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Zusammenfassung 

Invasive energetische Sanierungsansätze an Wohngebäuden sind oft anspruchsvoll in Bezug 

auf Anfangsinvestitionen und Umsetzungszeit, während schnelle und wirtschaftliche 

Energieoptimierungsmaßnahmen meist eine attraktivere und machbarere Strategie darstellen. 

Daher ist eine quantitative Studie erforderlich, um die Maßnahmen zu identifizieren, die unter 

Berücksichtigung variabler Wetterbedingungen zu den höchsten Energieeinsparungen führen. 

In dieser Arbeit wird ein künstliches neuronales Netzwerk über einen vom Energo-Verband zur 

Verfügung gestellten Datensatz trainiert und die komplexe Beziehung 

"Optimierungsmaßnahmen-Energieeinsparung" als Blackbox modelliert. Sensitivitätsindizes 

werden durch das trainierte Netzwerk berechnet, um den Einfluss jeder Maßnahme auf die 

Variabilität des Energieverbrauchs zu analysieren und zu quantifizieren, wobei gegenseitige 

Wechselwirkungen berücksichtigt werden.  

Das trainierte Surrogatmodell liefert hochgenaue Vorhersagen der Energieeinsparungen 

ausgehend von den Wetterbedingungen und dem Vektor der angewandten 

Optimierungsmaßnahmen innerhalb des analysierten Zeitfensters. Darüber hinaus wurden die 

Sensitivitätsindizes mit verschiedenen Methoden berechnet, um vergleichbare Endwerte zu 

erhalten, was die Robustheit der Ergebnisse noch mehr beweist. 

Zusammenfassend beschreibt die Studie eine Methodik, die auf der Anwendung von 

Surrogatmodellen basiert, mit dem Ziel, die effektivsten Energieoptimierungsmaßnahmen zu 

identifizieren, die die Definition von effizienteren und wirtschaftlicheren Wartungsplänen 

ermöglichen. 

Résumé 

Les approches de rénovation énergétique invasive sur les bâtiments résidentiels sont souvent 

exigeantes en termes d'investissement initial et de temps de mise en œuvre, tandis que les 

mesures d'optimisation énergétique rapides et économiques représentent la plupart du temps 

une stratégie plus efficace et réalisable. Il est pourtant très intéréssant analyser ce type de 

mésures sur le plan quantitive afin d’identifier l'ensemble des actions conduisant aux économies 

d'énergie les plus importantes compte tenu de certains conditions. Dans cette étude de 

recherche, un réseau de neurons artificiel est développé sur un ensemble de données fournies 

par l'association Energo, et la relation complexe "Mesures d'optimisation - Économies 

d'énergie" est modélisée sous forme de « black boxe ». Des indices de sensibilité sont calculés 

par le réseau formé pour analyser et quantifier l'influence de chaque mesure sur la variabilité 

de la consommation d'énergie, en tenant compte des interactions mutuelles.  

Le meta-modèle d’apprentissage fournit des prévisions très précises sur les économies d'énergie 

à partir des conditions météorologiques et du vecteur des mesures d'optimisation appliquées 

dans la fenêtre temporelle analysée. De plus, les indices de sensibilité ont été calculés par 

différentes méthodologies, ce qui a permis d'obtenir des classements finaux comparables, 

prouvant ainsi la robustesse des résultats. 

En conclusion, l'étude décrit une méthodologie basée sur l'adoption de meta-modèle dans le but 

d'identifier les mesures d'optimisation énergétique les plus efficaces permettant la définition de 

plans de maintenance plus performantes et plus économiques. 
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Summary 

Invasive energy retrofitting approaches on residential buildings are often demanding in terms 

of initial investment and implementation time, while fast and economic energy optimization 

measures represent most of the time a more attractive and feasible strategy. A quantitative study 

is therefore needed to identify the set of actions leading to the highest energy savings accounting 

for variable weather conditions. In this work, an Artificial Neural Network is trained over a 

dataset provided by the Energo association, and the complex relation “Optimization measures-

Energy Saving” is modeled as black-box. Sensitivity indexes are computed through the trained 

network to analyze and quantify the influence of each measure on the variability of the energy 

consumption, accounting for mutual interactions.  

The trained surrogate model provides highly accurate predictions of the energy savings starting 

from the weather conditions and the vector of applied optimization measures within the 

analyzed time-window. Moreover, the sensitivity indexes have been computed through 

different methodologies obtaining comparable final rankings, proving even more the robustness 

of the results. 

In conclusion, the study describes a methodology based on the adoption of surrogate models 

with the aim of identifying the most effective energy optimization measures allowing the 

definition of more efficient and economic maintenance plans.  
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Abbreviations 

LICOM - Low-investment cost optimization measures 

CECE - Cantonal energy performance certificate for buildings 

EPG - Energy performance gap 

ANN – Artificial neural network 

ES – Energy saving 

GSA – Global sensitivity analysis 

PMF – Probability mass function 

EASI - Effective algorithm sensitivity indices 
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1 Introduction 

1.1 Background information and current situation 

The Positive Gap Project is part of a wider series of studies and research projects developed by 

SUPSI in collaboration with other organizations operating on the national territory.  In 

particular, it is worth mentioning that many activities, carried out by SUPSI and the Energo 

Association, aim at the development of new methodologies for monitoring and for reaching a 

more effective energy optimization. The GAPxPLORE project developed between 2017 and 

2019 in collaboration with the University of Geneva and the Minergie, CECE and Energo 

Associations, represents one clear example of this specified line of research  

Thanks to the GAPxPLORE project it has been possible to analyze the energy performance gap 

(EPG) between measured and calculated energy consumption in the Swiss residential sector. 

