

Bundesamt für Energie BFE Sektion Cleantech

Schlussbericht vom 18. Oktober 2016

swisswoodhouse – ein Gebäude für die 2000-Watt-Gesellschaft

Datum: 18.10.2016

Ort: Bern

Subventionsgeberin:

Schweizerische Eidgenossenschaft, handelnd durch das Bundesamt für Energie BFE Pilot-, Demonstrations- und Leuchtturmprogramm CH-3003 Bern www.bfe.admin.ch

Subventionsempfänger:

Renggli AG Sankt Georg-Strasse 2 CH-6210 Sursee www.renggli-haus.ch

Pirmin Jung Ingenieure für Holzbau AG Grossweid 4 CH-6026 Rain www.pirminjung.ch

Bauart Architekten und Planer AG Laupenstrasse 20 3008 Bern www.bauart.ch

Reuss Engineering AG An der Reuss 5 6038 Gisikon www.reuss-engineering.ch

Autoren:

Simone Leicht, simone.leicht@renggli-haus.ch Marco Bieri, marco.bieri@renggli-haus.ch

BFE-Bereichsleiter: Yasmine Calisesi Arzner

BFE-Programmleiter: Rolf Moser

BFE-Vertragsnummer: SI/500435-01 / 153231

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren dieses Berichts verantwortlich.

Bundesamt für Energie BFE

Mühlestrasse 4, CH-3063 Ittigen; Postadresse: CH-3003 Bern Tel. +41 58 462 56 11 · Fax +41 58 463 25 00 · contact@bfe.admin.ch · www.bfe.admin.ch

Inhaltsverzeichnis

usammenfassung	4
Ausgangslage	6
Projektziele	6
Grundlagen – Randbedingungen	6
Konzept – Anlagenbeschrieb	7
/orgehen / Methode	7
rgebnisse	7
Diskussion / Würdigung der Ergebnisse / Erkenntnisse	43
Ausblick, nächste Schritte nach Projektabschluss	43

Zusammenfassung

In Nebikon wurde im November 2014 das Holzbau-Mehrfamilienhaus "swisswoodhouse" mit 18 Wohnungen fertiggestellt. Mit Messungen von Mai 2015 bis April 2016 wurden die Zielsetzungen an die Haustechnikanlagen überprüft. Weiter wurden in drei ausgewählten Wohnungen die Raumlufttemperatur, die relative Raumluftfeuchte und der CO₂-Gehalt erfasst. Vor der Heizperiode im Oktober 2015 waren nur 11 der 18 Wohnungen belegt. Im Verlaufe der Heizperiode wurden die 7 leerstehenden Wohnungen bezogen. Zusätzlich wurde auch die Luftschall- und Trittschalldämmung der Deckenkonstruktion gemessen.

	Planung	Messung	
Heizwärmebedarf nach SIA 380/1 m. Standardluftwechsel Q _h	20.8	-	kWh/m²a
eff. Heizwärmebedarf mit Lüftungsanlage Q _{h,korr}	13.1	27.7	kWh/m²a
Wärmebedarf Warmwasser	23.8	7.69	kWh/m²a
Wärmepumpe Jahresarbeitszahl BWW und Heizung	3.25	2.8	-
Nenn-Luftvolumenstrom total	1960	-	m³/h
Luftvolumenstrom Abluft	-	2182	m³/h
Luftvolumenstrom Zuluft	-	2272	m³/h
Strombedarf Hilfsbetriebe gemäss Antrag Minergie-P Q _{EB}	0.83	0.33	kWh/m²a
Strombedarf Lüftungsanlage gemäss Antrag Minergie-P Qe	2.3	-	kWh/m²a
Endenergiebedarf WP gemäss Antrag Minergie-P , Heizung+ WW	8.7	11.4	kWh/m²a
Elektro direkt gemäss Antrag Minergie-P	0.15	-	kWh/m²a
Elektro-Wassererwämer gemäss Antrag Minergie-P	0.95	0.23	kWh/m²a

Tab. 1: Vergleich Planung / Messung

Der gemessene und gewichtete Endenergiebedarf beträgt 26.3 kWh/m² und unterschreitet somit den MINERGIE-P Grenzwert von 30.0 kWh/m². Dies obwohl der gemessene Heizwärmebedarf den berechneten Wert um das Doppelte überschreitet. Dieser Mehrbedarf wurde durch einen dreimal tieferen Warmwasserverbrauch kompensiert.

In den drei ausgewählten Wohnungen wurden mittlere Raumlufttemperaturen zwischen 21.5°C und 22.9°C gemessen. Die relative Raumluftfeuchte liegt durchgehend im behaglichen Bereich. Anhand des Indikators des CO₂-Gehaltes kann die Raumluftqualität als "gut" bezeichnet werden.

Die gemessene Jahresarbeitszahl der Sole/Wasser-Wärmepumpe beträgt 2.8. Dieser Wert liegt unter der vom Planer mit WPesti berechneten Jahresarbeitszahl von 3.25. Bei einer eingehenden Analyse der Messdaten konnte ein Optimierungspotential identifiziert werden. Entsprechende Verbesserungsmassnamen wurden nach der Messkampagne eingeleitet.

Die Luftschall- und Trittschalldämmung der Deckenkonstruktion erfüllen die erhöhten Anforderungen nach "SIA 1841:2006, Schallschutz im Hochbau".

Die Ziele der Kommunikationsmassnahmen rund um das Projekt swisswoodhouse wurden erreicht. In einer langen Planungsphase ist es gelungen, das Projekt und seine Ideologie bekannt zu machen, kommunikative Inhalte zielgruppengerecht aufzubereiten und zu verteilen. Zwei erfolgreiche Events beim ersten realisierten Objekt in Nebikon haben die Aussage von swisswoodhouse weiter geschärft, viele Fragen bei den Zielgruppen beantwortet und das Interesse gesteigert. Wir dürfen auf ein breites

Medieninteresse zurückblicken. Ebenso sind aussagekräftige Dokumentationen (on- und offline) vorhanden, die nach wie vor abgerufen werden und mit denen auch künftig Werbung für den mehrgeschossigen Wohnbau in Holzbauweise betrieben werden kann. Die Sensibilisierung von Investoren – aber auch des nachfragenden Mietersegements - ist ein anhaltender, sehr langfristiger Prozess. swisswoodhouse konnte/kann hierzu nur einen Teil beitragen. Mit diesem Schlussbericht sind die Kommunikationsmassnahmen rund um das Projekt nicht abgeschlossen – Ziel ist die Realisation von weiteren swisswoodhouses und der weiteren Imageförderung von Holzsystembauten als nachhaltig kluge Investitionsobjekte.

