3.860% -5.789% 
Table 5: Relative difference by changing population 

We see that if the number of the population is chosen to be 𝑃𝑃 = 110 we get the best prediction 
possible. However, there is no strong or significant dependence on the population 𝑃𝑃. 
As next we investigate the prediction function in dependence on the iteration. We plug in the values 
 

𝑁𝑁 = 10 𝑁𝑁 = 30 𝑁𝑁 = 50 𝑁𝑁 = 70 𝑁𝑁 = 90 𝑁𝑁 = 110 𝑁𝑁 = 130 
 
where the population 𝑛𝑛 = 20 and the iteration 𝑃𝑃 = 50 are fixed. 
 

 (n,P,N) (20,50,10) (20,50,20) (20,50,30) (20,50,40) (20,50,50) (20,50,60) (20,50,70) 

                

𝑚𝑚�𝐺𝐺  -0.103% 0.074% 0.230% -0.219% -0.284% -0.053% 0.136% 

𝑠𝑠𝐺𝐺  1.11% 0.93% 0.94% 0.97% 1.31% 0.90% 1.24% 

                

𝑚𝑚�𝐺𝐺 + 𝑠𝑠𝐺𝐺  1.009% 1.002% 1.170% 0.747% 1.023% 0.852% 1.371% 

𝑚𝑚�𝐺𝐺 − 𝑠𝑠𝐺𝐺  -1.214% -0.854% -0.710% -1.185% -1.590% -0.958% -1.099% 

max (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) 2.907% 5.500% 9.240% 4.300% 7.332% 4.741% 10.937% 

min (𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)) -4.959% -2.937% -2.249% -4.845% -6.595% -2.795% -4.357% 
Table 6: Relative difference by changing iteration 

We see that if the number of the population is chosen to be 𝑁𝑁 = 60 we get the best prediction 
possible. However, there is no strong or significant dependence on the iteration 𝑁𝑁. 
 

4.4 Discussion 

The results of the theoretical approach and those from the experimental observation do differ which 
does not mean that our method is wrong. By the theoretical consideration all three parameters 
(𝑛𝑛,𝑃𝑃,𝑁𝑁) should make the prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑛𝑛,𝑃𝑃,𝑁𝑁) converge towards 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 in case we choose the 
parameters bigger and bigger. We see that there are parameter upper bounds where the prediction 
function does not necessarily increase. 
In order to find a good latin hypercube in a suitable time all three parameters have to be coordinated. 
However, there is no formula that can give a combination of the three parameters to find a good latin 
hypercube. 
By the experimental approach no clear influence was found especially not a monotone rising 
influence. 
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As a conclusion of this study there is no statement at all about the influence. We propose the following 
choice that is also proposed in [3]:  
 
 
“If the number of parameters 𝑘𝑘 < 20 is smaller than twenty-one should pick the number of 
combinations to be 𝑛𝑛 < 500, otherwise pick the number of combinations to be bigger than 500.” 
 
 
This completes the discussion. 
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5 Testing the implementation of the prediction function 
We have taken codes from [3] where the prediction function 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀  is implemented in Mathlab and have 
written codes in Delphi that give the prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 within the framework of Lesosai. This 
means that we are dealing with two computer simulated functions 
 
 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 ∶ ℝ𝑘𝑘 → ℝ               and             𝑝𝑝𝐷𝐷𝑒𝑒𝑒𝑒 ∶ ℝ𝑘𝑘 → ℝ 
 
 
that are coded in Mathlab and Delphi respectively. It is not easy to compare two computer simulated 
functions written in two different codes. Knowing that the prediction function in Mathlab approximates 
the time expensive energy balance 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 and showing additionally that 
 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷, 
 
we have a prediction function 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 that approximates 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷. It is not possible to translate the two codes 
like a usual language therefore it is necessary to compare the results. This chapter is not about to 
check whether the prediction function is a good algorithm or not, it is about checking whether the 
implementation into Delphi code has been done correctly. Since E4Tech was not in possession of a 
Mathlab license the data had to be transferred via Email between the two parties (E4Tech and BFH) 
being very time consuming. If an error would occur, we had to check whether this error was because 
of a bug in the code or a miscommunication issue. 
 