This project confirmed the existence of a significant EPG in the Swiss residential sector, 

depending on the thermal quality of the building. It was also possible to quantify the EPG by 

defining median, maximum and minimum values according to the type of building.   

The quoted study also highlighted limitations such as the nature of the energy values that are 

compared (the type of energy consumption, weighting factors adopted, etc.). Besides, it was 

particularly difficult to evaluate energy consumption based on different approaches and 

databases. 

Starting from the results obtained from previous research activities, the characterization of the 

EPG must be able to be detailed on the basis of energy consumption monitored continuously 

and systematically. The focus in this perspective shifts to the operational phase of the building, 

during which consumption can be optimized, regardless of the initially estimated theoretical 

consumption. 

1.2 Purpose of the project 

The building stock represents one of the main contributions to the final Swiss national energy 

demand. The widespread adoption of less efficient heating supply systems, coupled with a low 

level of optimal maintenance strategies, leads to a large potential for energy consumption 

reduction. 

An invasive retrofitting approach aimed at increasing the energy efficiency, such as the building 

envelope renovation or replacement of an energy plant, is often demanding in terms of initial 

investment and implementation time. In this case, the payback time of the energy-saving 

investment is often longer than the lifetime of the element, hence why most of the times, low-

investment cost optimization measures (LICOM) represent a more attractive and feasible 

strategy to reduce energy consumption in buildings while ensuring a profitable return on 

investment.  

The LICOM effectiveness can be quantified through the concept of performance gap [1] that 

refers to the difference in terms of energy consumptions between the measured and the 

predicted value, this last quantified through a theoretical approach.  Therefore, the adoption of 

specific LICOMs should affect the frequency of occurrence and the magnitude of positive 

performance gaps by improving the overall efficiency if compared to the predicted (computed) 

trend. 
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A quantitative study is therefore required to identify the LICOMs leading to the highest energy 

savings by accounting at the same time for the effects of different weather conditions. Indeed, 

particular climatic conditions can affect the building stock’s energy consumption regardless of 

the selected set of LICOMs. 

1.3 Objectives and methods 

The identification of a robust ranking associated with the analyzed LICOMs represents a 

challenging computational task under multiple points of view.  

To increase the robustness of the results the applied methodology should be based on a 

sufficiently large dataset of consistent energy consumption records, adopted LICOMs and 

weather indicators, referring to well-tracked building stock. Moreover, the employed data must 

cover the longest possible time-window in order to account for multiple boundary conditions 

that can differently affect the final figures. 

The data collection task has been completed thanks to the collaboration with the Energo 

association, whose energy consumption monitoring activity allows the acquisition of 

continuative data on different building complexes with the list of performed LICOMs. 

Once the required dataset is defined, a preliminary analysis must be carried out to identify 

vectors of intermediate time-windows in which compute the total energy savings and the 

corresponding set of applied LICOMs. In this regard, multiple LICOMs are often adopted 

within the same time-window, hence why a more advanced computational approach is needed 

to quantify the contribution of each of them to the final output of interest. 

In the presented work, an artificial neural network (ANN) [2] is employed to model and analyze 

the complex relation “LICOM-Energy saving”. Indeed, correlation coefficients cannot be 

derived directly from the initial dataset since the energy consumption in a fixed time-window 

is simultaneously affected by multiple LICOMs and no assumptions can be adopted due to the 

lack of studies in the technical literature aiming at characterizing this phenomenon. Moreover, 

thanks to the capacity of the validated ANN to model separately each input-output function, it 

can be efficiently employed to perform advanced sensitivity analyses by creating synthetic data. 

Sensitivity indexes [3] are computed to quantify the influence of each input on the variability 

of the analyzed output. In this regard, different computational strategies will be explored in the 

next stage to provide more robust and meaningful results. Indeed, the variance of each input 

can be both taken into account or not depending on the variable type and besides, the 

interactions between variables can affect in different ways the possible effectiveness of each 

studied LICOM, hence why they should be accounted for within the analysis. 

2 Description of facility 

To characterize the dependencies between optimization measures and energy savings, a 

residential building stock of 92 units located in the canton Geneva is selected. In particular, the 

analyzed building stock is characterized by a consistent dataset of consumption and 

optimization data for a time window of a minimum of three years.  

The activity of data structuring, cleaning and filtering is based on the master thesis [4] and the 

energy savings this project is focused on are due to ensure heating and hot water, mainly 
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because these represent the most reliable data. Positive and negative energy savings are 

structured in a specific dataset in which the following information is listed: 

 

• Start Date of the event 

• End Date of the event 

• Performance gap 

• Economic gap 

• ID building 

 

The optimization measures undertaken on the followed building stock are reported in a different 

dataset,  with the following main data fields: 

 

• Date 

• Description of the measures 

• Cluster 

• ID building 

 

The selected building stock allows obtaining well-populated and coherent data within a global 

time window of around 4 years. More specifically, a total of almost 5000 energy consumption 

events can be obtained from the dataset, even if all the observations have to be furtherly grouped 

by a reduced time window defined to properly account for both causes and effects. Additional 

details on the adopted methodology will be provided in the next sections. 

