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Kurzzusammenfassung

Das Cyanobakterium Planktothrix rubescens besiedelt seit liber 100 Jahren den Ziirichsee und
entwickelte sich innerhalb der letzten 5 Jahrzehnte zum dominanten Organismus im planktischen
Nahrungsnetz. Aufgrund der Langzeit-Monitoring-Programme der Wasserversorgung Ziirich (WVZ)
und der Limnologischen Station Kilchberg (Universitat Zirich, UZH) lasst sich das Massenvorkommen
dieses Cyanobakteriums mittlerweile recht schliissig erklaren. Ins besonders konnen wir die
limnologischen (chemischen, physikalischen und biologischen) Bedingungen definieren, bei welchen
sich P. rubescens im Ziirichsee etablieren konnte und derzeit wachst. Da P. rubescens seit kurzem auch
im Bodensee auftritt, ist ein Vergleich der wichtigsten limnologischen Parameter beider Seen ein
erster Schritt um zu beurteilen, ob sich das Cyanobakterium im Bodensee zu einem quantitativ
dominanten Element der Nahrungskette entwickeln kdnnte.

- In diesem Forschungsprojekt vergleichen wir ausgewadhlte physikalische und chemische
Parameter der beiden Seen hinsichtlich ihrer Geschichte und der aktuellen Entwicklungen. Ein
besonderer Fokus wird auf die Periode 2015-2018 gerichtet, da P. rubescens im Jahr 2016 eine
herbstliche Massenentwicklung zeigte.

- Wir beschreiben die vielfdltigen Effekte der Seenerwdarmung welche in beiden Seen bereits
offensichtlich sind und setzen diese in Relation zu moglichen Entwicklungen von P. rubescens.
Im Zirich- und Bodensee zeigen sich die Effekte der Klimaerwarmung besonders ausgepragt
in der Abnahme der Durchmischungstiefe und den daraus folgenden Konsequenzen fiir die
raumliche Verteilung von Nahrstoffen.

- Planktothrix rubescens ist in beiden Seen potentiell phosphorlimitiert, obwohl es sich um zwei
unterschiedliche Seentypen handelt. Fir den Ziirichsee gibt es Hinweise, dass diese
Limitierung wahrend Teildurchmischungen aufgehoben werden kann. Im Bodensee hingegen
scheint dies fiir P. rubescens aufgrund der geringeren Phosphorwerte und der Tiefe des
Beckens nicht moglich zu sein.

- Seit dem Jahr 2010 erstellen wir im Zirichsee hochauflédsende Messprofile (zweiwdchentlich,
Oberflache bis 120m Tiefe) zu P. rubescens-relevanten Parametern. Mit Hilfe dieses
Datensatzes kénnen wir die Bedeutung des Metalimnions (Sprungschicht) als Habitat fir das
Cyanobakterium genau definieren. Die exakte Position des metalimnetischen
Populationsmaximums lasst sich anhand der optimalen Strahlungsintensitaten fir P. rubescens
gut erklaren.

- Diese Muster werden mit der Struktur des Metalimnions im Bodensee verglichen. Es zeigt sich,
dass die Tiefenausdehnung und saisonale Dynamik des Metalimnions im Bodensee theoretisch
forderlich flr P. rubescens waren.

- Als Erweiterung des urspringlichen Forschungsplans, werden erste genetische
Untersuchungen an P. rubescens Isolaten aus dem Bodensee prasentiert. Die Analyse der
Gasvesikel-codierenden Gene zeigte auf, bis zu welcher Durchmischungstiefe die
Cyanobakterien im Bodensee nicht geschadigt werden. Die Analyse der Microcystin-
codierenden Gene erlaubt uns erste Aussagen bezlglich der Toxizitdt der «Bodensee-
Planktothrix» zu treffen.

Ausgehend von den aufgefiihrten Resultaten stellen wir Griinde fiir und wider weiterer
Massenentwicklungen von Planktothrix rubescens im Bodensee dar.
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1. Relevanz von Planktothrix rubescens in Seen

1.1 Planktothrix rubescens — die ‘Burgunderblutalge’

Der Trivialname  Fast in jedem Herbst sieht man an einigen Schweizer Seen (z.B., Hallwilersee,
Murtensee, Ziirichsee) einen roétlichen Film auf der Wasseroberflache (Abb.1). Der
Volksmund spricht von der Burgunderblutalge, die Wissenschaftler von Planktothrix
rubescens und eigentlich ist es ein Cyanobakterium und keine Alge. Die
Cyanobakterien bilden millimeterlange rote Faden, die man schon mit freiem Auge
in einer Wasserprobe sehen kann.
Der Trivialname geht auf das erste beschriebene Vorkommen (im Jahr 1825!) im
Murtensee zuriick. Jedoch muss man noch weiter zuriick in der Geschichte: Die
Schlacht bei Murten (1476) wurde zwischen Truppen der Eidgenossenschaft und des
burgundischen Herzogs Karl des Kihnen im Rahmen der Burgunderkriege
ausgetragen. Die Truppen der Eidgenossenschaft trieben viele Soldaten der
Burgunder in den Murtensee. Die Schlacht war auch im 19ten Jahrhundert den
Bewohner des Murtensees noch bekannt. Als plotzlich rétliche Oberflachenfilme
(Massenvorkommen des Cyanobakteriums) zu sehen waren, glaubte man, das Blut
der verstorbenen Burgunder kommt wieder an die Oberflache.
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Abbildung 1. Massenentwicklung des toxischen Cyanobakteriums Planktothrix rubescens im Zirichsee. Im
Herbst, wenn es zu einer oberflachlichen Durchmischung des Wasserkorpers kommt, wird P. rubescens aus dem
Metalimnion in die turbulente Zone des Epilimnions eingetragen und bildet dann kurzlebige, rote
Oberflachensdume aus. Diese Ansammlungen werden haufig durch Winde an den Ufern auf-konzentriert.
Photos: D. Knapp.
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Planktothrix rubescens besiedelt seit ber 100 Jahren den Zirichsee und entwickelte
sich innerhalb der letzten 5 Jahrzehnte zum dominanten Organismus im
planktischen Nahrungsnetz (Posch et al. 2012, Yankova et al. 2016 & 2017). Der erste
schriftliche Nachweis geht auf einen Zeitungsartikel der NZZ zuriick, in dem auf das
Phdanomen des Burgunderbluts hingewiesen wird. Im Zirichsee-Untersee tritt P.
rubescens nachweislich seit dem Jahr 1897 auf. Massenentwicklungen gab es vor
der starksten Eutrophierungsphase. Eine massive Etablierung erfolgte seit den
1990er Jahren (Abb.2). Zu Zeiten der starksten Eutrophierung (um 1970) war P.
rubescens phasenweise kaum nachweisbar. Im Zirichsee-Obersee trat P. rubescens
bis dato nie abundant auf, Einzelfunde wurden jedoch berichtet. Aufgrund der
Langzeit-Monitoring-Programme der Wasserversorgung Ziirich (WVZ, Gammeter et
al. 1997, Schildknecht et al. 2013) und der Limnologischen Station Kilchberg (UZH)
lasst sich das Massenvorkommen dieses Cyanobakteriums mittlerweile recht
schlissig erklaren. Ins besonders kdnnen wir die limnologischen (chemischen,
physikalischen und biologischen) Bedingungen definieren, bei welchen sich P.
rubescens im Zirichsee etablieren konnte und derzeit wachst.
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Abbildung 2. Entwicklung des toxischen Cyanobakterium Planktothrix rubescens im Zirichsee fiir den Zeitraum
von 1976 bis Februar 2018 (monatliche Beprobung). Angegeben sind die gewichteten Mittelwerte der P.
rubescens Biomasse (FG = Frischgewicht) fir die Wassersdule von 0-20m. Probenstelle: Seemitte bei Thalwil.

1.2 Wachstumsdynamik

Jahresdynamik
von P. rubescens

Ob sich Planktothrix rubescens in einem See etablieren und bestandige Dichten
ausbilden kann, hangt von zahlreichen Faktoren ab (siehe Abb.3). Im Zirichsee
spielen zunehmend klimabedingte Verdanderungen des Sees eine Rolle (Posch et al.
2012, Yankova et al. 2016 & 2017). Basierend auf unserem Langzeitdatensatz
konnen wir die jahreszeitliche Populationsdynamik recht genau beschreiben.
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Abbildung 3. Bedeutende Faktoren fiir den Wachstumserfolg und die Etablierung von Planktothrix rubescens
in einem grossen thermisch geschichteten See.

Holomixis und Bei thermischer Schichtung (Sommer & Herbst) ist P. rubescens tiberwiegend in der
Populations-

Tiefenzone zw. 12-15m eingeschichtet, wobei die Schichtdicke meist nur 1m
dynamik

umfasst (Abb.4). Die Zellen von P. rubescens beinhalten Gasvesikel, wodurch das
,Schweben’ in dieser exakten Tiefe ermdglicht wird. Das Cyanobakterium ist
Schwachlicht-adaptiert und findet in dieser Tiefe die passenden Lichtverhaltnisse (6-
10 umol m2s). Bei zunehmender oberflachlicher Durchmischung und Turbulenzim
Spatherbst wird P. rubescens auch an die Oberflache gedriickt und bildet teilweise
massive rotliche Oberflachensdume (siehe Abb.1). Mit einer zunehmenden
Durchmischungstiefe im Winter und Frihjahr wird P. rubescens in die Tiefe
gedrickt, bei Holomixis (Volldurchmischung) bis 136m. Eine vollstandige Mixis
bewirkt grosse Verluste der Population, da die starksten Gasvesikel bei hohem Druck
(ab einer Tiefe von ca. 100m) zerstort werden und die Filamente somit nicht mehr
an die Oberflache gelangen kénnen. Daher ist das Cyanobakterium nach einer
Holomixis kaum nachweisbar im Frihsommer und der Aufbau einer neuen
Population beginnt erst im Spatsommer (Abb.4).

Partielle Mixis Wahrend der letzten 20 Jahre traten im Zirichsee immer haufiger unvollstiandige
und Populations-

Durchmischungen auf. Dadurch wir P. rubescens oft nur in Tiefen von 60-80m
dynamik

gedriickt, wodurch die Population zu fast 100% (berlebt (Abb.4). Schlechte
,Durchmischungsjahre’ flihren daher zu grossen Mengen an P. rubescens bereits im
Frihjahr und Friihsommer (Abb.4). Zudem tritt eine immer friihere thermische
Schichtung im Zirichsee ein, wodurch sich sehr schnell ein Metalimnion ausbildet,
welches besiedelt wird (Yankova et al. 2016).



Planktothrix im Zlrich-und Bodensee

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Abbildung 4. Schematische Darstellung der jahrlichen Populationsdynamik von Planktothrix rubescens im
Zirichsee in einem Jahr mit Holomixis (links) und einem Jahr mit unvollstandiger Friihjahrsdurchmischung
(rechts). Ein Grossteil der Population erreicht nach einer Holomixis nicht mehr das Epilimnion, weshalb in jenen
Jahren die Planktothrix-Dichten im Friihsommer meist sehr gering sind.

1.3 Toxizitat

Toxine der Viele Cyanobakterien-Arten produzieren toxische Sekunddrmetabolite, welche
Cyanobakterien haufig zellintern gelagert und nicht ins Freiwasser abgegeben werden. Durch diese
Substanzen werden Cyanobakterien fiir potentielle Konsumenten toxisch und
haben einen gewissen Frass-Schutz. Die meisten Toxine wirken potentiell auf alle
eukaryotischen Organismen, d.h. auf Einzeller, Tiere und auch auf den Menschen.
Die bekanntesten toxischen Substanzen sind: Cyanopeptoline, Anabaenopeptine,
Aeruginosine und Microcystine (Dittmann et al. 2013). Die Klasse der Microcystine
wurde bis dato am besten untersucht und so liberrascht es nicht, das bereits liber
90 Strukturvarianten dieses Cyanopeptids beschrieben wurden (Welker & Von
D6hren 2006, del Campo & Ouahid 2010, Qi et al. 2015).

Toxine von Auch flr Planktothrix rubescens wurde beschrieben, dass das Cyanobakterium
Planktothrix mehrere Microcystin-Varianten produzieren kann (Blom et al. 2001). Zudem scheint
das Cyanobakterium auch andere, oben erwdhnte Toxine bilden zu kénnen (Blom et
al. 2003). Durch die Toxizitdt von P. rubescens wird das Cyanobakterium kaum als
Nahrungsquelle von anderen Planktonorganismen genutzt (Kurmayer et al. 2016).
Ausserdem stellen die Toxine besondere Herausforderungen fiir die Trinkwasser-
gewinnung dar. Fur eine detaillierte Auflistung der ‘gesundheitlichen Bedeutung von
Cyanobakterientoxinen in Badegewassern’ verweisen wir auf das umfangreiche
Kapitel 3 von Dr. Hermann Fromme im Materialienband Nr. 125 des Bayerischen
Landesamtes fiir Umwelt (2006).

