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Summary

A comprehensive approach towards the actuation of flexibility, taking into account its effects at all grid
levels and for all actors involved, is crucial for a successful implementation of demand response (DR).
The goal of the MuLDeR project is to develop grid-aware mechanisms for the activation of demand
response. Different methods to coordinate flexible demand and storage have been investigated. In
particular, a multi-level hierarchical distributed control scheme making use of trusted aggregators at
different levels of the grid has been studied in detail. The possibility of doing without aggregators using
a gossip-based coordination mechanism based on a peer-to-peer network has also been explored.
Mechanisms that allow offering DR services to all actors involved and at all grid levels while making sure
that the control actions are not violating grid constraints throughout the entire network and that power
quality is guaranteed have been studied. The applicability of the proposed solutions has been evaluated
in simulation and is being tested in a pilot project, in the region of Lugano (https://lic.energy).

Résume

Une approche globale de I'activation de la flexibilité, prenant en compte ses effets a tous les niveaux du
réseau et pour tous les acteurs impliqués, est cruciale pour une mise en ceuvre réussie de la réponse
a la demande (DR). Lobjectif du projet MuLDeR est de développer des mécanismes conscients de
I'état du reseau pour 'activation de la réponse a la demande. Différentes méthodes de coordination de
la demande flexible et du stockage ont été étudiées. En particulier, un schéma de contrdle distribué
hiérarchique a plusieurs niveaux utilisant des agrégateurs fiables a différents niveaux du réseau a été
étudié en détail. La possibilité de se passer d’agrégateurs en utilisant un mécanisme de coordination
basé sur les ragots et sur un réseau d’égal a égal a également été étudiée. Des mécanismes per-
mettant d’offrir des services de RD a tous les acteurs concernés et a tous les niveaux du réseau tout
en s’assurant que les actions de contréle ne violent pas les contraintes du réseau dans son ensemble
et que la qualité de I'électricité est garantie ont été étudiés. Lapplicabilité des solutions proposées a
été évaluée en simulation et est actuellement testée dans le cadre d’un projet pilote, dans la région de
Lugano (https://lic.energy).

Sommario

Riassunto. Un approccio globale all’attuazione della flessibilita, che tenga conto dei suoi effetti a tutti i
livelli della rete e per tutti gli attori coinvolti, € fondamentale per un’implementazione di successo del de-
mand response (DR). Lobiettivo del progetto MuLDeR ¢ quello di sviluppare meccanismi grid-aware per
I'attivazione del DR. Sono stati studiati diversi metodi per coordinare la domanda flessibile e lo stoccag-
gio. In particolare, € stato studiato in dettaglio uno schema di controllo distribuito gerarchico multilivello
che fa uso di aggregatori a diversi livelli della rete. E stata anche esplorata la possibilita di fare a meno
degli aggregatori utilizzando un meccanismo di coordinamento basato sul gossip e su una rete peer-to-
peer. Sono stati studiati meccanismi che permettono di offrire servizi di DR a tutti gli attori coinvolti e
a tutti i livelli della rete, assicurandosi che le azioni di controllo non violino i vincoli della rete in tutta la
rete e che la qualita dell’energia sia garantita. Lapplicabilita delle soluzioni proposte € stata valutata in
simulazione ed ¢ in fase di test in un progetto pilota, nella regione di Lugano (https://lic.energy).
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1 Introduction

It is widely recognized that in the future the intelligent activation of demand response (DR) will contribute
to a more reliable power system and higher price stability on the power markets and aid the transition
to a new paradigm of distributed generation and storage, by minimizing the need for new infrastructural
investments. With the penetration of renewable energy sources (RES) and storage, the demand side
is becoming increasingly capable of providing flexibility services and contributing to a reliable power
system and price stability on power markets. The coordination needed to provide flexibility services at
different grid levels implies substantial load correlation and openly challenges the traditional assump-
tion of "statistical smoothing" under which distribution system operators (DSOs) have designed their
grids; let alone the effects of the ever-increasing penetration of photovoltaic (PV) systems at the low
voltage level. As flexible generation and consumption capacity will be more and more fragmented and
distributed, to better exploit it and maximize its economic profitability, many flexibility owners will be re-
quired to coordinate with each other, when responding to demand response (DR) signals. This requires
a comprehensive approach towards the actuation of flexibility, taking into account the effect of DR at all
grid levels. In particular, one needs to ensure that DR does not create congestions or voltage violations
at any point of the distribution grid.

Proper regulatory mechanisms defining rules for remunerations and compensations need to be set up
to allow the integration of DR services in the wholesale market. Such practices need to address the
problem of conflicting interests between market participants. Smart algorithms need to be devised to
work in this framework. A market design that rewards flexibility needs to be set up. The highly stochastic
nature of RES generation calls for a market that is able to operate in near real-time.

The goal of the MuLDeR project is to develop grid-aware mechanisms for the activation of demand
response in different voltage levels of the distribution grid. In order to achieve this goal, new incentive
schemes for the remuneration of flexibility and new technical solutions for the coordination of the control-
lable users’ devices must be created. Distributed optimization, which consists in collectively solving an
optimization problem by decomposing it into simpler sub-problems being solved by distributed agents,
poses itself as an ideal solution for a harmonized actuation of DR, as it brings together the optimality of a
centralized solution and the scalability of a decentralized one. On the other hand, single market partici-
pants’ interests can be conflicting, and it is imperative to design a market that rewards flexibility actuation
fairly, discourages cheating and preserve privacy. The method developed in Mulder relies on distributed
control and game theory. It counts on a hierarchical structure of aggregators, reflecting the voltage level
separations of the electrical grid. In this approach, upper levels of the hierarchy have only access to ag-
gregated information from the underlying levels, allowing scalability and privacy preservation. Moreover,
this scheme considers only communication regarding power consumption/production forecasts for the
agent and does not imply sharing private information about one’s own system parameters, not even to
the trusted party. The energy market that we designed has the following four core properties:

1. the market rules generate a unique (generalized) Nash equilibrium (NE);

2. the market rules ensure that no one is better off leaving the designed market, in expectation (Indi-
vidual Rationality - IR).

3. the market incentivizes the agents telling the truth (Incentive Compatible - 1C);

4. deviation of the actual behaviour from the one established at consensus is discouraged and/or can
be efficiently and correctly identified as either bona fide or fraudulent, and the consequent actions
taken are appropriate and fair.

5. the market will take into account grid constraints, making agent pay fees dependent on the state of
the grid (estimated with the convex formulation), while avoiding unfair treatment of any agent due
to their particular conditions. Switzerland is embracing a causal principle on the price formation
for end users, as stated in the recent modification to the Federal Electricity Supply Act [1]. This
means that the electrical bills "should reflect costs caused by end users”, which is in line with this
market property.



6. the NE can be obtained in reasonable computation time, with a protocol connecting different volt-
age levels.

Under the first three conditions, the market switches from competitive to cooperative and end users won’t
have any incentive in deviating from the actions computed by the algorithm deployed on their smart de-
vices. The fourth point will ex-post identify deviations from the declared actions and use them to punish
malicious agents. Methods that do not require aggregators’ presence have also been evaluated and
are discussed in this report. Our conclusion is that, although the class of problems considered (sharing
problems) can be decentralised through gossip protocols, the number of messages required before con-
vergence (and thus the overall computation time) is higher than for a parallel solution scheme. Moreover,
the presence of coupling constraints and the fact that the goal is a function of the actions of all users
require an additional cryptographic layer to preserve the privacy of private information.

Besides the definition of price formation scheme and market mechanism, a coordination protocol is also
needed in order to converge to the market equilibrium in a multilevel hierarchical setting. This requires
to define how information flows through the different levels of the network and which control algorithm is
employed. Since we desire to solve the market without disclosing internal parameters of the end user’s
private devices nor constraints, we chose to adopt an iterative solution based on distributed control. For
the hierarchical formulation, we designed a forward-backward communication protocol, in which agents
from different levels of the grid send their forecasted power production or consumption to an aggregator
in the upper level of the grid. Then, the aggregators send back a coordination signal to the agents, based
on the design of the energy market. The process is carried out in an iterative way until convergence is
reached.

A simulation framework was designed to benchmark the proposed market formulation and coordination
mechanisms, both from the grid and economic point of view. The results are presented and discussed
in detail here.

The market design and control strategy are currently being tested in the pilot project Lugaggia Innova-
tion Community (LIC, lic.energy). LIC is a self-consumption community that optimises and automates
the use of local solar energy among 19 prosumers in the same district, in combination with a public
battery system. In LIC, smart meters have been equipped with computing units capable of solving the
distributed optimisation problem designed in this project, and a privacy-preserving method has been im-
plemented to calculate the redistribution of money. Tests are currently underway. The pilot configuration
and preliminary results are presented are the end of this report.

The report is structured as follows: first a literature review on market formulation and distributed control
is presented in section 2. Then, the energy market formulation is presented in section 3. This is fol-
lowed by the design of the control algorithms that optimise the economic rewards within the designed
market, in section 4. Section 5 focuses on extending the market formulation to the multi-level setting.
The decentralization of the coordination mechanism via gossip protocol and the preservation of privacy
are discussed in sections 6 and 7, respectively. Sections 8 and 9 cope with the evaluation of the market
design and control algorithms in simulation. Section 10 deals with the implementation of market and
control in the pilot project LIC. Finally, section 11 contains the conclusions.

2 Literature review on energy market formulation and distributed
control

The mathematical problem of coordinating distributed agents in order to achieve a desired global effect
is pretty general, and different approaches can be found in the literature for its application to the elec-
trical grid. We will generally refer to this class of problem as distributed optimal power flow (D-OPF).
This can be described as a networked optimization problem, in which each agent can only communicate
with their neighbors, which are defined by a communication graph [2]. When dealing with D-OPF, grid
constraints must be decomposed among the different agents, and we refer to them as coupling con-
straints. Various approaches exist to solve them in a distributed way [3, 4, 5]. In [6] a non-exhaustive
review on D-OPF methods can be found. A non-comprehensive review on architectures for distributed
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MPC can be found in [7]. In [8] several papers on distributed MPC, including deterministic and robust
approaches, are cataloged based on process commonalities, control architecture and theoretical prop-
erties. When applied to power systems, most of the studies are focused on a single level decomposition
[9, 10, 11], where agents can communicate with a coordinator. Fewer works are focused on completely
decentralized protocols. Notably, in [12], a method to solve the D-OPF through the alternating direc-
tion method of multipliers (ADMM) on arbitrary graphs is presented, which is referred by the authors as
proximal message passing. Methods found in the D-OPF literature for coordination of distributed agents
are usually based on some decomposition techniques, such as ADMM, primal-dual Douglas-Rachford
splitting [9], which is equivalent to ADMM (cfr. [13] §4.5), Dantzig-Wolfe decomposition [14, 15], proximal
minimization [16].

Despite the abundant literature on distributed control, the ongoing paradigm shift from centralized to de-
centralized generation poses new challenges. When power generators belong to a single entity, which
is usually the assumption in D-OPF, the redistribution of revenues among competing entities does not
have to be taken into account in the problem decomposition by the independent system operator (1ISO).
This is not the case for demand side management (DSM) in general, in which prosumers’ actions are
motivated by their own utility. In this setting, proper regulatory mechanisms defining rules for remuner-
ations and compensations need to be set up to allow the integration of DSM services in the wholesale
market. Such rules need to address the problem of conflicting interests between market participants.

Additionally, a growing number of publications [17, 18, 19] highlights the possibility for some agents to
alter the distributed optimization mechanism in their favour, to the detriment of the welfare of the other
agents, by just lying about their predictions. This setting requires to treat the problem decomposition in
a game theoretic way, shifting the focus from distributed control to market design.

Different authors have designed market rules using a game theoretic framework, describing the problem
as a non-cooperative game. The underling concept in game theory and mechanism design is that, if the
right amount and type of incentives are given, rational prosumers will decide to cooperate.

Most of the game theoretic works on en Vickrey-Clarke-Groves (VCG) mechanisms [20, 21, 22] .
The VCG has many teoretical theoretical properties, among which being weakly budget-balanced and
strategy-proof. The strategy-proofness is achieved by the mechanism paying each agent the sum of the
value of all other agents. In this way, the social choice coincides with the interest of each agent, but at
the same time it makes the mechanism extremely expensive for the aggregator, which should pay each
agent the total amount of money that it would have paid in a trusted setting. This problem is alleviated
using the Clarke pivot rule, with a resulting total value ¢, ; for the i,;, agent equal to:

N
Chot,i(T) = max Z Ctot,i(u) — L max Z Ctot,j () (1)
i=1 J#i

It is clear that since the second term does not directly nor indirectly depend on any decision of i, the
only way to influence its total value is influencing the first term. Since maximizing the first term is
equal to maximizing the social welfare, the mechanism implements social welfare maximization and
is strategy-proof. Anyway, the requirement that the second term has to be independent from agent i
implies that N optimization problems must be solved, each of which is performed without considering a
given agent, which is a major drawback when the total number of agents is big. Since the computational
cost of solving a single problem is expected to scale linearly with the number of users, the overall
computational cost will scale as O(n?). Moreover, when trying to distribute strategy-proof mechanisms
as VCG, dominant strategy equilibrium can not be guaranteed anymore [23]. This effect is also known
as the cost of decentralization. The strongest notion of equilibrium when decentralizing a mechanism is
known as ex-post Nash equilibrium. Informally, this equilibrium guarantees that the suggested strategy
o*(0,) is the best strategy when all the other agents follow it. Formally:

Ctot,i (g(a*(&i),a:(e_-))) 2 Ctot,i (9(‘7,(91‘)70:(9—1'))) @)

Authoritative work on decentralized mechanism have been carried out in the contest of algorithmic game
theory [23]. The ex-post implementations of VCG has been theoretically studied in [24], where design
principles are presented. Notable work has been done in [25] trying to reuse parts of the redundant



computation of distributed VCGs mechanisms, in order to reduce the computational time. However, the
works do not provide any guarantees on the computational time reduction, which is problem-specific.
Moreover, including shared constraints in a VCG mechanism is not straightforward. A way of considering
coupling constraints in games comes from the seminal work of [26] on n-person non cooperative games.
In this work, conditions for the existence and uniqueness of the NE are given in terms of convexity
of the considered game map. For instance, this work has been used in [27], applied to the problem
of bidirectional energy trading between residential loads ad electric vehicles. The concept has been
lately reconsidered, showing the existence of a new class of equilibrium refinement, called Variational
NE (VNE) [28], which guarantees the same marginal prices for all the users at equilibrium. In [29]
conditions are given for the uniqueness of a VNE in terms of monotonicity of the game map, in presence
of coupling constraints. A similar description using monotone operators is provided in [30]. Since VNEs
can incorporate coupling constraints and its distributed solution can be achieved using strategies which
are well known in the field of distributed control, with well studied convergence properties and which
scales better compared to VCGs, we chose to adopt them as a base for the formulation of the multilevel
energy market.

3 Energy Market Formulation

The final market formulation we developed is agnostic with respect to the underlying business model,
and can be adapted to any case fitting in the following setting:

+ A group of end users can control some deferrable loads (e.g. electric boilers, heat pumps, etc...)
or an electrochemical storage which can be used in order to shift production/consumption patterns

* An Independent System Operator (ISO) exploits a defined business model which uses end users’
flexibility (e.g. committing to a predefined day ahead power profile as a service to a balance
responsible party, providing regulation energy reserve, etc...) and redistribute part of the capital
gain to flexible end users as a reward to their flexibility.