Furthermore, to account for the influence of the weather conditions on the variation of the 

energy savings, an additional dataset is employed within the analyses chain. This allows for 

reaching more robust results able to separate the effects of the weather conditions from the 

contribution of the optimization measures. 

 

• Temperature 

• Wind Speed 

• Humidity 

• Rainfall 

 

The daily average of each parameter is exported from the archive of the MeteoSwiss ground-

level monitoring networks, through the IDAWEB1 web platform. 

                                                      
1 https://gate.meteoswiss.ch/idaweb 
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Figure 1 Data analyzed 

2.1 Optimization measures and clustering 

The heterogeneity of the possible optimization measures requires the definition of a set of 

predefined classes based on which the whole numerical analysis can be performed. In this 

regard, a total of 63 classes [4] are adopted in this work. They are listed in Table 1 and can be 

grouped into nine main categories.  

 

Table 1 List of analyzed LICOMs 

LICOM DESCRIPTION   LICOM DESCRIPTION   

'BOILER_CHANGE' Boiler change 
  

'HW_T_GUIDE_NIGHT' 
Hot water night guide 

temperature   

'BURNER_OPT' 
Burner power 

adjustment   
'HW_T_METER_CHANGE' 

Hot water sensor position 

change   

'FURNACE_1_OFF' 
Interruption of one 

furnace during summer   
'HW_T_OFF' 

Hot water heating temperature 

stop   

'FURNACE_CHANGE' Furnace change 
  

'HW_T_ON' 
Hot water heating temperature 

start   

'FURNACE_OPT' 
Furnace cascade 

optimization   
MAINT_SOLAR' 

Thermal solar installation 

maintenance   
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'HEATING_CIRC_TIME' 
Heating circular 

schedule   
'REGUL_AUTO' 

Regulation system on AUTO 

mode   

'HEATING_CURVE' 
Heating curve slope 

change   
'REGUL_CHANGE' Regulation system change 

  

'HEATING_CURVE_HIGH' 
Upper heating curve 

change   
'REGUL_MANU' 

Regulation system on MANUAL 

mode   

'HEATING_CURVE_LOW' 
Lower heating curve 

modification   
'REGUL_T' Setpoint temperature 

  

'HEATING_CURVE_PARALLEL' 
Parallel heating curve 

modification   
'REGUL_THERM_VALVE_CHANGE' Thermostatic valves change 

  

'HEATING_HYST' 
Heating hysteresis 

modification   
'REGUL_TIME' Heating time 

  

'HEATING_LIFTING' 
Heating lifting 

temperature change   
REGUL_T_FURNACE' Setpoint furnace temperature 

  

'HEATING_NIGHT_LOWERING' Heating night lowering 

  

'REGUL_T_DAY' Day setpoint temperature 

  

'HEATING_OFF' Heating interruption 
  

'REGUL_T_DAY_ECO' Day ECO setpoint temperature 
  

'HEATING_ON' Heating start   'REGUL_T_MAIN' Main setpoint temperature   

'HEATING_T_OFF' 
Heating interruption 

temperature   
'REGUL_T_MAX_AERO' 

Maximum aerotherm 

temperature   

'HEAT_CIRC_CHANGE' 
Hot water circulator 

change   
REGUL_T_MAX_BOILER' 

Maximum boiler setpoint 

temperature   

'HEAT_CIRC_POWER' 
Hot water circulator 

power   
'REGUL_T_MIN_BOILER' 

Minimum boiler setpoint 

temperature   

'HEAT_HYDRO_BALANCE' Hydraulic balance   'REGUL_T_NIGHT' Night setpoint temperature   

'HEAT_MAINT' 
Maintenance work of 

heating system   
'REGUL_T_NIGHT_ECO' 

Night ECO setpoint 

temperature   

'HEAT_RAD_INSUL' 
Radiator pipes 

insulation    
'REGUL_T_NIGHT_OFF' 

Night heating interruption 

setpoint temperature   

'HEAT_TIME_CONST' Heating time constant 
  

'REGUL_T_NIGHT_ON' 
Night heating start setpoint 

temperature   

'HW_CIRC_CHANGE' 
Hot water circulator 

change   
'REGUL_T_OFF' 

Heating interruption setpoint 

temperature   

'HW_CIRC_POWER' 
Hot water circulator 

power   
'REGUL_T_ON' 

Heating start setpoint 

temperature   

'HW_HYST' 

Hot water hysteresis 

change/interlocking 

differential   

REGUL_WINTER_MODE' Winter Mode modification 

  

'HW_LIFTING' 
Hot water-lifting 

temperature change   
'VENTIL_GV' High-speed ventilation schedule 

  

'HW_MAINT' 
Hot water system 

maintenance   
'VENTIL_HC' Ventilation heating curve 

  

'HW_PUMP_AUTO' 
Hot water circulator 

pump on AUTO mode   
'VENTIL_HEAT_ROOM' 

Ventilation opening in the 

heating curve   



 

12/28 

'HW_TIME' 
Hot water circulation 

schedule   
'VENTIL_PV' Low-speed ventilation schedule 

  

'HW_TIME_LOAD' 
Hot water load 

schedule 

  

'OTHER' 