Folgen fiir die Hier verweisen wir nur kurz auf Planktothrix-relevante Aspekte fur den Ziirich- und
Nutzung des

Seewassers

Bodensee. Fiir die Bevélkerung an einem Planktothrix-belasteten See ergeben sich
drei Expositionsmoglichkeiten beziiglich der Cyanobakterientoxine:
1) Kontakt Giber die Haut beim Schwimmen oder Wassersport.
2) Kontakt lber das Einatmen von Aerosolen im Uferbereich und auf der
Wasseroberflache.
3) Direkte orale Aufnahme der Toxine (iber unbehandeltes Seewasser.
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Nutzung als
Badegewdsser

Trinkwasser-
gewinnung

Ad 1) Da Planktothrix rubescens wahrend der warmen Monate (‘Badesaison’) zur
Ganze im Metalimnion (d.h. mindestens 10m Wassertiefe oder tiefer) angesiedelt
ist, ergibt sich diese Expositionsmoglichkeit fiir Badende wohl kaum. Die Situation
andert sich in den Herbstmonaten, wenn sich die thermische Schichtung auflést und
die metalimnetischen Wasserschichten mit dem Epilimnion vermischt werden. In
dieser Jahreszeit kénnen auch die roten Oberflachenfilme auf den Seen beobachtet
werden. Es handelt sich dabei um Akkumulationen grosser Planktothrix-Mengen,
die durch die turbulenten Wasserbewegungen an die Oberflache gedriickt wurden.
Solange die Filamente noch intakt sind, kommt es zu keiner Freisetzung der Toxine.
Da P. rubescens jedoch bei hohen Lichtintensitdten schnell geschadigt wird, kdnnte
es an einem sonnigen Herbsttag sehr schnell zu einem Massensterben und einer
Freisetzung von Toxinen an der Seeoberfliche kommen. Das bedeutet, dass
«kalteresistente» Schwimmer im Herbst direkt den Toxinen ausgesetzt waren.
Soweit uns bekannt ist, gibt es jedoch hierzu noch keine veréffentlichten Studien.
Ebenso sind uns keine Studien bekannt, inwieweit bei einem solchen Szenario Toxin-
haltige Aerosole entstehen kdénnen.

Ad 3) Eine direkte Nutzung (d.h. ohne Reinigungsschritte) von Planktothrix-
belastetem Seewasser als Trinkwasser ist nicht moglich. Selbst mechanische
Reinigungsstufen einer Wasseraufbereitung reichen nicht aus, um die Toxine zu
eliminieren. Ein  mechanisches Aufbrechen der Planktothrix-Filamente
verschlimmert die Situation sogar, da durch diesen Schritt die zellgebundenen
Toxine erst freigesetzt werden. Die zuverldssigste Methode zur Zerstérung der
Toxine ist nach wie vor die Ozonierung des Rohwassers. Durch den Einsatz von Ozon
bei der Trinkwasseraufbereitung werden Microcystine innerhalb von Sekunden in
ihren molekularen Strukturen aufgebrochen und zerstért (von Gunten 2003,
Sovadinova et al. 2017). Dies bedeutet, dass alle Trinkwasserwerke, die Rohwasser
aus einem Planktothrix-belasteten See gewinnen, mit Ozonierungsstufen
ausgeristet sein sollten.

Inwieweit eine direkte orale Aufnahme von Toxinen Uber Fische oder Fischprodukte
aus einem Planktothrix-See moglich ist, ldsst sich nach wie vor schwer beurteilen.
Relevante und seri6se Literatur zu diesem Thema findet man kaum (Sotton et al.
2014). Da P. rubescens aufgrund ihrer Toxizitdt von fast allen planktischen
Konsumenten gemieden wird, erscheint die Gefahr einer Akkumulation der Toxine
Uber die Nahrungskette als eher gering.

1.4 Okosystemare Relevanz

Dominanz im
Okosystem

Planktothrix rubescens hat das Potential in Bezug auf die Gesamtbiomasse zur
dominantesten Art in einem Seedkosystem zu werden. Da das Cyanobakterium
kaum natirliche Frassfeinde hat, muss P. rubescens als ,sink’ und nicht als ,link‘ fur
das Nahrungsnetz und den Nahrstoffpool angesehen werden. Dadurch tritt das
Cyanobakterium mit anderen Primarproduzenten (klassische Algen) in starke
Konkurrenz um verfligbare Na&hrstoffe. Im Ziirichsee konnten wir drastische
Reduktionen von zentrischen Kieselalgen, Chrysophyten und Cryptophyten
wahrend der Algen-Friihjahrsbliite beobachten (Yankova et al. 2017).
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Klimawandel und  AJle grossen Seen im Alpenraum werden durch den Klimawandel derzeit massiv

P. rubescens

beeinflusst (Salmaso et al. 2018 und Zitate darin). Die zunehmende Erwarmung des
Wasserkorpers bedingt strukturelle Veranderungen der physikalischen, chemischen
und biologischen Parameter.

Durch die zunehmende Erwarmung des Zirichsees und die daraus verringerte
Durchmischungstiefe Uberlebt P. rubescens mittlerweile auch die kalten
Wintermonate und zeigt jahrlich wiederkehrende Bliten trotz der markanten
Nahrstoffabnahme (Posch et al. 2012). Zudem scheinen sich die
Nahrstoffverhdltnisse (Stéchiometrie) in einigen Seen derzeit so zu verschieben,
dass ein potentielles Wachstum von P. rubescens gefordert wird. Vor allem der
Uberschuss an Nitrat ist hier von grosser Bedeutung (Yankova et al. 2017).
Planktothrix rubescens wurde mittlerweile in zahlreichen grossen Seen des
Alpenraums nachgewiesen (Ernst et al. 2009, D’Alelio et al. 2011, Dokulil &Teubner
2012, Kurmayer et al. 2015 & 2016).

2. Fragestellungen des Forschungsprojektes

Entscheidende
Parameter

Planktothrix im
Bodensee

Bearbeitete
Fragestellungen

Durch unsere Arbeiten Uber P. rubescens am Zirichsee kdnnen wir einige
limnologische Faktoren nennen, welche den Wachstumserfolg von P. rubescens
fordern oder behindern.

Durch das «plotzliche» Auftreten (seit ca. 2016) von Planktothrix im Bodensee stellt
sich die Frage, ob vergleichbare limnologische Bedingungen das Wachstum dieses
Cyanobakteriums fordern konnten. Einzelne Hinweise gibt es jedoch, dass
Planktothrix in geringen Mengen schon vor 2016 im Bodensee auftrat, aber wohl oft
unter der Nachweisgrenze lag. Fir beide Seen gibt es ab dem Jahr 1976
hochauflosende (zeitlich und rdumlich) Langzeitdatensatze zur Biologie, Chemie und
Physik. Ein Vergleich der wichtigsten limnologischen Parameter beider Seen ist ein
erster Schritt um zu beurteilen, ob sich P. rubescens auch im Bodensee zu einem
guantitativdominanten Element in der Nahrungskette entwickeln kénnte.

Folgende Themen wurden in diesem Bericht bearbeitet:

- Kurzbeschreibung und Vergleich der beiden Seen bezgl. morphometrischer
Kenngrossen.

- Darstellung und Vergleich der limnologischen (chemisch / physikalisch)
Bedingungen im Zirich- und Bodensee auf Grundlage der Langzeitdaten.

- Darstellung der klimabedingten Erwarmung des Zirich- und Bodensees und
ersichtliche bzw. zukiinftige Verdanderungen der Seen.

- Darstellung der Dynamik von P. rubescens im Ziirichsee (Langzeitdynamik) und
hochauflésender Datensatz seit 2010.

- Auswirkungen von P. rubescens Massenentwicklungen auf das Okosystem

Zirichsee.
- Bedeutung des Metalimnions als Habitat flr P. rubescens.
- Basierend auf der beschriebenen Dynamik im Zirichsee - Welche

limnologischen Bedingungen sprechen flr oder gegen eine Etablierung von P.
rubescens im Bodensee.

- Die Massenentwicklung von P. rubescens im Bodensee im Jahr 2016.

- Erste genetische Untersuchungen zu P. rubescens Isolaten aus dem Bodensee
bezlglich Gasvesikel-Typen und Toxizitat.
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3. Methodik
3.1 Morphometrie der Seebecken des Ziirich- und Bodensees

Morphometrische Fijr diesen Bericht wurden vor allem Daten der beiden grossen Seebecken
Parameter & miteinander verglichen, d.h. Zirichsee (Untersee) versus Bodensee (Obersee) —

Kenngréssen

siehe Abbildung 5 und Tabelle 1. Dieser Vergleich soll v.a. zeigen, ob im Bodensee-

Obersee limnologische Bedingungen auftreten konnen, die eine Etablierung von P.
rubescens erlauben wirden. Zudem wurden auch ausgewahlte Daten vom
Bodensee-Untersee ausgewertet, da einzelne Bereiche dieses Seebeckens rein von
den morphometrischen Parametern her (Tabelle 2), ein potentielles Habitat fiir P.

rubescens darstellen konnten.
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Tabelle 1. Vergleich relevanter morphometrischer und limnologischer Kenngrossen der beiden Seen (aus

Gammeter et al. 1997, Schildknecht et al. 2013, Glude & Straile 2016).

Ziirichsee (ZS) Bodensee (BS)
Untersee Obersee Untersee Obersee
Oberfliche 66.6 km? 21.7 km? 63 km? 473 km?
Volumen 3.3 km? 0.4 km?3 0.8 km?3 47.6 km3
Maximale Wassertiefe (zmax) 136 m 48 m 40m 251m
Mittlere Wassertiefe (z,) 51m 23 m 13 m 101 m
Uferldnge 87.6 km 87 km 186 km
Theoretische Wassererneuerung ~1.2 Jahre ~59 Tage ~wenige Wochen ~4.5 Jahre
Einzugsgebiet 1740 km? 1565 km? — 11500 km?
Wasserstand reguliert nicht reguliert
Durchmischungstyp Monomiktisch (Friihjahr) Dimiktisch Monomiktisch
(Frihjahr & Herbst) (FrGhjahr)
Langzeitdaten Wasserversorgung Zirich (WVZ) BOWIS-Daten der IGKB

& Limnologische Station

& ISF (Langenargen)
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Tabelle 2. Relevante morphometrische und limnologische Kenngrdssen einiger Seebecken im Bodensee (aus
Gude & Straile 2016, Bodensee Karte 1 —Teilseen und RheinmiindungATKIS®-DLM250 Deutschland).

Obersee (BS) Untersee (BS)
Bregenzer Uberlinger Gnadensee Zeller See Rheinsee
Bucht See (GS, inkl. (2S) (RS)
(BR) (Us) Markelfinger
Winkel)

Oberfliache k.A. 59 km? 13 km? 11 km? 36 km?
Maximale Wassertiefe (zmax) 60 m 147 m 20m 24 m 47 m
Theoretische Wasserer- k.A. k.A. ~im Bereich  ~ zwischen ~im Bereich von
neuerung von Jahren GN und RS Tagen
Durchmischungstyp Monomiktisch (Friihjahr) Dimiktisch (Frihjahr & Herbst)
Langzeitdaten BOWIS-Daten der IGKB & ISF (Langenargen)

k.A. = keine Angaben

3.2 Ausgewertete Parameter und Angaben zu Datenquellen

Standardtiefen Zur Charakterisierung der Reoligotrophierung und des aktuellen Gewasserzustandes
versus

reichen die vorliegenden Monatsdaten der Standard-Probentiefen aus (Tabellen 3-
Messprofile

4). Fir eine genaue Charakterisierung der saisonalen Dynamik von P. rubescens hat
sich gezeigt, dass hochauflésende Messprofile mit in situ Sonden von grossem
Vorteil sind (Tabelle 5). Messdaten in 1m Schritten (besser sogar in 0.25m Schritten)
sind die Voraussetzung, um die vertikale Populationsstruktur von P. rubescens zu
dokumentieren. Wahrend stabiler thermischer Schichtungsphasen befindet sich das
Maximum von P. rubescens im Metalimnion und das Populationsmaximum ist
teilweise nur in einer 0.5-1m breiten Tiefenschicht ausgebildet.

Tabelle 3: Auflistung ausgewerteter Daten Zirichsee (ZS), monatliche Beprobungen.

