
Identification of Potential Risk Factors for Back Pain in Horses:

An Analysis Using Additive Bayesian Networks

Master Thesis in Biostatistics (STA495)

by

Oliver John
15-732-118

supervised by

Prof. Dr. Reinhard Furrer

Dr. Marie Dittmann

Zurich, March 15, 2021





Identification of Potential Risk Factors
for Back Pain in Horses:

An Analysis Using Additive Bayesian
Networks

Oliver John

Version March 15, 2021





Contents

Preface iii

1 Introduction 1

2 Methods 3
2.1 Study Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Data Preparation and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Variable Ranking and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Random Forest Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Additive Bayesian Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Additive Bayesian Network Models: Robustness Analysis . . . . . . . . . . . . . . 12

3 Results 13
3.1 Varrank Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Random Forest Imputation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Complete Case Analyses Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Imputed Data Analyses Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Robustness Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Discussion 35

5 Conclusions 41

Bibliography 43

i



ii CONTENTS



Preface

This thesis has been a very interesting and fun project to me. It is hard to believe that time has
passed so quickly, as it feels like I only started this project a week ago. I thoroughly enjoyed the
statistical consulting project last semester and am very glad that I was able to work on a similar,
applied project for my master’s thesis. I’d especially like to thank Prof. Dr. Reinhard Furrer and
Dr. Marie-Theres Dittmann for giving me the opportunity to independently decide the shape and
form of this project, for their continued support and for their constructive feedback. I would also
like to thank my PhD supervisor Michael Hediger for helping me when things got difficult. Also,
a big thank-you to the entire UZH biostatistics team. Last but not least, I’d like to thank my
family and friends. Thank you mom and dad for always being by my side and raising me to be
the person I am today. I know that I would not have come this far if it wasn’t for you. I would
also like to thank the closest friends I have ever had in my life: Dori, Hinti and Ruben. Our
nightly sessions have become sanctuary to me. I will appreciate our friendship forever. Thank
you for being my best friends, always. The last person I would like to thank is the only remaining,
very special and dear friend of mine, Elena. Thank you for your immense encouragement and for
always being there for me.

Oliver John
March 2021

iii



iv Preface



Chapter 1

Introduction

Back pain in horses is a common, serious impediment, which is caused by a plethora of factors
and complex interplays thereof. Thus, it is difficult identifying and quantifying the effect of
specific factors on back pain and on other factors of interest. The rider, saddle and the horse
itself are in constant interplay, and may simultaneously contribute to the surge of back pain
(Henson, 2013). It is therefore important to look at the factors involved in each part of the
rider-horse system and to analyze the network leading to equine back pain in its entirety. The
Equine Sports Medicine Unit of the Vetsuisse Faculty in Zurich Switzerland carried out the Swiss
Equine Back Health Study from 2017 to 2018 (Dittmann et al., 2020a). The study aimed at
gathering and analyzing possible factors leading to equine back pain, resulting in nine data sets,
which have been so far studied independently from each other. The data sets are comprised of a
large rider-horse survey, data containing demographic information, data containing orthopedic
examinations of the horse, three data sets containing information about the saddle and electronic
saddle pressure measurements during riding, one data set based on algometric measures of the
horse’s back, one data set containing back examinations of the horse, and one data set containing
physiotherapeutic examinations of the rider. It was identified, that a substantial proportion of
horses were suffering from back pain and low-ranked lameness and had one or more inadequate
saddle fit issues (Dittmann et al., 2020a). There is yet much unexplored possible relations between
variables from different data sets. In order to gain a deeper understanding of the complex system
resulting in equine back pain, an analysis of the in-between influences of variables from these
different data sets is of paramount importance.

Additive Bayesian network modelling allows for an intricate and intuitive view in the complex
interplays between variables. This modelling approach is data driven and does not explicitly
require expert opinion/prior information for designing the model, even though it may also be
incorporated. It is usually accompanied by variable selection processes and by data imputation.
The result of such a model is typically a directed acyclic graph. Each node in the directed acyclic
graph is in nature a generalized linear model describing the node the arrow is pointing to. Such
network models allow us to combine and examine the data sets at hand in a more holistic and
systematic way. They account for not only the influence of explanatory variables on one or several
outcomes (equine back pain in our case), but also for the influence of explanatory variables on
each other, all while keeping the benefits of an intuitive interpretation of a generalized linear
model (Kratzer et al., 2019). Thus, additive Bayesian network modelling has the advantage of
better representing the entirety of the rider-horse system reflected by all data sets. The aim of
this thesis was to explore the influences of variables from the nine data sets on each other and
on a horse’s back pain score, posterior to adequate variable selection processes, variable ranking
methods and data imputation, as well as comparing these results to a complete-case analysis.
This thesis also contains a simulation analysis, which explores a simple, new process to obtain
robust results, while also exploring the effect of random forest imputation and complete-case
analyses on additive Bayesian networks.
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Chapter 2

Methods

The entirety of all analyses were conducted using the R programming language (R Core Team,
2020) with base packages and the subsequent analysis-specific packages: dplyr, plyr, purr,
tidyverse, tidyr, knitr, kableExtra, ggplot2, varrank, missForest, abn.

2.1 Study Details

The explorative back health survey study in sports medicine for horses lead from 2017 to 2018 is
comprised of a total of nine data sets. Each study subject is comprised of a unique horse-rider
pair. Horse owners/riders were invited to participate in the study and contacted using the
national Swiss database for horse owners via post-office. Data acquisition was conditional on a
signed declaration of consent from the part of the horse’s owner/rider. Data acquisition was also
conditional on the horse being ridden mainly by the registered owner, the owner being at least
18 years old, the horse being between 5 and 18 years old, the horse being ridden at least twice
weekly, the horse not suffering under any sort of acute diseases and on the horse being used for
either dressage, endurance, leisure, western riding, gait and/or jumping competitions. Additional
publications on related studies are listed here: Dittmann et al. (2021), Dittmann et al. (2019),
Dittmann et al. (2020b). The full study was divided in an online survey and several subsequent
examination days. The quantification of equine back pain is difficult, as it can manifest itself
through different reactions or behaviors, which are very individual. In this study, an attempt to
quantify equine back pain was made through back palpitations by an experienced veterinarian. An
overall back pain score was calculated based on the horse’s reaction to being palpated. However,
for the sake of simplicity and interpretability, a log-transformed pain score was used as an outcome
of interest for this analysis. The individual data sets resulting from this study are listed here in
more detail:

3



4 CHAPTER 2. METHODS

1. BH_Reiter_Pferd_DEF (RiderHorse): descriptive data about horse and rider height,
weight, breed, etc. . . (237 obs. of 41 variables)

2. Survey_definitiv (Survey): survey questions regarding husbandry, feeding, equipment,
training, etc. . . , filled out by the horse’s owner (248 obs. of 562 variables)

3. BH_ORTHO (Ortho): orthopaedic examinations of the horse regarding lameness, movement
asymmetry, limb problems, etc . . . , carried out by two experienced veterinarians (237 obs.
of 89 variables)

4. BH_Englischsattel_DEF_190220 (ESaddle): manual inspection of English saddles includ-
ing brand, type and fit, carried out by a single experienced veterinarian (237 obs. of 78
variables)

5. BH_Westernsattel (WSaddle): manual inspection of Western saddles including brand, type
and fit, different examination criteria/variables to English saddles, carried out by a single
veterinarian (237 obs. of 26 variables)

6. BH_spm_max_pressure (SaddleP): different variables of electronically measured pressure
beneath the saddle at different gaits while ridden by the owner (237 obs. of 18 variables)

7. BH_Algometrie (Algo): algometry measurements along different locations on the horse’s
back, potential additional measurements for equine back pain (237 obs. of 114 variables)

8. BH_Ruecken_Pferd (HorseBack): examination of the horse’s back, assessing painfulness
of muscles, ligaments and the spine through palpitation by two experienced veterinarians,
potential additional measurements for equine back pain (237 obs. of 188 variables)

9. Physio_DEF (Physio): physiotherapeutic examination of the rider, assessing mobility,
strength, endurance and reactivity (237 obs. of 112 variables)

2.2 Data Preparation and Description

All nine data sets were originally saved as an xlsx-file. To ease data import and data formatting, all
nine data sets were first saved as a csv-file and then sequentially imported into R. Data preparation
generally consisted in correctly formatting factors and numeric variables and renaming them. An
initial expert-driven variable selection was also performed as an early step: from almost each data
set, a selection of the most relevant variables were chosen to undergo further analysis. A series of
few newly coded summary variables (a combination of other variables) were also created with the
help of expert opinion. As a final step, the data sets were merged together with an outer join
and sequentially trimmed to remove any missing values produced by the merging procedure. The
data set to be analyzed ultimately contained 30 variables. Table 2.1 provides a short description
of each selected variable for this analysis. Figure 2.1 and Figure 2.2 show the different histograms
and proportions of variables for numeric and categorical variables, respectively.
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Table 2.1: Variable selection and description.