Under these assumptions, the problem can be mathematically formulated as a variant of the so called

sharing problem [31]:
N

argergm e(Spu) + ; c(ui) (3)

st.: Ayu<b

where u; are the actions associated with the agent i, U/ = Hﬁil U; is the Cartesian product of the flexible
users feasible sets, e(u) is a system level objective which defines the business model, c¢(u;) are the
costs of each flexible user in the business as usual case, and u = [uf,..uk] = [u;]X, is the vector of
the concatenated actions of all the flexible users. Here A, is a constraint matrix, taking into account
the linear influence of the end users’ powers on the problem constraints, and b encodes box constraints
limits on the power and voltages at specified grid’s nodes.

A notable business model is the one of energy communities, or self consumption community (SCC),
for which the billing is done at the point of common coupling (PCC) with the main grid. This means
that users inside the energy community always pay a lower energy bill if there is a heterogeneous mix of
generation and production inside the energy community. In the case of energy communities, the function
e(u) is the surplus that the agent community has in paying the energy at the point of common coupling

with the electrical grid:
N
e(z)=c (Z uz> - Z c(u;) 4)



where u; € R" is the vector of total power of the ith agent, ¢(-) is the energy cost function defined as:

, if p>0
c(p) = Po.tpr P i (5)
psPt, Otherwise

where p, ; and p,, are the buying and selling tariffs, respectively, at time ¢ and p is the power at the
households’ electric main. In order to induce agents to follow the proposed mechanism, we must ensure
that the energy tariff they pay participating in the market is always lower than the one they pay in the
base case. This is always true when we are not taking into account grid constraints, since e(u) as
defined in (4) is always negative, when p, ; > p, ;, as usual in energy tariffs. However, if the agents are
located in a grid with big voltage oscillations, the Lagrangian dual variables (which we can interpret as
punishment prices) could be such that the cost paid by the agents is higher than a;e(u).

In paper [32] we propose a single level coordination mechanism for problem (3), and addressed the
following problems:

» Existence and uniqueness of a generalized-VNE for this class of sharing problems. We prove that
decomposing (3) using different repartition weights for the surplus, induces a game with unique
generalized variational equilibrium, which can be reached jointly minimizing the utility function of
the agents, given by:

Ctot,i = c(u;) + aye(u) + )\?ui (6)
N

= wc (Z u> + (1 — o)e(ug) + M, 7)
i=1

where « is a repartition coefficient for prosumer 4, \; € R?” is a vector of Lagrangian multipliers
associated with the i, agent.

» Enforcement of individual rationality. Lagrangian multipliers in equation 6 are not bounded a-priori;
this could lead to a situation in which the prosumers pay more than in the base case. To ensure
IR, we encode it in the optimization scheme. At each iteration, for each time step in the horizon,
we increment the Lagrangians only if the following condition holds:

aje(uf) + ALuy <0 VieN, VteT (8)

where a negative value means that the prosumer is gaining a reward. This could obviously result
in the impossibility to satisfy the coupling constraints. We can give the following straightforward
economic interpretation to this mechanism: each agent would opt-out from the game as soon as
the energy tariffs become unfavorable with respect to the base case. Condition (8) prevent this
from happening. In the presence of bad power quality, the DSO could provide favorable energy
tariffs to prosumers participating in the mechanism, ensuring that condition (8) is met with high
probability.

» Comparison with the preconditioned forward backward (pFB) algorithm. We compared the pro-
posed algorithm with the pFB. [30] states that all the projected-gradient algorithm class, when
applied to aggregative games, can be interpreted as pFB. In figure 1, an example of solution is
shown in terms of a group of prosumer’s battery state of charge, aggregated power profiles and
voltage at the PCC. Results for the game associated to 3 are reported, using the proposed formu-
lation and the pFB algorithm. In this case, grid constraints, represented by the dashed red lines,
are respected. This could not always be the case, for two reasons. The first is that the prosumers’
flexibility could be in any case not enough to keep power and voltages inside the constraints set.
For instance, this could depend on the total number of agents which are willing to participate to the
proposed energy sharing community, which could be low with respect to the total number of users.
Secondly, as anticipated, the hard cap on the Lagrangian multipliers enforcing individual rationality
could prevent prosumers from using all their batteries’ flexibility for grid regulation. The compari-
son was done by means of iterations before convergence, as depicted in figure 2, and showed that
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Figure 1: Time series example, N = 10. Blue: forecasted profiles. Red: constraints. Grays: solutions
of the centralized and decentralized approaches. Top: state of charge for each battery. Middle: power

profiles. Bottom: voltage profiles.
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Figure 2: Normalized optimal value p*. The thick lines denote the median, while the shaded areas are
the 25% and 75% quantiles.

the ADMM based formulation requires on average fewer iterations to converge, which is desirable,
since for each iteration step, the overhead and delays associated with a round of messages be-
tween the agents and the coordinator (or between the agents in the decentralized version) must
be taken into account.

3.1 Redistribution coefficients and credible threats

Modeling the market as a non-cooperative game in theory prevents us from the possibility that some
users could hack their smart devices in order to modify the decision algorithm controlling the deferrable
loads. In fact, this would be an irrational action, since the cost specified in 6 induces a unique NE, where
all the agents costs are minimized. However, some users could try to steer the NE in their favor. Since
the final cost for the users depends on the actions of all the SCC members, could be possible for a user
to influence the NE, misreporting the forecast of its own energy profile. The «; coefficient is intended to
promote a truthful report of the users’ power forecasts. The «; in (6) redistribute the SCC’s economic
surplus (4), so that the user is interested in maximizing it. In [33] we proposed the following formula for

o7 .
—a Zk:th ‘xi,k|
— U4t t N
Dhmter 2ict [Tk

where 7 is a characteristic period (e.g. one week). This is basically a normalized moving average of
the consumption (or production) of the i;;, agent. In other words, the discount experienced by the SCC
member is proportional to the produced or consumed kWh. For the numerical experiments carried out in
the following sections, we have adopted a different definition which promote fairness: the a; coefficients
are computed using moving averages of the change in the surplus due to the action of the i;;, agent. In
other words, called e(z_;) the surplus computed without the action of the i;, agent, the «; are defined
as:

©9)

(6787
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This value is then reduced, multiplying it by a;, which takes into account the accuracy of the next step

ahead declared actions:

B ‘pi,t - pf,t|
‘pi7t|

where p; , ., is the optimal power profile declared by the i;, agent at time t for time t+1, after convergence
of the distributed algorithm, while p; 1 is the true value, realized at ¢t + 1. Note that this mechanism favor
those users inside the SCC who do not have stochastic load nor production, that is, those members who

aitil (12)

s



participate in the SCC only to perform price arbitrage, e.g. a user with only an electric battery. This is
reasonable, since this kind of users provide a service to all the other member, actively maximize SCC’s
self consumption.

ex-ante declarations ex-post realizations
4 4
2 2
0 0
= 2 = 2
= =
=, =,
o 4 o 4
6 6
8 type 8 type
BN producer B producer
10 consumer 10 consumer
0 1 2 3 0 1 2 3
member [-1 member [-1

Figure 3: Example of EPNE manipulation. The only energy producer (blue) on purpose overshoot its
own forecasted energy production during the coordination phase (left panel). The consumers increase
their consumption plan in order to consume the cheap energy produce inside the SCC. Ex-post, when
the decisions are implemented (right panel), while the consumers get stick to their declared plans, the
producer fail to deliver all the promise energy. This behavior has no consequences for the producer,
which sell all of his energy inside the SCC at a higher price, but it lower the SCC welfare.

Note also that o, are always positive, but that they do not sum to 1, due to the introduction of a; ;. This
means that the mechanism generates a revenue stream for the SCC manager, which can be interpreted
as an insurance against the discrepancy of the declared actions and their realization. In the game
theoretic literature, this is known as a weakly budget balanced mechanism [34], that is, agents pay a
greater then zero tax to a central entity running the mechanism. While this is not a good property in
general, and in most of the game theoretic literature tries to achieve budget balanced mechanisms, to
see why introducing a; + in our case is beneficial, we should consider that:

* In order to guarantee IR, we cannot arbitrary punish the SCC members or owners as a function of
their declared or predicted actions

+ Not punishing them for wrong prediction will possibly lead agents to be too risk averse, since the
cost of doing an optimistic (from the point of view of users’ costs) prediction is externalized.

» Due to Myerson-Satterthwaite impossibility theorem, no mechanism is capable of achieving indi-
vidual rationality, efficiency, and budget balance at the same time for general valuation functions



[35][36].

» The strongest notion of equilibrium attainable through a distributed mechanism is ex-post NE
(EPNE) [37][23], which informally states that is guaranteed agents will minimize their costs if all
the other agents follow a common protocol (intended to maximize the welfare). When this is not
the case, a self-serving agent could try to steer the EPNE declaring false intentions for his next
actions. This can be seen through a simple example. Consider a mechanism in which energy
producers get paid more if their energy is consumed inside the SCC, and consumer pays less if
they consume energy from the SCC. In this case, an agent owning only a PV could overshoot
its forecast for the next step ahead. This will lead consumers with flexible loads to increase their
consumption, making advantage of the cheap energy supplied by the PV owner. In the actuation
phase, after the coordination step, all the energy produced by the PV owner will be almost surely
be consumed inside the SCC, while the exceeding demand needs of some of the prosumers will
be covered by (the more expansive) energy drown by the main grid. In this way the PV owner
effectively steered the mechanism in his favor, externalizing his costs due to the uncertainty of its
own predictions to the detriment of all the other consumers. This example is illustrated in Fig. 3.

4 Control Algorithms

In the following the algorithms used to control the distributed batteries and electric boilers are described.
For sake of simplicity we describe the algorithms in the case in which the objective function is the eco-
nomic cost in the business as usual. This formulation is also used in the implicit coordination case,
where the prices are dynamically changed and each agent uses its own device to reduce its overall
costs, without any kind of communication. Batteries and boilers are controlled through a model predic-
tive control (MPC) approach: at each timestep of the simulation, the controller solves an optimization
problem using consumption and production forecasts for the next day-ahead. Once the optimal solution
has been found, the algorithms actuate only the first control action, and the procedure is repeated. We
later extend it to the sharing problem with coupling constraints case presented in [38].

4.1 Battery control algorithm

The battery controller is supposed to be interfaced with the battery energy management system, return-
ing an estimation of the battery’s state of charge and injected and withdrawn power, into and from the
battery. In this setting, the battery can be considered as a one state fully observed system and applying
the MPC is straightforward. The formulation of the battery control algorithm for the implicit coordination
is based on the work published in [33], and has been further improved to decrease the overall compu-
tational time, exploiting a new formulation for enforcing mutual exclusivity in charging and discharging
operations. We report it in the following. Called u = [p%,,pL.]T € R?" the vector of concatenated de-
cision variables for the control horizon T', where p.;, and pgs are the battery charging and discharging
power, respectively, i = [p.x, pas] € RT*?2 being the same vector reshaped in a 2 columns matrix, p € RT
being the forecasted power at household’s main for the next contro horizon, y € R”, s.;, € R, 54, € RT



being three auxiliary variables, we seek to solve the following problem:
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where 3= stands for =, , indicating element-wise inequalities, p, < R” and p, € R are the business
as usual buying and selling prices. We start analyzing the objective function (13) term-wise. The first
summation in (13) represents the total cost of the agent in the business as usual case. For prosumers,
the cost function can be either positive or negative, depending on the overall power at their household’s
main and can be expressed as in equation (5). The cost can be thought of as the maximum over two
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Figure 4: Visual explanation of the scope of the y variable. When linearly penalized, y is pushed to its
feasible space’s lower borders, collapsing on the cost function ¢(p) in (5)

affine functions (the first and second line of equation (5), respectively). Equations (15),(16) constraint
y to live in the epigraph of the maximum of these two affine functions. Minimizing y then guarantees
that its value at the optimum, y*, will lie on the epigraph’s lower boundary (and will thus represents the
prosumer’s total costs), as shown in figure 4. Equation (14) describes the battery’s dynamics. A €
R+ and B € ]R}rX2 are the discrete dynamics matrices obtained by the continuous one through exact
discretization [39]:

A= eAcdt

B=A'(A4q4—1)B,

where A, = 17% and B. = [neh, ni], and 7.4, nen and 7y are the caracteristic self-discharge constant,
charge and discharge efficiencies, respectively. Since B, defines an asymmetric behaviour in charging

(21)



and discharging (even with equal charging/discharging coefficients), solving the battery scheduling re-
quires to use two different variables for the charging and discharging powers, p.;, and p,,. When consid-
ering grid constraints, the battery can try to dissipate energy through round-trip efficiency to help respect
negative grid constraints (when there is an excessive PV generation), so that in this case we need explicit
binary complementary constraints for enforcing mutual exclusivity (the battery cannot charge and dis-
charge at the same time). This can be obtained in three ways: explicitly modeling the bi-linear constraint
penpae = 0, introducing a binary variable and model it through big M formulation, or trying to restrict their
feasible space. The first way will make the problem non-linear, while the second will turn it into a MIQP
introducing a binary variable; as both options will increase the computational time, we introduced a new
formulation exploiting the third way. Charging and discharging powers are effectively separated using
the auxiliary variables s.;, and sg4s. The feasible space of s4s is constrained to be the epigraph of the
maximum between 0 and the forecasted power at the main. As shown in figure 5 for the case of sy, the
equations (18) and (19) constraint these auxiliary variables to live in the positive half-plane and to be
higher than the power profile at main (or its negative value for s.;,). When s, is quadratically punished,
it will shrink on the lower boundary of the epigraph, (orange line in the second panel of figure 5). Its
optimal value can then be used to define the feasible regions of the battery charging power, as done by
equation (20). The same reasoning done in figure 5 for the discharging power can be applied to define
the feasible regions for the battery’s charging power; this will result in two disjoint feasible sets for the
charging and discharging powers.
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Figure 5: Visual explanation of the change in the feasible space for the discharging power.

4.2 Boiler algorithm

For the electric boilers, we cannot realistically assume them to be a fully observable systems. In fact,
this assumption will require to have several sensors indicating their internal temperatures at different
heights of the boilers. In a realistic setting, existing electric boilers has no more than two temperature
sensors, used by their internal hysteresis controllers, and this information cannot typically be read from
an external controller. Furthermore, consider the following simplistic one state model for the boiler’s
thermal dynamics:

oT
CME = CF (Ti,t — To,t) — U (T — Tewt) + Pel,t (22)

Despite its simplicity, this model requires to know the incoming/outgoing water flux I, which means that
a fluximeter must be installed. This is not possible but in pilot projects, since installation costs of these
sensors will completely cancel out the economic benefit of an avoided grid refurbishment.



As such, we assume that we can only exploit the electric power measurements for controlling electric
boilers. Furthermore, we expect to be able to only turn off the boiler through a relay, and not forcing it
on (due to safety reasons, since we do not any feedback ). Given these constraints, the electric boiler’s
nominal power and energy needs are estimated using historical data of their power consumption. Then,
the algorithm decides when to force off the boiler such that the boiler can always satisfy its energy needs
inside 3-hours slots. We based our algorithm on the work published in [40]. The algorithm is summarized
in the following points:

» The nominal power of the boiler, P, is estimated from historical power data.

+ The energy needs of the boiler are forecasted using a LightGBM' model taking as input past data
of the boiler's power profile, as well as weather predictions for the next 24 hours. Furthermore,
forcing the boiler off could result in an energy rebound effect. This can be corrected by passing to
the forecaster also historical values of the control action as a categorical binary variable (since we
want to forecast the energy needs of the uncontrolled boiler, this approximately counteracts our
action on the system).

» The algorithm decides when to force off the boiler such that the boiler can always satisfy its energy
needs inside 3-hours slots. For example, if a consumption of 2 kWh is forecasted between 18h-
21h, and the estimated nominal power is of 4 kW, the boiler can be forced off at most 2h30min
during this period.