Parameter Einheit Zeitraum Tiefen Probenstellen
Temperatur °C 1975-2018 Standardtiefen TH
Gesamtphosphor (TP) pg Lt 1975-2018 Standardtiefen TH
Orthophosphat (PO,4-P) pg Lt 1975-2018 Standardtiefen TH
Partikuldrer Phosphor (PP) pg Lt 1975-2018 Standardtiefen TH
Nitrat (NOs-N) pg Lt 1975-2018 Standardtiefen TH
Ammonium (NH4-N) pg Lt 1975-2018 Standardtiefen TH
Sauerstoff (0,) mg L1 1975-2018 Standardtiefen TH
Silikat (SiO,) mg L1 1975-2018 Standardtiefen TH
Planktothrix rubescens pg FG L1 1976-2018 Standardtiefen, ab 2012 TH
Biomasse Integralproben (0-20m)

Standardtiefen der Probenstelle Thalwil (TH): 0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 60, 80, 100, 120, 130, 135m
Datenquelle: Wasserversorgung Ziirich (WVZ)
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Tabelle 4: Auflistung ausgewerteter Daten Bodensee (BS), monatliche Beprobungen.

Parameter Einheit Zeitraum Tiefen Probenstellen
Temperatur °C 1976-2017 Standardtiefen FU
°C 2015-2018 Hochauflésende FU
Tiefenprofile (teilweise 2x
pro Monat)
°C 1997-2017 Standardtiefen GN
PAR (photosynthetisch pumol m2 st 2018 1m Schritte (0-30m) FU
aktive Strahlung)
Gesamtphosphor (TP) ug L? 1976-2017 Standardtiefen FU
ug L? 2015-2017 Standardtiefen GN
Orthophosphat (PO,4-P) ug L? 1976-2017 Standardtiefen FU
ug L? 1997-2017 Standardtiefen GN
Partikulirer Phosphor (PP) ug L? 1976-2017 Standardtiefen FU
ug L? 2015-2017 Standardtiefen GN
Nitrat (NOs-N) ug L? 1976-2017 Standardtiefen FU
ug L? 2015-2017 Standardtiefen GN
Ammonium (NH4-N) ug L? 1976-2017 Standardtiefen FU
ug L? 2015-2017 Standardtiefen GN
Sauerstoff (0) mg L? 1976-2017 Standardtiefen FU
mg L? 2015-2018 Hochauflésende FU
Tiefenprofile (teilweise 2x
pro Monat)
mg L? 2015-2017 Standardtiefen GN
Silikat (SiO,) mg L? 1976-2017 Standardtiefen FU

Standardtiefen der Probenstelle Fischbach-Uttwil (FU): 0, 5, 10, 15, 20, 30, 50, 100, 150, 200, 230, 250m
Standardtiefen der Probenstelle Gnadensee (GN): 0, 5, 10, 15, 19, 20m

Datenquellen: BOWIS - Bodensee-Wasserinformationssystem der Internationalen Gewasserschutz-Kommission
fur den Bodensee (IGKB). Hochauflosende Profile wurden vom ISF (Institut fiir Seenforschung Langenargen) zur
Verfligung gestellt.

Tabelle 5: Auflistung hochauflésender Sondendaten Zirichsee (ZS), zweiwdchentliche Beprobungen, Zeitraum:
Januar 2010 bis Oktober 2019.

Parameter Einheit Tiefen Probenstelle Sonde
Temperatur °C 0.5 m Schritte (0-120 m) TH YSI 6600
Sauerstoff (0,) mg L? 0.5 m Schritte (0-120 m) TH YSI 6600
Phycoerythrin (Pigment) RFU 0.5 m Schritte (0-120 m) TH YSI 6600
PAR (photosynthetisch pumol m?2 s 1 m Schritte (0-25 m) TH LICOR
aktive Strahlung)
Gesamtchlorophyll (Chl-a) pg Lt 0.5 m Schritte (0-120 m) TH bbe
FluoroProbe
Planktothrix rubescens pg Lt 0.5 m Schritte (0-120 m) TH bbe
zugeordnetes Chlorophyll FluoroProbe

Datenquelle: Limnologische Station der Universitat Ziirich

Datenquelle zu Monatsmittel Lufttemperatur Zirichsee (Station Zlrich/Fluntern): Bundesamt fur
Meteorologie und Klimatologie MeteoSchweiz.

Datenquelle zu Monatsmittel Lufttemperatur Bodensee (Station Konstanz): Deutscher Wetterdienst,
BOWIS - Bodensee-Wasserinformationssystem der Internationalen Gewdsserschutz-Kommission
fir den Bodensee (IGKB).

Graphische Darstellung: SigmaPlot Versionen 13/14.
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4. Vergleich der Langzeitentwicklungen des Ziirich- und Bodensees

4.1 Reoligotrophierungs-Geschichte (Phosphor)

Gesamtphosphor

Grosse
Unterschiede im
Hypolimnion

Orthophosphat

Die beiden Seen zeigen bzgl. des epilimnetischen Gesamtphosphors (Totalphosphor
= TP) eine erstaunlich synchrone Reoligotrophierungs-Geschichte (Abb.6). Dies gilt
fiir die Spitzenwerte ab 1975, fiir die logarithmische Abnahme der Konzentrationen,
sowie flir die aktuell erreichten Werte. Mitte der 1970er Jahre wurden im Epilimnion
(Om Wassertiefe) des Bodensees mit 100 pg L leicht héhere Konzentrationen
erreicht als im Ziirichsee (ca. 90 pg L?). Heutzutage liegen die Maximalwerte im
Bodensee bei ca. 12 pg L?, im Zirichsee sind die Konzentrationen doppelt so hoch
bei ca. 24 pg L* (Abb.7). Die metalimnetischen TP-Werte des Zirichsees spiegeln
mittlerweile die Populationsdynamik von P. rubescens wider. Wahrend der stabilen
thermischen Schichtung (Friihjahr bis Herbst) ist P. rubescens in 12.5m zu fast 100%
fir den TP verantwortlich.

Ein Vergleich der hypolimnetischen TP Konzentrationen spiegelt die beiden
unterschiedlichen Seentypen wider (Abb.6). Die hypolimnetischen TP Werte werden
in beiden Seen primar von geldstem Phosphor (siehe Kapitel Orthophosphat)
dominiert. Der Bodensee hatte im Beobachtungszeitraum stets ein oxisches
Hypolimnion und im Vergleich zum Zirichsee relativ geringe TP Konzentrationen mit
Maximalwerten von frither ca. 160 ug L?, und aktuellen Werten von ca. 20 pg L.
Der Zirichsee hingegen weist alljahrlich eine starke Sauerstoffzehrung und damit
ein mehr oder weniger grosses anoxisches Hypolimnion auf. Aufgrund der
Seebecken-Morphometrie erscheint diese jahreszeitliche Dynamik als erkldrbar. Die
klimatisch bedingten schlechten Frihjahrsdurchmischungen der letzten Jahre
haben allerdings die Sauerstoffarmut in der Tiefe zunehmend verstarkt. Durch die
jahreszeitlichen anoxischen Phasen kommt es meist zu einer starken Riicklésung von
Orthophosphat aus dem Sediment und heutzutage sehr hohen TP Werten Uber
Grund mit phasenweise ca. 200 pg L (Abb.7). Bemerkenswert ist, dass insgesamt
der hypolimnetische TP im Ziirichsee seit dem Jahr 1995 nahezu stabil ist.

Die Langzeittrends fiir das Orthophosphat (Abb.8&9) zeigen ebenso wie der
Gesamtphosphor die Reoligotrophierung beider Seen seit Mitte der 1970er Jahre
und werden daher nicht weiter diskutiert. Bedeutend sind die griin hinterlegten
Peaks in allen Graphen, welche die Anreicherung des Epi- und Metalimnions mit
Orthophosphat wahrend der Friihjahrszirkulation zeigen. Diese jahrliche
Anreicherung ist von grosster Bedeutung fir die Ausbildung von Phytoplankton-
Frihjahrsbliten (Posch et al. 2015, Yankova et al. 2017). Betrachtet man nur den
Zeitraum von 2000 bis 2018 (Abb.8), so werden zwei Trends ersichtlich: i) Die
Anreicherung des Epilimnions im Friihjahr wurde in beiden Seen sehr gering (BS: ca.
4 pg LY, ZS: ca. 10 pug LY. ii) Die zunehmend schwache Durchmischung (siehe Kapitel
6.5) bewirkt zumindest im Ziirichsee eine drastische Verarmung des Epilimnions an
geléstem Orthophosphat. Dadurch kam es im Zirichsee zu einer plotzlich
auftretenden Verstarkung der Reoligotrophierung. Besonders drastisch war die
Phase von 2013-2017, in der keine erkennbare Anreicherung mit Orthophosphat
feststellbar war (Abb.8).
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Planktothrixund  Dje Durchmischungstiefen scheinen jedoch noch ausreichend zu sein, dass
Orthophosphat  p 1 hescens wihrend der Wintermonate in Tiefen (60-80m) mit héheren
Orthophosphat-Konzentrationen gelangt und diese auch nutzt. Dies ist sicherlich
eine weitere Ursache, warum seit 2013 im Zirichsee die epilimnetischen
Orthophosphat-Werte auch nach der Frihjahrsdurchmischung nahe der

Nachweisgrenze liegen.
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Abbildung 6. Langzeitdaten zum Verlauf des Gesamtphosphors im Zirichsee (ZS, ab 1975 bis Ende 2018) und
Bodensee (BS, ab 1976 bis Ende 2017). Es wurden drei Tiefenstufen ausgewahlt, welche reprasentativ fiir das
Epilimnion (Om), Metalimnion (ZS: 12.5m, BS: 15m) und Hypolimnion (ZS: 135m, BS: 250m — beide Tiefen knapp
Uber Grund) stehen. Dargestellt sind die Monatswerte, der gleitende Mittelwert (running average; ZS: rot, BS:
blau) und griin hinterlegt sind die Werte wahrend der potentiellen Durchmischungsphase (Januar bis Mai). Fir
das Metalimnion des Zirichsees wird zudem die Dynamik von Planktothrix rubescens (graue Flache) gezeigt.
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Abbildung 7. Detailansicht fur die Werte aus Abb.6. Dargestellt ist die Entwicklung des Gesamtphosphors im Epi-
und Hypolimnion fir die Periode von 2000 bis Ende 2018 (ZS) bzw. Ende 2017 (BS). Fiir Details der Farbcodierung
siehe Beschriftung von Abb.6.
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Abbildung 8. Detailansicht fiir die Werte aus Abb.9. Dargestellt ist die Entwicklung des Orthophosphat im Epi-
und Hypolimnion fiir die Periode von 2000 bis Ende 2018 (ZS) bzw. Ende 2017 (BS). Fiir Details der Farbcodierung
siehe Beschriftung von Abb.9.
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Abbildung 9. Langzeitdaten seit 1976 zum Verlauf des biologisch verfligbaren Orthophosphat im Ziirichsee (ZS,
bis Ende 2018) und Bodensee (BS, bis Ende 2017). Es wurden drei Tiefenstufen ausgewahlt, welche reprasentativ
fiir das Epilimnion (Om), Metalimnion (ZS: 12.5m, BS: 15m) und Hypolimnion (ZS: 135m, BS: 250m — beide Tiefen
knapp lber Grund) stehen. Dargestellt sind die Monatswerte, der gleitende Mittelwert (running average; ZS: rot,
BS: blau) und griin hinterlegt sind die Werte wahrend der potentiellen Durchmischungsphase (Januar bis Mai).
Flr das Metalimnion des Ziirichsees wird zudem die Dynamik von Planktothrix rubescens (graue Flache) gezeigt.
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Die Langzeittrends der Sauerstoffkonzentrationen (Abb.10&11) zeigen eine sehr

dhnliche Dynamik fir das Epilimnion, jedoch grosse Unterschiede fiir das Meta- und

Hypolimnion. Im Ziirichsee entwickelt sich regelméssig ein massives (Abnahme bis

auf 2 mg O, L) metalimnetisches Sauerstoffminimum (meist zwischen 10-20m
Wassertiefe). Seit den 1990er treten jedoch auch hohe Ubersittigungen v.a. im
Spatsommer auf, bedingt durch die hohe Photosyntheseleistung von P. rubescens.
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Abbildung 10. Langzeitdaten zum Verlauf der Sauerstoff-Konzentrationen im Zirichsee (ZS, ab 1975 bis Ende
2018) und Bodensee (BS, ab 1976 bis Ende 2017). Es wurden drei Tiefenstufen ausgewahlt, welche reprasentativ
flir das Epilimnion (Om), Metalimnion (ZS: 12.5m, BS: 15m) und Hypolimnion (ZS: 135m, BS: 250m — beide Tiefen
knapp lGber Grund) stehen. Dargestellt sind die Monatswerte, der gleitende Mittelwert (running average; ZS: rot,

BS: blau) und griin hinterlegt sind die Werte wahrend der potentiellen Durchmischungsphase (Januar bis Mai).