Data Set Distribution Summary Variable Meaning %NA

Horse Height Survey Gaussian No in centimeters 0
Breed Warm Blood Survey Binomial No binary indicator of breed status 0
Horse Age Survey Gaussian No in years 0
Pasture Score Survey Gaussian No quantification of frequency and duration of a horse’s weekly meadow time 0
License Survey Binomial No rider license available 0
Main Usage Survey Multinomial No dressing (D), spare time (ST), military (M), jumping (J), other (O) 0
Saddle Rides Survey Poisson No weekly frequency with which the horse is ridden with a saddle 0
Training Freq Survey Binomial No weekly guided training frequency 0
Saddle Type Survey Binomial No Western saddle + other (WS/O), English saddle (ES) 0
Lambskin Survey Binomial No binary indicator of lambskin underneath the saddle 0
Number Symptoms Survey Poisson No number of total pain and lameness symptoms 0
Algo Measures Algo Gaussian Yes the mean of all mean algometric measures for each back location 4.8
Conformation HorseBack Binomial No binary indicator of conformation issues 4.8
Brach Hyper HorseBack Binomial No binary indicator of Brachialis muscular hypertrophy 4.8
Pain Rank log HorseBack Log-Gaussian No log-transformed sum of three distinct numeric pain ranked scores 6.5
Limited ROM Back HorseBack Binomial Yes combination of two distinct binary measures of limited range of movement 5.2
Limited ROM Ilium HorseBack Binomial Yes combination of two distinct binary measures of limited range of movement 5.6
Broken Hoof Ortho Binomial Yes binary indicator whether at least one hoof was broken towards the rear 4.4
Habit Patfix Ortho Binomial Yes binary indicator of habitual patellafixation 4.4
Tail Pos Ortho Binomial No a possible reflection of an underlying orthopedic issue 10.9
Lameness Ortho Binomial No binary indicator of lameness 5.2
Defensive Pull Ortho Binomial No binary indicator whether the horse pulled defensively during measurements 4.4
Mean ROM Physio Gaussian Yes mean of all range of movement measures of the rider 4.4
Mean Force Physio Gaussian Yes mean of all force measures of the rider 4.4
Mean Velo Physio Gaussian Yes mean of all velocity measures of the rider 4.4
Coord Rider Physio Poisson No number of successful coordination exercises of the rider 4.4
Dressed BW Rider RiderHorse Gaussian No dressed bodyweight of the rider 4.8
Saddle Pressure SaddleP Gaussian Yes mean of all saddle pressure measurements across all location for different gaits 4.8
Saddle Issues SaddleE Poisson No number of total saddle issues 12.5
Waist SaddleE Binomial No binary indicator of a narrow saddle waist cut 22.6

Saddle Pressure Saddle Rides

Number Symptoms Pain Rank log Pasture Score Saddle Issues

Horse Height Mean Force Mean ROM Mean Velo
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Figure 2.1: Histogram of numeric variables.
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Saddle Type Tail Pos Training Freq Waist

License Limited ROM Back Limited ROM Ilium Main Usage

Defensive Pull Habit Patfix Lambskin Lameness

Brach Hyper Breed Warm Blood Broken Hoof Conformation
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Figure 2.2: Barplots of categorical variables. A zero indicates no findings or issues.

2.3 Variable Ranking and Selection

Variable ranking is a useful method for reducing the dimensionality of a data set. It allows
for a simple, yet still representable analysis/model of a system, whenever the addition of too
many variables decreases the model’s general predictive effectiveness. Furthermore, especially
in terms of additive Bayesian network modelling, dimensionality reduction can greatly increase
computational speed, interpretability and visualization of results. Variable ranking was performed
in this analysis using the package varrank. The package uses filter-based methods to heuristically
measure variable ranks using mutual information against a set of variables. In contrast to
wrapper-based or embedded methods, filter-based methods compute variable ranks without the
need of a pre-specified model, which means that the analysis is solely data-driven. The mutual
information algorithm employed is particularly well-suited for a filter-based selection approach.
It is a measure of minimum redundancy and maximum relevance (mRMRe) of a variable against
a set of relevant variables of interest, which one desires to be in the final model. The mRMRe
algorithm sequentially selects variables with the highest mutual information score possible. This
score is penalized by the amount of redundant information, which is already present in preceding
selected variables. The following Equation (2.1) quantifies the score of a variable to be selected
(fi) as an expression of the previously selected variables (fs), a total set of variables (F ), a set of
relevant variables (C) and a set of selected variables from previous iterations (S) (Kratzer and
Furrer, 2018).
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g(α, β,C,S, fi)︸ ︷︷ ︸
Score of fi

=

Relevance︷ ︸︸ ︷
MI(fi;C)−

∑
fs∈S

α(β, fi, fs,C,S)︸ ︷︷ ︸
Scaling factor

Redundancy︷ ︸︸ ︷
MI(fi; fs) (2.1)

For this analysis, α(β, fi, fs,C,S) = 1/ |S| was set by defining method="peng" in the function
varrank(). This method in itself has been named min-redundancy/max-relevance measure, even
though varrank possesses several other methodologies for measuring redundancy/relevance
(Kratzer and Furrer, 2018). A different formulation of Equation (2.1) is given by Equation (2.2).
In this case, β = 1/ |S| and α(fi, fs,C,S) = 1 was set for the chosen methods for this analysis
(Kratzer and Furrer, 2020).

g(α, β,C,S, fi) = MI(fi;C)− β
∑
fs∈S

MI(fi; fs) (2.2)

The mutual information MI is given by Equation (2.3). It is a formulation of the probability
distributions of the random variables X and Y , where N andM are the respective number of levels
within X and Y (Kratzer and Furrer, 2020). It is a measure of two categorical variables, which is
why varrank uses discretization rules to categorize continuous variables. Sturges’ discretization
rule is the default of varrank, however, several other, as well as user-defined discretization, are
possible. Relevance and redundancy measures are typically summarized and combined by either
taking the difference (default) or the quotient of measurements (Kratzer and Furrer, 2018). For
this and the remaining options to set in varrank, the default was chosen.

MI(X;Y ) =
N∑

n=1

M∑
m=1

P (xn, ym)log
( P (xn, ym)

P (xn)P (ym)

)
(2.3)

Even after heavy initial variable selection with the help of an expert, the amount of variables
remaining for an additive Bayesian network analysis remained too high. The resulting directed
acyclic graph from an analysis incorporating all selected variables would have been too complex,
difficult to interpret, time-consuming and computationally expensive. As a result, two analyses
were performed: an additive Bayesian network analysis for high-ranking variables and one for low
ranking variables. Out of the remaining 30 variables (including the outcome), rank/relevance of
variables were determined with respect to the outcome Pain Rank log. The data set was split into
two by sub-setting it to contain 16 high-ranking and 15 low-ranking variables, both including the
outcome itself.
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2.4 Random Forest Imputation

Data imputation is often a requirement for the analysis of large-scale data sets, since the
dependency of an analysis frequently relies on algorithms that require a complete set of observations.
However, many imputations methods often restrict themselves to either continuous of categorical
variables, thus disregarding mixed-type data sets including both. Random forest imputation
offers a pragmatic, nonparametric solution for the imputation of mixed-type data sets (Stekhofen,
2012).

Random forests are used a useful discrimination and classification tool, often applied in
prediction. Each separate tree, which is a decision tree in nature, sequentially chooses random
variables available in a data set as a predictor. Prediction is then based on the majority consensus
of all trees present (Breinman, 2001). Thus, random forest imputation uses the majority consensus
of all trees present in a forest to determine the missing value for each variable containing missing
values. Random forest imputation provides the advantage of being robust against non-linear
relations and complex interactions between variables, contrary to parametric imputation methods.
As a result, random forest imputation is well-suited for whenever any normality assumptions
might be violated. The package missForest performs a single imputation with the help of many
random forest classifier trees. It trains a classifier forest using the observed cases and imputes
missing values iteratively. missForest additionally supplies measures of accuracy regarding the
imputation. The out-of-bag error rates are calculated for either the entire data set or for each
variable separately. The classification error is defined as the mean squared error (MSE) for
continuous variables (Equation (2.4)) and as the proportion of misclassified entries (PFC) for
categorical variables (Stekhofen, 2012).

MSE =
1

n

N∑
n=1

(Xobs −Xpred)
2 (2.4)

The total amount of missing values in the entire data set is 4.13% (3.93% and 4.49% for high-
and low-ranking variable sets, respectively). In order to maximize the efficiency of random forest
imputation, the imputation was performed on the entire data set of 30 variables, prior to splitting
the data set according high- and low-ranking variables as described in Section 2.3. A seed was
set to ensure reproducibility and 100 trees (default) were trained to impute missing values using
missForest. Poisson-distributed variables run the chance of being imputed with values that are
not integers. As a result, all Poisson-distributed variables were reverted to integers whenever this
was the case. The out-of-bag error rates were calculated for each variable separately by setting
variablewise=TRUE in missForest().
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2.5 Additive Bayesian Network Models

The package abn provides functions to create, select, modify, compare and plot additive Bayesian
network models. In essence, the output of additive Bayesian network modelling, which is a
data-driven analysis, is a network that is comprised of a collection of interconnected, easily
interpretable generalized linear models. Such a network can help identifying and quantifying the
many possible relationships between explanatory variables in a data set, while also allowing the
inclusion of several outcome variables. The network itself takes the shape of a directed acyclic
graph, comprised of nodes and interconnecting edges. Figure 2.3 shows a simple representation of
such a graph. Each node represents a random variable in the data set, while the edges represent
the relationship between nodes, i.e. the corresponding predictors. The distance between nodes
does not reflect the importance or strength of a particular association. A directed acyclic graph
is in itself a representation of the probabilistic model behind additive Bayesian network models.
A general formulation of the probabilistic model is shown in Equation (2.5). It is based on a
factorization of the probabilities of variables Xj , conditional on their parents Paj ; j ∈ 1, . . . , n,
where n is the number of variables in the data set (Kratzer et al., 2020).