Even if the boiler cannot actively be forced on, the internal control of the boiler, which is usually an hys-
teresis based on one or two temperature sensors, will automatically turn it on if its internal temperature
is too low. The mathematical formulation is the following:

T T
ut,yt = argminz Yt — Z min(y, 0) (23)
wY t
st yizpe (Bo(1—u)+p) (24)
y= po (Bo(1 — ) + ) (25)
S [(1 - u)pnom ﬁb] = (26)
T-1

where y has the same role as in the battery optimization problem, representing the total costs for the
prosumer, v is a slack variable which relax the energy invariance constraint (26). Here S is a summation
matrix which sum the energy in the pre-defined time slots (3 hours). Equation (27) further prevents the
boiler for being turned on and off more than n., times in a control horizon.

4.3 Sharing problem

The presented problem formulations for the battery and the boiler, (13) and (23) respectively, minimize
the end users’ business as usual costs. These can be adapted to solve the decomposed sharing problem
(3) simply modifying the part of the objective function representing the end users’ costs and altering the
feasible space for the charging and discharging powers. In particular, using the expression presented in
section 3 for the total costs for the agent, the economic cost of the agent becomes:

Crot.i = c(u;) + aze(u) (28)

N
= ;¢ (Z ui> + (1 — ay)e(uy) (29)

Thttps://lightgbm.readthedocs.io/



This cost function must be augmented with the Lagrangian multipliers coming from the decompostion of
problem (3):

N
Ctot,i = Q4C (Z Uz> + (1 — og)e(w;) + A (30)
i=1

Ai = [A] ., AL4 )" € R? being the vector of Lagrangian multipliers associated to the iy, agent. Briefly
speaking ); is a filtration of the overall A induced by A, in (3). More details about this filtration pro-
cess can be found in [33, 41]. In order to allow batteries to charge and discharge when system-level
constraints are violated, we must further modify the feasible space of p., and p4s in (13). In particular,
equations (19) and (20) becomes:

Sch = _ﬁ + M)\i,ch (31)
Sds 7 =P+ MMXi as (32)
(33)

Here M is a big constant, that we set to 1e6 in the simulations. An example of change in the feasible
space of pys is shown in figure 6.
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Figure 6: Visual explanation of the change in the feasible space for the discharging power, when sy, is
modified taking into account the Lagrangian associated to the battery’s charging power A; 4.

Finally, using the preconditioned forward-backward formulation, agents perform a gradient descent step
in the direction of the negative gradient of the system level cost. This can be formulated as the minimiza-
tion of the linearization of the system level cost around the previous state, plus a quadratic punishment
on the action at the previous iteration; more details on this equivalence can be found in [33]. Replacing
the agent cost with the auxiliary variable y as in (13) and (23), the final objective function (for the battery)
then becomes:

N T T
e (Z u) wi+ (1= ) Sy Nl ut palle — el + s + sl (34)
=1

i=1

where u; ,,-. are the agents actions at the previous iteration.
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Figure 7: Feasible sets for the space of two prosumers’ actions, for the constraint |z, + 22| < P in the
case of individual policies (dark gray) and in the case of communication (light gray). Communication
enlarges the feasible set, thus potentially improving the solution.

5 Multilevel hierarchical control

The flexibility of prosumers can be exploited providing multiple services to the electrical grid, for exam-
ple secondary control and energy management. Due to the electrical grid interconnections, in order to
provide these services safely, an optimization method taking into account their effects on multiple volt-
age levels should be used. Moreover, coordinating groups of prosumers is always better than having
prosumers to follow individual policies, in terms of aggregated effect. For example, let us consider the
case in which we want to minimize a given objective function in terms of the aggregated power profile
of a group of prosumers connected at the same LV transformer. Additionally, suppose that we require
the power at the PCC to be symmetrically bounded, that is, Sz € [—P, P|, where with S = 1% ® I
we denoted the time summation matrix of all the prosumers’ actions. In order to guarantee that this
constraint is never violated using individual policies, we must replace it with the set of prosumers’ con-
straints u; € [—?/N, ?/N]. On the other hand, the feasible space of prosumers’ actions would increase
when allowing communication, thus leading to a better solution, as shown in figure 7. Formally:

Lemma 5.1. The n-dimensional hypercube intersecting each axis in {—P/N, P/N} is always included

in the convex hull defined by the points [e;(—P, P)] ZVZI, where e; is the versor of the ith dimension.

Proof. The maximum distance of the center from the n-dimensional hypercube defined in 5.1, equal to
half of its diagonal, is P/+/N, which equal to the distance of the hyperplanes defined in 5.1 form the
center, in each orthant. O

This means that constraining the aggregate instead of the single users will enlarge the feasible set X,
always resulting in a (not strictly) better solution.

In the literature, different methods have been proposed to coordinate groups of prosumers by means
of an aggregator. Most of them refer to a single level hierarchy, as in [11, 15]. Both [10, 42] consider
distributed MPC for a single level hierarchy, without grid constraints. In [43] a three level hierarchy has
been proposed for the control of reactive power from PV inverters. The adopted sequential strategy
does not explicitly take into account grid constraints and is solved through particle swarm optimization
heuristic.

In paper [44], we present a multilevel hierarchical algorithm for the coordination of prosumers located
in different voltage levels of the electrical grid. The hierarchical structure of the grid is described by
means of a rooted tree. An example of rooted node structure is shown in figure 8. The coordination of
prosumers is made possible by aggregators located at branching nodes of the tree. It is not necessary



€]
(1,1) 12)

1,11 (1,1,2)

Figure 8: Example of rooted tree hierarchical structure

that the levels of the hierarchical structure coincide with the grid voltage levels. For instance, the first
level of aggregation could be done at building level, while the second level could be placed at the LV
cabinets. Here we briefly introduce the some notations needed to describe the hierarchical structure,
which are useful to explain the coordination mechanism.

Definition 5.1 (Node sets).

1. Descendants of node A = (di,..d.,). D(A) = {4; = (j1,..jr,) : L > L, (j1,...jr) = A}
. Leafnode £(r) = {A € 7: D(A) =0}

2
3. Nodes inlevel I. Nj(t) ={Aer:L=1}
4. Branching nodes. B(7) = 7\ L(7)

5

. Anchestors of node A. A(A) = {4; € 7: A€ D(4;)}

Formally, given N users with a controllable loads, located in a hierarchical structure, we solve the hier-
archical counterpart of problem 3:

N

argerzin e(Syu) + ; c(u;) (35)

s.t.: Spu<wvpg V BeDB(T)

where Sy = 1% ® I is a summation matrix summing all the users’ actions u. Here Sp are similar
summation matrices, each of which encodes a constraint in the set of branching points of the hierarchical
structure, B(7). They are defined as:

_ - aBVjHT, If Aj S D(B)
Sp=[Mp.a,], Mpa, = { 0r. otherwise

(36)
where 07 and It are the zero and identity matrix of size 1" respectively, a ; is a weight associated with
the j,, descendant of branching node B. For instance, for constraining power at a give point of the grid,
neglecting power loss, the coefficients a ; are equal to 1 for the nodes directly connected to branch B
and 0 for the other ones.

Despite having a simple formulation, problem (35) is very flexible, allowing having multiple objectives in
different branches, or appliances providing possibly competing services to the grid, like primary regula-
tion and dispatchable operations. In paper [44] we showed that the problem (35) can be solved using



a forward-backward communication protocol, with an iterative round of message passing spanning the
hierarchical structure from the leaf node to the root node and vice versa. The mathematical formulation
of the problem is the following:

O 1
u; ar%r?ln feilui) + BG;:A” 5 I (37)
= (Spa” — yi)/Np — apuf +u; + N33 (38)
yp ! = Ty, (prox,, (Spa" ' Aj)) (39)
yp' ! =Ty, (Spa® ™t +Xp) (40)
D /) (41)

Np

where Np is the number of descendants of branch B, y are auxiliary variables used to decompose the
problem and to treat the coumpling constraints, Il stands for the projection operator over the box
constrain set defined by Vi and prox,, is the proximal operator for function e, with parameter p and
A(A;) are the ancestors of node A;. Since the root node update involves the minimization of system-
level objective function e, equation 39 projects its proximal minimization into the root node constraint
set )y, similarly to proximal gradient methods, as the forward-backward splitting algorithm [45]. As can
be seen from equation (38), each agent needs some information from its ancestors in order to solve its
optimization problem. This information can be provided by their respective parent nodes. This allows
the algorithm to be solved in a forward-backward passage. In the forward passage each branch B
sends its reference signal rp and the one received by its parent to his children, which propagate it
downwards through the hierarchy. At the same time, prosumers in leaf nodes solve their optimization
problem as soon as they receive their overall reference signal r;. In the backward passage agents send
their solutions to their parents, which collect them and send the aggregated solution upward. Note that
rp contains only aggregated information from branch B, which ensures privacy among prosumers.

6 Assessment of gossip algorithms for decentralization

6.1 Introduction

The decomposed mechanisms presented in the previous sections can be decentralized, that is, run
without the help of a central aggregator. In order to remove the need of an aggregator, there are two
main options:

1. All the computations normally carried out by the aggregator, that is, equations (39), (40) and (41),
must be deferred to a leader among the agents;

2. Since all the computations done by an aggregator node can be reduced to inexpensive algebraic
calculations, all the agents could process them in parallel, in a similar fashion to what is done by
the Ethereum Virtual Machine.

While the first option is less expensive computationally and from a communication complexity point of
view, the high redundancy provided by the second one makes it particularly appealing for a distributed
computation. The decentralization of the algorithm requires also to adopt some cryptographic or obfus-
cation protocol (like differential privacy) to prevent a disclosure of private information among the users.
In fact, while we have regarded aggregators as trusted third parties, we consider the users as “semi-
honest” agents, also known as the honest-but-curious setting [46]. This means that we assume that
users are willing to cooperatively solve the problem, but they are also possibly interested in knowing the
single agents private information such as energy consumption, production or their final bill. One way



to achieve a decentralized control is is by using the gossip protocol to exchange messages among the
agents. The gossip protocols are well known in the telcom sector, as can be used to pass data on com-
munication networks with an arbitrary topology. In this context, they can be used to estimate the signals
that all the agents need to know in order to solve their own problem (38). In [47], the authors suggest to
use the gossip protocol to asynchronously solve an unconstrained aggregative game using a first order
method. For this class of games and solution scheme, the only thing needed by the agents to effectively
coordinate is an esteem of the sum of their actions. This estimation can be done using gossip. In this
chapter, starting from this baseline algorithm, we will examine its feasibility in terms of simulation speed
and analyze and possible solutions to the security and privacy issues.

6.2 Baseline gossip method

The mathematical formalization of the problem we ideally want to solve is as follows: We have N agents,
identified by an index i, each owning a private, real-valued data point, V;. The objective is to develop
a distributed protocol for the computation of the sum of the agents’ private values without a significant
privacy sacrifice, that is, preventing the possibility of an agent being in general able to reconstruct the
private value of another agent.

As described in [47], the baseline gossip algorithm works as follows. The agents initially set vy ; to their
private value, then repeatedly organize in pairs in a series of events k£ and compute the average of their
vg,;- Each agent sets a clock that ticks according to a Poisson process with parameter A, where J, in
a naturally symmetric case, is agreed-upon and shared among all agents. When the clock of agent i
tick, he randomly contacts a neighbor j. They then exchange their current estimates and compute a
new intermediate estimate as the simple average of their current estimates. The intermediate estimates
of all agents converge to a common value. Convergence is checked by the agents periodically: when
the difference between the E values of the agents is under a certain commonly agreed threshold, the
agents broadcast a convergence message. When all the agents are converged, the iterations stop. The
value of the sum of the agents’ private value is then the final, agreed upon value E multiplied by the
number of agents.

6.2.1 Experimental convergence

Useful theoretical convergence properties are hard to obtain, since they involve the use of supermartin-
gales. We will here show in Figure 9 the results of a simulation of the gossip protocol. The algorithm will
be executed on randomly generated connected graphs whose nodes represent the agents. Each agent
is assigned an uniformely random number from 0 to 1. Each gossip iteration consists of 2 messages
(each of the two peers sending their v, ; to the other). The number of agents and the 1 — ¢° density met-
ric of the adjacency matrix (where ¢° is a simple measure of sparsity, the proportion of zero elements
on the total) are varied. The mean and standard deviation o of the number of messages exchanged
before attaining convergence are shown in the figure. The data is obtained from 100 attempts for each
combination and the relative tolerance for convergence is 10~32. Notwithstanding the relatively loose
convergence tolerance, the number of messages exchanged, even in this baseline version, proved to be
high in relation to the simplicity of the task to obtain.

6.3 Security
As previously mentioned, in order to attain real-world applicability, security and anonymity features have

to be taken into account. In this context, this proved challenging, requiring modifications that increased
the communication overhead, further aggravating the overall speed problems.



Mean of messages exchanged Stdev of messages exchanged

10| 697.1 279.4 225.3 210.4 10| 164.9 52.6 35.9 31.1
20| 6324 556.9 509.5 503.4 20| 726 60.6 57.0 54.9
2 2
S 50| 1560.6 | 1426.4 | 14055 | 14286 S 50| 1444 132.6 107.7 111.4
o [
4 @
© 100| 3059.6 | 3012.0 | 3005.4 | 2996.7 ©100| 211.6 189.0 201.4 213.3
c c
200| 64475 | 6196.4 | 6233.7 | 6282.1 200 | 433.8 3741 432.9 331.3
o 16586.8 16409.4 16411.6 16255.2 500 695.0
0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9
Connection density Connection density

Figure 9: Experimental investigation of messages exchanged for convergence of the gossip algorithm

6.3.1 Asymmetric disclosure

This approach implies fully trusted agents. The only way of exchanging the private values naively is to
do it in a sequential way, opening an opportunity for the first receiver to asymmetrically avoid disclosure.

In order to tackle this problem, we propose the following modification: The secret exchange phase
between two partners is carried out using a simultaneous secret exchange protocol, also called gradual
secret release protocol. Efficient protocols for this task exist, such as the classic ones proposed in
[48]. This guarantees that two agents do not have to trust each other in sending their private values in
sequential messages. Using this technique, though, first of all commands a computational effort that
does not exist in the baseline, due to the need of computing the mathematical primitives needed by the
obfuscation and decoding. Secondly, the protocols involve sending several messages per secret shared,
implying a communication overhead that changes the order of magnitude of messages exchanged.

6.3.2 Clock spoofing

A second problem we notice on the baseline algorithm is that it involves revealing the agent’s own initial
private value, that is the sensitive one, to one other agent: the one with which is paired first. In particular,
a malicious agent could pretend its clock ticked very rapidly after the start of the round and contact a
neighbor J of his choice, obtaining with very high probability the initial value V; of that agent. We can
modify the protocol in the following way to address this problem: The secret exchange will happen over
a secure channel. The first message the sending agent A will emit will be an anonymous proposal
for initiating a secure key exchange protocol over an insecure network, such as the Diffie—Hellman key
exchange protocol. The first receiving agent B will then randomly choose either to accept the key
exchange and send back the following key exchange message, or to relay the message to a random
neighbor C. This random neighbor will therefore see the message as if it originated from B, and has
no way to tell the origin with certainty. C performs the same actions. When C, or any other following
agent, decides to answer the key exchange protocol, the answers are relayed back by the same chain
of neighbors. When the keys are exchanged, the gradual secret revealing happens inside this secure
channel and it is therefore fully secured against eavesdropper. The following encrypted communication
can happen both using the original chain of agents as a tunnel, or through distributed relayed broadcast
of anonymous encrypted messages.



6.4 Implementation attempts

Implementation attempts for the techniques above proved slow to converge. Even the naive version of
the gossip algorithm requires a significant amount of messages compared to aggregator-based meth-
ods, for example, simple leader selection followed by disclosure of the private values to the leader. This
is due to the slow "diffusion” of the values throughout the network Since the naive gossip algorithm is,
as we saw, sensible to attacks, the amount of overhead was deemed disproportionate to the benefits.