Ausgangslage

Die zukünftigen Veränderungen in der Wirtschaft und Gesellschaft werden in der Ausprägung und der Geschwindigkeit weiter zunehmen. Langfristig überlebensfähig und werterhaltend werden nur diejenigen Produkte sein, welche sich optimal an die neuen, veränderten Situationen anpassen können. Dies gilt vor allem auch für Gebäude mit ihrer langen Lebensdauer. Schwerpunkte sind eine hohe Flexibilität, ein geringer Ressourcenverbrauch und eine optimale Erschliessung. Mit swisswoodhouse wurde ein anpassungsfähiges Gebäudekonzept entwickelt für ein Mehrfamilienhaus in vorfabrizierter Holzbauweise. Es orientiert sich an der 2000-Watt-Gesellschaft, erfüllt den Minergie-P-Eco-Standard, legt Wert auf baulandschonende Architektur, energiesparenden Betrieb und die Versorgung mit erneuerbaren Energien. Die Besonderheit liegt auch im innovativen Gebäudekonzept und der konstruktiven Ausbildung. Diese erlauben durch die neuartige Standardisierung des Grundrasters eine attraktive Planungs-, Nutzungs- und Umbauflexibilität für mehrgeschossige, vorfabrizierte Holzbauten. Ausgangslage ist ein Raum von 18 m2, welcher in sich oder kombiniert funktionale Einheiten bildet. Diese können in der Planung für jede Wohnung beliebig angeordnet und einfach den Bedürfnissen des jeweiligen Mietersegments angepasst werden. Erarbeitet wurde swisswoodhouse mit Spezialisten und Forschungspartnern aus unterschiedlichen Disziplinen. Durch diese interdisziplinäre Arbeitsweise ist ein innovatives Produkt von hoher Qualität entstanden, welches mit dem realisierten Erstling in Nebikon LU im September 2014 seine Vollendung gefunden hat.

Projektziele

Kommunikationsziele der Vermarktung

Das Ziel In Bezug auf die Publikation der Resultate des Projektes war es, einen Rundumblick zum mehrgeschossigen Wohnbau in Holzbauweise vom Investor bis zum Nutzer, und damit eine übergreifende Darstellung für institutionelle Investoren und weitere Fachpersonen in der Schweiz, bezüglich der Vorteile von Holzbauprojekten zu liefern. Die Kommunikationsmassnahmen rund um das Pilotprojekt swisswoodhouse tragen durch den Einsatz verschiedener Kanäle – Fachevents, Referate, Factsheet, Dokumentation, Website und Film – zur Sensibilisierung der institutionellen Investoren bei. Weitere Kommunikationsziele:

- Akzeptanz für mehrgeschossige Holzbauprojekte in der Schweiz fördern
- Bekanntmachung neuer Möglichkeiten im mehrgeschossigem Holzbau
- Wissensvermittlung durch Fachspezialisten
- Investoren informieren und motivieren
- Imageförderung Holzsystembau als Investitionsobjekt

Grundlagen – Randbedingungen

Die verschiedenen Mitglieder des Projektteams verfügen breitgestreut über den neusten Wissensstand zum Thema Holzbau, sei es technischer Art oder im Bereich Nachhaltigkeit, Instandhaltung und langfristiger Valorisierung. An Hand des Projektes swisswoodhouse dient dies vor Ort als einmalige Informationsgelegenheit speziell für institutionelle Investoren.

Konzept - Anlagenbeschrieb

Die Hochschule Luzern hat ein umfangreiches Messkonzept für die Haustechnik erstellt, das folgende Bereiche und Anlagen umfasst: Komfortlüftungsanlage, Wärmeerzeugung, Wärmeabgabe, Kühlung, Brauchwarmwasser, Stromerzeugung und PV-Anlage.

Details siehe Ergebnisse Messungen durch Hochschule Luzern Technik & Architektur Zentrum für Integrale Gebäudetechnik Prüfstelle Gebäudetechnik.

Vorgehen / Methode

Kommunikationsmassnahmen

- Logo-Entwicklung und Umsetzung für swisswoodhouse
- Mehrteiliger Fachevent im September 2014 beim ersten swisswoodhouse in Nebikon, organisiert mit diversen Projektpartnern aus Architektur, Holzbau, Haus- und Gebäudetechnik sowie der BFH Biel
 - o Für Architekten und Planer (55 Teilnehmer)
 - Für Investoren / Wohnbaugenossenschaften (25 Teilnehmer)
 - o Für die Presse (div. Vertreter von Fachzeitschriften und Tageszeitungen)
- Pressemappen, Factsheet, Dokumentation und Tagungsunterlagen (zum vorgenannten Event)1 – laufend in Verwendung von den verschiedenen, involvierten Projektpartnern, sowie teilweise online abrufbar
- Powerpoint-Präsentationen und Fachreferate an diversen internen und externen Veranstaltungen2
- Eigene Projektwebseite http://www.swisswoodhouse.ch/
- Einbindung mit div. Artikeln/Newsbeiträgen/Referenzbeitrag auf Renggli-Website (www.reng-gli-haus.ch)
- Objektfilm "swisswoodhouse" https://www.youtube.com/watch?v=oj5bKoqM-rI

Ergebnisse

Ergebnisse Messungen

1. Ausgangslage

Im Herbst 2014 wurde das "swisswoodhouse" in Nebikon fertiggestellt. Es ist ein zukunftsweisendes Mehrfamilienhaus mit 18 Wohnungen, realisiert im Holzbau mit hohem Vorfertigungsgrad.