P (X) =

n∏
j=1

P (Xj |Paj) (2.5)

a

b

c d

 

 

  

Figure 2.3: An example of a simple directed acyclic graph.
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The entire process of creating an additive Bayesian network with abn can be divided into the
following parts: a model learning, structure learning and a parameter learning part. Equation (2.6)
describes the model in a mathematical notation. The model learning itself can be understood as
the structure’s distribution given the data set, multiplied by the parameter’s distribution given
both the data set and the model structure. The package abn uses score-based methods to select
the best-fitting model from a vast selection of possible models. Once scores (marginal likelihoods)
have been computed for each possible network, heuristic search algorithms then select the highest
possible score, i.e. a network’s score is representative of that network’s capability of capturing the
data’s nature. The entire learning process may be solely data-driven, however, a semi-supervised
setting is more often the case. This entails expert knowledge by adding some known or expected
structure to the directed acyclic graph prior to the score-based model selection process. Parameter
learning is performed as a last step, once the network’s structure has been determined. The
two approaches used for parameter estimation included in abn are either maximum likelihood or
Bayesian methodologies. As a result, the regression coefficients are interpretable as in generalized
linear regression models (Kratzer et al., 2020).

Model learning︷ ︸︸ ︷
P (Model|Data) = P (Model Parameters, Structure|Data)

= P (Model Parameters|Structure,Data)︸ ︷︷ ︸
Parameter learning

P (Structure|Data)︸ ︷︷ ︸
Structure learning

(2.6)

An additive Bayesian network analysis including only complete cases (n = 200 and n = 190 for
high- and low-ranking variables, respectively) was performed as a first step. An analysis with abn
utilizes the following R commands: buildscorecache(), mostprobable() and fitabn(). The
functions create a cache of scores for each possible network configuration, search the computed
scores for its optimal value and fit an additive Bayesian network model, respectively. The
maximum likelihood approach was used for network score and parameter estimation by setting
method="mle" in both buildscorecache() and fitabn(). In order to reduce computation time
and increase interpretability, high-ranking variables were analyzed separately from low-ranking
variables. Variables were abbreviated to enhance the network’s visualization. Table 2.2 and
Table 2.3 provide a legend of both high- and low-ranking variable names and their corresponding
abbreviation, respectively. Variable distributions were set as described in Table 2.1.

In order to warrant the biological and medical interpretability of the models, a series of
banned arcs/relationships was set up. The interplay between high-ranking variables is more
complicated than between low-ranking variables, which is why a more intricate banned arc
matrix was created. Variable interactions with each other were carefully examined and restricted
whenever needed. This was done with the help of expert opinion, thus taking the nature and
context of each experiment and measure into account. The resulting interaction-restricting matrix
between variables was nevertheless constructed to be as permissive as possible. Table 2.4 is a
representation of the restrictions placed upon the possible relations of the network model of
high-ranking variables. Each column represents a parent, while each row represents a child. For
example, the first row is interpreted as follows: variable Pain cannot have itself, variable V2,
V4 and V6 as a parent. Conversely, the fist column is interpreted as follows: variable Pain
cannot have itself, variable V2, V3, V4, V5, V6, V7, V9, V11, V12, V13 and V15 as children.
In contrast, low-ranking variables needed only few prior specifications regarding the network’s
structure: variables V1, V4, V5, V6, V11, V13, V14 were set as variables without any parents. A
variable not having any parent is equivalent to that variable’s row including only “X”.



2.5. ADDITIVE BAYESIAN NETWORK MODELS 11

As a next step, the maximum number of parent nodes was investigated for each variable
set. This was done by penalizing model complexity by scoring the network using the Bayesian
information criterion, while sequentially increasing the maximum number of parents and fitting
an additive Bayesian network model. Upon finding the right amount of maximum parent nodes
for each network, a model was created for each variable set. The exact same procedure was
repeated for the variable sets with random-forest-imputed values (n = 248). To underline the
variables specifically influencing equine back pain, the Markov blanket variables of Pain Rank
log were specifically colored. The Markov blanket is the set of variables that are needed to fully
describe a target variable, i.e. the Markov blanket contains the necessary information to fully
perform inference on the target variable. In other words, the Markov blanket of a target variable
is comprised of its parents, children and those children parents (Kratzer et al., 2019).

Table 2.2: High-ranking variables abbreviation legend.

Variable Abbreviation

Pain Rank log Pain
Algo Measures V1
Coord Rider V2
Saddle Type V3
Mean Velo V4
Horse Height V5
Mean ROM V6
Pasture Score V7
Number Symptoms V8
Horse Age V9
Tail Pos V10
Mean Force V11
Saddle Rides V12
Saddle Issues V13
Limited ROM Ilium V14
Saddle Pressure V15

Table 2.3: Low-ranking variables abbreviation legend.

Variable Abbreviation

Pain Rank log Pain
Breed Warm Blood V1
Defensive Pull V2
Hyper Brach V3
Lambskin V4
Dressed BW Rider V5
License V6
Habit Patfix V7
Conformation V8
Broken Hoof V9
Lameness V10
Main Usage V11
Limited ROM Back V12
Training Freq V13
Waist V14
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Table 2.4: Banned arcs matrix representation.

Pain V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Pain X O X O X O X O O O O O O O O O
V1 O X X O X O X O O O O O O O O O
V2 X X X O O X O X X X X O O X X X
V3 X X O X O O O X X O X O O X X X
V4 X X O O X X O X X X X O O X X X
V5 X X X X X X X X X X X X X X X X
V6 X X O O O X X X X X X O O X X X
V7 X X X X X X X X O O X X O X X X
V8 O O X O X O X O X O O O O O O O
V9 X X X X X X X X X X X X X X X X
V10 O O X O X O X X O O X O O O O O
V11 X X O O O X O X X X X X O X X X
V12 X X O O O X O X O O X O X O O X
V13 X X X O X O X X X X X X O X X X
V14 O O O O O O O O O O O O O O X O
V15 X X O O O O O O O X X O O O O X

2.6 Additive Bayesian Network Models: Robustness Analysis

Additive Bayesian network modelling is often accompanied by overfitting, resulting in an overly
complex network and biased coefficient estimates (Kratzer et al., 2019). In order to control
for overfitting and to explore the impact of random forest imputation on the entire network
in a thorough manner, a simulation in which missing values (5% missing values entries, same
magnitude as in the original data set) are introduced into the complete-case data set and
sequentially imputed with random forests was conducted. In order to improve computational
efficiency, this simulation/robustness analysis was conducted with the eleven highest ranking
variables. This analysis thus simulates the complete-case data set (n = 221) as the “true” data set
and compares the resulting model with an additive Bayesian network model analysis after random
forest imputation (n = 221) and after an analysis using only complete cases of the missing-value-
imposed “true” data set (n = 120, essentially a complete-case analysis of the complete cases
after introducing missing values). Without accounting for overfitting, some difference in both
structure and coefficients between the three resulting models would be expected. In order to
ensure robust results, a simple and pragmatic resampling method was conceptualized. For each
of the aforementioned data sets, 50% was resampled to create a network model. This process
was repeated 100 times. Robustness was then achieved by constructing a model consisting of
only associations, which were present in at least 50% of all resampling iterations, e.g. a pruned
additive Bayesian network.



Chapter 3

Results

3.1 Varrank Results

Figure 3.1 shows the results of variable ranking using varrank in a decreasing order. We observe
that most Gaussian- and Poisson-distributed variables are highly ranked in relevance with respect
to the outcome Pain Rank log. Both the matrix and the score densities show a rather symmetrical
distribution of scores across variables, albeit highly ranked variables being the minority. A clear
amount of high redundancy is evident in the lower-ranked variables.
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Figure 3.1: Varrank score matrix and density.
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3.2 Random Forest Imputation Results

Table 3.1 lists the out-of-bag error rates for each variable of the random forest decision trees used
to impute missing data. The mean squared error is particularly high in variables Mean ROM,
Mean Force, Mean Velo, Coord Rider, Dressed BW Rider and Saddle Pressure, while it remains
reasonably low and rather constant for the remaining continuous variables. On the other hand,
the proportion of misclassified categorical variables is rather constant for the most, albeit quite
high in certain variables, such as Lameness, Tail Pos and Habit Patfix.

Table 3.1: Mean squared error (MSE) and misclassified proportion (PFC) of variables
from the random forest used to impute missing values.