The two techniques described above allow for a high standard of security and anonymity, but imply
significant further communication overhead - especially the gradual secret exchange, that requires a
large amount of messages instead of just two containing the private values, with a severe impact on the
wall clock time of convergence of the method as a whole. If one wants only to avoid just the second
problem - maliciously establishing a frequent communication with a particular neighbor in a short time,
in order to gain statistical insight on the profile of his secret values - the secret tunnel method can be
used alone, independently from the simultaneous secret release, but the execution still requires further
wall-clock time compared to the naive case.

It should be noted that the secret tunnel method allows, in addition to anonymization, connections be-
tween agents that might not be directly neighbors, promoting a longer reach of diffusion of the secrets in
the original method. By taking into account only the "core" iterations, this promotes faster convergence
of the pure gossip protocol, but this advantage does not nearly offset the communication overhead.

7 Privacy-preserving decentralized control mechanisms

As seen in the previous chapter, despite the feasibility of the approach using a gossip protocol, decen-
tralizing the algorithm using it results in higher convergence times compared to a distributed approach
(with an aggregator). Theoretical convergence properties are hard to obtain and, in any case, the exper-
imental number of messages exchanged was high. Secondly, in order to preserve privacy, this method
must be coupled with some cryptographic or differential privacy protocol, further worsening the over-
head. For these reasons, instead of using a gossip communication scheme, we opted for a second
way. Since we don’t have any real topology restriction for the communication of the messages between
agents (as in networked optimization), we can adopt an homomorphic encryption scheme for the cryp-
tographic summation of private data. One option is to use the secure sum protocol [49], which is based
on threshold homomorphic encryption [50] and random shares. One downside of this protocol is that
agents can collude in order to alter the actual sum [51], however the protocol has been extended to work
for an honest majority [52], further loosing the assumption of honest-but-curious agents. The secure
sum protocol can be informally described as follows: given a group of N agents with private values
[v1,...vN], @ master agent, m generates a random number, r, drawing from a uniform distribution in the
range [0, s], where s is the upper bound of the expected sum of all the agent values. Agent m then
passes V,, = (r + v,,) mod s to the next agent in the group. Since r is randomly chosen from a uniform
distribution, also V;,, will be uniformly randomly distributed on [0, s]. Then, each agent pass the message
summing its own value, thresholding it with s. In the last passage, the i,;, agent passes his message
back to agent m, which can then subtract r and retrieve the correct sum 3.

Even in its simpler version, the secure sum protocol requests N rounds of sequential (ring) communica-
tion, since the sum can be decrypted only by the agent instantiating the message passing. Assuming all
the N participants use the same ordered ring, and with a smart message gathering this can be lowered
to 2N. However, taking into account its extension to work with an honest majority requires non trivial
message coordination and increases the number of messages to be sent sequentially. A simpler com-
munication protocol with a stronger guarantee on privacy can be obtained adopting the voting method
described in [53], lately implemented in an ethereum-based voting protocol [54] . The authors propose
a voting system based on threshold homomorphic encryption which the strongest possible guarantee
against collusion: the protocol guarantees privacy up to N-1 colluding agents [55]. Moreover, the pro-
tocol uses broadcast communication and has only two rounds, which is the best round efficiency for
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Figure 10: Schematics of the secure sum protocol. Agent 1 draws the random number r and at the end
of the protocol he can retrieve the total sum X. No agents acquires any knowledge about other agents’
private values during the protocol.

multi-party secure computation protocols [56]. Even if the presented method is thought to be used to
sum boolean values (yes/no votes), we found it suitable to be applied to the sum of continuous values
as well. The following list describes the steps constituting this methodology.

1. Alist of eligible voters (P, Ps, ..., P,,) is established

2. P; selects a random value z; as private voting key

3. P, calculates and publishes its registration key

key; = ¢°* mod p (42)
4. Each voter P; calculates y;:
il
yo= Ab=19” (43)
[Ti—it1 97
Equation (43) ensures the following equivalence:
Hg””jyj mod p=1 (44)
i=1
5. P; provides a verifiable hash of its vote v;
Verification; = hash(g®*¥*) mod p (45)
6. P; calculates and publishes its encrypted vote PV;:
PV, = ¢*"¥ig" mod p (46)
7. Then any voter can perform the following calculation:
H g¥¥ig"  mod p (47)

i=1

8. Using Equation (47) a voter can determine g2 and then, after an exhaustive research, obtain
the final result >_ v;.

Figure 11 shows the aforementioned election process in an implementation using an Ethereum blockchain
to store the needed data. In the LIC community described in Section 10.1, this method has been devel-
oped and deployed, and its practical implementation is reported in details in Section 10.2.
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Figure 11: Election process, figure from [54]

8 Simulation environment

In order to allow for easy experimentation with the agent algorithms, a comprehensive simulation frame-
work was prepared. The simulation software is called OPTISIM and provides the possibility to simulate
algorithmic agents interacting with the grid. A scheme for the simulator is provided in Figure 12. The
agents can be simulated in parallel, since communication in OPTISIM is based on message-exchanging
through a central message broker. The main driving script runs the simulation and, at every step,
launches the parallel simulation of the agents with a message containing information about the elec-
trical step just simulated (such as voltage at the node of the agent, etc.), if needed for deciding the
subsequent course of action. Single agents can comprise an arbitrary number of individual physical
components such as building thermal envelopes, heating terminals, boilers, heat pumps, batteries, etc.
Each of these elements has a corresponding physical model code, configured with the specific param-
eters of the agents’ instance. Both the model and the agents can send, through the central message
broker, records of their internal state to a time-series database (InfluxDB), allowing for storage and sub-
sequent analysis of the simulation results. Both the electrical quantities and the agents’ internal evolving
state are, therefore, recorded. Furthermore, the same time-series database stores useful information
available to the agents, such as meteorological data, temperature and irradiance.
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Figure 12: Conceptual scheme of the simulator



8.1 Buildings and appliances models
8.1.1 Heating system and control logic

In order to obtain a representative dataset for Switzerland, we used the STASCH6 standard [57] and its
variants as a reference for the heating system and the control logic. The STASCH6 standard compre-
hends 3 main components: an heatpump (HP), a water tank used as an energy buffer, and a heating
element delivering heat to the building. The HP control logic is based on two temperature sensors placed
at different heights of the water tank, while the circulation pump connecting the tank with the building’s
heating element is controlled by an hysteresis on the temperature measure by a sensor placed inside
the house.

We describe the control logic in a sequential way, following the heating components of the system. The
first decision is taken by the building central controller, which decides its working mode, that is, if the
building needs to be cooled or heated, based on a moving average of the historical data of the external
temperature:

wmyy = —1 if Tma,t > Tm,aa;,ma
wmy — 1 if Tma7t < Tmin,ma (48)
wm; = 0 otherwise

where the working mode wm, is negative when the building requires to be cooled, positive when heat-
ing is required, and 0 when no actions are needed.T}, 4z ma aNd Tinin.ma represent the maximum and
minimum values of the external temperature’s moving average, which is based on the past 7 days. The
actual activation of the heating element is controlled by the hysteresis on the internal temperature of the
building, T,. If the working mode is positive, this is given by:

Sh%t =1 If ( Tz < Tmin,hy - AT/Q)
or (Tz < Tmin,hy + AT/Q and Shy,t—l) (49)
Shy =0 otherwise

where sy, ; is the state of the hysteresis at time ¢, 1 meaning that the circulation pump of the heating
element must be activated, and AT was chosen to be equal to 1°C. For completeness, we report also
the control logic when the building is in cooling mode:

Shyt = 1 if ( TZ > Tmam,hy + AT/2)
or (TZ > Tmaw,hy - AT/2 and Shy,t—l) (50)

Spy =0 otherwise

The incoming water temperature in the heating element is then modulated linearly through a 3-way valve
between a maximum and minimum value, based on the external temperature, both in the heating and
cooling modes. When operative, the heating element requests hot or cold water to the water tank, which
control logic is based on two temperature sensors located in two different layers. When the building is
in heating mode, the control logic is a simple hysteresis based on the temperature of the sensor in the
uppermost layer, which is identical to the one in (49). When in cooling mode, the control logic is the
following:

Shyt = —1 it (Tup > T, +AT/2)
or Ty >T5,. +AT/2 (51)
shy,t = 0 If ( ﬂow < T’ﬁnn) or (THP < T‘ﬁmz - AT/2)

Shyt = Shy,t—1 Otherwise

where T, and 1;,,, are the temperature measured by the upper and lower sensors, respectively, and
<., and Ty, ... are the minimum and maximum desired temperatures of the water in the tank while in
cooling mode.

The value of sy, is then communicated to the HP. In the case in which the HP is also used for the

domestic hot water (DHW), the DHW tank is always served with priority by the HP.



8.1.2 Building model

We modeled the building thermal dynamics with a simple one state RC equivalent model, as done in
[58]. The main reason for this choice is that it is hard to generalize RC models with higher number of
states, since no values can be found in the literature for the needed parameters. Estimating an RC model
from data requires different measurements of temperatures, internal and solar gains, at a resolution of
at least 10 minutes. This kind of datasets are extremely hard to find, and limited to only a few, often
undwelled, cases. These equivalent RC circuit parameters could, in theory, be estimated starting from
first principles, however recently proposed studies show that this can give worse results then estimating
a model from data [59]. The second reason is that, while a higher order model leads in general to
smaller one step ahead residuals compared to a lower order model, the loss of accuracy passing from
a one state model to an higher order one when considering a longer period of simulation is much lower
[60]. Last, when considering RC models for buildings with a number of states higher than 3, the chances
of overfitting are high, and additional measurements such as the heat fluxes between thermal zones
are required to guarantee observability. Alternatively, pseudo-random binary sequences can be applied
to the heating systems in order to excite the system in a wide range of frequencies [61], while being
uncorrelated with other exogenous inputs. This technique induces high changes in internal temperature
of the building and cannot clearly be applied to occupied buildings.

The final model is the following;

a:ij Tezt -T.

O = = hQu + Acgl (52)

where T, is the the external temperature, R is the equivalent thermal resistance for the building, C
is the thermal capacitance, k is a parameter weighting the estimated power coming from the heating
system @y, I, is the incoming solar radiation and A, is the estimated equivalent window area. In order
to obtain representative simulations, R, C, k and A., were estimated from statistical data for Swiss
households. For the simulation regarding the LIC pilot, R was directly estimated from data and C and
A, Where estimated from the buildings’ equivalent area.

8.1.3 Floor heating

Considering a fixed and uniform temperature for the ground and the building internal temperature at
each time-step and stationary conditions, we can retrieve the analytical expression of the temperature
profile along the pipe, through the energy balance on an infinitesimal element of the pipe. This can be
expressed as:
ocT,
ot

where cis the heat capacity in J/ K, x is the distance from the pipe entrance, T, is the temperature of the
water inside the pipe at z, ® are enthalpy flows at the entrance and exit of the considered infinitesimal
volume, ¢, and ¢q.un are the heating powers from the building and from the ground. Expressing the
latter through equivalent resistance taking into account convective and conductive effects, the balance
in steady state can be rewritten as:

= (I)q - ch—&-aw + Cjup + Cjd/own (53)

1y OT,  RapunT. + RupT,

= —T,=T*-T, 54
P* Oox Rdown + Rup ( )
where T is the asymptotic temperature and where:
1 1
R own — 7 Ru 55
d hinw + P eqw + (59)
1
Ryp = R 56
P hinw i g ( )
Ru R own
pr = L Bon (57)

Rup Rdo’wn



where w is the diameter of the tube, h;,, is the internal coefficient of heat transfer, which can be retrieved
using available empirical relation for fully developed flow with fixed temperature at the boundary condi-
tions [62], h, ., is the heat transfer coefficient between the floor and the building air including both the
effect for natural convection and radiation. The values of k, ., can be found in the literature [63],[64].
The value of the thermal resistances R,, and R,, towards the floor and the ground, can be found in the
literature as well. We can reformulate (54), making it adimensional through a change of variable:

00

o7 = -0 (58)

from which solution we can retrieve the temperature profile of the water inside the pipe:

T, =T + (Ty — T)e er (59)

where Tj is the temperature of the water at the pipe inlet. We can use (59) to retrieve the heating power
flowing into the building, integrating 4., () along the pipe.

[t B LT(x)—TZl_
Qup—/o qup(x)dm—/o 77”] d (60)

where L is the length of the serpentine. Integrating, we obtain

(T% = T.)L — (Ty, — Tp) e

Qup = Rup (61 )

where T, is the temperature of the water at the outlet of the serpentine. Note that the equation (61)
tends to (17, — Tp)mc, when Ry, increase and R, is kept fixed.

The nominal mass flow of the heating system and the length of the serpentine are found as the solution
of the following optimization problem:

. . 2 .
argmin (QUP(L) - Qnom) + 1073 (m - T.nnOWL)2 (62)
L,m

where 1iv,,,,, is a reference mass flow, equal to 0.1 [kg/s] and Q... is the power required to keep the
building internal temperature constant under reference conditions (we used an external temperature of
-4°C' and a desired internal temperature of 20 °C):

AV
R

where R is the resistance of an equivalent RC circuit describing the heating dynamics of the building.

Qnom = (63)

8.1.4 Water tanks and boilers

The water tank connected with the floor heating, which is used as a buffer by the heat pump, and the
boiler for the DHW, are modeled as a N-states fully-mixed stratified tanks. Despite not being able to
model buoyancy driven effects such as heat plumes and transient de-stratification, this kind of models
are suitable for 1D simulations and control [65].

The dynamic equation describing the evolution of the temperature of the tank’s layers is the following:

or, .. . . . c ) .
C ot = Qbuo,i + quo,i + Qh,i + Qloss,i + Qcond,i + ngnd,i + C;Dm(:rifl - Tl) (64)
where T; is the temperature of the i, layer, Q¥,,,Q%,..Q% ., Q% ., are the thermal powers due to buoy-

ancy and conduction, from the lower and upper layer, respectively. The last term represents the enthalpy
flow due to mass exchange, while C is the thermal capacity of the layer, in [J/K] and @, ; is the thermal



power due to an electric resistance (for the boiler) or an heat exchange (for the heating system buffer).
The expression for the above thermal power are the following:

Q;)Luoz =k max(T;11 — T;,0)N, 0 for i=N (65)

Qiluo,i =kmax(T;—1 — T;,0)N, 0 for i=1 (66)

.gond,i = Ugmp(Tig1 —T3), 0 for i=N (67)

.::lond,i = Ugmp(Ti-1 —T3), 0 for i=1 (68)

(69)

(70)

(71)

70
71

Qloss,i = ua’rnb(Tewt - Tz)
Qni = Qrot/r, if i€

where N is the number of layers, u,...; is the equivalent thermal loss coefficient with the ambient and Z
is the set of the n;, layers heated by the heat exchange (or electric resistance). The buoyancy model is
the one proposed in the IDEAS library [66]. Detailed description of the parameters for the boiler model
can be found in [40].

8.1.5 Heat pump model

The heat pump is modeled by means of interpolated tables, in which heating and electrical power are
available as a function of the evaporator and the condenser temperatures. The tables were taken from
the energy simulation software Polysun (Vela Solaris AG, Winterthur, Switzerland). When the heat pump
produces heat for both the heating system and the domestic hot water, its control logic prioritizes the
latter, meaning that the buffer is heated as long as the DHW tank temperature sensor reaches the upper
bound of its hysteresis control.

8.1.6 PV model

Residential PV power plants were modeled using the Sandia National Laboratories PV Collaborative
Toolbox [67], which is based on the 1985 Grover Hughes’ Engineering Astronomy course at Sandia
National Laboratories, using typical inverters and polycrystalline modules data.