Special and/or specific 

optimization measures of 

particular systems, or which do 

not enter into one of the 

previous categories   

'HW_T_GUIDE' 
Hot water guide 

temperature         

'HW_T_GUIDE_DAY' 
Hot water day guide 

temperature         

      Category     

      Furnace optimization     

      Hot water     

      Heating day-night setpoint temperature   

      Heating schedule     

      Furnace setpoint temperature   

      Heating curve optimization   

      Maintenance     

      Regulation system optimization   

      Additional heating optimization   

 

 

3 Procedures and methodology 

The adopted approach is based on an ANN by wich sensitivity indexes are computed to quantify 

the relevance of each optimization measure on the energy consumption of the whole building 

stock. The data-driven methodology needs of a preliminary stage for the filtering and cleaning 

of the collected data, required for the definition of a suitable training dataset for the calibration 

of the selected surrogate model. The quantification of sensitivity indexes is followed by a 

critical analysis as well, in order to provide a more practical results interpretation. Pre and post-

processing stages are therefore necessary (Figure 2) both to calibrate the inputs for the proposed 

computational approach and to extract the main quantitative findings from the final numerical 

results. 
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Figure 2 Main project stages 

3.1 Correlation analysis 

A preliminary study is carried out by computing the correlation between a quantitative measure 

of the consumption energy savings (ES) and the employed classes of optimization measures 

(OM). The numerical analysis is performed by identifying only one time-window ∆Ts, by which 

the global period of analysis ∆T is divided. Therefore, a total of ∆T/∆Ts observations are 

obtained and for each one both the causes and effects are identified in ∆Ts. The computed 

correlation is affected by the selected ∆Ts, since different intermediate time-windows 

correspond to different OM frequency vectors Ξ and ESs. Hence why a correlation vector is 

computed for each identified optimization measure by varying the corresponding ∆Ts. The 

median value of each distribution is extrapolated, together with the associated variance, in order 

to provide a more robust preliminary assessment of the most important measures. As previously 

specified, this numerical approach is not able to account for the inputs overlapping 

phenomenon, and more advanced methodologies are required to account for more complex 

interactions. Moreover, the accuracy of the obtained correlation vector is reduced due to the 

missed differentiation in terms of time-windows between input (Ξ) and output (ES). 

Figure 3 Global time-window structure for the correlation analysis 
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3.2 Surrogate model 

A more advanced numerical methodology is required to model complex interactions between 

the problem inputs. Metamodel based approaches [5,6] can capture more insights from black-

box models and are therefore suitable for analyzing hidden non-linear interdependencies.  

3.2.1. ANN 

Over the past years, ANNs have experienced a relevant growth in popularity thanks to their 

easy implementation and flexibility linked with the capability of learning complex and non-

linear relations within the analyzed problem. In general, the structure of an ANN tries to 

simulate the human brain network of neurons. More specifically, we can identify three different 

typologies of nodes, namely, input – hidden – output node, as shown in Figure 4. In addition to 

an input and output layer, we can have one or more hidden layers that increase the network 

capability of modeling high non-linear input-output patterns.   

 

 

Figure 4 ANN structure 

Thus, the ANN is characterized by a set of nodes (or neurons) that can be distributed on a single 

hidden layer or more (deep learning problems). Each neuron zh, in the hidden layer h, receives 

one or more inputs x that are multiplied by proper weights w (connections in Figure 4) and 

simply summed before feeding the neuron. Below its mathematical formulation:  

 
1

in

h hp p h

p

z w x b


    1 

where ni represents the number of inputs, while bh is the bias term. The non-linearity of the 

input-output relation is taken into account by the so-called activation function. Different 

activation functions can be adopted, the one used for this study is the hyperbolic tangent 

sigmoid, that is continuous, differentiable and bounded between 1 and -1. In case of one single 

hidden layer, the input data go through the first hidden activation function for each hidden 
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neuron and then they are processed by another activation function to produce the final 

prediction ty .  

In case of a supervised problem, the learning process aims at tuning the weights parameters in 

order to minimize the square of the residuals between the predicted values ty and the training 

data ty : 

 
2

1

1
( )

n

t t

t

L y y
n 

    2 

with n equal to the cardinality of the training dataset. In this regard, the back-propagation 

algorithm represents a key element of the training stage since it allows computing the partial 

derivative of the loss function L for every weight and bias of the network and thus the adoption 

of a gradient-based optimization algorithm. For further details on the learning process refer to 

[2]. 

3.2.2. Time-window based approach 

The adopted numerical approach requires the definition of four different time windows to 

extract data from each dataset, namely: 

 

 ∆T0 - Time-window to shift each observation 

 ∆T1 - Time-window for the screening of optimization measures  

 ∆T2 - Time-window for the screening of the energy savings and weather data 

 ∆T – Global time-window of analysis 

 

The use of a different time-window for each specific optimization measure does not lead to a 

feasible numerical approach. Hence, the proposed methodology is based on a three-dimensional 

time-window vector, Γ=[∆T0, ∆T1, ∆T2], that is employed to compute the frequency vectors Ξ; 

the data weather vector Θ; and the corresponding ES, respectively. More specifically, as shown 

in Figure 5, each i-th observation of the training dataset is defined by computing Ξ over the 

input vector ∆T1; while Θ and the corresponding energy savings over ∆T2. Figure 6 reports for 

example the normalized vectors Θ and ES for a specific Γ.  