5.1 Method of Testing 

For the calculation of the values by Matlab and by Delphi the same latin hypercube must be used used 
since the prediction function depends of the latin hypercube used to define it. The values of three 
points were calculated and compared. Which points to choose is not relevant even if the results were 
different by choosing different points. However, they should not differ between the two calculation 
methods. The calculated values were copy pasted into the Microsoft program Excel for statistical 
evaluation. All displayed values were rounded to the fourth decimal. For the statistical evaluation the 
exact values were used in order not to lose precision. The statistical evaluation is done via absolute 
and relative difference. This we explain in the following. We want to measure how much the functions 
differ from each other. This is measured by the absolute difference function and the relative difference 
function defined via  
 
 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) − 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥)          and          𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) =
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) − 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥)

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)  

 
 
The relative difference was chosen to compare the different values in order to find possible weak- 
nesses or bugs in the implementation of 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷 with no influence of the original value size.  
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5.2 Testing the prediction function and the results 

As mentioned in the previous chapter the prediction function has the following structure 
 

𝑝𝑝(𝑥𝑥) = 𝜇𝜇� + 𝛴𝛴𝑌𝑌𝑌𝑌𝛴𝛴𝑋𝑋𝑋𝑋−1(𝑥𝑥 − 𝜇𝜇�) 
 
that is implemented in two different codes. Note that the lying vector 𝛴𝛴𝑌𝑌𝑌𝑌 = �𝜎𝜎𝑌𝑌𝑋𝑋1 , … ,𝜎𝜎𝑌𝑌𝑋𝑋𝑛𝑛� has 
components that depend on 𝑥𝑥 ∈ ℝ𝑘𝑘 through the equation 
 

𝜎𝜎𝑌𝑌𝑋𝑋𝑖𝑖(𝑥𝑥) = exp�−�𝜃𝜃𝑘𝑘|𝑥𝑥 − 𝑥𝑥𝑖𝑖𝑖𝑖|2
𝑛𝑛

𝑘𝑘=1

� .  

 
The covariance matrix and the estimated mean of the Matlab code are denoted by 
 

Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀 ∈ ℝ𝑛𝑛         and          𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 ∈ ℝ 
 
whereas the the covariance matrix and the estimated mean implemented in the Delphi code are 
denoted by 
 

Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷 ∈ ℝ𝑛𝑛         and          𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷 ∈ ℝ. 
 
Since the covariance vector and the estimated mean are used to define the prediction function, we 
check whether they are well-implemented. We check whether the equalities 
 

Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) = Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥)         and          𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷  
 
hold. This will be done by calculating the prediction function, the estimated mean and the covariance 
vector at different points. We will display three tables in the following that explore the correctness of 
the implementation.  
 
We have done a lot of calculations and comparisons and have not been able to detect an error in the 
implementation. Any difference that has occurred in the numbers has bee 
 

5.3 Testing tables 

We pick the inputvector to be 𝑥𝑥 = (0,0,0) ∈ ℝ3 and evaluate the following objects 
 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0) 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0) 
𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷 

Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0) Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0) 
 
and check whether they are identical. 
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Inputvector          

𝑥𝑥 = (0,0,0) ∈ ℝ3          

        f    

Values of Matlab Values of Delphi Absolut difference 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) Relative Difference 𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) 𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷  Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) 𝑝𝑝 𝜇𝜇�  Σ𝑌𝑌𝑌𝑌(𝑥𝑥) 𝑝𝑝 𝜇𝜇�  Σ𝑌𝑌𝑌𝑌(0,0,0) 

76.1610 211.7191 0.9344 76.1610 211.7191 0.9344 0.0000 0.0000 0.0000 0.00% 0.00% 0.00% 

   0.9836    0.9836    0.0000    0.00% 

   0.9387    0.9387    0.0000    0.00% 

   0.9411    0.9411    0.0000    0.00% 

   0.9158    0.9158    0.0000    0.00% 

   0.9835    0.9835    0.0000    0.00% 

   0.8701    0.8701    0.0000    -0.01% 

   0.9427    0.9427    0.0000    0.00% 

   0.8860    0.8860    0.0000    0.00% 

   0.8099    0.8099    0.0000    0.00% 

   0.9272    0.9272    0.0000    0.00% 

   0.8524    0.8524    0.0000    0.00% 

   0.9461    0.9461    0.0000    0.00% 

   0.9430    0.9430    0.0000    0.00% 

   0.8789    0.8789    0.0000    0.00% 

   0.8906    0.8906    0.0000    0.00% 

   0.9985    0.9985    0.0000    0.00% 

   0.8735    0.8735    0.0000    0.00% 

   0.9774    0.9774    0.0000    0.00% 

    0.9733     0.9733     0.0000     0.00% 
            

Table 7:  Comparison of the prediction function 𝑝𝑝, the estimated mean 𝜇𝜇� and the covariance vector 𝛴𝛴𝑌𝑌𝑌𝑌 at the 
inputvector 𝑥𝑥 = (0,0,0) ∈ ℝ3 