Flr das Metalimnion des Ziirichsees wird zudem die Dynamik von Planktothrix rubescens (graue Flache) gezeigt.
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Unterschiedeim  Ein Vergleich der hypolimnetischen Sauerstoffkonzentrationen spiegelt die zwei

Hypolimnion unterschiedlichen Seentypen wider. Im Zirichsee entwickelt sich alljghrlich
wahrend der stabilen thermischen Schichtung eine starke O, Zehrung tGber Grund.
Oft werden am Jahresende sogar anoxische Verhaltnisse erreicht und diese Dynamik
ist aufgrund der Seebecken-Morphometrie nachvollziehbar. Von besonderer
Bedeutung fiir die jahrliche O, Auffrischung ist die Phase der Frihjahrs-
durchmischung (griin hinterlegte Daten). Der Bodensee weist (ber den gesamten
Zeitraum eine stets aerobe Tiefenschicht mit ca. 8 mg O, L auf.

Klimaerwdrmung  Markant fir beide Seen ist eine Reduktion der O, Konzentrationen im Jahr 1989. Fiir

;;i:;’lfs’;er o, jenes Jahr wurde eine extrem schwache Durchmischungsdynamik berichtet (Posch

Gehalt et al. 2012, Gide & Straile 2016). Beide Seen zeigen seit 2010 (Abb.10) eine
drastische und linear ablaufende Abnahme der Sauerstoffkonzentrationen. Im
Zirichsee entstanden dadurch ganzjahrliche anoxische Bedingungen.
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Abbildung 11. Detailansicht fir die Werte aus Abb.10. Dargestellt ist die Entwicklung der Sauerstoff-
Konzentrationen im Epi-, Meta- und Hypolimnion fiir die Periode von 2000 bis Ende 2018 (ZS) bzw. bis Ende 2017
(BS). Fiir Details der Farbcodierung siehe Beschriftung von Abb.10.
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4.3 Nitrat
Markante In beiden Seen ist bis zu den 1990er Jahren eine Zunahme der Nitrat-Stickstoff (NOs-
Unterschiede N) Konzentrationen zu verzeichnen (Abb.12). Allerdings liegen die Spitzenwerte im
Bodensee in allen Tiefenstufen deutlich Gber den Werten des Zirichsees.
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Abbildung 12. Langzeitdaten zum Verlauf des Nitrat-Stickstoffs im Zirichsee (ZS, ab 1975 bis Ende 2018) und
Bodensee (BS, ab 1976 bis Ende 2017). Es wurden drei Tiefenstufen ausgewahlt, welche reprasentativ fir das
Epilimnion (Om), Metalimnion (ZS: 12.5m, BS: 15m) und Hypolimnion (ZS: 135m, BS: 250m — beide Tiefen knapp
Uber Grund) stehen. Dargestellt sind die Monatswerte, der gleitende Mittelwert (running average; ZS: rot, BS:
blau) und griin hinterlegt sind die Werte wahrend der potentiellen Durchmischungsphase (Januar bis Mai). Fir
das Metalimnion des Zirichsees wird zudem die Dynamik von Planktothrix rubescens (graue Flache) gezeigt.
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Starke Abnahme  Dje Langzeitentwicklung in beiden Seen verlief ab Mitte der 1990er Jahre allerdings

;Z:ic’\ilg;lv im sehr unterschiedlich (Abb.12&13). Wé&hrend im Bodensee die NOs-N
Konzentrationen seit den 1990ern quasi konstant geblieben sind, ist flr den
Zirichsee eine markante und in mehreren Stufen erfolgende Abnahme der Werte
festzuhalten. Teilweise werden nur noch 50% der friiheren NO3-N Werte erreicht.
Nach unserem Kenntnisstand ladsst sich die Abnahme nicht auf Verdanderungen des
Eintrags von Klaranlagen am See zuriickfiihren. Dies ware denkbar, wenn zahlreiche
Anlagen gleichzeitig mit einer N-Elimination (z.B. Denitrifikation) begonnen hatten.
Die Abnahme im Zirichsee hat einerseits mit der veranderten
Durchmischungsdynamik zu tun. Die starke Abnahme des Sauerstoffgehalts im
Hypolimnion bedingt eine markante Abnahme des hypolimnetischen Nitrats (d.h.
fehlende Nitrifikation von NH4 zu NOs). Andererseits ist es sehr wahrscheinlich, dass
P. rubescens direkt fir die Abnahme von NO; im Epi- und Metalimnion
verantwortlich ist. Das Cyanobakterium besitzt keine Heterocysten, d.h. es kann
nicht direkt N, fixieren, sondern braucht NOs;, NH; und sogar Aminosduren als
Stickstoffquellen.
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Abbildung 13. Detailansicht fiir die Werte aus Abb.12. Dargestellt ist die Entwicklung des Nitrat-Stickstoffs im
Epi- und Hypolimnion fir die Periode von 2000 bis Ende 2018 (ZS) bzw. Ende 2017 (BS). Fur Details der
Farbcodierung siehe Beschriftung von Abb.12.
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5. Darstellung limnologischer Kenngrossen fiir die Periode 2015-2019

5.1 Vergleich der grossen Seebecken

Temperatur und  |m Bodensee kam es im Herbst 2016 zu einem Massenvorkommen von Planktothrix

Sauerstoff rubescens, in den Folgejahren waren jedoch keine weiteren Massenentwicklungen
beobachtbar. Um allféllige limnologische Besonderheiten der letzten Jahre (2015-
2018) zu erkennen, zeigen wir flUr ausgewdhlte Parameter die gesamten
Tiefenprofil-Messungen als Contour-Plots (Abb.14&15). Aufféllig ist in beiden Seen
die Periode von schwachen Durchmischungen in den Jahren 2015-2017 (siehe auch
Kapitel 6). Dies ist bereits in den Temperaturprofilen erkennbar, d.h. in der
Erwdarmung des Hypolimnion beginnend im Januar 2016 bis Januar 2018. Zudem
kam es in beiden Seen nur zu einer teilweisen Erhdhung der Sauerstoff-
Konzentrationen wahrend der Friihjahrsmonate. Im Zirichsee entwickelte sich in
dieser Periode eine stark ausgepragte Sauerstoffarmut im tiefen Hypolimnion. Fir
die detaillierte Darstellung der Konsequenzen schwacher Durchmischungen
verweisen wir auf die Kapitel 6.3-6.5. Bedeutend ist, das im Jahr 2018 beide Seen
wieder eine tiefergreifende Durchmischung aufwiesen.
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Abbildung 14. Temperatur und Sauerstoffverhaltnisse im Zirichsee (linke Graphen, zmax=135m) und Bodensee
(rechte Graphen, zmax=250m) fiir den Zeitraum Januar 2015 bis Dezember 2018.

Phosphor im Durch die anaeroben Verhaltnisse im Hypolimnion des Ziirichsees kam es zu starken

Ziirichsee Rucklésungen von Orthophosphat in der Tiefe (Abb.15). Dabei werden
Konzentrationen von tiber 180 pg P L! erreicht. Seentypus-bedingt entwickelt sich
fast jedes Jahr eine Sauerstoffarmut in der Tiefe und somit handelt es sich um ein
bekanntes Phdnomen, welches allerdings in den Jahren 2015-2017 verstarkt war.
Bemerkenswert sind drei Aspekte bezgl. geléstem Phosphor:
(i) das Orthophosphat scheint in der Tiefe nicht effektiv von Bakterien genutzt zu
werden.
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(i) Selbst in der Tiefenzone von 40-80 Metern werden relativ hohe Konzentrationen
gemessen (15-30 ug P L?).
(iii) In den Jahren 2015 bis 2017 kam es zu keinem messbaren Transport von
Orthophosphat aus dem Hypo- ins Epilimnion wahrend der Frihjahrs-
durchmischung.
Ad (iii): Betrachtet man nur die Dynamik des Gesamtphosphors im Zirichsee, kénnte
man das Gegenteil vermuten, namlich, dass es im Frihjahr zu einer
Phosphoranreicherung der Oberflache auch in den Jahren 2015 bis 2017 kam. Diese
Dynamik spiegelte allerdings nur die Dynamik des partikularen Phosphors wider.
Und diese Dynamik entsprach fast zu hundert Prozent der Populationsentwicklung
von Planktothrix rubescens (siehe Abb.16). Das vermeintliche «Upwelling» von
Orthophosphat entsprach in Tatsache dem «Downwelling» von P. rubescens in
Orthophosphat-reiche Tiefenschichten.
Phosphor im Im Bodensee sind die Orthophosphat-Konzentrationen selbst (iber Grund um einen
Bodensee Faktor 10 niedriger und tbersteigen kaum 20 pg P L™. Auch im Bodensee trat im
Zeitraum 2015-2017 eine leichte Anreicherung von Orthophosphat (iber Grund auf.
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Abbildung 15. Konzentrationen an Gesamtphosphor, Orthophosphat und partikuldrem Phosphor im Ziirichsee
(linke Graphen, zmax=135m, Januar 2015 bis Dezember 2018) und Bodensee (rechte Graphen, zmax=250m, Januar
2015 bis Dezember 2017). Der partikuldre Phosphor im Zirichsee spiegelt die Populationsdynamik von
Planktothrix rubescens wider (siehe Abb.16).
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Planktothrix spezifisches Chlorophyll (ug L“)
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Abbildung 16. Konzentrationen an Planktothrix rubescens im Zirichsee gemessen als spezifische Chlorophyll a
Werte (in pg Chl a L) mittels bbe-Fluoroprobe-Sonde. Die Abbildung beruht auf zweiwéchentlichen Profilen
zwischen Om bis 120m Tiefe in 1m Intervallen. Messperiode: Januar 2015 bis November 2018.
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Abbildung 17. Konzentrationen an Nitrat-Sickstoff, Ammonium-Stickstoff und Silikat im Zirichsee (linke Graphen,
Zmax=135m, Januar 2015 bis Dezember 2018) und Bodensee (rechte Graphen, zmxx=250m, Januar 2015 bis
Dezember 2017).
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Nitrat

Ammonium

Silikat

Fazit fiir den

Zeitraum von
2015-2018

Auffallig sind die sehr hohen Nitratkonzentrationen in der gesamten Wassersaule
des Bodensees im Vergleich zum Ziirichsee (Abb.17). In beiden Seen sieht man eine
durch Primarproduzenten bedingte epilimnetische Zehrung im Jahresverlauf.
Wahrend die Zehrung im Bodensee wohl primar durch eukaryotische Algen
verursacht wird, dirfte dieses wesentlich ausgepragtere Phanomen im Zirichsee
auch stark durch P. rubescens verursacht sein. Trotz der unzureichenden
Auffrischung des Hypolimnions mit Sauerstoff im Zeitraum 2015-2017 (siehe
Abb.14), wurden fur den Zirichsee wahrend der Durchmischungsperioden
zunehmende Nitratkonzentrationen Uber Grund festgestellt. Im Jahresverlauf
nahmen die Konzentrationen dann jeweils rasch ab.

Die jahrlich wiederkehrenden anoxischen Phasen im Hypolimnion des Ziirichsees
fihrten zu hohen Ammonium-Konzentrationen mit Werten bis 1 mg NH4-N L™ Gber
Grund (135m). Ab einer Tiefe von 100m und somit erhohten Sauerstoff-
konzentrationen kommt es jedoch schnell zur Nitrifikation von NH zu NO; (Abb.17).
Die jahreszeitlichen epilimnetischen Zehrungen an Silikat gehen in beiden Seen wohl
primar auf das Wachstum von zentrischen und pennaten Diatomeen zuriick
(Abb.17). Im Zirichsee sind es mittlerweile vor allem Kieselalgenbliten im Sommer
und Frihherbst, die fur die Abnahme der Silikat-Konzentrationen verantwortlich
sind (Yankova et al. 2017). Auffallig ist fur beide Seen die Zunahme der
hypolimnetischen Silikat-Konzentrationen im Zeitraum 2015-2017. Auch dieses
Muster spricht flr unzureichende Seen-Durchmischungen in dieser Periode.
Betrachtet man die Dynamik der wichtigsten chemischen Parameter im Bodensee
flir den Zeitraum von 2015 bis 2018, so ergibt sich keine Auffilligkeit, die das
plotzliche Auftauchen von P. rubescens erklaren konnte. Einzig die &dusserst
schwache Durchmischung in den Vorjahren und im Jahr 2016 selbst muss als
Besonderheit angesehen werden.