Moreover, each observation is temporally shifted of ∆T0, this allows increasing the dimension 

of the training dataset without including duplications. The total time-window of analysis can be 

computed as follow: 

 

 0 1 2T n T T T      3 
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Figure 5 Time-windows scheme 

 

Figure 6 Θ and ES vectors for a selected time-window 
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In particular, since ∆𝑇1 and ∆T2 (a few days) are negligible with respect to the total ∆𝑇  (years) 

the ratio  
∆𝑇

∆𝑇0
≈ 𝑛 is almost equal to the total number of observations. 

 

3.3  Sensitivity analysis 

 

In this section, a brief introduction to global sensitivity analysis (GSA) [3] is carried out.  

The GSA is based on a decomposition of the variance of each output parameter resulting from 

variations of the input parameters xi, i=1,2,..N in the range of interest. 

Let Y be the output of a deterministic model ( )f X . Assuming mutually independent inputs, the 

variance of Y can be expressed as [7]: 

12...

1

( ) ( ) ( ) ( )
d d

i ij d

i i j

Var Y D Y D Y D Y
 

       4 

where ( ) [ ( | )]
i

D Y Var E Y X  and [ ( | , )] ( ) ( )
ij i j i j

D Var E Y X X D Y D Y   . The first order Sobol’ 

indexes express the contribution of each input i on the output variance and can be calculated as: 

( )

( )

i
i

D Y
S

Var Y
   5 

In addition, when the problem dimensionality d increases, the so-called total indexes [3] can be 

introduced to account also for interactions effects: 

 

, ,
iT i ij ijk l

i j j i k i j k l

S S S S S
    

           6 

where   represents all the possible input combinations and ( ) / ( )
ij ij

S D Y Var Y . 

The training dataset is employed to define a set of discrete probability mass functions (PMFs) 

based on which the artificial dataset for sensitivity analyses is generated. For example, Figure 

7 shows the PMFs associated with nine analyzed optimization measures. The probability of 

occurrence of each LICOM within the selected time window 1T  is reported, thus by modifying 

1T  the discrete probability will change accordingly. 

Unfortunately, the use of a single optimal ANN for computing sensitivity indexes leads to 

reduced robustness in the results. This is due to the uncertainty that affects the surrogate model 

calibration coming from both architecture definition and weights initialization. To account for 

this drawback a set of multiple ANNs is adopted to compute a distribution of sensitivity indexes 

associated with each LICOM. It is worth specifying that the training and calibration stage of 

surrogate models always lead to epistemic uncertainty due, for instance, to the selection of the 

optimal hyperparameters.  
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Figure 7 PMFs associate with nine LICOMs 

4 Activities and results 

The definition of a training dataset, starting from a row database of LICOMs and energy 
consumptions, requires the adoption of a specific vector Γ. In this regard, ∆𝑇0, ∆𝑇1 and ∆𝑇2 
should be selected trying to capture as many as possible LICOMs in ∆𝑇1 and coherent 
corresponding effects in ∆𝑇2, increasing at the same time ∆𝑇0. A grid search approach is 
employed to tune the vector Γ by maximizing the accuracy of the network.  Figure 8 shows the 
evolution of the coefficient of determination R2 obtained by exploring multiple combinations 
of ∆𝑇0, ∆𝑇1 and ∆𝑇2. Finally, the vector Γ has been selected considering these results combined 
with expert elicitation (Table 2) 
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Figure 8 Vector Γ calibration 

∆T0 ∆T1 ∆T2 

2 days 15 days 30 days 

 

Table 2 Vector Γ adopted for the analysis 

The global time window ∆𝑇 (Equation 3) for the training dataset definition goes from the 

beginning of 2013 to the end of 2018, for a total of 2191 days and around 1100 observations.  

Table 3 provides statistical details on the occurrences of each LICOM considering five different 

time-windows. It is clear how the majority of the measures show a relatively low frequency 

(less than one occurrence per ∆T), even increasing the associated time-window. Moreover, the 

high standard deviations indicate that the LICOMs are highly sparse, increasing the difficulty 

in analyzing the relative effectiveness. Finally, the mean and standard deviations of the energy-

saving reported in Table 3 are computed in a time-window translated of ∆T with respect to the 

LICOM. 

 