Variable Error Measure Error Measure Type %NA

Horse Height 0 MSE 0
Breed Warm Blood 0 PFC 0
Horse Age 0 MSE 0
Pasture Score 0 MSE 0
License 0 PFC 0
Main Usage 0 PFC 0
Saddle Rides 0 MSE 0
Training Freq 0 PFC 0
Saddle Type 0 PFC 0
Lambskin 0 PFC 0
Number Symptoms 0 MSE 0
Algo Measures 1.69 MSE 4.84
Conformation 0.36 PFC 4.84
Brach Hyper 0.31 PFC 4.84
Pain Rank log 0.7 MSE 6.45
Limited ROM Back 0.27 PFC 5.24
Limited ROM Ilium 0.18 PFC 5.65
Broken Hoof 0.31 PFC 4.44
Habit Patfix 0.41 PFC 4.44
Tail Pos 0.42 PFC 10.89
Lameness 0.48 PFC 5.24
Defensive Pull 0.29 PFC 4.44
Mean ROM 16.53 MSE 4.44
Mean Force 156.74 MSE 4.44
Mean Velo 16.78 MSE 4.44
Coord Rider 10.41 MSE 4.44
Dressed BW Rider 98.62 MSE 4.84
Saddle Pressure 15.6 MSE 4.84
Saddle Issues 1.76 MSE 12.5
Waist 0.34 PFC 22.58
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3.3 Complete Case Analyses Results

The results stemming from the complete-case analysis of maximum number of parent nodes in
each network are shown in Figure 3.2 and Figure 3.3 for the sets of high- and low-ranking variables,
respectively. For high-ranking variables, we observe a nick in the log marginal likelihood at three
maximum number of parent nodes, after which the likelihood remains constant. Subsequently,
the maximum number of parents for high-ranking variables was set to four. In contrast, the log
marginal likelihood of low-ranking variables caps at two maximum number of parent nodes and
then remains constant, which is why the maximum number of parent nodes was set to three.
These modelling choices ensure a complex enough network to capture potentially interesting
associations in-between variables.
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Figure 3.2: Log marginal likelihood of the BIC-scored networks of high-ranking
variables with different number of maximum parent nodes (complete-case analysis).
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Figure 3.3: Log marginal likelihood of the BIC-scored networks of low-ranking variables
with different number of maximum parent nodes (complete-case analysis).
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The following texts describing the additive Bayesian networks are by no means an exhaustive
description of all associations found in the network. It is merely an emphasis of particular
relationships, that intuitively and well-describe the rider-horse system at hand. The coefficients
depicted in figures are interpreted as follows: a one unit change in a variable/changing the
category of a variable from the reference level to another causes a change in mean, mean log, log
odds ratio or log rate ratios, in magnitude of the value of the variable’s coefficient on the target
variable, while holding all other explanatory variables constant.

The additive Bayesian network of the complete cases of high-ranking variables is depicted in
Figure 3.4 as a directed acyclic graph showing parent-child relationships. We observe that variable
V1/Algo Measures, V3/Saddle Type, V7/Pasture Score and V10/Tail Pos are all associated
with a direct influence on Pain/Pain Rank log. The Markov blanket additionally includes
variables V6/Mean ROM, V8/Number Symptoms, V13/Saddle Issues, V14/Limited ROM Ilium
and V15/Saddle Pressure. All variables with a direct influence on Pain/Pain Rank log seem
to be associated with it negatively. Variable V12/Saddle Rides and V5/Horse Height are both
negatively associated with V1/Algo Measures, while V11/Mean Force and V15/Saddle Pressure
are associated with a positive influence. V3/Saddle Type is associated negatively with V5/Horse
Height, V9/Horse Age and V11/Mean Force, and positively with V4/Mean Velo. V5/Horse
Height and V11/Mean Force are both positively associated with a positive influence on V10/Tail
Pos, while V9/Horse Age and V14/Limited ROM Ilium are associated with a negative influence
on it. Additionally, V7/Pasture Score is associated with a positive and negative influence by
V9/Horse Age and V12/Saddle Rides, respectively.

In particular, we find many other interesting associations, such as positive associations between
variables V3/Saddle Type and V15/Saddle Pressure, V5/Horse Height and V8/Number Symptoms,
V6/Mean ROM and V14/Limited ROM Ilium, V9/Horse Age and V7/Pasture Score, V12/Under
Saddle Per Week and V13/Saddle Issues, V12/Under Saddle Per Week and V8/Number Symptoms,
V11/Mean Force and V15/Saddle Pressure, and V15/Saddle Pressure and V1/Algo Measures.
We also find negative association between variables V3/Saddle Type and V13/Saddle Issues,
V5/Horse Height and V3/Saddle Type, V5/Horse Height and V13/Saddle Issues, V9/Horse Age
and V3/Saddle Type, V9/Horse Age and V12/Under Saddle Per Week, and V7/Pasture Score
and V14/Limited ROM Ilium. Table 3.2 provides basic information measures describing the
general network model.
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Figure 3.4: Additive Bayesian network directed acyclic graph of high-ranking variables,
showing parent-child relationships (complete-case analysis). Variables in circles, ovals
and rectangles represent Gaussian, Poisson and binomial variables, respectively. Variable
coefficients are shown next to their respective edges (rounded to first significant digit).
Markov blanket of Pain shown in red.

Table 3.2: General information about the complete-case analysis directed acyclic graph
of high-ranking variables.

Network Measure Value

Number of Nodes 16
Number of Arcs 44
Markov Blanket Average Set Size 10.88
Neighbour Average Set size 5.5
Parent Average Set Size 2.75
Children Average Set Size 2.75

Figure 3.5 is a similar representation of Figure 3.4. It shows the same relationships between
variables, but reversed as child-parent relationships. As a result, the variable coefficients are
reversed in terms of direction.
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Figure 3.5: Additive Bayesian network directed acyclic graph of high-ranking variables,
showing child-parent relationships (complete-case analysis). Variables in circles, ovals
and rectangles represent Gaussian, Poisson and binomial variables, respectively. Variable
coefficients are shown next to their respective edges (rounded to first significant digit).
Markov blanket of Pain shown in red.

The additive Bayesian network of the complete-cases of low-ranking variables are depicted
as directed acyclic graphs in Figure 3.6 (parent-child relations). We observe variables V1/Breed
Warm Blood, V3/Hyper Brach and V11/Main Usage being associated with having a direct
influence on Pain/Pain Rank log. The Markov blanket of Pain/Pain Rank log additionally
includes variable V2/Defensive Pull, V7/Habit Patfix, V8/Conformation and V9/Broken Hoof.
V1/Breed Warm Blood and V11/Main Usage seem to be associated with a positive influence on
Pain/Pain Rank log, while V3/Hyper Brach seems to be associated with a negative influence.
Both variables V1/Breed Warm Blood and V11/Main Usage are associated with a negative
influence on V2/Defensive Pull, V3/Hyper Brach and V8/Conformation. V1/Breed Warm Blood
and V11/Main Usage are additionally negatively associated with V7/Habit Patfix and V9/Broken
Hoof, respectively. We find three variables not being associated with any other variable in the
network (V4/Lambskin, V13/Training Freq and V14/Waist). Additionally, we find negative
associations between variables V3/Hyper Brach and V8/Conformation, V5/Dressed BW Rider
and V9/Broken Hoof, V8/Conformation and V9/Broken Hoof, and V10/Lameness and V7/Habit
Patfix. Table 3.3 lists the general network measures.
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Figure 3.6: Additive Bayesian network directed acyclic graph of low-ranking variables,
showing parent-child relationships (complete-case analysis). Variables in circles, ovals,
rectangles and no enclosure represent Gaussian, Poisson, binomial and multinomial
variables, respectively. Variable coefficients are shown next to their respective edges
(rounded to first significant digit). Markov blanket of Pain shown in red (+V11 ).

Table 3.3: General information about the complete-case analysis directed acyclic graph
of low-ranking variables.

Network Measure Value

Number of Nodes 15
Number of Arcs 18
Markov Blanket Average Set Size 3.87
Neighbour Average Set size 2.4
Parent Average Set Size 1.2
Children Average Set Size 1.2

Figure 3.7 is the child-parent representation of the graph shown in Figure 3.6. It shows the
same relationships between variables, but reversed as child-parent relationships. As a result, the
variable coefficients are reversed as well.
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Figure 3.7: Additive Bayesian network directed acyclic graph of low-ranking variables,
showing child-parent relationships (complete-case analysis). Variables in circles, ovals,
rectangles and no enclosure represent Gaussian, Poisson, binomial and multinomial
variables, respectively. Variable coefficients are shown next to their respective edges
(rounded to first significant digit). Markov blanket of Pain shown in red (+V11 ).
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3.4 Imputed Data Analyses Results

The results stemming from the imputed data set analysis of maximum number of parent nodes
in each network are shown in Figure 3.8 and Figure 3.9 for the sets of high- and low-ranking
variables, respectively. Correspondingly, the log marginal likelihood of high- and low-ranking
variables caps at three and two maximum number of parent nodes and then remains constant.
As with the complete-case analysis, as well as in order to ensure a complex enough network
and comparability, the maximum number of parent nodes was set to four in the analysis of
high-ranking variables and three in the analysis of low-ranking variables.
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Figure 3.8: Log marginal likelihood of the BIC-scored networks of high-ranking
variables with different number of maximum parent nodes (imputed data analysis).
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Figure 3.9: Log marginal likelihood of the BIC-scored networks of low-ranking variables
with different number of maximum parent nodes (imputed data analysis).
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The additive Bayesian networks of high-ranking variables stemming from an analysis of the
imputed data set is shown in Figure 3.10 (parent-child relations). In comparison to the complete-
case analysis, we now find a direct positive association between V5/Horse Height, V7/Pasture
Score and V11/Mean Force with Pain/Pain Rank log, while V3/Saddle Type remains negatively
associated with it. The Markov blanket is now comprised of all other variables present in the
network, with the exception of V9/Horse Age. V5/Horse Height is a variable/node without any
parents, while V7/Pasture Score is associated with a positive influence by variables V12/Saddle
Rides and V9/Horse Age. V12/Saddle Rides and V2/Coord Rider are associated negatively
with V11/Mean Force, while V3/Saddle Type is positively associated with it. V3/Saddle Type is
associated with being influenced negatively by V5/Horse Height and positively by V9/Horse Age.