"swisswoodhouse" soll die Umsetzbarkeit der 2000-Watt-Gesellschaft im Gebäudebereich demonstrieren. Umsetzungsschwerpunkte des Gebäudekonzepts sind die flächensparende Bauweise, tiefe Abfallproduktion, geringe Materialintensität, energie- und wassersparender Betrieb und die Versorgung mit erneuerbaren Energien. Mit dem Label MINERGIE-P-ECO® erfüllt "swisswoodhouse" die erhöhten Anforderungen an eine nachhaltige Bauweise.

2. Ziel der Arbeit

Am Gebäude "swisswoodhouse" in Nebikon soll eine Erfolgskontrolle der Gebäudetechnik durchgeführt werden.

Von Interesse sind die Energiebilanz der Gebäudetechnikanlagen sowie der Energieverbrauch der einzelnen Wohnungen. Dafür werden die Energiebezüge für Heizung und Warmwasser, die erzeugte Wärmeenergie der Wärmepumpe (für Raumheizung und das Warmwasser), sowie die Wärmeabgabe über die Bodenheizung und der Warmwasserverbrauch gemessen. In drei ausgewählten Wohnungen wird zudem die Behaglichkeit durch separate Messungen von Raumlufttemperaturen, relativen Luftfeuchtigkeiten und der CO₂-Konzentrationen überprüft. Weiter wird die Stromproduktion der Photovoltaikanlage (Fläche 157 m², 25.9 kWp) erfasst.

Zusätzlich ist die Luft- und Trittschalldämmung der Deckenkonstruktion zwischen zwei übereinanderliegenden Wohneinheiten zu überprüfen.

Die einzelnen Verbraucher des Haustechnikkonzepts lassen sich wie folgt einteilen:

Haustechnikkonzept

- Wärmeerzeugung:
 - Die Wärme für Heizung und Warmwasser wird mit einer Sole/Wasser-Wärmepumpe mit Grundwasser als Wärmequelle erzeugt.
- Wärmeabgabe Heizung:
 Die Wärmeabgabe erfolgt über eine Fussbodenheizung.
- Warmwasser:
 - Das Warmwasser wird mit der Wärmepumpe auf 55°C erwärmt. Zur Vermeidung von Legionellenbildung wird im 14 Tages-Rhythmus das Warmwasser elektrisch auf 60°C aufgeheizt.
- Komfortlüftung:
 - Alle Wohnungen werden mechanisch über eine Komfortlüftung (einfache Lüftungsanlage gemäss SIA 382/1) belüftet. Jede Wohnung verfügt über ein eigenes Lüftungsgerät, das im Untergeschoss platziert ist.
- Stromerzeugung:
 - Auf dem Dach ist eine PV-Anlage mit einer Fläche von 157 m² und 25.9 kWp installiert.

3. Prüfobjekt

Das Prüfobjekt weist folgende Kennzahlen auf:

Objekt	MFH, Luthernmatte 1 a/b, 6244 Nebikon
Bauweise	Holzbau mit hohem Vorfertigungsgrad
Anzahl Wohneinheiten	18
Energiebezugsfläche EBF A _E	2525 m ²
Gebäudehüllzahl A _{th} /A _E	1.3
Heizwärmebedarf nach SIA 380/1 m.	20.8 kWh/m ²
Standardluftwechsel Q _h	
Eff. Heizwärmebedarf mit Lüftungsanlage	13.1 kWh/m²
Q _{h,korr}	
Wärmeabgabe	Bodenheizung
Wärmeerzeugung Heizung und Warmwas-	Sole/Wasser-Wärmepumpe NIBE F1345,
ser ¹	Heizleistung B0/W35 = 40 kW / COP = 4.51
	Warmwassertemperatur 50°C und periodi-
	sches Aufheizen mit Elektroeinsatz auf über
1.00	60°C (Legionellen-Schaltung)
Lüftungsanlagetyp	Komfortlüftung (einfach Lüftungsanlage) pro
1.24	Wohneinheit
Lüftungsgerät	Zehnder, Comfoair SL330
Nenn-Luftvolumenstrom total	1960 m ³ /h
Strombedarf Hilfsantriebe gemäss Antrag	0.83 kWh/m²
Minergie-P Q _{EB}	0.0110411 / 1.2
Strombedarf Lüftungsanlage gemäss An-	2.3 kWh/m²
trag Minergie-P Qe	2.55 kWh/m²
Endenergiebedarf WP gemäss Antrag ^{1, 2} Minergie-P, Heizung	2.55 KWII/III ²
Endenergiebedarf WP gemäss Antrag ^{1, 2}	6.15 kWh/m²
Minergie-P, Warmwasser	U. 13 KVVII/III-
Elektro direkt gemäss Antrag Minergie-P	0.15 kWh/m²
Elektro-Wassererwärmer gemäss Antrag	0.95 kWh/m ²
Minergie-P	0.33 KWII/III
1 Effektiv eingesetzte Wärmenumne, entenrieht nicht der im MII	NEDOLE DA (C''L ()A(''

Effektiv eingesetzte Wärmepumpe, entspricht nicht der im MINERGIE-P-Antrag aufgeführte Wärmepumpe)
 Endenergiebedarf bezieht sich auf die im MINERGIE-P-Antrag aufgeführte Wärmepumpe

4. Vorgehen / Methode

Modulare Darstellung der Gebäudetechnik

Bild 2 zeigt die Gebäudetechnik-Installationen im "swisswoodhouse" in der modularen Darstellung nach SIA 411:2016.