5.2 Limnologie des Gnadensees

Rheinsee,
Zellersee und
Gnadensee

Temperatur und
Sauerstoff

Im Gegensatz zum Bodensee-Obersee weist der Untersee einige flachere Becken auf
(siehe Tabelle 2). Selbst bei einer Holomixis in diesen Bereichen, wiirden die
schwachsten Gasvesikel-Varianten von Planktothrix rubescens nicht geschadigt
werden. Die kurze theoretische Wassererneuerungszeit des Rheinsees sowie des
Zellersees sprechen allerdings gegen eine dauerhafte Etablierung von P. rubescens,
da diese vermutlich «ausgewaschen» wird. Ahnliches ist bekannt aus dem
Zirichsee-Obersee, in welchem P. rubescens bis anhin nur als Einzelfunde
nachgewiesen werden konnte. Der Gnadensee hingegen kdnnte aufgrund seiner
langeren Wasserverweildauer ein potentielles Habitat flir P. rubescens darstellen
und wird daher als einziges Becken des Bodensee-Untersees genauer betrachtet.

Die Temperatur- und Sauerstoffprofile lassen erkennen, dass jeweils im Frihjahr
eine Vollzirkulation des Wasserkorpers stattfand (Abb.18). Das Hypolimnion,
welches von Sommer bis Spatherbst anoxisch war, wurde dabei vollstandig mit
Sauerstoff angereichert. Nach der Durchmischung zeigte sich eine deutliche
Schichtung des Gnadensees, welche fir das Wachstum von P. rubescens forderlich
ware. Im Gegensatz zum Zirichsee und Bodensee-Obersee gab es fir den
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Gnadensee keine Anzeichen fir eine aussergewohnliche Reduktion der
Durchmischungstiefe von 2015 bis Anfang 2018 (Abb.18).
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Abbildung 18. Temperatur, und Konzentrationen
an Sauerstoff, Gesamtphosphor, Orthophosphat
und partikularem Phosphor im Gnadensee fiir die i
Periode von Januar 2015 bis Dezember 2017.
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Durch die saisonal anaeroben Verhaltnisse im Hypolimnion kommt es zu starken
Ricklésungen von Orthophosphat Gber Grund mit Konzentrationen von bis zu 44 pg
P L (Abb.18). Parallel dazu und in der gleichen Tiefe ist jeweils eine Erhdhung des
partikuldren Phosphors zu beobachten. Dies spricht hochstwahrscheinlich fiir ein
Wachstum von nicht phototrophen, anaeroben, Bakterien, welche vom gel6sten
Orthophosphat profitieren. Ein epilimnetisches Maximum an partikularem
Phosphor im Januar 2017 kénnte hingegen eine Algenbliite widerspiegeln (leider
liegt derzeit kein kompletter Datensatz zum Gesamtchlorophyll der einzelnen
Tiefenstufen vor). Weitere Indizien fiir massiv auftretende Algenbliten waren im
betrachteten Zeitraum nicht zu finden. Abgesehen von den hypolimnetischen
Phosphor-Maxima, sind die Orthophosphat-Konzentrationen im Gnadensee
deutlich unter den Werten des Zirichsees.

Planktothrix rubescens konnte sich aufgrund der stabilen Schichtung knapp tber
dem Orthophosphat Maximum (ca. 15m) einschichten und so vom gel6sten
Phosphor profitierten. Hamre et al. (2018) fand Hinweise, dass Planktothrix
theoretisch auch in einem anoxischem Hypolimnion stabile Bliten bilden kann,
sofern das Lichtklima stimmt. Das bedeutet, im Gnadensee kdnnte es bei geeigneten
Lichtbedingungen durchaus zu P. rubescens Bliiten kommen.
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6. Folgen der Klimaerwarmung fiir den Ziirich- und Bodensee

6.1 Lufttemperatur am Beispiel Ziirich/Fluntern

Messungen seit  Der Datensatz zur Lufttemperatur in Ziirich/Fluntern (© MeteoSchweiz) beginnt mit

1864 dem Jahr 1864. Fiir die Analyse der Daten wurden die Jahresmittel und ein 60
Monate umfassender gleitender Mittelwert verwendet (Abb.19). Unsere
Auswertung der Daten bezlglich anhaltender Wéarmeperioden (Trends Uiber
mehrere Jahre) ergab vier Perioden mit stark positiver Geradensteigung: von 1889-
1898 (r?=0.50), von 1940-1948 (r?=0.66), von 1955-1960 (r?=0.48) und ein konstant
anhaltender Anstieg von 1970 bis 2019 (r?>= 0.61). Fiir die Periode von 1970 bis 2019
ergibt sich eine durchschnittliche Erwarmung von 0.44° C pro Dekade.

Maximale Die Abweichungen der Jahresmittel vom Mittelwert aller Messjahre (n=155) zeigen

ggz’ekhungfﬁr einen Maximalwert von 2.6°C fiir das Jahr 2018 (Abb.20). Dieser Wert gilt jedoch nur
fir die Jahresmittel. Betrachtet man die Temperaturabweichungen fir einzelne
Monate, ergeben sich wesentlich héhere und extremere Abweichungen (siehe
unten).
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Abbildung 19. Jahresmittel der Lufttemperatur (schwarze Symbole und Linie) seit Beginn der Aufzeichnung im
Jahr 1864 bis inkl. 2018. Basierend auf den Monatsmitteln wurde ein 60-Monate umspannender ‘running
average’ (rote Linie) berechnet. Die vier Perioden mit signifikantem Temperaturanstieg sind als
Regressionsgeraden gezeigt (rote Geraden). Rohdaten: Bundesamt fiir Meteorologie und Klimatologie
MeteoSchweiz.
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Abbildung 20. Abweichung der Jahresmittel der Lufttemperatur (schwarze Symbole und Linie) vom Mittelwert
aller Messjahre. Kéltere Jahre als der Durchschnitt werden als blaue Balken, warmere Jahre als rote Balken
angegeben. Rohdaten: Bundesamt fiir Meteorologie und Klimatologie MeteoSchweiz.
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6.2 Erwarmung der Wasserkorper im Ziirich- und Bodensee

Luft- versus
Wasser-
temperatur

14

Wassertemperatur (°C)
(Epilimnion: 5m)
= N »

-
o

Steigende Lufttemperaturen und die Zunahme der Globalstrahlung bedingen einen
fast linearen Anstieg der Oberflachentemperaturen stehender Gewasser (O'Reilly et
al. 2015, Schmid & Koster 2016). Fir den Zirichsee und den Bodensee ergibt sich
eine eindeutige und vollig synchron laufende Korrelation zwischen der lokalen
Lufttemperatur und den Temperaturen der Wasseroberflache (Abb.21). Fir den
Zirichsee betragt die Differenz zwischen dem kéltesten (1973) und dem warmsten
(2018) Jahr 2.7° C.
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Abbildung 21. Zusammenhang zwischen den Jahresmitteln der Lufttemperatur und der Temperatur des
Oberflachenwassers (5 m Wassertiefe) im Ziirich- und Bodensee fiir die Periode 1973-2018 bzw. 1978-2018. Die
Trends sind als lineare Regressionen inklusive Prediction intervals angegeben. Probestellen: Thalwil (Zurichsee),
Fischbach-Uttwil (Bodensee).

Wie tief greift die  Ein positiv linearer Trend der Wassertemperaturen l3sst sich in beiden Seen bis in

Erwédrmung in
den Seen?

Folgen fiir die
thermische
Schichtung

die  tiefsten = Wasserschichten  erkennen (Abb.22&23), wobei die
Korrelationskoeffizienten mit zunehmender Tiefe markant schwacher werden
(Abb.22). Im Zirichsee findet man einen hochsignifikanten Trend bis in 40m
Wassertiefe, im Bodensee bis in eine Tiefe von 20m. Im Zirichsee lasst sich fur alle
Tiefenstufen ein linearer Zusammenhang zwischen Luft- und Wassertemperatur
finden, hoch signifikant jedoch nur fir die Oberflichenzonen (Abb.24). Diese
Beobachtung ist nicht Uberraschend, da die Temperaturentwicklung des
Hypolimnions vor allem von Starke und Intensitdt der Durchmischungsereignisse
abhangt. Auffallend sind in beiden Seen 3 Phasen mit einer Temperaturabnahme,
die im gesamten Hypolimnion zu beobachten sind. Livingstone (1997) hat dieses
Phdanomen als ‘Sagezahn’-Muster beschrieben.

Die starke Erwarmung der oberen Wassersaule resultiert in einer raumlichen
Vergrosserung des Epilimnions und einer Verschiebung des Metalimnions in
grossere Tiefen wahrend stabiler thermischer Schichtungen. Betrachtet man nur die
Regressionsgeraden, wird die Temperaturdifferenz zwischen Oberflaiche und
Tiefenzone immer grésser, da sich das Hypolimnion wesentlich langsamer und
teilweise zeitlich versetzt erwadrmt (Abb.23).
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Abbildung 22. Langzeitentwicklung der Lufttemperatur und der Wassertemperaturen (in °C) in verschiedenen

Tiefenstufen im Zirichsee (links) und Bodensee (rechts). Kurven: gleitende Mittel (n = 48 Monate) der

Monatswerte. Fiir jeden Graphen wurde eine lineare Regression berechnet und der Regressionswert (r?) ist

angegeben. Blaue Linien: Regressionsgeraden mit r>0.3, weisse Linien: Regressionsgeraden mit r’<0.3.
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Abbildung 23. Regressionsgeraden der Wassertemperatur-Jahresmittel (in °C) fiir verschiedene Tiefenstufen im
Zurichsee (links) und Bodensee (rechts).
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Abbildung 24. Zusammenhang zwischen Lufttemperatur und den Wassertemperaturen in verschiedenen
Tiefenstufen im Zirichsee. Die Messjahre der Dekaden seit 1970 sind in unterschiedlichen Farben dargestellt,
beginnend mit Blau fir die 1970er Jahre bis zu Rot fiir die 2010er Jahre.
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6.3 Zusammenhang Seeerwarmung und saisonale Dynamik

Beide Seen gelten als monomiktisch, wobei eine vollstandige Durchmischung des
Wasserkorpers (Holomixis) in den ersten Monaten des Jahres (Januar-April) erfolgen
sollte (siehe Schema in Abb.25). Die saisonale Dynamik von Seen in der gemassigten
Zone muss in Relation zur saisonalen Entwicklung der Lufttemperaturen gesetzt
werden. Wenn man nur den Zeitraum von 1975-2019 betrachtet, ergeben sich fir
alle Monate positive Trends in der Abweichung vom Mittelwert (n = 45 Jahre). Dieser
Zeitraum wurde gewahlt, da auch entsprechende Wassertemperaturdaten der
gesamten Wassersaule fiir diesen Zeitraum vorlagen. Statistisch signifikante Trends
der Lufttemperaturen (Mann-Kendall Tendenztests) ergaben sich fir die Monate
April bis August und Oktober-November (Abb.26). Aufféllig sind die sehr hohen

Abweichungen im Monat April, die bis zu 5.5° C erreichen kdnnen.

Monomiktische

Seen
Sommer
Schichtung

Abbildung 25. Schema der saisonalen Dynamik grosser monomiktischer Seen in der gemassigten Klimazone.

Deviation from average (°C)

Abbildung 26. Entwicklung der monatlichen Lufttemperaturen von 1975 bis inkl. 2018. Dargestellt sind die
Abweichungen der Monatsmittel (in °C) fiir jedes Jahr gegenlber dem Mittelwert dieses Monats Uber den
gesamten Zeitraum (1975-2018). Monate mit hochsignifikanten Trends (p<0.001) sind in dunkelgelb, Monate mit
signifikanten Trends (0.001<p<0.05) sind in hellgelb dargestellt. Rohdaten: Bundesamt fiir Meteorologie und
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Verlust der Beide Seen bauen wahrend der warmen Jahreszeit hohe Warmegehalte auf und
Holomixis gehen daher meist mit einer grossen ,Warmelast’ in den Winter und in die Phase
der Frihjahrsdurchmischung. Herrschen in dieser Periode bereits erhohte
Lufttemperaturen, kommt es zu einer frithen Erwdrmung der Oberflache. Die
bestehende Temperaturdifferenz zwischen Oberflichen- und Tiefenwasser
erschwert nun eine komplette Durchmischung (Holomixis) der Seen (siehe Schema

in Abb.27; Posch et al. 2012, Glide & Straile 2016).