In comparison to the complete-case analysis, aforementioned associations between variables
V5/Horse Height and V3/Saddle Type, V5/Horse Height and V8/Number Symptoms, V5/Horse
Height and V13/Saddle Issues, V9/Horse Age and V7/Pasture Score, V12/Saddle Rides and
V13/Saddle Issues, and V11/Mean Force and V15/Saddle Pressure, V15/Saddle Pressure and
V1/Algo Measures all remained present. On the other hand, the network of high-ranking variables
in the imputed data analysis did change to a certain degree. We find aforementioned associations
in the complete-case analysis results between V2/Coord Rider and V11/Mean Force, V3/Saddle
Type and V13/Saddle Issues, V5/Horse Height and V1/Algo Measures, V5/Horse Height and
V10/Tail Pos, V7/Pasture Score and V14/Limited ROM Ilium, V9/Horse Age and V3/Saddle
Type, V9/Horse Age and V10/Tail Pos, V9/Horse Age and V12/Saddle Rides, and V12/Saddle
Rides and V7/Pasture Score all remaining present, but changing in coefficient sign. Furthermore,
we find associations between V6/Mean ROM and V14/Limited ROM Ilium, V11/Mean Force and
V1/Algo Measures, V11/Mean Force and V10/Tail Pos, V12/Saddle Rides and V1/Algo Measures,
V12/Saddle Rides and V8/Number Symptoms, and V14/Limited ROM Ilium and V10/Tail Pos
all being broken. We also find the in-between associations of Pain/Pain Rank log with V1/Algo
Measures and V10/Tail Pos becoming reversed in comparison to the complete-case analysis. We
observe from Table 3.4 that only the number of nodes remained unchanged in comparison to the
complete-case analysis. The number of arcs, average Markov blanket set size, average neighbour
set size, average parent set size and average children set size all increased.
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Figure 3.10: Additive Bayesian network directed acyclic graph of high-ranking variables,
showing parent-child relationships (imputed data analysis). Variables in circles, ovals
and rectangles represent Gaussian, Poisson and binomial variables, respectively. Variable
coefficients are shown next to their respective edges (rounded to first significant digit).
Markov blanket of Pain shown in red.

Table 3.4: General information about the imputed data analysis directed acyclic graph
of high-ranking variables.

Network Measure Value

Number of Nodes 16
Number of Arcs 46
Markov Blanket Average Set Size 11.38
Neighbour Average Set size 5.75
Parent Average Set Size 2.88
Children Average Set Size 2.88

Figure 3.11 is the child-parent representation of the graph shown in Figure 3.10. As a result,
relationships and coefficients are reversed.
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Figure 3.11: Additive Bayesian network directed acyclic graph of high-ranking variables,
showing child-parent relationships (imputed data analysis). Variables in circles, ovals
and rectangles represent Gaussian, Poisson and binomial variables, respectively. Variable
coefficients are shown next to their respective edges (rounded to first significant digit).
Markov blanket of Pain shown in red.

The additive Bayesian network of low-ranking variables stemming from an analysis of the
imputed data set is shown in Figure 3.12 (parent-child). We observe variables V1/Breed Warm
Blood, V3/Hyper Brach and V11/Main Usage being associated directly with Pain/Pain Rank log,
just as is the case in the complete-case analysis. Variable V3/Hyper Brach and V11/Main Usage
seem to be negatively associated with Pain/Pain Rank log, while V1/Breed Warm Blood seems to
be positively associated with it. The Markov blanket additionally includes variable V2/Defensive
Pull and V8/Conformation.

We find that associations between variables V1/Breed Warm Blood and V3/Hyper Brach,
V1/Breed Warm Blood and V7/Habit Patfix, V1/Breed Warm Blood and V8/Conformation,
V5/Dressed BW Rider and V9/Broken Hoof, V10/Lameness and V7/Habit Patfix, V11/Main
Usage and V8/Conformation, V11/Main Usage and V2/Defensive Pull, and V11/Main Usage
and V3/Hyper Brach all remain present, albeit the latter two associations changing in sign. In
comparison to the complete-case analysis, we also find that V11/Main Usage is now additionally
negatively associated with V7/Habit Patfix. Also in this network we find three variables not being
associated with any other variable in the network (V4/Lambskin, V6/License and V13/Training
Freq). The association of V8/Conformation and V3/Hyper Brach, as well as V8/Conformation
and V9/Broken Hoof have been reversed in contrast to the direction found in the complete-case
analysis. Furthermore, the associations between V1/Breed Warm Blood and V2/Defensive Pull,
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as well as the association between V11/Main Usage and V9/Broken Hoof have been broken in the
analysis of the imputed data set. As is the case with the complete-case and imputed data analysis
of high-ranking variables, general network measurements listed in Table 3.5 remain unchanged for
the network of imputed low-raking variables, the only exception being a slightly reduced average
Markov blanket set size.
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Figure 3.12: Additive Bayesian network directed acyclic graph of low-ranking variables,
showing parent-child relationships (imputed data analysis). Variables in circles, ovals,
rectangles and no enclosure represent Gaussian, Poisson, binomial and multinomial
variables, respectively. Variable coefficients are shown next to their respective edges
(rounded to first significant digit). Markov blanket of Pain shown in red (+V11 ).

Table 3.5: General information about the imputed data analysis directed acyclic graph
of low-ranking variables.

Network Measure Value

Number of Nodes 15
Number of Arcs 18
Markov Blanket Average Set Size 3.6
Neighbour Average Set size 2.4
Parent Average Set Size 1.2
Children Average Set Size 1.2
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Figure 3.13 is the child-parent representation of the graph shown in Figure 3.12. As a result,
relationships and coefficients are reversed.
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Figure 3.13: Additive Bayesian network directed acyclic graph of low-ranking variables,
showing child-parent relationships (imputed data analysis). Variables in circles, ovals,
rectangles and no enclosure represent Gaussian, Poisson, binomial and multinomial
variables, respectively. Variable coefficients are shown next to their respective edges
(rounded to first significant digit). Markov blanket of Pain shown in red (+V11 ).
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3.5 Robustness Analysis Results

The results of the additive Bayesian network model robustness analysis of complete cases performed
on the of the eleven highest-ranking variables are shown as a matrix representation in Table 3.6.
The table shows the sum of all associations present after iteratively resampling the data and
constructing a network model. We observe few associations being present as little as once or twice
in the network. We also observe two associations being present throughout all network models.
Most importantly, we notice that most associations that were not present at all are restricted by
the banned arc matrix/restriction matrix in Table 2.4 set up to model the variables.

Table 3.6: Matrix representation of the absolute frequency and percentage with which
associations are present in the robustness analysis of the complete-case data set. An
’X’ represents a banned association in the banned arc/restriction matrix, while ’O’
represents a non-restricted association.

Pain V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Pain 0|X 32|O 0|X 79|O 0|X 63|O 0|X 74|O 6|O 64|O 13|O 69|O
V1 68|O 0|X 0|X 54|O 0|X 80|O 0|X 52|O 28|O 53|O 24|O 41|O
V2 0|X 0|X 0|X 14|O 5|O 0|X 2|O 0|X 0|X 0|X 0|X 1|O
V3 0|X 0|X 75|O 0|X 62|O 100|O 22|O 0|X 0|X 68|O 0|X 53|O
V4 0|X 0|X 95|O 38|O 0|X 0|X 35|O 0|X 0|X 0|X 0|X 65|O
V5 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X
V6 0|X 0|X 98|O 78|O 65|O 0|X 0|X 0|X 0|X 0|X 0|X 79|O
V7 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 37|O 100|O 0|X 0|X
V8 18|O 22|O 0|X 63|O 0|X 81|O 0|X 25|O 0|X 33|O 60|O 98|O
V9 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X 0|X
V10 58|O 22|O 0|X 80|O 0|X 74|O 0|X 0|X 29|O 71|O 0|X 65|O
V11 0|X 0|X 99|O 47|O 35|O 0|X 21|O 0|X 0|X 0|X 0|X 0|X