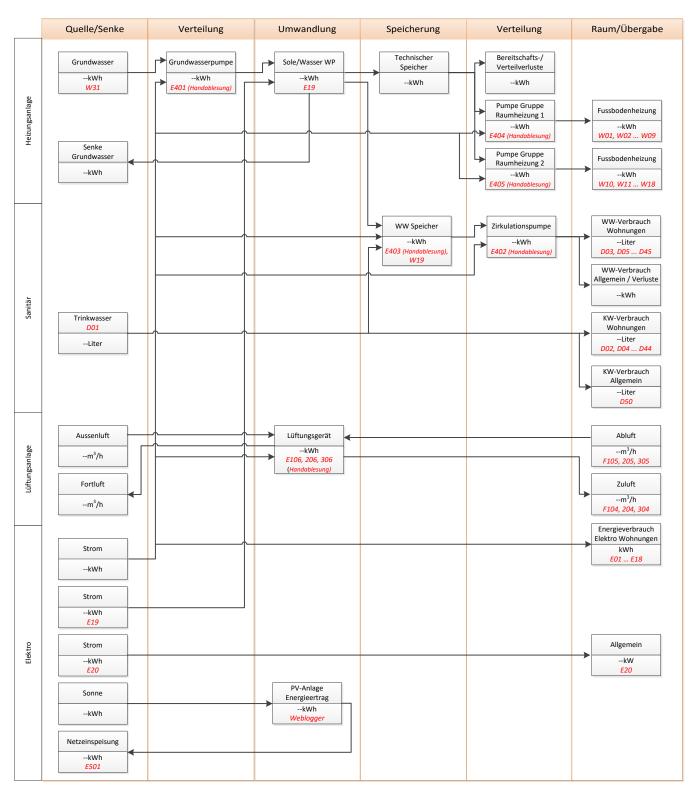


Bild 1: Modulare Darstellung der Gebäudetechnik-Installationen im "swisswoodhouse" nach SIA 411:2016

5. Messkonzept

Wohnungslüftung: Die Zu- und Abluftvolumenströme wurden vom Installateur gemäss SIA Merkblatt 2023 eingestellt und in einem Abnahmeprotokoll protokolliert. Vor Beginn der Langzeitmessungen wurden in je einer zufällig ausgewählten 2 ½, 4 ½ und 5 ½ Referenzwohnung die Luftvolumenströme überprüft.

Behaglichkeit: In je einer 2 ½, 4 ½ und 5 ½ Referenzwohnung wurde die Behaglichkeit überprüft (die für die Luftmengenmessung ausgewählten Wohnungen waren bei Messbeginn noch nicht vermietet, daher wurden andere Wohnungen gewählt).

Folgende Messgrössen wurden in einem Messintervall von 10 Minuten aufgezeichnet:

- Raumlufttemperatur und rel. Luftfeuchtigkeit im Schlaf-, Wohnzimmer, Büro
- CO2-Konzentration im Wohnzimmer

Wärme und Energie: Die Wärme und Energieverbräuche werden mit bauseits installierten Zählern gemessen. Das Monitoring wurde von der Firma Tetrag Automation AG programmiert. Über ein Internetportal konnte auf die Messdaten zugegriffen werden.

Wärmepumpe: Die benötigten Messgrössen werden intern von der Wärmepumpenanlage aufgezeichnet. Über ein Internetportal konnte auf die Messdaten zugegriffen werden.

Photovoltaik: Die Energieproduktion wird intern von der PV-Anlage aufgezeichnet. Über ein Internetportal konnte auf die Messdaten zugegriffen werden.

In Bild 3 sind die Messstellen zur Bestimmung des Energieverbrauchs und der Behaglichkeit im Prinzipschema der Lüftung dargestellt.

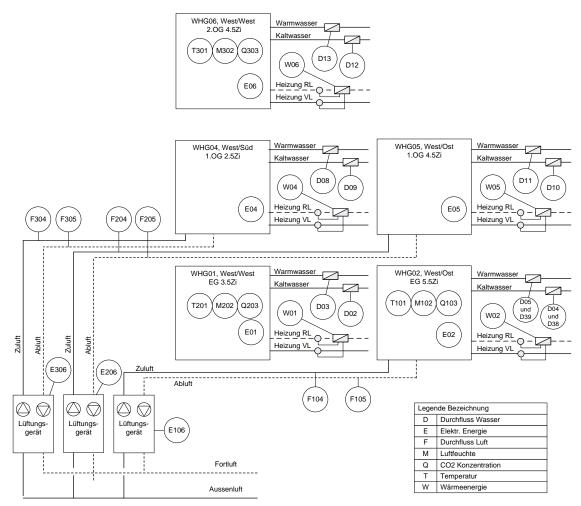


Bild 2: Messstellenplan Wohnungen / Behaglichkeit

Fühlerplatzierung

Bei der Platzierung der Datenlogger musste Rücksicht auf die Ansprüche der Bewohner und die Möblierung genommen werden. Es wurde darauf geachtet, dass die Logger möglichst im Aufenthaltsbereich, an einem nicht von der Sonne beschienen Ort, in einer Höhe von 0.75 m bis 1 m aufgestellt werden konnten.

Fühlerplatzierung WHG01 West/West EG 3.5 Zi

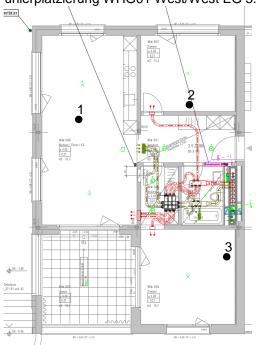


Bild 3: Fühlerplatzierung WHG01

- CO2-Konzentration, Temperatur und rel. Feuchtigkeit
- 2 Temperatur und rel. Feuchtigkeit
- 3 Temperatur und rel. Feuchtigkeit

Bild 4: Fühlerplatzierung WHG02

- CO2-Konzentration, Temperatur und rel. Feuchtigkeit
- 2 Temperatur und rel. Feuchtigkeit
- 3 Temperatur und rel. Feuchtigkeit

Fühlerplatzierung WHG06 West/West 2.OG 4.5 Zi

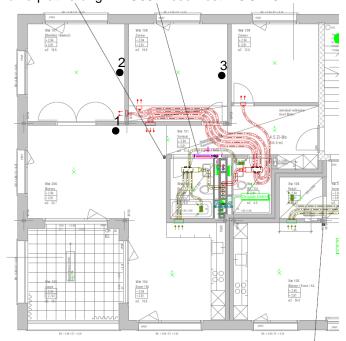


Bild 5: Fühlerplatzierung WHG06

- CO2-Konzentration, Temperatur und rel. Feuchtigkeit
- 2 Temperatur und rel. Feuchtigkeit
- 3 Temperatur und rel. Feuchtigkeit