Winter
Schichtung

<0y Herbst
~¢ "~ Partielle Mixis

Partielle Mixis

<O Spring
\T)

Abbildung 27. Schema der saisonalen Dynamik monomiktischer Seen unter dem Einfluss der Seeerwarmung.

Mixis im Im Zirichsee wurden in den letzten Jahren teilweise nur mehr
Ziirichsee Durchmischungstiefen von 70-80m erreicht (Yankova et al. 2017). Aufgrund der
Langzeitdaten und friherer Studien gibt es einen empirischen Richtwert fir die
Sauerstoffkonzentration (6 mg 0, L?), die bei einer Holomixis im Ziirichsee tiber
Grund erreicht werden kann (Posch et al. 2012). Die Anwendung dieses Richtwerts
spiegelt sehr gut die Serie von partiellen Durchmischungen wider (Abb.28).
Besonders gravierend war die Periode von 2013 bis inkl. 2017, in denen der

Zirichsee eine Folge von funf Jahren partieller Durchmischung gezeigt hat.
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Abbildung 28. Entwicklung der Durchmischungstiefen im Ziirichsee von 1973-2019. Als Richtwert wurde jene
Tiefe genommen, welche nach der Frithjahrsdurchmischung einen Sauerstoffgehalt von mindestens 6 mg O, I
oder mehr aufgewiesen hat.

Mixis im Betrachtet man die Sauerstoffsituation im Bodensee fiir den Zeitraum von 1976 bis
Bodensee 1990 so l4sst sich ein empirischer Richtwert von circa 9.5 mg 0, L' angeben, der bei
einer Holomixis UGber Grund erreicht werden kann (Abb.29). Eine detaillierte
Darstellung der Sauerstoffverhéltnisse Gber die gesamte Wassersdule zeigt, dass
auch im Bodensee eine Serie von 5 Jahren (2013-1017) extrem schwacher
Durchmischungen auftrat (Abb.30). Ebenso wie im Zirichsee wurde im Jahr 2016

die schwachste Durchmischung beobachtet.
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Abbildung 30. Sauerstoffkonzentrationen im Bodensee und Zirichsee fiir den Zeitraum von 2009 bis 2018. Die
Abbildungen basieren auf monatlichen Messungen in den Standardtiefenstufen (siehe Kapitel 3. Methodik). Die
gepunkteten Linien zeigen die Indikatorwerte fur eine vollstdndige Durchmischung in beiden Seen (siehe Text).
Auffallig ist in beiden Seen die 5 Jahre anhaltende Phase sehr schwacher Durchmischungen von 2013-2017.
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6.4 Folgen von Teildurchmischungen fiir das Hypolimnion

Veréinderung Eine unvollstandige Durchmischung hat weitreichende Auswirkungen auf den
Chemismus hypolimnetischen Sauerstoffgehalt, den Nahrstofftransport vom Hypolimnion in das
Epilimnion und auf die Akkumulation von Nahrstoffen in der Tiefe. Die Folgen der
finf Jahre mit dusserst schwacher Durchmischung (2013-2017) sind in beiden Seen
ersichtlich:

- Die hypolimnetischen Sauerstoffkonzentrationen nahmen sukzessive ab, im
Zirichsee herrschten grossteils anaerobe Bedingungen tiber Grund.

- Die hypolimnetischen Orthophosphat-Konzentrationen stiegen in beiden
Seen an, teilweise wohl aufgrund des unzureichenden Transports ins
Epilimnion (Abb.31). Im Zirichsee kam es wohl auch zu erhohten
Rickldsungen aus dem Sediment aufgrund der anaeroben Verhiltnisse.
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Abbildung 31. Orthophophat (POs-P) im Bodensee und Zirichsee fiir den Zeitraum von 2009 bis 2017. Die
Abbildungen basieren auf monatlichen Messungen in den Standardtiefenstufen (siehe Kapitel 3.Methodik). Die
gepunkteten Linien zeigen eine Konzentration von 10 pug P I". Durch die hohen Sauerstoffkonzentrationen im
Hypolimnion des Bodensees (siehe Abb.30) kommt es kaum zu einer signifikanten Riickldsung von Phosphat aus
dem Sediment. Im Gegensatz dazu, sind im Zurichsee alljahrlich anaerobe Phasen im Hypolimnion zu beobachten
(siehe Abb.30). Diese bedingen starke Phosphor-Riicklosungen aus dem Sediment und es werden
Maximalkonzentrationen von >150 ug P |I! (ber Grund erreicht. Aufgrund der schwachen
Durchmischungsdynamik kommt es immer haufiger zu einem ungeniigenden Transport von Orthophophat ins
Epilimnion wahrend des Frihjahrs. Auffallig ist in beiden Seen die 5 Jahre anhaltende Phase sehr schwacher
Durchmischungen von 2013-2017 und die damit verbundene Anreicherung von Orthophosphat im Hypolimnion.
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6.5 Seeerwdarmung und das Nahrungsnetz am Beispiel Ziirichsee

Die Folgen der mehrjahrigen partiellen Durchmischungen konnten wir zumindest flr
den Zirichsee klar dokumentieren (Yankova et al. 2017). Es ist anzunehmen, dass
ahnliche Phdanomene in den meisten grossen und tiefen Seen des Alpenraums

auftreten konnen und wohl auch auftreten werden.

Kurzbeschreibung der Folgen im Zirichsee:

Partielle Durchmischungen flihrten zu einer unzureichenden Versorgung des
Epilimnions mit Orthophosphat wahrend der Frihjahrsmonate (Abb.32).
Dadurch kam es immer ofter zu einer starken Reduktion der ‘klassischen’
Frihjahrsalgen (Abb.33), in manchen Jahren fast zu einem vélligen Ausbleiben
der Frihjahrsbliiten der Algen (Yankova et al. 2017). Da dieser erste Peak der
Algen die Basis fiir viele Konsumenten (Einzeller & Kleinkrebse) ist, ergab sich
in manchen Jahren eine starke Reduktion auch dieser Trophiestufe. Es ist zu
erwarten, dass ein Ausbleiben von Algen-Friihjahrsbliiten schlussendlich das
gesamte Nahrungsnetz in einem See stark schwacht.

Die Serie von partiellen Durchmischungen fiihrte also zu einer zusatzlichen und
plotzlich verstarkten Reoligotrophierung des Zirichsees (Abb.32).

Die hypolimnetischen Orthophosphat-Konzentrationen stiegen in diesem
Zeitraum leicht an.

Grosse Mengen der winterlichen Planktothrix rubescens Population
Uberstanden die Durchmischung und schichteten sich bereits im Frihjahr ins
Metalimnion ein.
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Abbildung 32. Langzeitentwicklung der epilimnetischen (0-20m) Orthophosphat-Konzentrationen im Ziirichsee.
Die blauen Linien zeigen die Friihjahrswerte (Januar-April) welche das Ergebnis der Mixis widerspiegeln, d.h. den

Transport von Orthophosphat vom Hypo- ins Epilimnion. Als Insert ist die Situation fiir die letzen 10 Jahre
dargestellt (2009-2018). Im Zeitraum von 2013 bis 2017 ist es aufgrund der Teildurchmischungen zu keiner
messbaren Anreicherung des Epilimnions mit Orthophosphat gekommen. Verdndert nach Yankova et al. (2017).
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Abbildung 33. Langzeitdynamik
zentrischer Kieselalgen fir den
Zeitraum von 1975 bis 2016.
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Gesellschaftliche  Da im Zeitraum 2013-2017 teilweise die Fangertrige der Berufsfischer stark

Relevanz der abnahmen, entstand rasch eine 6ffentliche ‘Diskussion’ (v.a. getrieben von manchen

Verdnderungen

Medien) tGber folgende Fragen:

- Ist der Zirichsee mittlerweile ‘zu sauber’ und ist die Sanierung bezlglich
Phosphor durchgefiihrt worden, ohne eine Untergrenze zu setzen?

- Istin Zukunft eine kiinstliche Anreicherung mit Phosphor notig?

In dieser ’‘Diskussion’ wurde vorerst nicht erwdhnt und beachtet, dass die

beobachtete zusatzliche Reoligotrophierung ein Effekt der Seenerwarmung ist. Das

Amt fur Abfall, Wasser, Energie und Luft (AWEL) versuchte in einem grdsseren

Zeitungsartikel (NZZ) die Zusammenhange mit der Seenerwarmung darzustellen.

7. Hochauflosende Messungen zu Planktothrix rubescens im Ziirichsee ab 2010

7.1 Das Metalimnion als Habitat fiir P. rubescens

Warum lebt P.
rubescens im
Metalimnion?

Hochauflésende
Messungen

Das Metalimnion (Sprungschicht oder Thermokline) bildet eine physikalisch
abgegrenzte Zone zum turbulenten Bereich des Epilimnions. Sobald sich im
Zirichsee ein relativ stabiles Metalimnion ausgebildet hat, schichtet sich P.
rubescens in diesem Habitat ein. Planktothrix rubescens ist Schwachlicht-adaptiert
(siehe unten) und an die sehr geringen Lichtintensitaten innerhalb des Metalimnions
angepasst. Die Lichtintensitdten im Epilimnion wahrend des Sommers liegen tber
dem Optimum von P. rubescens und wiirden sogar zu einer Wachstumshemmung
bzw. zum Tod der Filamente fiihren. Daher stellt die turbulente Zone des
Epilimnions wahrend der warmen Jahreszeit keinen addquaten Lebensraum fiir das
Cyanobakterium dar.

Die Daten beziglich Entwicklung und Dynamik des Metalimnions beruhen auf
unseren zweiwochentlichen Messungen mittels Messsonden seit dem Jahr 2010.
Die Sonden wurden langsam an einer Motor-getriebenen Seilwinde abgesenkt,
wobei die Geschwindigkeit so angepasst war, dass wir mindestens 4-10 Messungen
pro Meter Tiefenstufen erhielten. Folgende Parameter wurden fir dieses Thema
ausgewahlt: Wassertemperatur (°C), P. rubescens spezifisches Chlorophyll a (pg L),
und PAR (photosynthetisch aktive Strahlung, uMol m2s?).
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7.2 Zusammenhang Metalimnion und Lichtbedingungen

Definition des
Metalimnions

Lichtklima im
Metalimnion

Bevor die Dynamik fir die Jahre 2010 bis 2019 dargestellt wird, zeigen wir in
Abbildung 34 am Beispiel des Probenjahres 2016 die Arbeitsschritte fir die
Erstellung der Ubersichtsgraphen. In Abbildung 34A sind die Rohdaten der
ganzjahrlichen Temperaturmessungen fir die Wassersaule von 0 m bis 25 m
dargestellt. In der Literatur findet man sehr unterschiedliche Werte fir die
Definition des Metalimnions, von 0.25-1.5°C Temperaturabnahme pro Meter Tiefe.
Daher erfolgt unsere Darstellung als Contourplot, mit einem Gradienten beginnend
bei 0.25°C m™ bis zu einem Maximum von 3°C m™ (Abb.34B). Dadurch wird die
Schichtdicke und die Intensitdt der Gradienten klarer ersichtlich. Ausgehend von der
raumlichen und saisonalen Verteilung von Planktothrix (Abb.34C), ermittelten wir
die aktuelle Tiefe der maximalen Konzentration fiir jeden Probentag (Abb.34D).

Des Weiteren konzentrierten wir uns bei den Lichtprofilen (Abb.34E) auf drei
spezifische Strahlungsintensitaten (Abb.34F). Der photosynthetische
Kompensationswert liegt fiir Planktothrix rubescens bei 0.8 uMol m~ s (Walsby et
al. 2004). Bei diesem Wert ergibt sich kein Wachstum, da Respirations- und
Produktionsraten gleich gross sind. Bei dieser Lichtintensitat sollte ein Grossteil der
Planktothrix-Population gezwungen sein, mit Hilfe von Gasvesikeln in der

1 wurde

Wassersiule aufzusteigen. Fiir eine Lichtintensitit von 6.5 uMol m? s
festgestellt, dass mindestens 50% der Planktothrix-Population in der Wassersaule
schweben und somit in der aktuellen Tiefe verbleiben. Die Tiefe, welche 6.5 uMol
m2 s aufweist, wurde daher als ‘neutral buoyancy depth’ bezeichnet (Walsby et al.
2004). Bei einer Lichtintensitdt von 25 uMol m™? s wurden zwar die héchsten
Wachstumsraten ermittelt, jedoch fiihrt die Anreicherung von Kohlehydraten in den
Cyanobakterienzellen zu einer Erhéhung der Masse und daher zu einem Absinken
der Planktothrix-Filamente.