Shown in Figure 3.14 and Figure 3.15 is the directed acyclic graph of associations shown
in Table 3.6 which are present at least 50% of the time during the simulation, e.g. a pruned
network. The thickness of edges in Figure 3.14 is representative of the frequency with which the
association appeared during the simulation. Figure 3.15 shows the respective network model
along with the coefficients. We observe all variables with the exception of V2/Coord Rider
being included in the Markov blanket of Pain/Pain Rank log. Associations between variables
V2/Coord Rider and V6/Mean ROM, V2/Coord Rider and V4/Mean Velo, and V2/Coord Rider
and V11/Mean Force were present in the vast majority of resampled network models, which
is consistent with the fact that all of these variables step from the rider itself. Additionally,
associations between V3/Saddle Type and Pain/Pain Rank log, and V7/Pasture Score and
Pain/Pain Rank log, and V11/Mean Force and Pain/Pain Rank log were also present in the vast
majority of cases. Furthermore, associations between variables V5/Horse Height and V3/Saddle
Type, V9/Horse Age and V7/Score Meadow, and V11/Mean Force and V8/Number Symptoms
were also present in the vast majority of networks.
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We now find variables V3/Saddle Type, V5/Horse Height, V7/Pasture Score and V9/Horse
Age being directly associated with Pain/Pain Rank log. There is now a positive association
between V3/Saddle Type and Pain/Pain Rank log, as well as V7/Pasture Score and Pain/Pain
Rank log, while both V5/Horse Height and V9/Horse Age are both negatively associated with it.
Particularly, we find positive associations between variables Pain/Pain Rank log and V1/Algo
Measures, Pain/Pain Rank log and V10/Tail Pos, V3/Saddle Type and V1/Algo Measures, and
V11/Mean Force and V3/Saddle Type. We also find negative associations between variables
V10/Tail Pos and V8/Number Symptoms, V3/Saddle Type and V10/Tail Pos, and V9/Horse Age
and V3/Saddle Type.

Pain

V1

V2

V3

V4 V5

V6

V7

V8

V9

V10

V11

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.14: Additive Bayesian network directed acyclic graph of the 11 highest-
ranking variables, showing only child-parent associations present in at least 50 percent
of graphs in the robustness analysis of the complete-case and random-forest-imputed
data set. Variables in circles, ovals and rectangles represent Gaussian, Poisson and
binomial variables, respectively. Markov blanket of Pain shown in red. The thickness of
edges are a representation of the frequency with which an association was present in the
robustness analysis.
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Figure 3.15: Additive Bayesian network directed acyclic graph of the 11 highest-
ranking variables, showing only child-parent associations present in at least 50 percent
of graphs in the robustness analysis of the complete-case data set. Variables in circles,
ovals and rectangles represent Gaussian, Poisson and binomial variables, respectively.
Variable coefficients are shown next to their respective edges (rounded to first significant
digit). Markov Blanket of Pain shown in red.

Shown in Table 3.7 is a matrix representation of the number of times an association was found
during the resampling simulation of the imputed set of the eleven highest-ranking variables after
the set was randomly imposed with missing values. We notice that it is nearly identical to the
matrix representation of the complete-case simulation shown in Table 3.6. Table 3.8 is a matrix
representation of the differences between Table 3.6 and Table 3.7.
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Table 3.7: Matrix representation of the absolute frequency and percentage with which
associations are present in the robustness analysis of the random-forest-imputed, missing-
values-imposed complete-case data set.

Pain V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Pain 0 32 0 79 0 63 0 74 6 64 12 70
V1 68 0 0 53 0 79 0 53 29 53 24 41
V2 0 0 0 14 5 0 2 0 0 0 0 1
V3 0 0 76 0 62 100 22 0 0 67 0 53
V4 0 0 95 38 0 0 35 0 0 0 0 64
V5 0 0 0 0 0 0 0 0 0 0 0 0
V6 0 0 98 78 65 0 0 0 0 0 0 79
V7 0 0 0 0 0 0 0 0 36 100 0 0
V8 18 21 0 64 0 80 0 26 0 33 60 98
V9 0 0 0 0 0 0 0 0 0 0 0 0
V10 59 22 0 80 0 74 0 0 29 70 0 65
V11 0 0 99 47 36 0 21 0 0 0 0 0

Table 3.8: Matrix representation of the absolute difference between associations present
in the robustness analysis of the random-forest-imputed and the complete-case data set.

Pain V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Pain 0 0 0 0 0 0 0 0 0 0 1 -1
V1 0 0 0 1 0 1 0 -1 -1 0 0 0
V2 0 0 0 0 0 0 0 0 0 0 0 0
V3 0 0 -1 0 0 0 0 0 0 1 0 0
V4 0 0 0 0 0 0 0 0 0 0 0 1
V5 0 0 0 0 0 0 0 0 0 0 0 0
V6 0 0 0 0 0 0 0 0 0 0 0 0
V7 0 0 0 0 0 0 0 0 1 0 0 0
V8 0 1 0 -1 0 1 0 -1 0 0 0 0
V9 0 0 0 0 0 0 0 0 0 0 0 0
V10 -1 0 0 0 0 0 0 0 0 1 0 0
V11 0 0 0 0 -1 0 0 0 0 0 0 0

Figure 3.14 and Figure 3.16 show the pruned and robust additive Bayesian network models
of the imputed set of variables after imposing missing values upon the complete case data set.
Due to the fact that both the complete-case robustness analysis and the imputed set robustness
analysis resulted in almost exactly the same association matrices, Figure 3.14 also represents
the pruned acyclic graph of the robustness analysis of the imputed data set, showcasing the
frequency with which associations were present during the simulation. Structurally, both network
models are virtually identical. We only find differences in the coefficients describing the network
associations. Most of the coefficients in Figure 3.16 are very similar to the those shown in
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Figure 3.15. We now find that almost all coefficients retained their respective sign. Table 3.9
provides general information measures about the directed acyclic graph of both the complete
cases and the random-forest-imputed, missing-value-imposed data set robustness analysis.
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Figure 3.16: Additive Bayesian network directed acyclic graph of the 11 highest-
ranking variables, showing only child-parent associations present in at least 50 percent
graphs in the robustness analysis of random-forest-imputed, missing-values-imposed
complete-case data set. Variables in circles, ovals and rectangles represent Gaussian,
Poisson and binomial variables, respectively. Variable coefficients are shown next to
their respective edges (rounded to first significant digit). Markov Blanket of Pain shown
in red.

Table 3.9: General information about the directed acyclic graph of complete cases and
the random-forest-imputed robustness analysis of the 11 highest-ranking variables.

Network Measure Value

Number of Nodes 12
Number of Arcs 32
Markov Blanket Average Set Size 7.33
Neighbour Average Set size 5.33
Parent Average Set Size 2.67
Children Average Set Size 2.67
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The results of the robustness analysis of the complete cases of missing-value-imposed complete
case set of the eleven highest-ranking variables are shown as a matrix representation in Table 3.10.
The table shows the sum of all associations present in a network model after iteratively resampling
the data and creating a network model.

Table 3.10: Matrix representation of the absolute frequency and percentage with
which associations are present in the robustness analysis of the complete-cases of the
missing-values-imposed complete-case data set.

Pain V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Pain 0 25 0 86 0 43 0 94 15 57 12 68
V1 41 0 0 72 0 67 0 63 26 59 19 53
V2 0 0 0 6 0 0 1 0 0 0 0 0
V3 0 0 83 0 42 100 30 0 0 72 0 50
V4 0 0 100 58 0 0 58 0 0 0 0 70
V5 0 0 0 0 0 0 0 0 0 0 0 0
V6 0 0 99 70 42 0 0 0 0 0 0 77
V7 0 0 0 0 0 0 0 0 18 100 0 0
V8 24 22 0 37 0 59 0 32 0 60 80 86
V9 0 0 0 0 0 0 0 0 0 0 0 0
V10 71 38 0 66 0 79 0 0 18 69 0 59
V11 0 0 100 50 30 0 23 0 0 0 0 0

Shown in Figure 3.17 and 3.18 is the pruned directed acyclic graph of associations shown
in Table 3.10. There are quite substantial differences to the previous models in both structural
terms and in the coefficients that describe the found associations. All variables with the exception
of V2/Coord Rider and V5/Horse Height are included in the Markov blanket of Pain/Pain
Rank log. Associations between variables V2/Coord Rider and V6/Mean ROM, V2/Coord
Rider and V4/Mean Velo, and V2/Coord Rider and V11/Mean Force are once again present
in the vast majority of resampled network models. Associations between V5/Horse Height and
V3/Saddle Type, V9/Horse Age and V7/Score Meadow were also present in the vast majority
of networks. Variables V3/Saddle Type, V7/Pasture Score and V9/Horse Age and V11/Mean
Force are now directly associated with Pain/Pain Rank log. There is now a negative association
between V3/Saddle Type and Pain/Pain Rank log, as well as a positive association between
V7/Pasture Score and Pain/Pain Rank log. Both V9/Horse Age and V11/Mean Force are
positively associated with Pain/Pain Rank log. We find that the direct association between
V1/Algo Measures and Pain/Pain Rank log, and V11/Mean Force and V3/Saddle Type are not
present anymore. Additionally, the association between V9/Horse Age and V3/Saddle Type
changed in sign. However, we still find the same associations between variables, Pain/Pain Rank
log and V10/Tail Pos, V3/Saddle Type and V1/Algo Measures, V10/Tail Pos and V8/Number
Symptoms, V3/Saddle Type and V10/Tail Pos. Table 3.11 provides general information measures
of graphs shown in Figure 3.17 and Figure 3.18. We find a small decrease in the number of arcs,
average neighbour, parent and child set size, and a slight increase in the average Markov blanket
set size.
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Figure 3.17: Additive Bayesian network directed acyclic graph of the 11 highest-
ranking variables, showing only child-parent associations present in at least 50 percent
graphs in the robustness analysis of the complete-cases of the missing-values-imposed
complete-case data set. Variables in circles, ovals and rectangles represent Gaussian,
Poisson and binomial variables, respectively. Markov Blanket of Pain shown in red. The
thickness of edges is a representation of the frequency an association was present in the
robustness analysis.
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Figure 3.18: Additive Bayesian network directed acyclic graph of the 11 highest-
ranking variables, showing only child-parent associations present in at least 50 percent
graphs in the robustness analysis of the complete-cases of the missing-values-imposed
complete-case data set. Variables in circles, ovals and rectangles represent Gaussian,
Poisson and binomial variables, respectively. Variable coefficients are shown next to
their respective edges (rounded to first significant digit). Markov Blanket of Pain shown
in red.