Messstellenplan Wärme- und Energieerzeugung

Der Messstellenplan der Wärme- und Energieerzeugung ist in Bild 6 dargestellt:

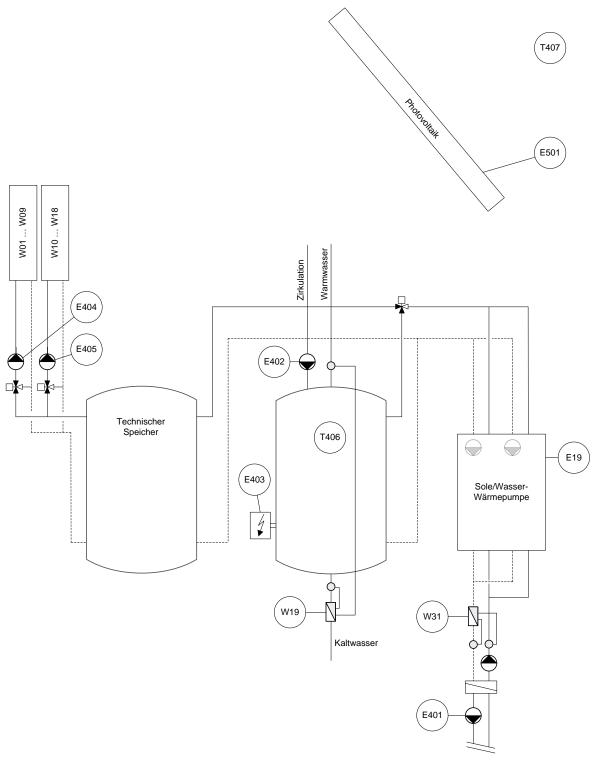


Bild 6: Messstellenplan der Wärme- und Energieerzeugung

Legende:

 $\begin{array}{ll} E_i & & \text{elektrische Energie} \\ W_i & & \text{Wärmemenge} \\ T_i & & \text{Temperatur} \end{array}$

14/43

Definition der Messstellen

Tab. 2 zeigt, an welchen Messstellen welche Messmittel eingesetzt wurden.

Pos.	Ein- heit	Messgrösse	Messge- rät	Genauig- keit
D01	Liter	Kaltwasserverbrauch Gesamt	Wasser- zähler bauseits	± 5%
D02, D04 D44	Liter	Kaltwasserverbrauch Wohnun- gen	Wasser- zähler bauseits	± 5%
D03, D05 D45	Liter	Warmwasserverbrauch Woh- nungen	Wasser- zähler bauseits	± 5%
D50	Liter	Kaltwasserverbrauch Allge- mein	Wasser- zähler bauseits	± 5%
E01 E18	kWh	Energiebezug Elektro Woh- nungen, inkl. Lüftungsgerät	Elektro- zähler bauseits	keine Anga- ben
E19	kWh	Energiebezug Elektro Wärme- pumpe (BWW und Heizung)	Elektro- zähler bauseits	keine Anga- ben
E20	kWh	Energiebezug Elektro Allge- mein	Elektro- zähler bauseits	keine Anga- ben
E106	kWh	Energiebezug Elektro Lüf- tungsgerät WHG02 West/Ost EG 5.5 Zi.	Elektro- zähler bauseits	keine Anga- ben
E206	kWh	Energiebezug Elektro Lüf- tungsgerät WHG05 West/Ost 1.OG 4.5 Zi.	Elektro- zähler bauseits	keine Anga- ben
E306	kWh	Energiebezug Elektro Lüf- tungsgerät WHG04 West/Süd 1.OG 2.5 Zi.	Elektro- zähler bauseits	keine Anga- ben
E401	kWh	Energiebezug Elektro Grund- wasserpumpe	Elektro- zähler bauseits	keine Anga- ben
E402	kWh	Energiebezug Elektro Zirkulati- onspumpe	Elektro- zähler bauseits	keine Anga- ben
E403	kWh	Energiebezug Elektro Heizstab Warmwasser	Elektro- zähler bauseits	keine Anga- ben
E404, E405	kWh	Energiebezug Elektro Hei- zungspumpen	Elektro- zähler bauseits	keine Anga- ben
T406	°C	Temperatur Warmwasserspei- cher	Fühler WP	keine Anga- ben
T407	°C	Temperatur Aussenluft	Fühler WP	keine Anga- ben
E501	kWh	Energieproduktion Photovolta- ikanlage	Elektro- zähler intern	keine Anga- ben
F104, F105	m³/h	Luftvolumenstrom Zu-, Abluft WHG02 West/Ost EG 5.5 Zi	Flowfin- der	± 5% v.MW, min. 2 m³/h

F204, F205	m³/h	Luftvolumenstrom Zu-, Abluft WHG05 West/Ost 1.OG 4.5 Zi	Flowfin- der	± 5% v.MW, min. 2 m³/h
F304,	m³/h	Luftvolumenstrom Zu-, Abluft	Flowfin-	± 5% v.MW,
F305		WHG04 West/Süd 1.OG 2.5 Zi	der	min. 2 m ³ /h
T101	°C	Temperatur Wohnung WHG02 West/Ost EG 5.5 Zi	Daten- logger MSR 145 S	± 0.25 K
M102	% r.F.	rel. Feuchtigkeit Wohnung WHG02 West/Ost EG 5.5 Zi	Daten- logger MSR 145 S	± 2 % r.F.
Q103	ppm	CO2-Konzentration Wohnung WHG02 West/Ost EG 5.5 Zi	Opus 20 TCO	± (50ppm +3% v.MW)
T201	°C	Temperatur Wohnung WHG01 West/West EG 3.5 Zi	Daten- logger MSR 145 S	± 0.25 K
M202	% r.F.	rel. Feuchtigkeit Wohnung WHG01 West/West EG 3.5 Zi	Daten- logger MSR 145 S	± 2 % r.F.
Q203	ppm	CO2-Konzentration Wohnung WHG01 West/West EG 3.5 Zi	Opus 20 TCO	± (50ppm +3% v.MW)
T301	°C	Temperatur Wohnung WHG06 West/West 2.OG 4.5 Zi	Daten- logger MSR 145 S	± 0.25 K
M302	% r.F.	rel. Feuchtigkeit Wohnung WHG06 West/West 2.OG 4.5 Zi	Daten- logger MSR 145 S	± 2 % r.F.
Q303	ppm	CO2-Konzentration Wohnung WHG06 West/West 2.OG 4.5 Zi	Opus 20 TCO	± (50ppm +3% v.MW)
W01 W18	kWh	Heizwärmebezug Wohnungen	Wärme- zähler bauseits	± 5%
W19	kWh	Wärmebezug Warmwasser	Wärme- zähler bauseits	± 5%
W31	kWh	Wärmemenge aus Grundwas- ser	Wärme- zähler bauseits	± 5%