Time window [days] 20 40 60 80 100 

LICOM 
Occurrences 

Mean Std Mean Std Mean Std Mean Std Mean Std 

'BOILER_CHANGE' 0.039 0.253 0.079 0.359 0.080 0.400 0.158 0.501 0.214 0.516 

'BURNER_OPT' 0.390 0.672 0.763 1.025 1.160 1.491 1.526 1.611 2.143 1.792 

'FURNACE_1_OFF' 0.104 0.307 0.211 0.474 0.320 0.557 0.421 0.769 0.571 0.640 

'FURNACE_CHANGE' 0.065 0.248 0.132 0.343 0.200 0.408 0.263 0.562 0.357 0.488 

'FURNACE_OPT' 0.299 0.630 0.605 1.001 0.920 1.382 1.211 1.584 1.643 1.727 

'HEATING_CIRC_TIME' 0.052 0.276 0.105 0.388 0.120 0.440 0.211 0.535 0.286 0.561 

'HEATING_CURVE' 6.026 7.090 11.947 11.779 17.800 17.325 23.895 21.008 33.143 25.376 

'HEATING_CURVE_HIGH' 0.818 1.604 1.632 2.665 2.400 3.629 3.263 4.544 4.500 5.682 

'HEATING_CURVE_LOW' 0.766 1.413 1.447 2.226 2.200 3.000 2.895 4.081 4.214 4.865 

'HEATING_CURVE_PARALLEL' 0.584 1.239 1.184 1.768 1.720 2.283 2.368 2.499 3.214 2.722 

'HEATING_HYST' 0.026 0.160 0.053 0.226 0.080 0.400 0.105 0.459 0.143 0.352 

'HEATING_LIFTING' 0.208 0.468 0.368 0.675 0.560 0.870 0.737 0.933 1.143 1.280 

'HEATING_NIGHT_LOWERING' 0.026 0.160 0.053 0.324 0.080 0.400 0.105 0.459 0.143 0.352 

'HEATING_OFF' 0.312 1.195 0.632 1.746 0.960 2.111 1.263 2.353 1.714 2.384 



 

20/28 

'HEATING_ON' 0.273 1.284 0.553 1.796 0.840 2.173 1.105 2.447 1.500 2.694 

'HEATING_T_OFF' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HEAT_CIRC_CHANGE' 0.039 0.195 0.079 0.273 0.120 0.332 0.158 0.375 0.214 0.414 

'HEAT_CIRC_POWER' 0.429 1.409 0.868 2.673 1.320 3.262 1.737 3.739 2.357 3.364 

'HEAT_HYDRO_BALANCE' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'HEAT_MAINT' 0.247 0.517 0.500 0.726 0.760 0.970 1.000 1.054 1.357 1.710 

'HEAT_RAD_INSUL' 0.013 0.114 0.026 0.162 0.040 0.200 0.053 0.229 0.071 0.258 

'HEAT_TIME_CONST' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_CIRC_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_CIRC_POWER' 0.130 0.817 0.263 1.155 0.400 1.443 0.526 1.645 0.714 1.839 

'HW_HYST' 0.390 0.876 0.789 1.492 1.200 1.414 1.579 1.953 2.143 1.558 

'HW_LIFTING' 0.312 0.782 0.605 1.220 0.920 1.412 1.211 1.751 1.714 2.031 

'HW_MAINT' 0.078 0.315 0.158 0.437 0.160 0.374 0.316 0.582 0.429 0.458 

'HW_PUMP_AUTO' 0.052 0.276 0.105 0.388 0.160 0.473 0.211 0.535 0.286 0.594 

'HW_TIME' 1.156 1.702 2.289 3.153 3.400 2.872 4.579 4.312 6.357 4.271 

'HW_TIME_LOAD' 0.714 1.394 1.395 2.553 2.080 2.100 2.789 3.425 3.929 3.091 

'HW_T_GUIDE' 2.844 3.142 5.684 4.743 8.640 6.885 11.368 7.697 15.643 9.855 

'HW_T_GUIDE_DAY' 0.662 0.982 1.342 1.599 2.040 2.226 2.684 2.730 3.643 3.203 

'HW_T_GUIDE_NIGHT' 0.468 0.736 0.947 1.161 1.440 1.502 1.895 2.025 2.571 1.993 

'HW_T_METER_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'HW_T_OFF' 0.299 0.762 0.526 1.246 0.800 1.190 1.053 1.747 1.643 1.877 

'HW_T_ON' 0.416 0.937 0.816 1.608 1.240 1.763 1.632 2.060 2.286 2.314 

'MAINT_SOLAR' 0.338 0.788 0.684 1.141 1.040 1.695 1.368 2.060 1.857 2.434 

'OTHER' 1.000 1.298 1.947 2.053 2.880 2.862 3.895 3.230 5.500 4.586 

'REGUL_AUTO' 0.117 0.396 0.237 0.590 0.320 0.627 0.474 0.772 0.643 0.990 

'REGUL_CHANGE' 0.208 0.408 0.421 0.642 0.600 0.816 0.842 1.068 1.143 1.069 

'REGUL_DAY' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'REGUL_MANU' 0.078 0.270 0.158 0.437 0.240 0.523 0.316 0.671 0.429 0.910 

'REGUL_T' 13.948 14.758 27.158 22.957 40.720 31.490 54.316 36.748 76.714 51.657 

'REGUL_THERM_VALVE_CHANGE' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'REGUL_TIME' 2.208 4.053 4.211 6.593 6.320 6.638 8.421 9.430 12.143 10.350 

'REGUL_T_BOILER' 0.506 1.253 1.026 1.896 1.560 2.830 2.053 2.877 2.786 2.874 

'REGUL_T_DAY' 4.247 4.843 8.342 7.778 12.320 10.703 16.684 13.941 23.357 16.822 

'REGUL_T_DAY_ECO' 1.013 1.936 1.974 2.964 3.000 3.742 3.947 4.339 5.571 6.012 

'REGUL_T_MAIN' 0.481 1.008 0.947 1.314 1.440 1.685 1.895 1.912 2.643 2.444 

'REGUL_T_MAX_AERO' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

'REGUL_T_MAX_BOILER' 0.377 0.946 0.763 1.731 1.160 1.491 1.526 2.294 2.071 1.792 

'REGUL_T_MIN_BOILER' 0.130 0.469 0.263 0.644 0.400 0.866 0.526 0.964 0.714 1.543 

'REGUL_T_NIGHT' 5.221 6.688 10.132 10.655 15.280 14.002 20.263 16.556 28.714 24.101 

'REGUL_T_NIGHT_ECO' 1.273 2.275 2.579 3.422 3.920 4.453 5.158 4.729 7.000 6.947 

'REGUL_T_NIGHT_OFF' 0.104 0.502 0.184 0.692 0.280 0.843 0.368 0.955 0.571 1.060 

'REGUL_T_NIGHT_ON' 0.065 0.375 0.105 0.509 0.160 0.624 0.211 0.713 0.357 0.799 
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'REGUL_T_OFF' 0.312 0.977 0.579 1.388 0.880 1.787 1.158 1.979 1.714 2.748 