Table 3.11: General information about the directed acyclic graph of the complete-cases
of the missing-values-imposed complete-case data set robustness analysis of the 11
highest-ranking variables.

Network Measure Value

Number of Nodes 12
Number of Arcs 30
Markov Blanket Average Set Size 7.83
Neighbour Average Set size 5
Parent Average Set Size 2.5
Children Average Set Size 2.5



Chapter 4

Discussion

Variable ranking analysis on the outcome Pain Rank log clearly shows a sizable amount of
redundant variables along the selected variables. The analysis using varrank strongly underlines
the importance of variable selection for analyses such as additive Bayesian network models. The
ability to select variables without the explicit need of either a model or expert knowledge can be
a great help to epidemiologists, especially when dealing with high-dimensional and mixed-type
data. Furthermore, the lack of necessity for a model works around step-wise model selection
processes that may induce bias and overfit the true effect of variables. During this analysis we
found that the package abn could easily and reliably model around 15 variables, but struggled
computationally once the amount exceeded. Additionally, the interpretation and visualization of
an additive Bayesian model significantly decreases once too many variables are included in the
network. This further encourages variable selection processes an possibly splitting an analysis in
several parts, as done with these analyses.

The proportion of misclassified variables and the mean square error of variables for the
imputed data set seem to be acceptable as a whole, albeit slightly high in few cases, especially
for categorical variables. Random forest imputation proves to change the results of additive
Bayesian networks to some degree, when comparing the results of a complete-case analysis to
the analysis of a random forest imputed data set while not controlling for overfitting. Not only
did the presence of edges change between nodes (i.e. the network structure), but the coefficients
changed in a multitude of cases as well. The instability of random forest imputation heavily
depends on the amount of missing data. The higher the amount of missing data, the less accurate
random forest imputation will be. Nevertheless, the flexibility of random forest imputation makes
its use strongly advantageous when dealing with high-dimensional, mixed-type data.

The analysis of maximum number of parents for any additive Bayesian network model yielded
some rather surprising results. In each case, we found a constant and a rapid change in marginal
likelihood at an already low number of maximum parent nodes. Much rather, we expected the
marginal likelihood to remain constant at a higher amount of maximum number of parent nodes
allowed. We argue that this is due to the BIC score penalization getting increasingly heavier
as the number of parents rise. This ultimately results in the very same network being fitted
repeatedly, thus resulting in the exact same marginal likelihood value. Choosing the maximum
number of parent nodes allowed in a network model is an important modelling decision. Increasing
the number of parent nodes present in an additive Bayesian network model heavily increases its
complexity and decreases readability and interpretability. A higher model complexity possibly
allows for the identification of more associations between variables, whereas model complexity is
also problematic in the sense of overfitting. We reason that choosing a rather high number of
maximum parent nodes allowed may be beneficial towards capturing possible associations, but
may prove detrimental in the sense of overfitting and thus, generalization.

35
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Additive Bayesian network models are indeed a very elegant model choice for holistic analyses.
However, analyses of epidemiological data sets will often require specification of relations that
should be retained or banned. This is done by creating a matrix specifying edges that should be
either retained or banned when searching the model’s optimal structure. We find that the slightest
change in such a matrix may cause the results of an additive Bayesian network model to be
widely different from before. Not only may the structure of the model change, but the coefficients
describing relationships between variables may do so as well. This proves to be problematic when
trying to draw quantitative conclusions from an additive Bayesian model. In the same sense,
it is also difficult to draw qualitative conclusions, such as the direction of associations. The
chosen restriction/retention matrix is not necessarily unique and may change depending on the
reasoning behind possible causal relations between variables. This is why the construction of a
restriction/retention matrix should be constructed along with expert opinion. However, a certain
amount of subjectivity will always be present when constructing such a matrix, even when expert
opinion is available. Considering the possible changes in coefficients and structure of a network
when changing the restriction/retention matrix, we encourage care whenever drawing stronger
conclusions from an additive Bayesian network model. We only show the results of an additive
Bayesian network model that uses a single optimal restriction matrix (for high- and low-ranking
variables, respectively), as it would be beyond the scope of this document to list the resulting
networks drawn from using different restriction matrices that were built iteratively during this
analysis.

We were able to identify several observations from the complete-case analysis of high-ranking
variables that were consistent with our expectations previous to the statistical analysis. We found
that algometry measures (a measure of pain/pressure resistance) are directly associated with
back pain. The findings suggest that horses with back pain tolerate lower algometric pressures
than horses with back pain. These observations are consistent with our beliefs that algometry
measures may serve as a surrogate for equine back pain. The height and frequency of a horse’s
use were negatively associated with algometry values. The bigger the horse and the more often
it was ridden, the lower the algometry value. Assuming that algometry value is a surrogate for
back pain, this would indicate higher levels of back pain in tall, frequently ridden horses. On
the other hand, overall saddle pressure and a rider’s strength seem to increase algometry values,
indicating lower back pain. This is surprising, as one would expect higher pressures to result
in more pain. However, the higher algometry values could also indicate a higher resistance to
pressure. Additionally, the more time a horse spends freely on a pasture, the lower the back pain
score is and the smaller the chances of it having a chiropractic findings in the ilium. Moreover,
the older a horse is, the more time it spends on the pasture and the less frequently it is ridden.
This may be a reflection of the fact that rest and a natural environment are beneficial to a horse’s
health and that older horses are spared more frequently from straining activities. We also found
that English saddle types are presented with fewer fit problems and were more frequently used
on slightly smaller, younger horses. English saddle types are also associated with a higher mean
saddle pressure, which may also directly cause back pain. English saddles are often used by riders
with athletic ambitions, as most competitions in Switzerland focus on dressage and jumping. The
rider’s force, coordination, and reaction speed also appeared to influence the type of saddle being
used. As saddle pressure was also influenced by the rider’s force and reaction speed/coordination,
this may indicate that not only the saddle, but also the riders technique may have impacted
saddle pressure. Western saddle types on the other hand are more often used by less competitive,
leisure riders, which may be why we observe an increased chance of Western saddle types in older
and taller horses.
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Also regarding the complete-case analysis of high-ranking variables, it is important to mention
that a horse may build up a certain resistance to pain with time. We argue that stronger riders
may exert greater force on the saddle, thus applying greater pressure and thereby increase a
horse’s resistance to pressure, resulting in higher algometry values. Additionally, higher saddle
pressure was associated with chiropractic findings in the pelvis/ilium, which could be a direct
result of riding. It is also apparent that tall, frequently ridden horses showed a higher number of
(owner-reported) symptoms for discomfort, pain and/or lameness. Additionally, we argue that
riding frequency directly influences the integrity of a horse’s saddle, thus increasing the number
of saddle problems. This may be a result of wear and tear and the overall quality of a saddle.
Alternatively, riders who ride their horse more often may be less attentive of saddle fit issues.
More importantly, we found that a horse’s height and a rider’s overall strength increase the
chances of an abnormal tail position, which is a possible reflection of an underlying orthopedic
issue. These observations thoroughly underline the assumption that horse-riding is straining for a
horse’s back. Contrary to our expectations however, and despite higher saddle pressure values, we
found that English saddle types were associated with a lower back pain. On the other hand, this
is a result that changed after controlling for overfitting. Also contrary to previous expectations,
we found that an increased horse age lowers the chances of having an abnormal tail position.
These findings could indicate that younger horses are more prone to orthopedic problems in the
pelvis, possibly due to a lack of strength and balance at the beginning of their career as a riding
horse. However, there was a negative association between chiropractic findings in the pelvis/ilium
and an abnormal tail position, which would mean that an abnormal tail position is not indicative
of orthopedic problems in the pelvis. We argue that the direction, sign and magnitude of some
findings may not truly reflect the causal pathway behind the system and that they may have
come to arise due to chance or unaccounted factors.