Um die gesamte oben genannte Information flr jedes Probenjahr zu zeigen,
arbeiten wir mit 2 Graphen pro Jahr. Im ersten Graphen wird das Metalimnion
prasentiert in Kombination mit einem Liniengraphen der zeigt, in welcher Tiefe sich
das Maximum von P. rubescens befand (Abb.34G). Im zweiten Graphen zeigen wir
die drei wichtigen Lichtintensitaten zusammen mit einem Liniengraph, der ebenso
die Tiefe des P. rubescens Maximum zeigt, allerdings auch noch die tatsachliche
Populationsgrosse (Abb. 34H).

Abbildung 34 — Siehe Seite 37. Arbeitsschritte fur die Darstellung des Metalimnions in Zusammenhang mit P.
rubescens und den Lichtbedingungen am Beispieljahr 2016. Die Daten beruhen auf zweiwdchentlichen

Messungen von Tiefenprofilen zwischen 0-25m. A) Temperaturprofile gemessen mittels YSI-Sonde. B)

Temperaturgradienten in 1m Schritten. C) Planktothrix rubescens spezifisches Chlorophyll a gemessen mittels

BBE FluoroProbe Sonde. D) Tiefe der maximalen P. rubescens Konzentration und Angabe des Maximalwertes

Uber Symbolgrosse. E) PAR (photosynthetisch aktive Strahlung) gemessen mittels LICOR Kugelsensor. F)

Darstellung der fir P. rubescens relevanten Lichtintensitdten — fiir Details siehe Haupttext. Die Graphen A)-F)

zeigen die Daten fiir das gesamte Probenjahr. Fir alle folgenden Graphen wird nur die Metalimnion-relevante
Periode von Tag 60 bis Tag 360 gezeigt, d.h. G) die Temperaturgradienten in 1m Schritten und H) die Kombination
aus P. rubescens Maxima mit den relevanten Lichtintensitdten. © Posch & Knapp (unpublished).

_)
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7.3 Dynamik des Metalimnions und von P. rubescens in den Jahren 2010-2019

Bildung des
Metalimnions

Einschichtung von
P. rubescens

Saisonale
Dynamik des
Metalimnions

Neutral
buoyancy depth

Meist bildet sich ein erstes Metalimnion in der Periode Kalendertag 110-130
(Kalendertag 120: Mai). Es gibt jedoch grosse Unterschiede innerhalb der letzten 10
Jahre beziglich Entstehung und raumlicher Ausdehnung des Metalimnions im
Frihjahr (Abb.35&36). Kurzfristige Kéltephasen im Frihjahr kénnen zu einer
Auflésung der noch sehr instabilen Schichtungsverhaltnisse fihren. Die ersten
Ansatze zu einer Thermokline sind meist in einem Tiefenbereich von 2-15m zu
finden. Eine Ausnahme bildet das Jahr 2019, in welchem zwar ab dem Tag 120 ein
Metalimnion erkenntlich war, allerdings erst ab einer Tiefe von 15m (Abb.36).

Der Wachstumserfolg von P. rubescens im Friihjahr scheint von zwei wesentlichen
Faktoren abzuhdngen:

1) Wieviel der P. rubescens Population hat die Durchmischungsphase tberlebt bzw.
befindet sich bereits in den oberen Wasserschichten. Der Zusammenhang zwischen
Durchmischungstiefe und der Populationsdynamik von P. rubescens wurde bereits
im Kapitel 1.2 beschrieben.

2) Findet P. rubescens im Frihjahr ein einigermassen stabiles Metalimnion mit
adaquaten Lichtbedingungen vor?

Ad2) Ein interessantes Beispiel hierflr stellt das Jahr 2019 dar. Es kam zu einer sehr
spaten Bildung einer Sprungschicht (allerdings in 15m Tiefe!) sowie zu einem
mehrfachen Verlust der Schichtung. Zudem waren die Lichtbedingungen in dem tief
gelegenen Metalimnion vollig unzureichend fir P. rubescens. Das Aufsteigen ins
turbulente Epilimnion bewirkte innerhalb kiirzester Zeit einen Zusammenbruch der
bestehenden P. rubescens Population (Abb.36).

Mit zunehmender Erwdarmung und Ausdehnung des Epilimnions wird das
Metalimnion weiter in die Tiefe verlagert. Planktothrix rubescens befindet sich meist
in der Kernzone oder an der unteren Grenze des Metalimnions. Gegen den Herbst
hin nehmen die Strahlungsintensitdten im Metalimnion ab und P. rubescens ist
gezwungen, an die obere Grenze des Metalimnions zu wandern. Im Spatherbst
scheint P. rubescens den idealen Lichtbedingungen zu folgen, was allerdings
bedingt, dass die Cyanobakterien in die turbulente Zone des Epilimnions gedriickt
werden. In diesem Zeitraum sind auch die oberflachlichen Massenansammlungen
im Zilrichsee zu beobachten. An sehr sonnigen Herbsttagen Ubersteigen die
Strahlungsintensitaten bei weitem das Optimum von P. rubescens im Epilimnion. An
diesen Tagen beobachten wir ein ausgepragtes Aggregationsverhalten der
Einzelfaden und die Bildung von makroskopischen Flocken an der
Wasseroberflache, jedoch auch in tieferen Wasserschichten. Inwieweit dies ein
Schutzmechanismus vor der intensiven Strahlung oder sogar ein Mechanismus ist,
um schneller als Aggregat in die Tiefe zu gelangen, istimmer noch vollig unerforscht.
Betrachtet man die Dynamik aller Probenjahre (2010-2019) so lasst sich die vertikale
Positionierung des Populationsmaximums primar (iber die idealen Lichtintensitaten
erklaren. Allerdings ist die saisonal frithe Ausbildung eines stabilen Metalimnions
ein entscheidender Faktor fir das weitere Wachstum innerhalb eines Jahres.
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Abbildung 35. Zusammenhang zwischen Metalimnion, Lichtbedingungen und Planktothrix rubescens fur die
Jahre 2010-2014 (zweiwdchentliche Messprofile). Linke Graphen: Saisonale Entwicklung des Metalimnions und
Tiefe des P. rubescens Maximums (rosa Linie). Rechte Graphen: Die drei entscheidenden Lichtbedingungen sowie
Tiefe und Grosse des P. rubescens Maximums. Tag 60 entspricht circa Anfang Marz. © Posch & Knapp

(unpublished).
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Abbildung 36. Zusammenhang zwischen Metalimnion, Lichtbedingungen und Planktothrix rubescens fur die
Jahre 2015-2019 (zweiwdchentliche Messprofile). Linke Graphen: Saisonale Entwicklung des Metalimnions und
Tiefe des P. rubescens Maximums (rosa Linie). Rechte Graphen: Die drei entscheidenden Lichtbedingungen sowie
Tiefe und Grosse des P. rubescens Maximums. Tag 60 entspricht circa Anfang Marz. © Posch & Knapp
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8. Massenentwicklung von Planktothrix rubescens im Bodensee im Jahr 2016
8.1 Dynamik im Jahr 2016

Beobachtungen
seit 1993

Massenent-
wicklung im Jahr
2016

P. rubescens Zellen ml™

Gemass den Phytoplanktonuntersuchungen des ISF Langenargen (Integralproben
zwischen 0 bis 20 m) wurde Planktothrix rubescens seit dem Jahr 1993 immer wieder
in geringen Dichten an der Probenstelle Fischbach-Uttwil gefunden (<230 Zellen pro
Milliliter in den Jahren 1993, 2007, 2009, 2010 und 2011). Im Gegensatz dazu wurde
die Art Planktothrix agardhii in wesentlich mehr Beprobungen entdeckt (in den
Jahren 1986, 2006, 2008, 2010 und von 2012 bis 2016). Mit dem Erscheinen von P.
rubescens ab dem Jahr 2016 konnte jedoch P. agardhii nicht mehr nachgewiesen
werden. Soweit uns bekannt, beruhen die Zahlungen auf Lugol-fixierten
Wasserproben, wodurch eine rein mikroskopische Unterscheidung der doch sehr
ahnlichen Arten nicht erleichtert wird.

Auffallig wurde das Vorkommen von P. rubescens im Bodensee im September 2016.
In den Folgemonaten wurden Dichten bis zu 5500 Zellen pro Milliliter fir die
Probenstelle Fischbach-Uttwil bestimmt (Abb.37). Aufgrund der beginnenden
oberflachlichen Herbstdurchmischung kam es zu sichtbaren Akkumulationen der
Cyanobakterien an der Wasseroberflaiche. Dieses Phdanomen wurde von der
Offentlichkeit wahrgenommen und von der Presse vielfach berichtet (z.B. Stidkurier,
2.11.2016, ‘Burgunderblut-Alge breitet sich im Bodensee aus’). Aus einer
Powerpoint-Prasentation von Prof. Karl-Otto Rothhaupt (2016) geht hervor, dass die
Entwicklung der P. rubescens Population auch im Uberlinger See zu beobachten war.
Zudem gab es dort schon ab Anfang Juli Anzeichen fiir das Wachstum des
Cyanobakteriums (Abb.38).
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Abbildung 37. Pl6tzliches Massenaufkommen von Planktothrix rubescens im Bodensee an der Probenstelle

Fischbach-Uttwil im Jahr 2016. Die Daten beruhen auf Integralproben (0-20m) und mikroskopischen Zahlungen

von Lugol-fixierten Proben (© ISF Langenargen).

Entwicklung seit
2016

Nach 2016 trat P. rubescens nicht mehr in grossen Zahlen auf. Unsere eigenen
Beprobungen im Jahr 2018 haben gezeigt, dass allerdings einzelne Filamente selbst
an der Probenstelle Fischbach-Uttwil zu finden waren. Dadurch war es uns moglich,
erste Isolate von P. rubescens aus dem Bodensee zu gewinnen (siehe Kapitel 8.3).
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Abbildung 38. Entwicklung von Planktothrix rubescens im Uberlinger See im Jahr 2016. Die Abbildung zeigt in situ
Sondenmessungen der spezifischen Chlorophyll a Konzentrationen. Die Abbildung entstammt aus einer
Powerpoint-Prasentation von Prof. Karl-Otto Rothhaupt (2016) fur die Jahreshauptversammlung 2016 des
Internationalen Bodensee Fischereiverbands (iwgb.net » wp-content » uploads » Die-Burqunderblutalge).

8.2 Das Metalimnion im Bodensee als moégliches Habitat fiir P. rubescens

Datenlage Fir die Analyse der saisonalen Dynamik des Metalimnions braucht es zeitlich und
raumlich hochauflésende Temperatur-Messprofile. Fiir den Bericht standen uns
beziiglich Bodensee diese Daten nur fir den Zeitraum von 2015 bis 2018 zur
Verfligung. Diese Periode ist jedoch hochst interessant, da es im Jahr 2016 zur
Massenentwicklung von P. rubescens kam.

Vergleich zum Im Vergleich zum Zirichsee sind zwei Aspekte des Metalimnions im Bodensee

Ziirichsee auffallig (Abb.39). (i) Einerseits kam es in den Jahren 2015 bis 2017 fast 30 Tage
spater zur Bildung eines relativ stabilen Metalimnions, d.h. erst erst ab dem Tag 150
(Anfang Juni). Im Jahr 2018 bildete sich fast einen Monat friiher eine stabile
thermische Schichtung aus. In diesem Jahr wurden auch die hochsten
Abweichungen in den Lufttemperaturen registriert (siehe Kapitel 6.1). (ii) In allen
vier Jahren war das Metalimnion im Bodensee weniger kompakt beziiglich
raumlicher Ausdehnung und weniger stabil (Abb.39). Das heisst es kam immer
wieder zu Abschwachungen in der thermischen Schichtung. Diese Instabilitat des
potentiellen Habitats ist prinzipiell unginstig fir den Aufbau einer
Massenentwicklung von P. rubescens. Dies lasst sich sehr gut an der Dynamik von P.
rubescens im Zirichsee fir das Jahr 2019 zeigen (siehe Abb.36).
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Abbildung 39. Saisonale Dynamik des Metalimnions im Zirichsee (linke Graphen) und Bodensee (rechte
Graphen) fir die Probenjahre 2015-2018. Die Farben spiegeln die Temperaturunterschiede pro Meter
Tiefenstufe wider (°C m™). Fir den Ziirichsee ist ebenso die Tiefe des Planktothrix rubescens Maximum
angegeben (rosa Linien). © Posch & Knapp (unpublished).
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Abbildung 40. Oberer Graph:
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(unpublished).