'REGUL_T_ON' 0.104 0.528 0.158 0.679 0.240 0.831 0.316 0.946 0.571 1.056 

'REGUL_WINTER-MODE' 0.104 0.416 0.211 0.577 0.320 0.748 0.421 0.838 0.571 0.990 

'VENTIL_GV' 0.065 0.296 0.132 0.414 0.200 0.577 0.263 0.653 0.357 0.724 

'VENTIL_HC' 0.026 0.160 0.053 0.226 0.080 0.277 0.105 0.315 0.143 0.352 

'VENTIL_HEAT_ROOM' 0.078 0.270 0.158 0.370 0.240 0.523 0.316 0.582 0.429 0.828 

'VENTIL_PV' 0.156 0.400 0.289 0.515 0.400 0.707 0.579 0.902 0.857 1.113 

  Mean Std Mean Std Mean Std Mean Std Mean Std 

Energy saving [kWh] 195771 394576 326774 462162 461009 699454 587312 673102 724443 955076 

 

Table 3 Statistical details on the LICOMs occurrence 

4.1 Surrogate model calibration  

 

The optimization of the ANN architecture follows a Trial and error approach. In particular, the 

number of hidden layers is fixed at one, on this regard many research works have shown how 

a single hidden layer is sufficient for a wide range of computational problems [e.g. 8,9], while 

the number of neurons is considered variable. The final configuration is therefore characterized 

by one layer, sixty-eight input neurons and fifty hidden neurons.  
 

 

Figure 9 ANN performances in the training, test and validation stage 
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The training dataset is divided into three parts: 75% training, 12.5% validation and 12.5% test. 

Figure 9 reports the correlation coefficient R for each stage of the calibration process while 

Figure 10 shows a clear comparison between the test observations and the outputs predicted by 

the final ANN. Both graphs demonstrate the goodness of the adopted surrogate model for 

approximating the whole phenomenon.  

The output energy saving is reported in a normalized form between -0.8 and 0.8 to standardize 

the different input units. 

 

 

Figure 10 Comparison between ANN predictions and test observations 

5 Evaluation of results to date 

The robustness of the sensitivity analysis is affected by the uncertainty associated with the 

model architecture and the calibration process. More specifically, the weights in Equation 1 are 

randomly initialized before the optimization starts, leading to different accuracy even keeping 

the same ANN architecture.  

In this regard, as discussed and proposed in [10], a set of optimal ANNs is defined and multiple 

sensitivity analyses are performed to identify a distribution of indexes for each LICOM. Figure 

12 reports the mean and median values with the probability boxes defined by the 25th and the 

75th percentiles. 

A total of 150 ANNs are pre-selected and for each of them, a minimum of 10’000 scenarios is 

generated (each scenario is characterized by a set of applied LICOMs) for a total of model 

evaluations equal to 𝑁 = 𝑛 ∗ (𝑀 + 1). Considering 63 inputs (M) and 10’000 samples (n) the 

analysis requires 9,6*106 model runs. Latin Hypercube Sampling method [11] is employed for 

the samples’ generation. 
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Figure 11 Distribution of sensitivity indexes by accounting for the uncertainty in the model definition 

 

This approach turns out to be computationally expensive. For this reason, in this preliminary 

stage of the research project, the EASI approach is used to derive indexes from a given dataset 

of 50’000 model evaluations for each ANN. This algorithm is able to connect variance-based 

approaches with methods based on Monte-Carlo simulations [12].  

The results in terms of correlation coefficients [13], defined in section 3.1, have shown low 

robustness and accuracy if compared with the results provided by the EASI method based on 

uncoupled LICOM’ effects. From Figure 12 we can identify the top five median indexes: 

 

1. REGUL_TIME 

Time in [h/day] when the heating is turned ON. This includes modifications of the day/night 

or week/weekend heating schedule. Example: 6h00-22h00 each day => 16 h/day.  

 

2. HW_T_OFF 

Hot water heating temperature stop, in [°C]. Depending on the possibilities available to set 

the hot water temperature, it is possible to activate heating e.g. at 45°C (HW_T_ON) and 

switch off at 55°C (HW_T_OFF). By doing that the boiler use is improved, as well as the 

efficiency of the load of hot water, thus energy efficiency. 

 

3. HEATING_CURVE 

Heating curve slope change. When heating a building, a heating curve is identified, meaning 

one chooses at which temperature water (for radiators, etc.) should be heated according to 

the outside temperature. E.g. with a slope of 1.5, for 10°C outside, water will be heated at 

38°C, for -10°C outdoor temperature, water will be heated at 60°C. Thus, changes to heat 

curves allow playing with much delicacy with the mid-cold and cold weather conditions. 