8.2 Electrical simulation

The electrical power flow simulation guided by the main script is carried out with Krangpower, an in-
ternally developed python library based on OpenDSS. It allows accessing the different functionalities of
OpenDSS within the OPTISIM framework by providing modern interfaces, such as structured information
retrieval, dynamic querying, graphing, and other such functionality, in order to provide a systematized
interface and avoid the continuous need for scripts custom-tailored to the particular simulation.

The configuration of the simulation can get quite complicated, since full information must be provided
about the grid, the agents, the models they contain with all the possible parameters. The file type used
is json, due to the inherent hierarchical structure, useful for specifying the agents, then their content,
and then their parameter. Krangpower uses a specifically structured json file that contains information
about the grid, essentially a list of elements (for example, transformers and lines) with their parameters
and topological information about the buses they are connected to.

As explained in the scheme, the algorithms that govern the agents run separately from the other compo-
nents, and they interface themselves with the rest of the system by, again, standardized messaging. The
algorithms implement the ideas explained in the theoretical chapters. In order to allow experimentation
with algorithms that involve inter-agent communication, an infrastructural package was created, called
Gossipy, that allows agents to be grouped in "chats" where they can address each other and where
they can receive messages coming from outside (for example, the aforementioned messages from the



driving script that trigger the start of the elaboration by the agents). In this framework, agents actions
are programmed as "reactions" to the arrival of a certain type of message. One or more aggregators can
be added as additional entities, not representing any real element in the grid, that can receive and send
messages. The various steps and iterations in the procedures described in the previous chapters thus
are represented as explicit message exchanges between the aggregator and the agents themselves, or
among the agents in the P2P case.

9 Algorithm evaluation

9.1 Simulation configuration

The grid of the neighborhood that participates in the LIC project (described in 10.1) has been mapped
and its components simulated using the tools described in 8. The loads and PV plants characteristics
were reconstructed based on the data originally provided by the local DSO. In the pilot project the total
installed PV power is 64kWp. With respect to the original configuration, the PV power was increased by
an additional 33kWp, in order to simulate a likely future situation, justifying the use of local storage.

9.1.1 Control configurations
The control algorithms developed in the project were tested in two main configurations:

1. Distributed batteries. In this first configuration, the four households of the LIC project that possess
a PV plant have been equipped with a 15kWh/7kW battery, for a total of 60kWh/28kW. We assumed
full control and observability of the batteries. The model of the battery as well as the optimization
problems which they solve are described in detail in 4.1.

2. Water heaters. In the second configuration, 12 existing water heaters for a total of 61kW power
and 44501 water storage were controlled. In this case, we assumed that the boilers could only
be switched off, but not forced on, which is the typical case with ripple control. We assumed that
the boilers internal temperature was not observable. Therefore, in order not to undermine user
comfort, the control algorithms have been designed to slightly overestimate the energy need of the
boilers and to make sure that this energy need is satisfied at all-time, by allowing the boilers to turn
on for a sufficiently long amount of time in the control horizon. Moreover, the algorithms guarantee
at least a minimum switch-on time of 2h every 12h. The model of the water heaters, as well as the
optimization problems which they solve, are described in detail in 4.2.

9.1.2 Grid constraints

One of the characteristics of the explicit coordination mechanisms described in section 3 is that it directly
takes into account grid constraints, which weigh on the objective function of each agent, proportionally to
their influence on them. This means that each agent is rewarded if it contributes positively to the respect
of the constraint, while it is punished if, with its actions, he contributes to the violation of the constraint. In
our simulations, we have introduced a constraint on the maximum power measured at the main coupling
point of the energy community. This type of constraint is particularly interesting because it can serve
two purposes. First, it can be based on an actual technical limitation, i.e. a limit on the maximum power
of a transformer or the ampacity of the line serving the community. But it can also be used to limit the
monthly peak of the community towards the DSO. For example in the case of LIC, the energy community,
being a big consumer with a total yearly consumption above 100MWh, needs to pay a power tariff of 7.5
CHF/KW to the DSO, based on its monthly peak. Therefore by actively reducing the maximum peak of
the community, the agents directly contribute to lowering the total costs for the community. Two limits for



the maximum positive and negative power at the coupling point were chosen based on an estimate of
how much could ideally be steered using the available batteries if one had perfect forecasts. The limits
have been chosen based on a baseline simulation of the energy community, without batteries. The limits
have been selected to be as low as possible, given that the following two criteria are respected:

1. The maximum daily energy exceeding the positive and negative limits must be smaller than the
total energy storable in the batteries. This assumption means that in the worst day, all the batteries
should have been empty (respectively full) to fulfill negative (respectively positive) grid constraints.

2. The difference between the minimum limit and the quantile 0.01 of the power at the coupling point
and between the quantile 0.99 of the power at the coupling point and the maximum limit must be
smaller than the maximum charge and discharge power of the batteries, respectively.

The power limits selected using the above mentioned criteria for the simulation of the LIC community
are summarised in Table 2 and shown in detail for the month of July in figure 13. We stress that these
limits where chosen automatically based on yearly simulation in which no devices where controlled.

month | negative limit (kW) | positive limit (kW)
1 -4.82 55.38
2 -23.09 51.62
3 -34.23 45.18
4 -39.32 33.76
5 -43.87 22.38
6 -48.25 18.48
7 -43.67 19.02
8 -42.69 19.19
9 -41.17 20.27
10 -14.34 33.64
11 -8.34 45.50
12 -1.54 52.45

Table 2: Selected power limits at the coupling point of the community as a function of the month for the
simulated LIC community.

9.1.3 Coordination mechanisms

In section 3 and 4.3, we have presented a market design with an associated distributed control approach
that allows maximizing money savings by leveraging the fact of being grouped in an energy community.
One of the advantages of the presented model is that it allows explicitly enforcing grid constraints. This
control strategy requires active coordination between the various players involved, who communicate
their predictions to each other and iteratively solve an optimization problem. Therefore, we will call this
mechanism "explicit coordination”.

An alternative coordination mechanism is possible without the need for communication between users
but only based on a price signal. A default rule that allows calculating the price of electricity sold at any
time is defined. Users can then react according to this price signal. We will call this mechanism "implicit
coordination”". The "implicit coordination mechanism" is in place in the pilot project LIC (section 10.1).
Various pricing schemes can be adopted, in this case we opted for a simple and easy to explain one.
We define the price formation mechanism using extremely simple and interpretable rules:

» The energy consumed from the external grid shall be paid for as if the consumer were not part of
the community.

» The energy consumed from inside the community is paid for at a total price lower than the standard
tariff of the energy supplier and DSO, with a discount proportional to the ratio of the total produced
and consumed energy.
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Figure 13: Power limits for the simulated month of July. Blue bars: histogram of the active power at
the coupling point of the community. Green vertical lines: quantiles 0.01 and 0.99. Red bars: selected
negative and positive power limits (-43.67kW and 19.02kW, respectively).

» The energy injected into the external grid shall be remunerated as if the consumer were not part
of the community.

» The energy injected, which is consumed inside the community is remunerated at a price higher
than the standard tariff of the energy supplier, with a discount proportional to the ratio of the total
consumed and produced energy.

This simple set of rules push flexible users to increase the overall self-consumption. The energy price is
calculated using an automated market making (AMM) mechanism, which follows these principles:

» The self-consumed energy is equally split among the community members proportionally to their
consumption and production.

» The instantaneous buying and selling prices are dynamic, but for a given time slot they are the
same for everyone.

We define the price functions of our AMM mechanism starting from the previously introduced rules,
which can be expressed formally as:

po = (Bepy Y — min(Ee, E,)(py Y —py ")) /Ee

. (72)
ps = (EppP Y — min(E,, E,)(pF*" — pP4Y)) /B,

where p, and p, are the buying and selling prices generated by the AMM, E. and E, are the sum of the
energy consumed and produced inside the energy community, while p24Y, pBAYV | pP2P and pI2F are
the buying and selling prices in the Business as Usual (BAU) case and inside the energy community. In
such pricing configuration, peers clearly profit from the difference in price between BAU and P2P, but
the community administrator also earns money, when energy is self-consumed inside the community.
It is important to notice that P2P tariff is applied only to the energy produced by the members of the
community, as a consequence it is also in the administrator interest to maximize self-consumption (no
conflicting interests between peers and community admin). We can develop some intuition on how these
prices reduces the variance of the aggregated power profile and maximize self- consumption plotting
them as a function of the grid dependence index, defined as:

GDI = (E, - E.)/(E, + E.) (73)



The GDI defines how much the community is dependent on the main grid, which provides an infinite
reservoir of negative or positive energy. When the GDI is equal to 1, no one is consuming inside the
community, while a GDI of -1 indicates that no one is producing. As shown in Fig. 14, the selling price
for a net energy producer increases as the GDI moves from 1 to 0, then reaching a plateau. The same
is seen for the buying price for a net consumer, decreasing while the GDI shifts from —1 to 0, and getting
constant thereafter. This means that the community maximizes his welfare when the GDI is 0, that is
when the buying price is minimized and the selling price is maximized for the agents. This means that
the community maximizes its welfare when the self-consumption is maximized.

BAU —— buying -
20 Pbuy selling
18
= 16
= Phay
~
914
=
812
—
%
10
P2P
8 pse/l
peai

6

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
grid dependency index [-]

Figure 14: Buying and selling prices as a function of the GDI.

In the following sections the performance of the implicit and explicit coordination schemes are evaluated
in simulation for both control configurations (batteries and water heaters), from a techno-economical
point of view.

9.2 Simulation results

We will focus our analysis on the simulated month of July. Yearly simulations will be available in future
reports, as the computational time required exceeded the time at our disposal. Simulations step was set
to 5 minutes. The computational time required by a simulation step varies considerably depending on
the coordination type, the forecasting method used and the control model. It can take from about 1.5
seconds in case of implicit coordination of batteries to about 30 seconds in the case of explicit coordina-
tion of boilers. Explicit coordination requires a much higher computational time since it is solved using
an iterative approach. In this series of detailed simulations, the iterative distributed problem is solved
using the pFB method, described in section 3. Parameter tuning for the pFB algorithm has proved to be
essential and delicate. There is, in fact, a tradeoff between optimal conversion speed to the solution and
stability. After parameter tuning, we limited the maximum number of iterations to 50, as we evaluated
that, on average, the coordination converged sufficiently well after this amount of iterations.

The optimization problems are always solved using a model predictive control MPC approach over a
horizon of 24 hours. In order to make the simulations as realistic as possible, we have assumed that the
controller does not have perfect forecasts of any future variable. On the contrary, we have trained differ-
ent types of forecasting algorithms and evaluated their performance, the results of which are presented
in section 9.2.3.

The local DSO doesn't allow the injection of energy from batteries into the grid, as any injection into the



grid is remunerated as being produced by green energy sources. In the context of an energy community,
there is no law regulating the injection of energy into the community’s internal grid. Nevertheless, in the
case of distributed batteries, there is a possibility that the energy injected into the internal grid will flow
from the PCC into the main grid, especially if the batteries do not coordinate. To tackle this problem,
we have tested two variants of control algorithms: A variant in which the batteries cannot inject energy
into the internal grid, except in case they have to contribute to the respect of grid constraints (control
model explained in detail in section 4.3), and a more permissive variant, in which batteries are allowed to
inject energy into the internal grid, with the risk of leaking into the main grid from the PCC. The following
scenarios were tested:

1. Baseline (no batteries, water heaters always enabled)
2. Batteries:

(a) Batteries not coordinating: In this case the batteries are operated in local (at house level)
self-consumption optimization mode. They have no incentives in coordinating, nor in shaving
peaks. A delayed charging strategy is in place, to preserve battery life.

(b) Batteries in implicit coordination mode without the possibility to inject energy into the grid:
In this case the batteries will try to optimize the household energy costs, using the pricing
scheme presented in section 9.1.3.

(c) Batteries in implicit coordination mode, with the possibility to inject energy into the grid

(d) Batteries in explicit coordination mode without grid constraints enforcement, without the pos-
sibility to inject energy into the grid. In this case the batteries coordinate with each other, and
the surplus money derived from the fact of being members of in an energy community, with
the method described in 4.3.

(e) Batteries in explicit coordination mode with grid constraints enforcement, without the possibil-
ity to inject energy into the grid.

(f) Batteries in explicit coordination mode with grid constraints enforcement, with the possibility
to inject energy into the grid.

3. Water heaters:

(a) Water heaters in implicit coordination mode.
(b) Water heaters in explicit coordination mode with grid constraints enforcement.

9.2.1 Evaluation of impact on the grid

Batteries The impact of the control actions on the grid has been evaluated by quantifying the effect
of the control actions on the power at the point of common coupling (PCC) of the community, the total
losses in its internal grid and the voltage at its nodes. The total losses considered are the ohmic losses
(dissipated for Joule’s effect) over the internal grid lines, that in this case are equal to the difference
between the power measured at the PCC and the sum of the powers of the meters in the grid. The
time-series of the power at the PCC for the first three days of July is shown in figure 15. Figure 16 shows
the probability density function (PDF) of the power at the PCC, and figure17 allows to further analyse
the effects of batteries on the active power at PCC, by displaying statistics of the total controlled power
as a function of the power at the PCC.

It is clear that the mere presence of batteries in the grid helps to minimize power and voltage fluctua-
tions. It is equally clear, however, that without proper coordination of their actions, the benefit is minimal.
In general, allowing batteries to inject energy into the internal grid even when grid constraints are not
violated improves performance across all KPIs. However, one can notice in figure 15 and figure 17 that
implicit coordination through price signals can cause significant power fluctuations, which with excessive
penetration of storage systems could lead to instability. At certain times of the day, the energy injection
of batteries into the internal grid is excessive and results in an energy leak into the main grid.
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Figure 15: Time-series of the active power at the point of common coupling of the community and the
total power of the distributed batteries for the first 3 days of July. Negative power corresponds to injection
into the grid, positive power corresponds to consumption. Top: Active power at PCC. Bottom: active
power of batteries. baseline: baseline simulation with no batteries, no coordination: batteries optimizing
local self-consumption only, impl no inj: implicit coordination, no injection into the grid allowed, impl inj:
implicit coordination, injection allowed, exp/ no inj: explicit coordination, no injection allowed, expl/ no
inj lims: explicit coordination, no injection allowed, power limits at PCC enforced, expl inj lims: explicit
coordination, injection allowed, power limits at PCC enforced.
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Figure 16: Probability density function (PDF) of the power at the PCC of the community.

On can also notice that the synchronism between battery actions is greater when the power at the PCC



is negative (i.e. when the community is injecting into the main grid). While loads of individual homes
are only minimally correlated with each other, production from photovoltaic systems is almost perfectly
correlated. This, combined with the fact that all agents use the same methods to forecast PV production,
generates a higher synchronization of the batteries when they are charging.

Explicitly enforcing the grid constraints, as expected, helps to reduce the positive and negative peaks
at the PCC. Nevertheless, it can be noted that, due to the fact that the control is based on imperfect
forecasts, these limits are still violated. Future work will concentrate on the development of robust and
stochastic distributed control strategies that will take into account the uncertainty in the forecasts.
Allowing the batteries to discharge into the grid at any time, and not only when constraints violations are
expected, leads to better performance. This is because the actions of the batteries would have been
beneficial even without enforcing grid constraints.
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Figure 18: Probability density function (PDF) of the mean L-N voltage inside the community.
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Figure 19: Total ohmic losses inside the community for the month of July.




In the case of explicit coordination, the strategy adopted has the advantage of converging towards a
single Nash equilibrium, which guarantees a fair solution for all participants in the cooperative game.
However, one might further increase the community surplus if one did not take into account that this
might disadvantage some individual participants in the game. To assess the difference between the
maximum attainable surplus, and the attainable surplus in the condition where a Nash equilibrium is
reached, a simulation was run in which batteries were forced to ignore their internal costs and maximise
the community surplus, only. This is achieved by setting o = 1 in equation 7. The effect of this strategy
on the grid can be seen in figures 20, 21, 22 and 23. One can notice the effect of maximizing the surplus
of the community on the grid parameters is not significantly different than when single users’ costs are
taken into account.