 
We pick the inputvector to be 𝑥𝑥 = (0,0,0.33333333) ∈ ℝ3 and evaluate the following objects 
 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0.33333333) 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0.33333333) 
𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷 

Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0.33333333) Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0.33333333) 
 
and check whether they are identical. 
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Inputvector          

𝑥𝑥 = (0,0,0.33333333) ∈ ℝ3           

            

Values of Matlab Values of Delphi Absolut difference 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) Relative Difference 𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 

131.9097 211.7191 0.9321 131.9097 211.7191 0.9321 0.0000 0.0000 0.0000 0.00% 0.00% 0.00% 

   0.9956    0.9956    0.0000    0.00% 

   0.9474    0.9474    0.0000    0.00% 

   0.9721    0.9721    0.0000    0.00% 

   0.9189    0.9189    0.0000    0.00% 

   0.9840    0.9840    0.0000    0.00% 

   0.8756    0.8756    0.0000    0.00% 

   0.9653    0.9653    0.0000    0.00% 

   0.9259    0.9259    0.0000    0.00% 

   0.8439    0.8439    0.0000    0.00% 

   0.9633    0.9633    0.0000    0.00% 

   0.8933    0.8933    0.0000    0.00% 

   0.9604    0.9604    0.0000    0.00% 

   0.9712    0.9712    0.0000    0.00% 

   0.9026    0.9026    0.0000    0.00% 

   0.9226    0.9226    0.0000    0.00% 

   0.9932    0.9932    0.0000    0.00% 

   0.8918    0.8918    0.0000    0.00% 

   0.9950    0.9950    0.0000    0.00% 

    0.9654     0.9654     0.0000     0.00% 

Table 8: Comparison of the prediction function 𝑝𝑝, the estimated mean 𝜇𝜇� and the covariance vector 𝛴𝛴𝑌𝑌𝑌𝑌 at the 
inputvector 𝑥𝑥 = (0,0,0.33333333) ∈ ℝ3 

 
 
We pick the inputvector to be 𝑥𝑥 = (0,0,0.66666666) ∈ ℝ3 and evaluate the following objects 
 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0.66666666) 𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0.66666666) 
𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 𝜇𝜇�𝐷𝐷𝐷𝐷𝐷𝐷 

Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(0,0,0.66666666) Σ𝑌𝑌𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷(0,0,0.66666666) 
 
and check whether they are identical. 
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Inputvector          

𝑥𝑥 = (0,0,0.66666666) ∈ ℝ3          

            

Values of Matlab Values of Delphi Absolut difference 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) Relative Difference 𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝜇𝜇�𝑀𝑀𝑀𝑀𝑀𝑀 Σ𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) 

189.6673 211.7191 0.9121 189.6673 211.7191 0.9121 0.0000 0.0000 0.0000 0.00% 0.00% 0.00% 

   0.9884    0.9884    0.0000    0.00% 

   0.9378    0.9378    0.0000    0.00% 

   0.9849    0.9849    0.0000    0.00% 

   0.9044    0.9044    0.0000    0.00% 

   0.9656    0.9656    0.0000    0.00% 

   0.8643    0.8643    0.0000    0.00% 

   0.9695    0.9695    0.0000    0.00% 

   0.9490    0.9490    0.0000    0.00% 

   0.8625    0.8625    0.0000    0.01% 

   0.9816    0.9816    0.0000    0.00% 

   0.9182    0.9182    0.0000    0.00% 

   0.9563    0.9563    0.0000    0.00% 

   0.9811    0.9811    0.0000    0.00% 

   0.9091    0.9091    0.0000    0.00% 

   0.9374    0.9374    0.0000    0.00% 

   0.9691    0.9691    0.0000    0.00% 

   0.8931    0.8931    0.0000    0.00% 

   0.9935    0.9935    0.0000    0.00% 

    0.9391     0.9391     0.0000     0.00% 

Table 9: Comparison of the prediction function 𝑝𝑝, the estimated mean 𝜇𝜇� and the covariance vector 𝛴𝛴𝑌𝑌𝑌𝑌 at the 
inputvector 𝑥𝑥 = (0,0,0.66666666) ∈ ℝ3 

 

5.4 Discussion 

The probability that an error in the implementation has occurred is basically zero. As the results 
obtained from the different codes were transferred by copy and paste it is impossible to mistype. If a 
value would have been pasted in a wrong position the results would differ more than they do. The 
relative difference is not more than 0.01%. The difference can be explained by the different number of 
float digits that Matlab and Delphi calculate with. It is mentioned worthy that Delphi calculates in a 
higher number of float digits. Given the above explained examples and dozens of examples that we 
have not displayed we consider that the implementation is correct. There are no further 
investigations in this area.  
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