Changes in heating curves could be the slope, angle, or parallel shift. 
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Figure 12 Distribution of first-order sensitivity indexes for each LICOM 



 

25/28 

4. REGUL_T_MAX_BOILER 

Maximum boiler setpoint temperature, in [°C]. It means changing the maximum setpoint 

temperature of the furnace. Therefore, it limits the furnace (e.g. at 75°C) instead of letting 

the furnace going up to 100°C e.g. The furnace burns at a more efficient and constant level. 

 

5. REGUL_T_DAY 

Heating day setpoint temperature, in [°C]. E.g 22°C. This parameter is essential during a 

daily schedule when heating is switched on and during winter months. This represents the 

most frequent measures applied, even because it is easily accessible and often it is not 

optimized in the default settings. 

 

It is important to specify that the identified five LICOMs are not the most effective in absolute 

terms, the highest indexes do not mean the highest energy savings. In the following stage of the 

project, a more quantitative analysis is required to identify trustable intervals of the most 

probable savings reachable by each LICOM. 

Sensitivity analysis does not differentiate between positive and negative contributions to the 

final energy performances. Indeed, the computed indexes should be read as a quantitative 

measure describing the effects of each input (LICOM) on the output variability (energy 

savings). 

6 Next steps 

The project planning is characterized by a total of five macro-activities that can be  summarized 

as follows: 

1. Database   In this first stage a preprocessing of the energo database is required to 

identify the optimization measures of interest [4] and buildings with a robust tracking 

activity. Secondly, the dataset is integrated with the time evolution of five weather 

indicators, and organized following the time windows of interest. 

2. Residential building  A more detailed dataset is used to analyze the energy 

performances of a building stock of residential buildings. This stage requires the 

adoption of the proposed regression model coupled with surrogate-based sensitivity 

analysis. It is worth specifying that the calibrated numerical model tries to simulate 

separately the effect of each LICOM and represents the key element on which all the 

subsequent numerical analyses are based.  

3. Quantitative analysis  Following the computation of robust sensitivity indexes, a 

quantitative analysis of the energy savings is required in order to associate with each 

LICOM the most probable interval of energy saved (kwh). This interval must account 

for the uncertainty associated with the model itself and the weather conditions. 

Additional probabilistic analyses can be performed to identify conditional energy 

savings, for instance depending on a specific weather condition and/or performance 

targets. 
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4. Non-residential buildings  The proposed numerical model is tested with a 

different dataset representative of non-residential buildings (offices) that have other 

plant and energy needs. In this case, the dataset that will be used is characterized by 

different optimization measures with respect to the previous analysis due to scarce 

detailed data. 

5. A critical analysis  Finally, the obtained results will be subject to a critical 

analysis moving the discussion to a more “practical” problem view. This stage aims 

at identifying any particular pattern or specificity that can provide directions towards 

a more effective energy optimization planning.   

The working time required by each macro-activity is reported in the following Gantt Diagram 

(Figure 13) together with the activities planning of the whole project. After about one year the 

current project status is consistent with the initial planning, the next steps will focus on more 

quantitative analyses on the energy savings, tests on an alternative building stock and finally, a 

coherent critical analysis will be carried out. 

 

Figure 13 Activities planning 

7 National and international cooperation 

The scientific and technological results focus on the identification and definition of 

optimization measures with the greatest impact in terms of reducing energy consumption. The 

transfer of the results to the market is aimed at "Accelerating the process of energy renovation 

of buildings through the large-scale implementation of optimization measures with the greatest 

return on investment". This is possible with the implementation of support activities carried out 

during the project. 
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Support group 

The coaching group must be able to assist the research team in transferring the results of the 

project to the market.   

The Positive Gap project support group is composed of:  

 RCVS engineer (Ing. Roland Connus) for the French-part of Switzerland ; 

 Engineer RCVS (Ing. Andrea Andreoli) for Ticino ; 

 Responsible for Energo French-part and Ticino (Joel Lazarus) 

 Two Technicians, in charge of installations maintenance.  

 

Two specific meetings have been held (26-27 February in Lausanne and 17-18 October in 

Lugano), obtaining very interesting feedback. The attention has been focused on the quality and 

reliability of the data, the identification and selection of LICOMs related to energy reduction 

events and, finally, the methodology validation.  

Subsequently, the contribution of RVCS engineers and technicians will be used to better specify 

the nature of the measurements. In this way, it will be possible to check the work quality 

concerning the optimization measures and the related positive gap. The knowledge and practical 

experience of the support team will enable the definition of “best practices” for engineers and 

technicians in charge of building energy optimization. 

 

Dissemination 

Regarding the dissemination of the results, the first training course was held on 4.12.2019 for 

the technicians responsible for the operation of the public housing stock facilities in the 

municipality of Chiasso. There was a great interest in the energo database and the approach to 

the project's problems, as well as a strong need to identify the most effective low-cost measures 

leading towards a global energy consumption reduction. On 29 January 2021 a half-day of 

further training will be provided in the CAS Building Management course at SUPSI, during 

which the first results of the study and the innovative approach adopted will be shown.  

 

Conferences/presentations 

On the 3rd and 4th of September 2020, SUPSI in collaboration with Energo was selected to 

present the Positive Gap project at the Status Seminar organized by Brennet in Arau. During 

this conference, interesting comparisons and relations with other projects were made. 
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