Tab. 2: Definitionen der Messgeräte und deren Spezifikationen

6. Rahmenbedingungen

Die in diesem Bericht verwendeten Wohnungsbezeichnungen sind in Tab. 3 aufgeführt.

Bezeich- nung	Stockwerk	Wohnung	Besetzt ab	Referenzwohnung
WHG01	West/West EG	3 ½ Zimmer	01.11.2014	Behaglichkeit
WHG02	West/Ost EG	5 ½ Zimmer		Behaglichkeit/Lüf- tung
WHG03	West/West 1.OG	4 ½ Zimmer	15.03.2016	-
WHG04	West/Süd 1.OG	2 ½ Zimmer	01.04.2015	Lüftung
WHG05	West/Ost 1.OG	4 ½ Zimmer	01.02.2016	Lüftung
WHG06	West/West 2.OG	4 ½ Zimmer	01.03.2015	Behaglichkeit
WHG07	West/Süd 2.OG	2 ½ Zimmer	01.04.2015	-
WHG08	West/Ost 2.OG	4 ½ Zimmer	01.01.2016	-
WHG09	West	Attika 5 ½ Zimmer	01.04.2016	-
WHG10	Ost/West EG	3 ½ Zimmer	01.12.2014	-
WHG11	Ost/Ost EG	5 ½ Zimmer	01.01.2016	-
WHG12	Ost /West 1.OG	4 ½ Zimmer	01.04.2016	-
WHG13	Ost/Süd 1.OG	2 ½ Zimmer	01.03.2015	-
WHG14	Ost/Ost 1.OG	4 ½ Zimmer	01.03.2016	-
WHG15	Ost/West 2.OG	4 ½ Zimmer	01.12.2015	-
WHG16	Ost/Süd 2.OG	2 ½ Zimmer	15.12.2014	-
WHG17	Ost/Ost 2.OG	4 ½ Zimmer	01.06.2015	-
WHG18	Ost	Attika 5 ½ Zimmer	01.04.2016	-

Tab. 3: Detail-Angaben zu Wohnung

Bei Messbeginn im November 2014 waren erst 3 Wohnungen bezogen. Im Verlaufe der Heizperiode 2014/15 konnten weitere 3 Wohnungen vermietet werden. Die Messungen wurden somit in einem zum grossen Teil leerstehenden Gebäude durchgeführt. In der Hoffnung, dass im Verlaufe des Sommers alle Wohnung vermietet werden können, hat das Projektteam beschlossen, die Messungen bis Ende der Heizperiode 2016 weiter zu führen. Leider standen auch zu Beginn der zweiten Heizperiode immer noch 7 Wohnungen leer. Erst im März 2016 wurden die letzten beiden Wohnungen bezogen(Besetzt ab siehe Tabelle Tab. 3).

Die im Bericht aufgeführten Messdaten gelten daher für ein Gebäude mit teilweise leerstehenden Wohnungen.

Vor Beginn der Langzeitmessungen wurden in den Wohnungen WHG02, WHG04 und WHG05 die Zuund Abluft-Volumenströme gemessen und mit den Abnahmeprotokollen der Inbetriebnahme verglichen. In denselben Wohnungen sollten während der Messperiode auch die Raumklima (Temperaturen, die rel. Feuchten und die CO₂-Konzentrationen) aufgezeichnet werden. Da die Wohnungen WHG04 und WHG05 zu Beginn der zweiten Messperiode noch nicht belegt waren, wurden die Messfühler in den vermieteten Wohnungen WHG01, WHG02 und WHG06 installiert.

7. Komfortlüftung

Vor Beginn der Langzeitmessungen wurden in drei ausgewählten Wohnungen die Zu- und Abluftvolumenströme überprüft. Die gemessenen Volumenströme der 4 ½- und 5 ½-Zimmer-Wohnung liegen im Bereich der Dimensionierungswerte des SIA Merkblatts 2023 für Wohnungen ohne Zimmer im Durchströmbereich. Es ist allerdings zu beachten, dass bei den untersuchten Wohnungen die Wohnzimmer im Durchströmbereich liegen und dadurch tiefere Luftvolumenströme möglich wären. Bei der 2½-Zimmer-Wohnung liegen die Luftvolumenströme rund 20 % über den Dimensionierungswerten von SIA 2023. Die in der Erfolgskontrolle gemessenen Werte stimmen gut mit den Werten aus dem Abnahmeprotokoll der Firma Zehnder überein. Die Ausnahme bildet der Zuluftvolumenstrom der 5 ½ Zimmer Wohnung, wo 175 m³/h gemessen wurden und im Abnahmeprotokoll 150 m³/h ausgewiesen sind.

Luftvolumenströme in drei Wohnungen

Die gemessen Luftvolumenströme sind in den Tabellen 3 bis 5 dargestellt.