Lichtbeding-
ungen im
Metalimnion des
Bodensee

Leider standen uns nur fir das Jahr 2018 Messungen zum Lichtklima im Bodensee

zur Verfligung. Die Auswertung zeigt auf, dass theoretisch adaquate

Lichtbedingungen im Metalimnion zu finden sind (Abb.40). Dargestellt sind die drei
entscheidenden Lichtintensitdten fiir Planktothrix rubescens. Bei 25 pMol m?2 s?
sollte ein Grossteil der Population zu sinken beginnen, bei 6.5 pMol m? s? ein
Grossteil die Position halten. Die Lichtintensitit von 0.8 uMol m? s? gilt als
Kompensationspunkt, d.h. Respiration und Produktion sind dquivalent. Bei dieser
Intensitat beginnt ein Grossteil der Population in der Wassersaule aufzusteigen.
Auffallig sind die grossen Schwankungen der Lichtbedingungen in der Wassersaule
(Abb.40). Die

Wanderungsgeschwindigkeit (Aufsteigen und Absinken in der Wassersaule) von P.

und die teilweisen grossen Eindringtiefen der Strahlung
rubescens erscheint zu gering, um in so kurzer Zeit, solchen Amplituden folgen zu

kénnen.
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8.3 Erste genetische Untersuchungen
Gasvesikel- Basierend auf den Forschungsergebnissen von Walsby et al. (1998) und Beard et al.

Genotypen im (1999) ist es moglich, anhand der Gasvesikel codierenden Gene einzuschitzen,

Ziirichsee . . . -
welche Durchmischungstiefe ein Planktothrix Filament ohne Schaden zu nehmen
Uberstehen kann. Fir den Zirichsee wurden 3 Gasvesikel Genotypen nachgewiesen
(Beard et al. 1999). Diese produzieren Gasvesikel welche einem maximalen Druck
entsprechend einer Durchmischungstiefe von ca. 80m fir GV1, 70m fiir GV2 und
100m fur GV3 widerstehen kdnnen (Bright & Walsby 1999). Ausserdem wurden fir
verschiedene Nordische Seen weitere Genotypen nachgewiesen. GV4 Ubersteht
einen maximalen Druck entsprechend ca. 80m Wassertiefe, GV5 und GV6
entsprechen ca. 50m, wobei die beiden letzteren bisher nur fiir P. agardhii, also dem
griinen Okotyp beschrieben wurden.

Gasvesikel- Nach ersten genetischen Untersuchungen an 92 Einzelfilamenten konnten 2

Genotypen im Gasvesikel Genotypen fiir den Bodensee nachgewiesen werden, GV2 und GV3

Bodensee .. .

(Abb.41). Uber 80% der untersuchten Filamente entsprachen dem robustesten
Genotypen GV3. Es lasst sich also vermuten, dass der Grossteil der «Bodensee
Planktothrix» Populationen eine Durchmischungstiefe von ca. 100m unbeschadigt
iberstehen kann. Ahnlich der Situation im Ziirichsee kdnnte demnach auch im
Bodensee eine Serie von extrem durchmischungsschwachen Jahren zu einer
stetigen Akkumulation der Planktothrix Populationen fiihren. Das Vorkommen
bisher unbekannter Gasvesikel Typen, die Durchmischungstiefen Gber 100m
Uberstehen kdonnten, ist eher unwahrscheinlich. Die maximale vertikale Distanz die
ein einzelnes Planktothrix Filament durch Auftrieb zurlicklegen kann betragt 1m pro
Tag (Walsby 2005). Dementsprechend wiirden Filamente, die Giber 100m in die Tiefe
gedrickt wurden, mehr als 3 Monate bendtigen, um sich wieder im Metalimnion
einzuschichten. In diesem Zeitraum setzt oft bereits die partielle herbstliche Mixis
ein welche das Metalimnion auflést. Somit wiirden diese Filamente nicht zum
Populationswachstum beitragen (Walsby et al. 2006).

Gasvesikel Genotypen Microcystin Gencluster

100 100 nicht vorhanden
14 % B vorhanden
83.9%
80 80

60 60

40 40

Abundanz (%)
Abundanz (%)

20 15.1% 20

5 0% - .

GV1 GV2 GV3

Abbildung 41. Links: Prozentuale Verteilung der Gasvesikel Genotypen von 92 getesteten Planktothrix rubescens
Filamenten aus dem Bodensee. Rechts: Anteile getesteter Filamente bei welchen das Microcystin Cluster
nachgewiesen werden konnte bzw. nicht vorhanden war.
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Microcystin-
produzierende
Genotypen

Dieselben 92 Einzelfilamente wurden zusatzlich daraufhin untersucht, ob sie das
Microcystin codierende Gencluster enthalten. Das Vorhandensein dieses
Genclusters bildet die Grundvoraussetzung fiir die Synthese von Microcystin. Es
zeigte sich, dass 86% der untersuchten Filamente im Besitz des Microcystin
Genclusters und dadurch potentiell toxisch waren (Abb.41). Es kénnen jedoch
Mutationen innerhalb dieses Genclusters auftreten, wodurch die Synthese von
Microcystin verhindert wird (Kurmayer et al. 2016). Im Zirichsee wie in weiteren
untersuchten «Planktothrix Seen» konnten solche Mutationen bisweilen aber nurin
sehr geringer Frequenz nachgewiesen werden (Chen et al. 2016, Garneau et al.
2015, Ostermaier & Kurmayer 2009). Ob dies auch im Bodensee der Fall ist, werden
weitergehende Untersuchungen zeigen. Bis anhin sollte davon ausgegangen
werden, dass im Bodensee der Grossteil der Planktothrix Populationen Microcystine
bilden kann.

9. Griinde fiir und wider weiterer Massenentwicklungen - Schlussfolgerung

Férdernde
Faktoren

Hemmende
Faktoren

+ Manche Bereiche des Bodensee-Obersee (z.B. Bregenzer Bucht, Uberlinger See)
konnten durchaus der Ausgangspunkt flr P. rubescens Populationen sein, da
diese weniger tief sind und passende Schichtungsverhéltnisse im Sommer
aufweisen.

+ Selbst im Hauptbecken wéare das Metalimnion beziglich Tiefe, Struktur und
Grosse prinzipiell ein addquates Habitat fir P. rubescens.

+ Die Wassertemperaturen im Metalimnion des Bodensee sind dem
Temperaturregime im Ziirichsee dusserst dhnlich.

+ Leider standen uns Lichtmessungen nur fiir das Jahr 2018 zur Verflgung. Es
zeigte sich, dass die fir P. rubescens idealen Lichtbedingungen (25 und 6.5 uMol
m2s1) im Metalimnion auftraten.

+ Aufgrund der beschriebenen geringen Algen-Produktivitat im Epilimnion ist auch
kaum Beschattung durch andere Algen zu erwarten.

+ Die Konzentrationen an Nitrat (NOs3-N) sind im Bodensee sogar hoher als im
Zirichsee. Diese Stickstoffquelle ist essentiell fiir P. rubescens, da P. rubescens im
Gegensatz zu anderen Cyanobakterien nicht direkt gasférmigen Stickstoff binden
kann.

+ Die klimabedingte Erwdarmung des Bodensees flihrt zu einer Verminderung der
Durchmischungstiefe sowie zu einer friheren und langer anhaltenden Bildung
einer thermischen Schichtung. Diese zunehmende Stabilitdt der Wassersaule
ware sicherlich forderlich fur P. rubescens.

- Trotz der in manchen Jahren abgeschwachten Dynamik, reicht die
Durchmischung im Frihjahr immer noch bis weit in die Tiefe.
Durchmischungstiefen grosser als 100m Wassertiefe flihren definitiv zur
Schadigung sogar der starksten Gasvesikel-Genotypen von P. rubescens. Durch
erste genetische Untersuchungen an unseren P. rubescens Isolaten aus dem
Bodensee konnten wir zeigen, dass diese Genotypen tatsachlich im Bodensee
auftreten.
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Selbst wenn starkere Gasvesikel Typen im Bodensee vorkommen wiirden, hatten
die P. rubescens Filamente kaum die Mdoglichkeit nach der Durchmischungsphase
aus dem tiefen Hypolimnion in addquater Zeit wieder die Oberflache zu
erreichen.

Die Orthophosphat-Konzentrationen sind bis in einer Tiefe von 250m sogar
wahrend der Durchmischung sehr gering. Selbst bei Teildurchmischungen (z.B.
nur bis 100m) wiirde P. rubescens nicht in Zonen mit erhéhten Orthophosphat-
Konzentrationen gelangen. Dies spricht eindeutig fiir eine starke Phosphor-
Limitierung von P. rubescens im Hauptbecken des Bodensees.

Dadurch werden wohl kaum geniligend grosse Startpopulationen im Friihjahr
ausgebildet.

Zumindest in den Jahren 2015 bis 2018 erscheint das Metalimnion im Bodensee
etwas weniger kompakt und stabil zu sein als im Zirichsee. Vor allem fanden wir
in diesem Zeitraum nicht so starke Temperaturgradienten wie im Zirichsee.
Basierend auf den Lichtmessungen im Jahr 2018, zeigen sich sehr grosse
Schwankungen in der Eindringtiefe des Lichts. Die 6.5 pMol m™ s Linie (neutral
buoyancy depth) zeigt Tiefenschwankungen von bis zu 10m innerhalb von 2
Wochen. Die Wanderungsgeschwindigkeit (Aufsteigen und Absinken in der
Wassersaule) von P. rubescens erscheint zu gering, um in so kurzer Zeit, diesen
Amplituden zu folgen. Allerdings beeinflusst P. rubescens ab einer gewissen
Populationsdichte das Lichtklima entscheidend selbst.

Essentiell erscheint, ob P. rubescens eine Phosphor-Limitierung umgehen kann.
Hochwasser-Ereignisse und dadurch massive Phosphor-Eintrage durch den Rhein
in die oberflachlichen Wasserschichten des Bodensees wiirden die Entwicklung
des Cyanobakteriums sicherlich fordern. Zu beachten sind wohl auch
aperiodische Nahrstoffeintrage durch starke Pegelschwankungen. Ein lang
anhaltender Niedrigwasserstand kann ein Trockenfallen mancher Uferabschnitte
bewirken (z.B. im Jahr 2018). Eine darauffolgende Uberschwemmung dieser
Gebiete konnte eine starke Nahrstoffriicklosung und somit einen starken
Nahrstoffeintrag auslésen.

Derzeit deutet vieles darauf hin, dass der lineare Anstieg der Lufttemperatur anhalt.
Dies erhoht das Risiko, dass langjahrige Serien von aussergewdhnlich schlechten
Durchmischungen in grossen Seen auftreten werden. Fiir den Zeitraum von 2013 bis
2017 konnten wir das sowohl fiir den Bodensee als auch fiir den Zirichsee bereits
aufzeigen.

Dadurch kann es zu einer fortschreitenden Akkumulation von Nahrstoffen (v.a.
Phosphor und Stickstoff) im Hypolimnion und einem gravierenden Nahrstoffmangel
im Epilimnion kommen. Folgt darauf allerdings ein kalter und stiirmischer Winter
und somit wieder eine Vollzirkulation (Holomixis), so ergibt sich fiir die Seen ein
plotzlicher und massiver Nahrstoffschub.

Die meisten grossen und tiefen Seen im Alpenraum sind von ihrer Produktivitat her
als oligo- oder oligo-mesotroph eingestuft. Tritt allerdings das oben beschriebene
Phdanomen auf, dann erwarten wir kurzfristige starke Eutrophierungstendenzen in
diesen Seen. Dadurch wird es vermehrt zu kaum vorhersagbaren
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Massenentwicklungen von Primarproduzenten (Cyanobakterien und Algen)
kommen. Auch Planktothrix rubescens kénnte von diesem Phanomen profitieren,
allerdings nur wenn auch stabile Habitatbedingungen bezliglich des Metalimnions
gegeben sind.

In Summe: die klimabedingten Veranderungen machen es zunehmend schwieriger
die Dynamik in den Seen vorherzusagen. Manche Seen miissen dann wohl vom
Trophiezustand her als «variotroph» bezeichnet werden.

Schlussfolgerung

Wir beurteilen die Wahrscheinlichkeit, dass sich Planktothrix rubescens dauerhaft im
Hauptbecken des Bodensee-Obersee etabliert, als derzeit gering ein. Sollte es aber wieder zu
einer jahrelangen schwachen Durchmischungsphase kommen, wie zum Beispiel von 2013-
2017, dann kénnte dies zu neuen Massenentwicklungen fiihren. Die Seebecken Uberlinger-
See und Bregenzer Bucht kdnnen als wesentlich gefahrdeter fiir Massenentwicklungen
betrachtet werden. Ein haufiges Auftreten von Planktothrix rubescens in Becken des
Untersees ist zu erwarten. Fir die Trinkwassergewinnung sehen wir keine Probleme, solange
alle Wasserversorger Ozonierungsstufen in der Aufbereitungskette verwenden.
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