In contrast to high-ranking variables, the complete-case analysis of low-ranking variables
resulted in many associations that were unexpected. Contrary to our previous expectations,
hypertrophy in the brachiocephalic muscle was associated with a lower back pain score and a
lower chance of suffering from a special back conformation, such as a longer or shorter back
than usual. Additionally, special back conformation was associated with a decreased chance of a
backwards broken hoof pastern axis and lame horses were associated with having an increased
chance of having no issues with kneecap fixation. The negative association between a rider’s
body weight and the chances of a backwards broken hoof pastern axis were also rather surprising.
Interestingly, we also found that warm blood breeds have a decreased chance of having issues with
the habitual fixation of the kneecap, a common orthopedic issue in horses, and with a backwards
broken hoof pastern axis. This is surprising, as warm blood horses are typically bred for athletic
purposes and thus are more prone to having orthopedic issues. Furthermore, we find the chances
of a backwards broken hoof pastern axis being decreased in horses that are used for dressage,
military and jumping disciplines. Also here we argue that these finding may not necessarily
reflect the causal pathway behind the system, or that the associations arose due to chance or
unaccounted factors. Moreover, we argue that low-ranking variables may not carry the highest
quality information to describe the system at hand, which may be due to the splitting of the
analysis in higher- and lower-ranking variables with respect to the relevance towards back pain.
Given the systemic nature of a biological living creature, we much rather expected to find the
inverse for some of the above relations, as a problem or issue in one area may have systemic effects
on other related areas. However, it is interesting to notice how many variables were "correctly"
associated with each other in a semi-supervised model search, albeit the coefficients describing
their relations pointing in the opposite direction of what was expected. On the other hand, we do
find that dressage, military and jumping horse riding disciplines all increase back pain, which
is consistent with our notion that straining activities are detrimental to a equine back health.
Additionally, warm blooded breeds were associated with having higher back pain scores.
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In general, the complete-case analyses of high-ranking variables resulted in a network that
included many intuitive and expected associations. We recognize that the saddle, rider fitness,
horse exercise and natural husbandry all play a crucial role in the complex system resulting
in equine back pain. Conversely, there were less explicable relations in most associations of
low-ranking variables.

Data imputation caused changes in the results of high-ranking variables to a certain degree. A
multitude of associations either ceased to exist, were reversed in direction or changed in coefficient
sign. However, we still do find many associations consistent with our conclusions drawn from
the complete-case analysis, since husbandry, saddle type and rider strength continued playing a
central role in equine back pain. We also noticed that, similar to the complete-case analysis, horse
age and height were closely associated with the outcome back pain. Given that the complete-case
analysis resulted in so many intuitive interpretations of model coefficients, we are now unable to
explain some of the model’s coefficients in a medical-biological sense. It is however encouraging
to see that many expected associations remained. The presence of associations alone serve in the
investigation of closely related variables and are a reason enough to see the complex interplay of
variables in this system. An interesting observation is the large size of the Markov blanket for
high-ranking variables. The Markov blanket is the set of variables that are needed in order to
fully infer on a variable of interest. We argue that the size of the Markov blanket may thus be a
good reflection of the complexity of the system that leads to equine back pain. However, we find
the Markov blanket employed by the package abn being slightly different than previously defined.
Rather than being the set of parents, children and those children parents of a target node, it
seems as if it was defined as the set of parents, those parent’s children and children. The results
of the imputed data analysis of low-ranking variables was on the other hand fairly similar to the
complete-case analysis. As a result, no new particularly striking associations could additionally be
found. Since both analyses of low-ranking variables resulted in similar associations, it is difficult
to explain the model’s coefficients in a sensible medical-biological manner.

Additive Bayesian network models may change their results given a certain procedure, such as
setting a restriction/retention matrix or imputation. We argue that in some cases, these analyses
may be quite delicate in nature. Subsequently, we encourage interpreting the models’ coefficients
with care and rather encourage drawing attention to the presence or absence of associations.
Given this fragility and taking into account that causality is not necessarily reflected by a certain
network model, it may sometimes be important to depict not only parent-child relationships, but
also the reverse child-parent relationships. Thus, additive Bayesian models may be a suitable
tool to detect and explore possible associations, which may later be tested under more strict
experimental conditions. In order to explore the instability of results after imputation, a random
forest robustness analysis was conducted. In addition to analyzing the robustness of random
forest imputation, the conducted simulation analysis also controlled for overfitting. Furthermore,
the robustness analysis simulated a case where “true” data is available and compared the results
with a complete case analysis after randomly imposing missing values. After controlling for robust
networks, it is clear that random forest imputation indeed produce very stable and usable results
in regards of additive Bayesian network modelling. Thus, additive Bayesian network models prove
to be more much more robust against random forest imputation when controlling for overfitting.
We find that a simple algorithm that counts and prunes the associations from a series of network
models after several rounds of resampling is enough to produce robust results. Controlling for
overfitting also reduces the necessity of investigating both parent-child and child-parent networks,
as the direction of associations is also controlled for.
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After overfitting correction, the resulting structure of an additive Bayesian network models
after a single round of random forest imputation did not change at all, while there was also a very
strong increase in the robustness of the coefficients. On the other hand, after performing a robust
analysis of the complete cases of the missing-value-imposed complete case data set, both the
structure and coefficients changed rather strongly. Thus, random forest imputation may change
the results of an additive Bayesian network analysis more that when accounting for overfitting.
In other words you may argue, that it is not the imputation in itself that causes a change in the
network, but rather the overfitting combined with imputation, while a complete-case analysis
may produce results that differ strongly, regardless whether overfitting was controlled or not.
Although overfitting and complete-case analyses may indeed strongly dictate the structure and
coefficients of additive Bayesian network models, we proclaim that complete-case analysis without
controlling for overfitting may also serve as an exploratory tool. Additionally, we propose that
the discrepancies between the complete-case robustness analysis and the remaining analyses in
the simulation may be due to a relatively high number of lost cases after randomly introducing
missing values. Even though there were some changes in the network models after accounting for
overfitting, we still find several associations that were present throughout all analyses. Despite
strong structural similarities, most coefficients of robust network models were equally difficult to
explain in a medical-biological sense.

Throughout all results we found that algometry measures were closely related to the outcome
of equine back pain measure, which was determined solely through palpitation examinations of
experienced veterinarians. Initially, we hypothesized that pain resistance/algometry values should
have an inverse relation with pain, e.g. the more pain resistance/higher algometry values, the less
back pain and vice-versa. However, most results (throughout all analyses) point in the direction of
a positive association between the two measures, e.g. the more pain resistance/higher algometry
values a horse has, the more it suffers from back pain, which speaks for a different mechanism
than previously hypothesized. We thus proclaim that a horse with a high pain tolerance may
actually be the result of equine back pain in a number of cases. Nonetheless, it is clearly evident
that both measures are strongly associated with each other. In general terms, we also consistently
found that next to algometry measures, the saddle type, pasture score, tail position, rider’s mean
force during riding and horse height and age were always very closely or directly related to equine
back pain throughout all results. In that sense, since we find the same variables either directly
influencing, or being closely related to equine back pain measure throughout all high-ranking
variables analytic results, we propose that the central variables to the surge of back pain would
have been well probably the same after a robustness analysis of low-ranking variables. This
is even further underlined by the fact that the overfitted model of low-ranking variables after
random forest imputation was very similar to the overfitted model using only the complete cases.
Furthermore, we propose that low-ranking variables may carry too much redundancy between
variables, thus rendering some results difficult to interpret, which is why a robustness analysis for
low-ranking variables was not conducted. Nonetheless, the analyses of low-ranking variables also
determined that straining usage of a horse may prove detrimental to its back health. Additionally,
the analysis of low-ranking variables also showed that deficiencies in brachiocephalic muscular
development and a horse’s breed may also play a direct role in the surge of equine back pain.
The results found throughout this thesis support many hypotheses and suspicions for the surge of
equine back pain. However, some results underline the necessity of further investigations under
more strictly controlled experimental conditions, which would increase the ability to detect the
presence, direction, magnitude and sign of relationships.
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Chapter 5

Conclusions

Even though there were some discrepancies between the results’ coefficients, there was still a
fair amount of structural overlap and common factors that always played a central role to the
surge of equine back pain throughout all networks. We conclude that saddle type choice is an
important factor to the surge of equine back pain. We propose that the found association is a
result of English saddles being typically used by more aggressive and ambitious riders and that
this may have a detrimental effect on horse back health. Algometry measurements indeed show
a very close relation to equine back pain levels, such that it may serve for a simpler surrogate
measure in future studies. We also propose that a natural husbandry, abundant time on a pasture
and sparing straining activities are beneficial to a horses back health. We additionally find
close associations between possible orthopedic and muscular developmental issues and equine
back pain. Even though several associations were in synchronization with our expectations, we
find it a challenge explaining the coefficients of some of the aforementioned associations in a
biological-medical way, and rather encourage focusing on the presence or absence of associations.
Nonetheless, we recognize the increasing potential and usefulness of additive Bayesian network
modelling as a statistical tool for holistic analyses. At the same time, we recognize the large
computational and time-effort required for these sort of models, derived through the necessity of
careful modelling decisions, variable selection, imputation methods and further methodologies
to deal with overfitting. It is also evident that it becomes increasingly difficult to dissect the
vast amounts of information present in an additive Bayesian network model as the number of
variables to model increase. We conclude that some of the findings throughout this thesis indeed
highlight and support certain proposed mechanisms leading to equine back pain. However, they
also highlight the necessity for further studies under more strict experimental settings, should the
presence and quantification of factors influencing back pain be studied with greater certainty.
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