—— baseline
expl inj
—— explinja=1

0.05 4

—— explinja=1 quad

0.04 4

0.03 4

pdf [-]

0.02 4

0.00 T T T T T T T
-60 -40 =20 0 20 40 60
P PCC [kW]

Figure 20: Probability density function (PDF) of the power at the PCC of the community. baseline:
baseline simulation with no batteries, expl inj: explicit coordination, injection allowed, power limits at
PCC enforced, expl inj « = 1: explicit coordination, injection allowed, power limits at PCC enforced
using Lagrangian dual variables, o = 1, expl inj « = 1 quad: explicit coordination, injection allowed,
power limits at PCC enforced using quadratic punishment in the global objective function, o = 1.

Another way to limit grid stress is to punish quadratically the excursions from a nominal value. This
can be achieved by adding a quadratic punishment term to the objection function 3. Such strategy was
applied to limit the power excursions at the coupling point. In this case the batteries try to flatten the
profile as much as possible regardless of whether the grid constraints are violated or not. In this case,
« was still set to 1, so that the batteries would only optimize against the community surplus. The effect
on the grid of such strategy is shown in figures 19, 20, 21, 22 and 23. One can notice that, in this case
the effect on the grid KPIs is more pronounced. The PDFs of power and mean voltage are narrower,
and the losses, as expected, are lower. However, setting o = 1 and adding a quadratic punishment in
the objective function could theoretically worsen the financial balance of end-users. This is discussed in
detail in section 9.2.2.

Water heaters Water heater control also leads to improved grid KPIs, although the effect is not as
pronounced as with battery control. The effect of water heaters control on the power at the PCC of
the community is shown in figure 24. It can be seen that the control of the boilers allows reducing
the peaks of energy consumption significantly. At the same time, the effect on the reduction of power
injection is minimal. This is mainly because the controllability of boilers is not as refined as in the case of
batteries and presents inherent asymmetries. In fact, boilers can be forced off, but cannot be switched



on on command if their internal controller based on hysteresis does not consider it necessary to charge.
This, combined with the fact that it is not possible to force the boilers off for too long without risking
compromising the comfort of the end-users, means that often when boilers are left free to turn on, they
don’t actually do so. This leads to an imperfect reduction of the negative peaks, which would require the
boilers to turn on to be smoothed out. The effect the difference between implicit and explicit coordination
is less pronounced. Raising the aggressiveness of the boiler control algorithms by lowering the turn-on
time should help increase control performance against the grid KPls. However, there is a risk of violating
user comfort. In this case, the comfort settings are very conservative, as the same settings are used in
the LIC pilot project. Additional simulations are planned with more aggressive settings.
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Figure 22: Probability density function (PDF) of the mean L-N voltage inside the community.
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Figure 23: Total losses inside the community for the month of July.
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9.2.2 Evaluation of economic impact

In the previous section, the different control strategies for batteries and water heaters have been evalu-
ated against grid KPIs. We now focus on the financial performance for both the end-users and the ad-
ministrator of the energy community. Two pricing schemes have been evaluated. The sharing-problem-
based (SPB) pricing scheme against which the explicit control algorithms optimize, presented in section
4.3 and the LIC pricing scheme presented in section 9.1.3. In the first case, the community’s surplus
(equation 4) is equally split among the end-users and the community manager. The half of the surplus
accruing to end-users is then divided according to their contribution to the surplus according to the rule
defined in equations 10-12. Users who contributed the most to the surplus receive more. The redis-
tributed surplus from now on is named bonus.

In the second case, the energy prices applied inside the LIC community are used. In this case, the prices
for selling to and buying from the community are fixed and summarized in table 3. The self-consumed
energy is equally split among the community members proportionally to their consumption and produc-
tion, which results in buying and selling prices that are dynamic, but that for a given 15min slot are the
same for everyone.

outside the community inside the community (LIC case)

buying 21 16
seling 6 9

Table 3: Energy prices (in cts’lkWh) applied in the evaluation of economic impact.

In both cases, the community administrator pays the bill at the coupling point, where the DSO’s prices
are applied and gets paid by the end-users according to the above-mentioned pricing schemes. The
difference between the administrator costs and revenues is used to pay for the internal grid, cover the
administrative costs, and ideally make some profit.

Both, the effect of batteries and water heaters control is evaluated in the next paragraphs.

Batteries The different control strategies presented in section 9.2.1 are evaluated. The total costs for
the end-users and the administrator, for the SPB and LIC pricing schemes are shown in tables 4 and 5,
respectively. The difference in the monthly costs with respect of the business as usual case is shown
in figures 25 and 26, for the SPB and LIC pricing schemes, respectively. The business as usual pricing
scheme is that in which the users are not members of an energy community. The baseline_scc case
represents the case in which the users are members of a community, but no batteries are present.

It can be seen that the mere fact of being a member of a community generates considerable savings
for end-users. And, as expected, the introduction of batteries, by encouraging self-consumption both
locally and at the community level, further improves the financial situation, for the end-users and for
the community administrator. The explicit coordination method in which agents communicate with each
other is the most effective from a financial point of view. In both pricing schemes, the battery owners
are among those who are profiting the most from being inside a community. This is desirable, as they
have to amortise the cost of the battery and fair since their actions contribute the most to increase the
community’s self-consumption. At the moment, the preliminary results (one month simulations) are not
enough to estimate a payback time for the installation of a BES system. Based on the simulations done
for the month of July, considering the explicit no injection case reported in table 5 and the installation
cost of a residential BES of 515 CHF/kWh (as per the Tesla Powerwall 2), we can esteem a lower bound
for the average payback time for the end user would be of 8.9 years for a 10 kWh BES system.

In section 9.2.1, we also proposed two alternative models, in which the batteries only optimised the com-
munity’s own consumption, regardless of the effect this might have on their individual costs: models exp/
inja =1 and expl inj « = 1 quad. Both of the above models are not guaranteed to reach a generalised
Nash equilibrium and consequently have the potential to reduce savings (if not cause additional costs)
to individual users. Their financial figures are shown in tables 6, 7 and figures 27, 28. As could already
be seen by analysing performance against grid parameters (section 9.2.1), the model in which alpha
is set equal to 1 differs little from that in which it is not, also with respect to financial performance. As



user costs bau bonus user coststot PCC costs PCC balance

baseline bau 1476.3 0 1476.3 0 0
baseline scc 1476.3 -453 1023.3 600.5 -422.9
expl inj lims 1376 -519.6 856.4 360.4 -496
expl no inj 1386.3 -456.4 929.9 500.5 -429.4
expl noinjlims  1387.7 -465 922.8 484.2 -438.7
impl inj 1401.2 -519 882.2 387.2 -494.9
impl no inj 1400.5 -457.8 942.7 512.2 -430.5
no coordination 1412.2 -454.7 957.4 530.8 -426.6

Table 4: Total costs (in CHF) for the endusers and the administrator of the community using the explicit
costs redistribution mechanism for the case of battery control. baseline: baseline simulation with no
batteries, no coordination: batteries optimizing local self-consumption only, impl/ no inj: implicit coordi-
nation, no injection into the grid allowed, impl inj: implicit coordination, injection allowed, expl no inj:
explicit coordination, no injection allowed, exp/ no inj lims: explicit coordination, no injection allowed,
power limits at PCC enforced, expl inj lims: explicit coordination, injection allowed, power limits at PCC
enforced.

expected, the community administrator’s financial figures improve when o = 1 since the batteries only
optimise for the community surplus, which directly translates to higher revenues for the administrator.
One can also see that the total costs for the end-users are slightly lower in the o = 1 case in both
pricing schemes. However, the average costs for battery owners are slightly higher (figures 27 and 28
), which is consistent with the fact that they are sacrificing part of their personal revenues in order to
increase the general welfare of the community. These effects are even bigger in the case in which the
batteries are contributing to the reduction of quadratic punishment at the coupling point. In this case, the
administrator is earning more money, but this is not the case for the community members, especially the
battery owners. This is because there is actually no financial incentive to mitigate power excursions at
the coupling point and, therefore, the battery actions are not sufficiently rewarded. In this analysis, we
did not include remuneration schemes to reward users for helping to comply with network constraints.
For the case in which constraints are enforced using upwardly trimmed Lagrangian multipliers, putting
a hard cap on them corresponding to the price the grid operator is willing to pay to enforce the respect
of the grid constraint is a fairly straightforward way to implement such mechanism, as the actual costs
are directly reflected in the optimisation function of each individual user. Such a mechanism could also
be applied to perform peak shaving actively. In a big enough community, the administrator will need to
pay peak costs at the coupling point. Peak mitigation could be implemented exactly in the same way in
which grid constraints are enforced, using Lagrangian multipliers. This concept is easily explained using
a concrete example. The current monthly community peak to date is 50kW. In this case, the adminis-
trator will set a constraint on the maximum power at the coupling point to 50kW and reward those who
allow the power to remain below the set limit by placing a hard cap on Lagrangians that corresponds to a
reward significantly higher than the average cost of energy. For example, the administrator could reward
the end-users with 0.1CHF/kW, which for a 15-minute step would correspond to 0.4CHF/kWh. It is not
trivial, however, to understand if the administrator will save money by doing so. This is due to the highly
non-linear nature of the existing billing system, which is based on the maximum monthly peak. In other
words, if for 15 minutes in a month something goes wrong (e.g. a battery goes offline, or the forecasts
are extremely bad), all the work done by the batteries, and remunerated by the administrator, is wasted.
This topic is being currently investigated and will be discussed in future reports in the context of the LIC
project.



user costs PCC costs PCC balance

baseline bau 1476.3 0 0

baseline scc 993.1 600.5 -392.7
expl inj lims 821.7 360.4 -461.4
expl no inj 899.5 500.4 -399.0
expl no injlims  891.8 484.2 -407.7
impl inj 847.6 387.2 -460.3
impl no inj 912.2 512.2 -400.0
no coordination 927.1 530.8 -396.3

Table 5: Total costs (in CHF) for the endusers and the administrator of the community using the implicit
costs redistribution mechanism for the case of battery control
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Figure 25: Boxplots of the difference in the monthly costs using SPB pricing scheme with respect of the
business as usual case (in which the end-users are not part of an energy community), for the simulated
month of July. The box shows the quartiles of the dataset while the whiskers extend to show the rest of
the distribution, except for points that are determined to be outliers. Points that extend beyond 1.5 times
the inter-quartile range, i.e. v < ¢25 — 1.5(¢75 — ¢25) or v > ¢75+ 1.5(¢75 — ¢25) are considered outliers.
Black diamond: average price reduction for all the users. Black X: average price reduction for users with
batteries.
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Figure 26: Boxplots of the difference in the monthly costs using LIC pricing scheme with respect of the
business as usual case (in which the end-users are not part of an energy community), for the simulated
month of July. Black diamonds: average price reduction for all the users. Black Xs: average price
reduction for users with batteries.



user costs bau bonus user coststot PCC costs PCC balance
baseline bau 1476.3 0 1476.3 0 0
baseline scc 1476.3 -453.0 1023.3 600.5 -422.9
expl in; 1376.0 -519.6 856.4 360.4 -496.0
explinja=1 1391.2 -536.3 854.8 341.9 -512.9
explinja=1quad 1438.8 -563.5 875.3 333.9 -541.4

Table 6: Total costs (in CHF) for the endusers and the administrator of the community using the ex-
plicit costs redistribution mechanism for the case of battery control, setting « = 1 and using quadratic

punishment.
user costs PCC costs PCC balance
baseline bau 1476.3 0 0
baseline scc 993.1 600.5 -392.7
expl inj 821.7 360.4 -461.4
explinja=1 819.1 341.9 -477 1
explinja=1quad 837.8 333.9 -503.9

Table 7: Total costs (in CHF) for the endusers and the administrator of the community using the im-
plicit costs redistribution mechanism for the case of battery control, setting o = 1 and using quadratic

punishment.
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Figure 27: Difference in the monthly costs using SPB pricing scheme, with respect of the business as
usual case, in which the end-users are not part of an energy community, for the simulated month of July.
Batteries control case, setting a = 1 and using quadratic punishment.
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Figure 28: Difference in the monthly costs using LIC pricing scheme, with respect of the business as
usual case, in which the end-users are not part of an energy community, for the simulated month of July.
Batteries control case, setting a = 1 and using quadratic punishment.



Water heaters Water heater control also leads to improved financial figures, although the effect is
not as pronounced as with battery control, as shown in tables 8, 9 and figures 29, 30. As already
mentioned in section 9.2.1, the lack of controllability of the water heaters (they can be forced off, but
cannot be switched on on command) and the stringent constraints imposed on user comfort are limiting
the effect of boilers control. Raising the boiler control algorithms’ aggressiveness by lowering the turn-on
time should help increase control performance against the financial KPlIs, with the risk of violating user
comfort. Additional simulations are planned with more aggressive settings.

user costs bau bonus user costtot PCC costs PCC balance

baseline scc 1476.3 -453.0 1023.3 600.487641 -422.7
expl lims 1442.3 -441.4 1000.8 588.231841 -412.6
impl lims 1454.0 -454.0 999.9 574.382804 -425.5

Table 8: Total costs (in CHF) for the endusers and the administrator of the community using the explicit
costs redistribution mechanism for the case of boiler control.

user costs PCC costs PCC balance

baseline scc 993.1 600.5 -392.7
boilers expl lims 971.4 588.2 -383.2
boilers impl lims  969.7 574.4 -395.3

Table 9: Total costs (in CHF) for the endusers and the administrator of the community using the implicit
costs redistribution mechanism for the case of boiler control.
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Figure 29: Difference in the monthly costs using SPB pricing scheme, with respect of the business as
usual case, in which the end-users are not part of an energy community, for the simulated month of July.

Water heaters control case.
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Figure 30: Difference in the monthly costs using LIC pricing scheme, with respect of the business as
usual case, in which the end-users are not part of an energy community, for the simulated month of July.
Water heaters control case.



9.2.3 Effect of forecasting algorithms on the performance

Residential power profiles are characterized by high variance and right-skewed data. This is due to the
non-synchronous activation of loads and the presence of devices with a predominant power consumption
(e.g. heat pumps and electric boilers) w.r.t. the other appliances. The activation of these loads doesn’t
usually have a strict seasonality effect; for example, heat pumps are usually characterized by several
turn on events during the day, but the activation time seldom coincide with the one of the previous day.
This makes the power profile hard to forecast.

In the following we describe the forecasting models that we have used for the closed loop compari-
son. We focused on methods which have already proved to be accurate in forecasting 24 hours ahead
residential power profiles. In particular we tried to improve the performance of the methods that were
tested in [68] and [69], and focused on the Holt-Winters (HW) method and on different forecasting tech-
niques exploiting gradient boosted models (GBM), a family of competition-winning, general-purpose,
non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a
specific loss function. For these latter models, we applied a preliminary causal embedding of the ex-
planatory variables, in order to capture seasonal effects. Starting from the original time series s € S, a
predictors (or regressors) matrix X and a target matrix Y are obtained. Given a dataset with T observa-
tions, a prediction horizon of h steps ahead, and an history embedding of e steps, we obtain the Hankel
matrix of targets Y € R(T~h—¢)*h and the Hankel matrix of the past regressors, X,, € R(T-h—e)xnxe,
where n, is the number of regressors. Verbosely, X, and Y can be written as:

Tit—e Tlt—etl X1t T2 t—e Tng,t
Xp= Tlt—etl Tl t—ed2 --o L1241 T2t—etl -+ Ty, t4+1 (74)
T1,T—2h T1,T—2h+1 -+ L1, T—h T2,T—2h - Tny,T—h
Yt+1 Yt+2 - Yl,t+h 75
|:yT7h+1 Yr—n+2 - Yr ( )

where z,; stands for the first regressor at time ¢. In hour case, we fixed h = 288, corresponding to a
prediction horizon of 24 hours ahead with a 5 minutes sampling time. The past regressors matrix X,
is then augmented with categorical time features, e.g. day of week, and numerical weather prediction
(NWP) variables, to obtain the final regressors matrix X.