WHG04 West/Süd 1. OG 2.5 Zi

	Zuluft [m³/h]	Abluft [m³/h]
Zimmer	38.5	
Wohnen / Essen / Küche	56	
Vorraum		41
Reduit		17.5
Ankleide		18
Bad		21.5
Total	94.5	98

Tab. 4: Luftvolumenströme in WHG04 (2 1/2 Zimmer Wohnung)

WHG05 West/Ost 1.OG 4.5 Zi

	Zuluft [m³/h]	Abluft [m³/h]
Zimmer 102	39	
Zimmer 103	32.5	
Bibliothek / Medienzim-	35.5	
mer		
Wohnen	36	
Essen / Küche		50
Bad		47
WC / Dusche		33
Total	143	130

Tab. 5: Luftvolumenströme in WHG05 (4 1/2 Zimmer Wohnung)

WHG02 West/Ost EG 5.5 Zi

	Zuluft [m³/h]	Abluft [m³/h]
Bibliothek / Medienzim-	32	
mer		
Zimmer 004	36	
Zimmer 005	32	
Zimmer 006	36.5	
Wohnen / Essen / Küche	38	62
Bad		31
WC / Dusche		31
Reduit		30.5
Total	174.5	154.5

Tab. 6: Luftvolumenströme in WHG02 (5 1/2 Zimmer Wohnung)

8. Behaglichkeit

Während der Heizsaison Oktober 2015 bis April 2016 wurde in je einer ausgewählten 2 $\frac{1}{2}$ -, 4 $\frac{1}{2}$ - und 5 $\frac{1}{2}$ -Zimmer Wohnung die drei Behaglichkeitsgrössen Raumlufttemperatur, relative Feuchtigkeit und CO₂-Konzentration gemessen. Die Temperatur und relative Feuchte wurde im Wohnzimmer, im Schlafzimmer und in einem weiteren Zimmer aufgezeichnet. Im Wohnzimmer wurde zudem die CO₂-Konzentration gemessen.

Mit einer Ausnahme ist die mittlere Raumlufttemperatur mit Werten zwischen 21.5 und 22.9°C als "warm" zu beurteilen. Die relative Feuchtigkeit liegt in jedem Fall im behaglichen Bereich von 30 bis 70%. Anhand der gemessen CO₂-Konzentrationen kann die Raumluftqualität als "gut" bezeichnet werden. Nur in Ausnahmefällen werden 1500 ppm überschritten.

In den folgenden Unterkapiteln werden die Messungen der drei Wohnungen analysiert und ausgewertet. Hierzu werden die Mittel-, Minimal- und Maximalwerte tabellarisch dokumentiert. Zudem werden Häufigkeitsverteilungen grafisch dargestellt.


WHG01 West/West EG 3.5 Zi

In der Wohnung wohnt ein älteres Ehepaar. Folgende Minima, Maxima und Mittelwerte wurden gemessen:

	Wohnen			Bi	üro	Schlaf	zimmer
	Tem- peratur [°C]	rel. Fe uch te [%r .F.]	CO ₂ - Konzent- ration [ppm]	Tem- peratur [°C]	rel. Fe uch te [%r .F.]	Tem- peratur [°C]	rel. Feu cht e [%r. F.]
Mit- tel- wert	22.9	47	849	23.3	47	18.3	60
Min. Wert	20.8	29	441	16.2	27	10.8	31
Max. Wert	29.0	62	2131	25.9	62	24.2	78

Tab. 7: Behaglichkeit in WHG 01 (3 1/2 Zimmer Wohnung)

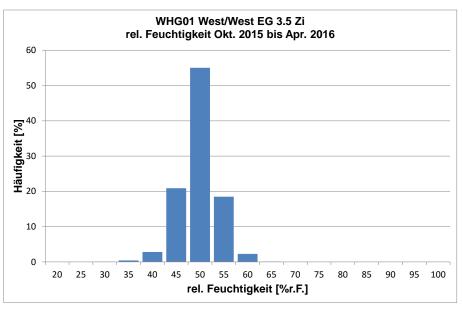
Die Raumlufttemperaturen im Wohnzimmer und im Büro sind mit ca. 23°C eher "warm". Im Schlafzimmer haben die Bewohner eine tiefere Raumlufttemperatur von ca. 18°C eingestellt. Dies ist im Häufigkeitsdiagramm mit den zwei Maxima gut sichtbar:

Dia. 1: "Eher warme" Raumlufttemperatur in WHG01 (3 1/2 Zimmer Wohnung)

Gegenüber der Auslegetemperatur von 20°C wurde eine höhere, mittlere Raumtemperatur von 22°C gemessen. Dies hat einen hat einen höheren Heizwärmebezug zur Folge. Der Heizwärmebezug Qh_20°C bei einer Raumtemperatur von 20°C kann abgeschätzt werden, indem der effektive Heizwärmebedarf mit dem Verhältnis der Heizgradtage bezogen auf 20°C und bezogen auf die effektive Raumtemperatur korrigiert wird:

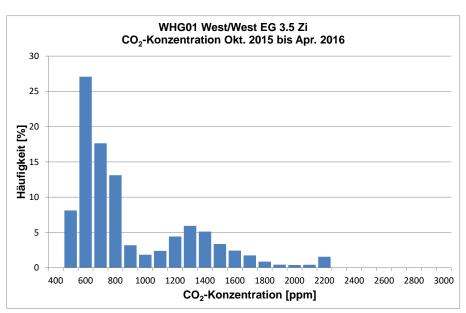
$$Q_{\rm h_20^{\circ}C} = Q_{\rm h_eff.} \cdot \frac{HG\Gamma_{20/12}}{HG\Gamma_{\rm ti/12}} = 4370 \cdot \frac{2850}{3246} = \underline{\underline{3837\,kWh}} \rightarrow 12\% \text{ h\"oherer Heizwärmebezug bei } 22^{\circ}C$$

Q_{h_20°C} Heizwärmebezug bei 20°C in kWh


 $Q_{h_{eff.}}$ effektiver (gemessener) Heizwärmebezug in kWh

HGT_{20/12}. Heizgradtage bezogen auf 20°C in K Tage

HGTti/12. Heizgradtage bezogen auf die effektive, mittlere Raumtemperatur in K Tage


Die rel. Feuchte ist in allen Räumen im "behaglichen" Bereich (zwischen 40 und 60 % r.F.).