Holt-Winters model with double seasonality The Holt-Winters (HW) model [70] is a special class
of the exponential smoothing [71], which consists of three smoothing equations, such that the final
prediction is a combination of the level a, trend b and seasonality s. We tested different flavors of the
HW families and based on performance, we adopted a double seasonality additive HW:

Gtrn = (ar + hbi) + 81 1—p(1)+14(h—1)\p1 T 52,t—pa+1+(h—1)\ps
ar = a(Yr — S1,4—p, — S2,4—p,) + (1 — ) (ar—1 + bi—1)
by = Blay —as—1) + (1 — B)bi—1 (76)
s1t=71(ye —ar — s(2,t —p2)) + (1 —71)81,4p,
526 = Y2(ye —ag — s(1,t —p1)) + (1 = 71)52,6—ps

where a, 3, 71 and - are parameters to be learned from data, while p; = 96 and p, = 672 are the periods
of the seasonalities, and \ is the modulo operator. The values for p; and p, correspond to a daily and
weekly period. The model (76), and HW in general, do not include exogenous inputs. Since quantities
like external temperature and irradiance are important explanatory variables in load forecasting, we
included them with an a-priori linear detrend, such that the new target is y = y — X34, where X is a
three column matrix containing GHI, T and the unit vector (for the intercept), and 3, is the vector of
linear coefficients. Usually, a single set of a, 8, 71 and ~, values is fitted, and the prediction of each
step ahead is obtained applying equations 76 recursively, as usually done for state-space systems. To
increase the accuracy of the method, we instead fitted 5 different models: the first two models have the
only purpose of predicting the first and second step ahead, respectively. The third model predicts the
steps from the third to the fifth, the fourth model predicts the steps up to the 20th and the last one predict
the resto of the steps up to 288. Each model has its own set of parameters, which where fitted through



random search with a budget of 3000 samples. Since the trend of the time series was negligible, we
fixed the 8 parameters to 0.

Single GBM A single gradient boosted model was fitted to predict all the 288 steps ahead. In order
to obtain this, we stacked 288 copies of the features matrix (74), each one decorated with an additional
column containing the number of the step ahead to predict. The target was replaced with the opportune
reshape of matrix (9.2.3), Y € R(T-—e)h,

Independent GBMs In this approach, we fitted 288 models, each one taking as input the same matrix
(74), but predicting different columns of (9.2.3). This allows the model to be more expressive (having
much more parameters w.r.t. the single model strategy; as we will see this is especially beneficial for the
first steps predictions. The drawback is an increase of computational time.

Independent GBMs with Huber loss In figure 31, 1 month power profiles of 4 buildings are aggre-
gated in boxen plots based on the hour of the day, and plotted along with observations (black dots).
As can be seen, the distribution at each hour of the day is severely skewed, approaching a bi-modal
distribution for night hours. In the literature, prediction of unbalance data is usually threaded with the
use of tweedie loss [72]; however, this approach is useful only in the case of extremely unbalance and
zero inflated data, which is not the case as we can see in figure 31. In an attempt to make the model
more robust against outliers, we fitted independent GBMs using Huber loss with standard parameters.
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Figure 31: Boxen plots and observations (black dots) of the power distributions of 4 controlled buildings.
The observations are groped by hour of the day. The w analyzed buildings has roof-mounted PV plants.
All day hours present skewed, but different, distributions.

Hybrid GBMs This final model is an hybrid approach between the Single GBM and the independent
GBMs approach. We fitted 5 independent models for the first steps ahead, which we expected to be
more important in terms of controllers’ performances, and a single GBM for the rest of the steps.



9.2.4 Forecasting accuracy

The forecasting accuracy was tested on a 1 month simulation. Figure 32 shows an example of day
ahead predictions for the household’s power profile of one of the controlled agents. It can be noticed
that the HW model is able to approximately predict the high power peaks due to the presence of an
electric boiler, capturing the seasonality of the time series. At the same time, since the turn on events
of the boiler are not exactly periodic, the other models tend to underestimate the power profile, actually
treating the turn on events as outliers.
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Figure 32: Example of predictions for an household main’s power profile, for the tested forecasters.

More insight can be given by plotting the expected mean absolute error (MAE) of the different forecasters
as a function of the day hour (vertical axis) and 5 minutes ahead time of the prediction (horizontal axis),
as done in figure 33. For all the methods, we can see that the combination of step ahead and step of
the day close to the antidiagonal present the lowest values in terms of MAE. This means that in a time
window of a few hours centred around midnight, the predictability of the signal is high. While the non-
parametric models are in general better than the HW, the approach using multiple independent models
trained with Huber loss do not improve upon the others; this means that treating the turn on of big electric
appliances as outliers doesn’t improve the overall MAE. The effect of having several models for the initial
steps of the HW based forecaster is clearly visible. This is also visible for the hybrid LGB model, and is
better seen in figure 34. Here the MAE for the different forecasters is plotted as a function of step ahead
(left) and the time of the prediction (right). The best forecaster in predicting the first step ahead is the HW
based forecaster. The independent GBM models and the hybrid approach achieved similar accuracy for
the first step, while using the Huber loss deteriorated the performances. In general the hybrid approach
combines the first step accuracy of the independent models forecaster with the more stable accuracy of
the single GBM forecaster for successive steps ahead. Plotting the MAE as a function of the prediction
time highlight the more stable predictions of the non-parametric models w.r.t. the HW model, which is
less accurate when predicting the next day ahead during post meridian hours.
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Figure 33: Results in terms of MAE for the households with controlled batteries. The results where
mediated using bins of day hour (vertical axis) and 5 minutes ahead time of the prediction (horizontal
axis).

9.2.5 Closed loop performances

Figure 36 and 35 show the differences in monthly costs with respect to the business as usual, in the
case of the explicit and implicit control strategies, for different forecasters. Additionally, we tested the
HW and LGB hybrid models in the case in which the battery’s constraint for which it cannot charge
nor inject in the main grid are removed. In this last case, the battery complementarity constraint on
charging and discharging operations is modeled with an integer variable and a big M formulation. For
both the business models the change in costs w.r.t. the base case is always positive (meaning a lower
cost w.r.t. the base case), as expected since the methods guarantee a reduction of costs for the end-
users by construction. The reduction of costs is higher for households with batteries since those are the
only controllable devices in this test. The outlier in both plots is the kindergarten, in which a 27 kWp
photovoltaic system and a battery with a capacity of 60 kWh are installed. For the implicit coordination,
figure 36, no substantial difference is seen among the forecasters, in terms of distribution means. For
the explicit coordination case, the cost reduction for the HW is slightly higher in expectation. A more
meaningful comparison can be done plotting the differences for the HW and LGB hybrid forecasters, in
the case in which injection and charging into e from the grid are allowed for batteries, which is shown in
figure 37 and in figure 38 for the implicit and explicit coordination cases, respectively. Both for the implicit
and the explicit coordination cases, two households with a boiler and a battery worsen their performance
when using HW forecaster, w.r.t. the case in which the battery can’t inject or charge in and from the grid.
Since the relaxed problem allows the battery to perform arbitrage, expanding the feasible space for
charging and discharging operations, this can be due to the low accuracy of the HW forecaster for the
higher steps-ahead. This hypothesis is strengthened by the fact that the LGB hybrid forecaster, which
has a higher accuracy w.r.t. the HW model for higher steps-ahead, shows a consistent decrease of costs
for the end-users with a battery. While for the implicit coordination the LGB hybrid model guarantee a
reduction in monthly costs for all the participants, this is not the case for the explicit coordination, in
which agents without a battery see a slight increase of costs w.r.t. the case in which batteries cannot
interface with the main grid. This is due to the redistribution model for the explicit coordination presented
in section 3.1, which incentives those agents which had a greater impact in reducing the surplus function
of the SCC.

Effect on power at PCC Figure 39 shows the effect of the different forecasting algorithms on the dis-
tribution at the PCC. The HW model is surprisingly good at coordinating batteries when the uncontrolled
power at the PCC is in its exreme quantiles. The second best performer in terms of effectiveness in co-
ordination when the PCC power is at extreme values is the hybrid GBM. This suggest that the accuracy
on the prediction of the first step ahead is the most important factor when considering grid constraints.
Figure 40 shows the pdf of the power at the PCC, which gives a more complete overview on the different
performances of the forecasting models. Once again, it's clear that the best models at reducing the
variance of the power at the PCC are the HW and the hybrid GBM models.
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Figure 34: Mean results in terms of MAE for the households with controlled batteries. Left: results
mediated on the step ahead. Right: results mediated on the time of the day on which the forecast was
performed.
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Figure 35: Difference in monthly costs w.r.t. the BaU, for the implicit coordination.
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Figure 36: Difference in monthly costs w.r.t. the BaU, for the explicit coordination.
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Figure 37: Difference in monthly costs w.r.t. the BaU with no allowed injections, with implicit coordination.
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Figure 38: Difference in monthly costs w.r.t. the BaU with no allowed injections, with explicit coordination.
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9.3 Multi level algorithm

The algorithm to solve the multilevel coordination problem with grid constraints presented in 5 has been
tested on several hierarchical configurations and distributions of smart agents represented by control-
lable batteries. Since the multilevel setting requires an higher amount of steps to converge with respect
to the single level case, we only tested it without electrical simulation coupling, in order to test its cor-
rectness and characterize it in terms of computational time. A campaign of detailed simulations is
undergoing and the results will be presented in future reports. An example of solution in terms of aggre-
gated quantities and state of charge of controllable batteries for a 4 levels hierarchy is shown in figure
41. In order to test the algorithm also in the case of voltage violations, reasonable voltage sensitivity
coefficients were assigned at random to the agents.

105 [~~~ =~ 5"~

1 -
0.95 ﬁ%

105 [~ ————r- -~~~

o
o O
o ©
T

0.95

J

o
a
1

Pn [-]
I |

i
\
\
\
\
|
\
|

Voltage [p.u.] Voltage [p.u.] Voltage [p.u.]

0 24 48 0 24 48 0 24 48
timestep [30 min] timestep [30 min] timestep [30 min]

Figure 41: Example case. The considered hierarchical structure has 4 levels, and a single branching
node in the first 3 levels. For the first two columns, the first row refers to the root node, second and third
rows to the second and third level. First column represents the aggregated power profiles. Blue line:
no battery actions. Red line: optimized power profiles. Dashed lines: power constraints. The second
column represent voltage profiles. Blue line: no battery actions. Red line optimized voltage profiles.
voltages and the state of charge (SOC) of the batteries are shown. The third column represents state of
charge of prosumers’ batteries in the second, third and fourth levels.

A trivial way of decomposing the problem would consist in reaching convergence in the lower level, then
sending the results to the upper level of the hierarchy. In this way, the whole nhumber of iteration before
convergence in the lower level would represent a single iteration in the upper level. This solution concept
would clearly result in an exponential computational time with respect to the number of considered levels,

namely:
L

L+L?
Niot ~ tnNE H N}~ N[N, * (77)
=1
where t is the computational time for each agent for solving its local problem, n is the number of agents
per level, N; is the number of iterations before convergence for a single level, L is the number of levels,
and N, is the number of branches per level. Instead of following this strategy, we decompose the
monolithic formulation of the problem to obtain nearly linear convergence, with respect to the number of



levels. A study on iterations needed for convergence is shown in figure 43, for hierarchical structures
with different number of levels and controlled agents. This was obtained creating random hierarchical
structure with a maximum of 4 aggregation levels and of 20 agents per terminal aggregation nodes. The
near-linear convergence with the number of levels is shown in figure 42, where the computational time
before convergence from 500 simulations is shown in terms of boxplots for each considered number of
levels.
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Figure 42: Estimated pdfs of the computational time divided by the total number of agents, as a function
of the number of levels in the hierarchy. The vertical bar is the interquartile range, the horizontal line is
the median.
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10 Pilot implementation

10.1 Pilot description

The LIC pilot? is located in Lugaggia, a small village near Lugano. In a part of the municipality, an energy
community has been created with the collaboration of AEM?, the local DSO. The energy community con-
sists of 18 residential houses and a kindergarten. Four houses are equipped with photovoltaic systems
installed on the roof, for a total nominal power of 37 kWp. A 27 kWp photovoltaic system and a battery
with a capacity of 60 kWh are installed in the kindergarten. The figure 44 shows the pilot of Lugaggia
with the nodes, corresponding to the different participants.
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Figure 44: Lugaggia pilot

Each end-user corresponds to a node, associated with a single point of delivery, which is equipped
with a smart meter. Besides, a Strato Pi CM*, a compact industrial PC based on the Raspberry Pi
Compute Module, is connected to each of the smart meters via an optical USB port. Each Strato
acquires production/consumption data with a time resolution of 5 seconds and controls the two relays
onboard the smart meter. In the basement of the kindergarten, close to the central battery, a NUC®
machine has been installed. This machine acts as the aggregator of the community and as an interface
with the battery.

10.1.1 Strato

The Strato Pi CM board is based on a Raspberry CM platform®. The Raspberry CM combines the
computational power an easiness to use of the Raspberry Pi, i.e. a complete Linux operating system
based on an ARM v8 platform, with the high reliability and service continuity of an industrial PC. This
is achieved, in particular, thanks to the absence of an SD card, which is substituted with a much more
robust internal eMMC Flash, and thanks to the presence of a hardware watchdog. Lab tests were
conducted to verify the stability of the system against sudden power outages. All the devices always

2https://lic.energy/

Shttp://aemsa.ch

“https://www.sferalabs.cc/strato-pi-cm/
Shttps://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
Shttps://www.raspberrypi.org/products/compute-module-3



restarted the operating systems without problems. Table 10 summarizes the main features of the Strato
devices installed in the Lugaggia pilot.

CPU 4 ARMv8 64-bit 1.2GHz
RAM 1 GB
DISK 32 GB

OS | Raspbian GNU/Linux 9 (Stretch)

Table 10: Strato main features
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Figure 45: Strato setup in a cabinet

Figure 45 shows a Strato installation in a Lugaggia cabinet. The Strato is in the red rectangle, and it is
connected to the smart meter (green rectangle) via an optical USB reader (violet circle). The Internet
connectivity is guaranteed by a USB dongle (blue rectangle), that provides a 4G data mobile connection.
On the Strato, a Python application gathering electrical signals (e.g. active and reactive power, current,
voltage, etc.) from the smart meter is continuously running.

10.1.2 NUC

Installed in the kindergarten where power outages are avoided, NUC is an embedded solution provided
by Intel®, more powerful and robust than the Strato. A NUC was deployed in the pilot to have a machine
more powerful than the Strato to run eventual tasks requiring significant computational resources. Table
10 summarizes its main features.

CPU | 8 Intel(R) Core(TM) i7-8559U CPU @ 2.70GHz
RAM 16 GB

DISK 500 GB

oS Ubuntu 18.04.4 LTS

Table 11: NUC main features



10.2 Auditable tariff

In an energy community as LIC, the members capability to audit the market tariffs applied by the DSO
preserving the prosumers privacy is remarkably useful. Thus, a dedicated application, in the following
named AT, was developed and deployed on the Strato devices. The basic idea behind AT is that the
tariff is applied by the DSO according to the consumption of the entire community every 15 minutes.
As a consequence, AT has to calculate the energy consumed by the whole community and provide it
to the LIC members preserving the privacy, i.e. a member is not allowed to know the consumption of
the single community prosumers. Currently, an instance of AT continuously runs on each Strato devices
every quarter of hour. Fundamentally, the application is based on the following technologies:

» Decentralization based on sidechain usagefor the data storage

« Homomorphic encryption for privacy management

10.2.1 Decentralized data storage

AT provides a sidechain platform where the energy data can be properly stored. More specifically,
Sidechains are separate blockchain networks, able to interact with the main chain. They have their
own consensus mechanism, level of security and tokens. When sidechain security is compromised, the
damage does not affect the other connected networks. Moreover, connected sidechains can transfer
data. For example, tokens can be exchanged at a predetermined rate between the main chain and the
sidechain. Basically, the main chain should provide the security of the entire ecosystem, while the trans-
actions outsourced to the sidechain can sacrifice decentralization in return for scalability and velocity.
This solution appears to be extremely suitable to be used in the data management of energy communi-
ties. Indeed, custom chains could also be tailored for embedded devices such as the Strato and used to
store data about nodes and interact with other main blockchains.

The sidechain running on LIC Strato is based on Tendermint’ framework application, a consensus/networking
algorithm that can be easily configured and used to create a custom sidechain. Figure 46 shows the
structure of the sidechain network. Each node corresponds to a Strato and, consequently, to a prosumer.
In addition, the orange nodes are the unique nodes allowed to create new blocks on the sidechain. The
arrows show the P2P connections among the nodes.
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Figure 46: LIC network structure

As a consequence, using AT each node can save data about its energy consumption on the sidechain.
Moreover, thank the data decentralization implicit in any blockchain technology, each node can access

7https://tendermint.com/



energy data about the other LIC members properly querying its local copy of the chain. As a conse-
quence, a prosumer can calculate the LIC consumption and audit the tariff, but it violates the users
privacy. The following Section 10.2.2 describes how it is possible both to audit the tariff and to preserve
privacy.

10.2.2 Privacy management

The decentralized approach described in Paragraph 10.2.1 provides an ideal platform to store energy
data. Unfortunately, it does not guarantee privacy preservation without proper data encryption. Thus,
the AT instances running on LIC nodes save encrypted data about consumption on LIC chain. The
data encoding is based on homomorphic encryption, which is locally provided by a custom application
running locally on each Strato. Thanks to this type of data encoding, a node is not able to decrypt
the information related to the other meters, i.e. privacy is preserved. Moreover, it can calculate the
consumption/production of the entire community, and consequently verifies the tariff validity, which is a
function of the community consumption.

Algorithm 1 briefly shows the sequence of the transactions performed by on the LIC nodes every quarter
of an hour.

Algorithm 1 AT operations sequence

minute T=0,15,30,45

T+1: Registration

Each node saves on-chain the registration string and off-chain locally the related key

T+2: Encoding

Using the registrations saved by all the nodes at minute T+7 and its key (saved off-chain), each node
encodes the average consumption and production of the previous quarter of hour (e.g. T=15: data about
[00:00-14:59] will be encoded). The encoded value is saved on-chain by all the nodes.

>T+3: Sum and decoding

Using the encoded values saved on chain at minute T+2 each node can calculate the encrypted sum of
the entire community and then, applying the homomorphic decoding, obtains the plain text value.

Fig. 47 reports the data flow showing how AT works in a simplified chain of three nodes. They save on
the chain encoded values, as explained in 1 (orange arrows). Then a generic node (N can be A, B or C)
is able to sum the encoded values and then decode the results obtaining the plain text total consumption
or production (light blue arrow).

The data flow shown in Fig. 47 requires significant resources in terms of computational power and mem-
ory on the Strato boards. This is mainly due to the mathematical operations used by the homomorphic
encryption. More precisely, on a Strato device AT needs less than a minute to decode and find the plain
test solution, instead on the much more powerful NUC it converges to the solution approximately in 5
seconds. It is meaningful to note how this amount of time is independent from the nodes number, being
the great most of the resources used for the final decryption of the encoded sum. Consequently, the
application scalability is guaranteed towards the community dimension.

10.2.3 Application sustainability

The AT application runs in the Strato devices, which compose the Tendermint sidechain in the LIC pilot.
To analyze their sustainability, it has been properly tested both in a laboratory and on the pilot. More
precisely, on LIC Strato the sidechain runs since June 2020 managing the transactions performed by AT
every 15 minutes. Table 12 summarizes the information about the transactions actuated on the chain
and the results in terms of resources usage.
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Figure 47: AT data flow
Nodes composing the chain 20
Time resolution 15 minutes
Transactions/15m 3
Transactions/1d for a node 288
Transactions/1d 5760
Load average (15 minutes) 0.3
CPU usage 5%
Memory usage 77 MB
Disk usage per day (community) 55 MB
Disk usage per day (single node) 2.7 MB
Disk usage per year (community) 20 GB
Network usage per day (download) 118 MB
Maximum reached data speed (download) | 20.5 KB/s
Network usage per day (upload) 125 MB
Maximum reached data speed (upload) 19.7 KB/s

Table 12: Summary about tests performed on LIC nodes

The results reported in Table 12 shows how the sustainability of the Tendermint chain is guaranteed. As
regards the computational power and memory usage, Strato devices can easily manage the applications.
Instead, an aspect that has to be taken into account with special importance is disk usage. Indeed, 4 MB
of space is daily used in the chain to store the data related to one node. Thus, the network cardinality
has to be considered to assure safe data storing, especially if the number of transactions is much
higher than in AT. However, the availability of solutions with more and more capacious disks continues
to increase. Consequently, also this hardware constraint can be reasonably managed with a proper
preliminary analysis.

Regarding the network usage, AT daily needs approximately 125 MB of data for the download, 121
MB for the upload. Furthermore, the data speed of the applications never overcomes 20 KB/s. These
network requirements can be easily provided by standard connectivity services (e.g. wired connections,
wi-fi). Moreover, also typical mobile subscriptions currently available on the market can be used for the
data exchanging in the network as in LIC.



10.3 Unsupervised Non Intrusive Load Monitoring

The LIC’s controllable loads are not directly monitored, as is usually done in demand side management
projects. This poses challenges in the control of these devices, as planning the control of the devices
requires to forecast their energy needs, that is, to know their disaggregated power profiles; on the other
hand, not needing to install dedicated sensors for each controlled appliance, significantly lowers the
technology cost of the DSM solution, as this only relies on an already installed sensor: the smart meter.

Many non-intrusive load monitoring algorithms (NILM) have been proposed in the literature; however,
many of them cannot be applied out of the box in this case, as we are considering the following setting:

* unsupervised learning: we do not possess the ground truth for the output of the disaggregation. We
are in the most general case in which we do not know: number of appliances, types of appliances,
their nominal power, nor their characteristic power profiles.

» we are working with 10s sampling time, but we would like to use an algorithm able to disaggre-
gate with lower sampling times (down to 10 minutes), as smart meters usually send data with a
granularity of minutes.

« the algorithm must be able to run on the Strato’s ARM architecture, which is also used to solve the
optimal control problem: both training and test must run in less then one minute.
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Figure 48: Unsupervised identification of clusters in the AQ-AP plane. The clustering algorithm cor-
rectly identified a boiler, in orange (AP of 8 with no associated change in reactive power) and an heat
pump, in green (AP of 3.7 and AQ of 2.6, respectively).

Given all these constraints, we have developed an in-house disaggregation algorithm. The algorithm
sequentially disaggregates a power signal of length N, z = {(x;)}ien = {(pi, &) }ien, given its first
order (corrected) derivatives of active and reactive powers (p and ¢). The disaggregation is based on
the following steps:

» Merge the first order derivatives of p,q. This is necessary to identify groups of jumps. Without
this step, similar jumps will create lines in a scatter plot, due to the fact that jumps are often intra-



sampling. This means that a turn on/off of a load can span two timesteps, getting fragmented. An
euristic is used to merge the derivatives.

« identify clusters in the jumps using an unsupervised algorithm (Bayesian Gaussian Mixture Model
[73]). Fig. 48 shows the identification of clusters in the AQ-AP plane. The blue points are
identified as not belonging to any clusters, while the other colors indicate points in a region of
high density, significantly separed from other points. The clusters are then ranked with a pseudo-
density measures and reordered based on their significance for disaggregation (the values of the
centroids - higher jumps corresponding to more significance)

« clusters showing strong temporal correlations are merged together, obtaining meaningful group-
ings (a load can have a small turn on jump, a steady slope followed by a bigger turn off jump).

+ derivatives are mapped to the most likely cluster. For each point in time associated with a cluster,
we do the following. We start identifying a "ground" value, z,,, for each jump in the time series
belonging to the current cluster. Then, for each jump, the disaggregation follows 3 criteria for
identifying the presence of the current load:

1. if z 4, + centroid is close to the signal
2. if subtracting z,, + centroid to the signal don’t make it too negative
3. if subtracting x4, + centroid to the signal reduces the signal variance
if one of the three conditions is met, the algo keeps travelling forward (if the current jump was

positive) or backward (if was negative). An example of the resulting disaggregated power profiles
is shown in fig. 49.
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Figure 49: Example of disaggregated time series on test data. Upper plot: active power. Lower plot:
reactive power. Three clusters are visible, in particular the boiler (only active power) and the heat pump
(both active and reactive power).



10.4 Control: preliminary results

Algorithm tests in the LIC pilot project are underway. The thermal loads of users are controlled using
the Strato devices, which control the relays of the smart meters via the optical interface. The algorithms
described in Section 4 are being tested.

Preliminary tests have been successfully performed to demonstrate real-time control of the water heaters
and the battery. An example is shown in figure 50. The implicit and explicit coordination mechanisms
are not being tested. Figure 51 shows 2 days of control of one of the boilers in LIC, using the implicit
coordination algorithm, on which the limits on the total number of daily actuation commands of the relay
described in equation 27 has not yet been implemented. In the same figure one can also notice that
the boiler is correctly disaggregated from the main power of the house. Unfortunately, due to low PV
production, the battery remains idle in the winter months as the community never injects into the grid.

Figure 50: Control of a 8 kW boiler

1 R T L M

Figure 51: Example of water heater control. Orange line: relay status (0: forced off, 1: allowed on). Blue
line: total active power of the smart meter. Cyan line: disaggregated water heater active power.



11 Conclusions

Self-consumption communities have been identified as the most interesting solution supported by the
current legal framework, for building a hierarchical market taking into account grid constraints. The en-
ergy market proposed in section 3 generates a cost that depends on the consumption of all the energy
community participants. That is, it is not directly proportional to the energy consumed by the end-user,
and it gets lower when the self-consumption inside the energy community increases. Switzerland is
embracing a causal principle on the price formation for end-users, as stated in the recent modification to
the Federal Electricity Supply Act [1]. This means that the electrical bills "should reflect costs caused by
end-users". However, the Electricity Supply Ordinance [74] states that DSO must guarantee to the end-
users that at least 70% of their bills are directly proportional to their energy use; at the same time, they
can offer opt-in tariffs in which this percentage is reduced. Under these constraints, the tariff proposed
in section 3 can be potentially applied in Switzerland.

The energy market has been mathematically described as a sharing problem, in which agents have to
share energy under coupling constraints representing electrical grid safety limits. The monolithic prob-
lem has been decomposed in an equivalent distributed formulation; in this setting, the market model has
been analyzed from a game-theoretic perspective, using the framework of non-cooperative games. In
section 3.1, solutions have been proposed to mitigate malicious actions from self-serving users, introduc-
ing repartition coefficients which are proportional to the role of each agent in reducing the system-level
objective.

A hierarchical distributed formulation for multilevel control based on ADMM is presented in section 5.
This formulation can be easily coupled with the non-cooperative energy market formulation presented in
3, and the following considerations on decentralized, parallel, and privacy-preserving formulations apply
for both the single level and the multilevel energy markets.

In section 6, gossip protocols have been analyzed as a communication scheme for obtaining fully decen-
tralized algorithms. Even if the considered class of problems (sharing problems) can be decentralized
through gossip protocols, the number of messages required before convergence (and thus the over-
all computational time) is higher than a parallel solution scheme. Moreover, the presence of coupling
constraints and the fact that the objective is a function of all users’ actions require an additional cryp-
tographic layer to preserve the privacy of private information. Given these considerations, two differ-
ent homomorphic-based solutions were tested, which can be used to build a decentralized and fully-
parallelized solution scheme, namely, the secure sum protocol and a modification of a secure voting
protocol. The latter was finally chosen and implemented in the LIC pilot since it provides the strongest
theoretically obtainable guarantees against agent collusions.

The energy market formulation and the optimal coordination schemes they generate has been tested
against an "implicit" benchmark coordination scheme in which agents optimize for energy prices formed
by an automated market making (AMM) mechanism. The rules of the AMM are simple to explain and
the energy prices it generates can be used by agents to optimize their own energy consumption, pro-
viding an off-the-shelf distributed (indirect) coordination mechanism. The drawback is the lack of mutual
information between agents’ decisions and that grid constraints are not explicitly taken into account.

In section 9.2, we evaluated the performances of the algorithms on a simulation environment replicating
the LIC pilot project. Both the explicit and implicit coordination schemes effectively reduced the overall
variance of the power profile at the PCC; as expected the explicit coordination scheme performed better
in terms of violation of power constraints at PCC, when power constraints are enforced. It is reasonable
to expect an even wider spread between the two coordination mechanisms in terms of variance at the
PCC, with an increasing number of controllable agents. We additionally tested variants of the explicit
control mechanism presented in section 3, where the repartition coefficients for agents are unitary. This



case is equivalent to a centralized control where the only objective is the minimization of the costs at the
PCC. Results showed that power distribution at PCC is only slightly affected by this modification, indi-
cating that the distributed non-cooperative formulation of the sharing problem is already highly effective
in minimizing the overall costs at the PCC. An additional variant of the control problem in which a small
quadratic punishment was added shown the possibility of further reducing the overall costs while per-
forming peak shaving. This additional cost reduction obtained punishing extreme charging/discharging
operations is likely due to the mitigation of erroneous decisions introduced by imperfect forecasts. Fur-
thermore, the effect of removing the constraint for which distributed batteries cannot discharge into the
main grid was tested; this problem relaxation was shown to be beneficial for bot grid constraints and
economic results. The economic analysis showed the same rank in results among different coordination
schemes, w.r.t. costs at the PCC: allowing injection from distributed batteries and imposing a quadratic
punishment on the overall PCC power profiles further reduces the costs at PCC. On the other hand, the
quadratic punishment has a negative impact on the single agent’s energy costs, when they are com-
puted with the rules presented in 3, as expected.

In subsection 9.2.3 the effect of different forecasters was assessed on closed-loop performances for
both the implicit and explicit coordination schemes when controlling batteries. The analysis showed how
the accuracy for the first steps ahead is the most important factor for the reduction of the agents’ costs.
On the other hand, when charging/discharging from/into the grid is allowed, the ability to forecast step
ahead further in time becomes increasingly important.

In section 9.3 the multilevel implementation presented in section 5 has been tested in a simplified setting,
showing quasi-linear convergence time with the number of considered levels. More detailed closed-loop
simulations for the multilevel setting, with a stronger coupling with an exact model for the electrical grid,
are planned as an addendum to this report.

Finally, in section 10.1, the LIC pilot project implementation is described. End users with controllable
devices have been equipped with local computing modules, which are connected to the smart meters
and are able to solve the distributed problems required for the clearing of the energy market, exploiting
the homomorphic encryption protocol presented in section 7 for keeping their power consumption profile
private; at the same time, they have enough computational power to run the ad-hoc non-intrusive load
monitoring disaggregation described in section 10.3, required to control thermal loads, such as heat
pumps and electric boilers. The implementation of the billing scheme through the use of Tendermint is
described.
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