Dia. 2: Raumluftfeuchte in WHG01 (3 1/2 Zimmer Wohnung) – als "behaglich" zu betrachten

Auch die CO₂-Konzentration weist, mit wenigen Ausnahmen, "gute" bis "sehr gute" Werte auf:

Dia. 3: CO_2 -Konzentration in WHG01 (3 ½ Zimmer Wohnung) – "gute" bis "sehr gute" Werte bzw. meist unter 1500 ppm


WHG02 West/Ost EG 5.5 Zi

In der Wohnung wohnen drei erwachsene Personen mit einem Kleinkind. Folgende Minima, Maxima und Mittelwerte wurden gemessen:

	Wohnen			K	ind	Schlaf	zimmer
	Tem-	rel. Feu	CO ₂ - Konzent-	Tem-	rel. Feu	Tem-	rel. Feu
	pera- tur [°C]	cht	ration	peratur [°C]	cht	peratur [°C]	cht
		e [%r .F.]	[ppm]		e [%r. F.]		e [%r. F.]
Mit- tel- wert	21.8	54	1169	21.6	51	22.6	50
Min. Wert	12.6	33	368	17.0	33	17.6	30
Max. Wert	26.8	75	3492	24.3	65	24.7	70

Tab. 8: Behaglichkeit in WHG02 (5 1/2 Zimmer Wohnung)

Die Raumlufttemperatur in allen gemessenen Zimmern beträgt im Mittel 22°C und ist somit als "eher warm" zu bezeichnen:

Dia. 4: "Eher warme" Raumlufttemperatur in WHG02 (5 $\slash\!\!\!/_2$ Zimmer Wohnung)

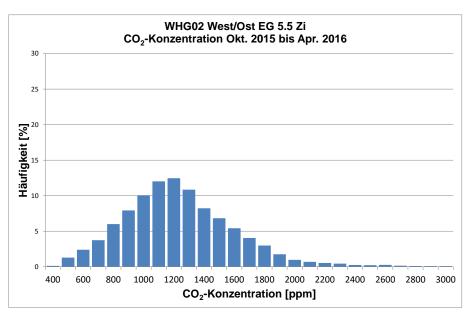
Gegenüber der Auslegetemperatur von 20°C hat die effektive, mittlere Raumtemperatur von 22°C einen 12% höheren Heizwärmebezug zur Folge.

Die Berechnung erfolgt analog Beispiel Kapitel WHG01 West/West EG 3.5 Zi):

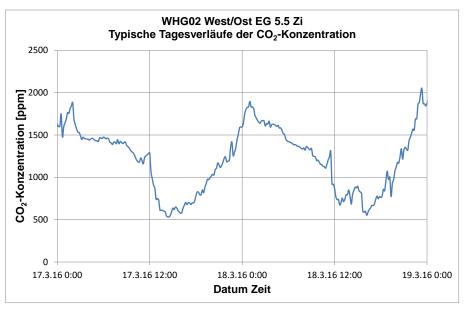

Q_{h_20°C} Heizwärmebezug bei 20°C =4156 kWh

Q_{h_eff.} effektiver (gemessener) Heizwärmebezug 4734 kWh HGT_{20/12}. Heizgradtage bezogen auf 20°C = 2850 K Tage

HGT_{ti/12}. Heizgradtage bezogen auf die effektive, mittlere Raumtemperatur von 22°C = 3246 K Tage



Die rel. Feuchtigkeit liegt in jedem Zimmer in einem "behaglichen" Bereich (zwischen 40-65 % r.F.):


Dia. 5: Raumluftfeuchte in WHG02 (5 ½ Zimmer Wohnung) – als "behaglich" zu betrachten

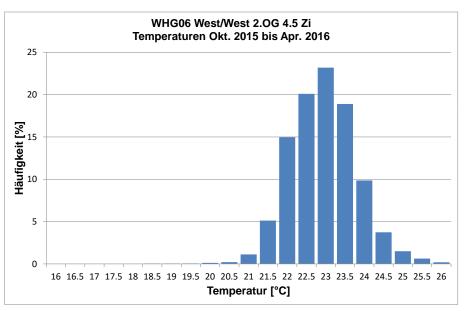
Als "eher hoch" ist die durchschnittliche CO2-Konzentration mit 1170 ppm einzustufen

Dia. 6: CO_2 -Konzentration in WHG02 (5 ½ Zimmer Wohnung) – meist unter 1500 ppm

Ursachen für den unerwartet hohen, aber immer noch unbedenklichen, CO₂-Gehalt konnten keine festgestellt werden. In der Wohnung wurden neben den Behaglichkeitsmessungen auch vor Beginn der Messkampagne die Luftvolumenströme überprüft (siehe 7 Komfortlüftung). Dia. 7 zeigt den typischen Tagesverlauf der CO₂-Konzentration in Wohnzimmer. Daraus kann geschlossen werden, dass die Lüftungsanlage in Betrieb ist und grundsätzlich einwandfrei arbeitet. Vermutlich ist die Belastung im Raum so hoch, dass der eingestellte Volumenstrom von 38 m³/h nicht ausreicht, um die Konzentration tiefer zu halten.

Dia. 7: Typische Tagesverläufe der CO₂-Konzentration im Wohnzimmer

WHG06 West/West 2.OG 4.5Zi

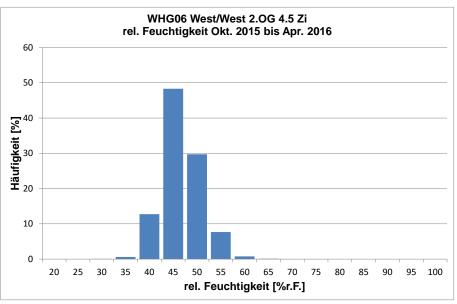

In der Wohnung wohnen zwei erwachsene, berufstätige Personen. Folgende Minima, Maxima und Mittelwerte wurden gemessen:

	Wohnen			Bi	üro	Schlaf	zimmer
	Tem- peratur [°C]	rel. Fe uch te [%r .F.]	CO ₂ - Konzent- ration [ppm]	Tem- peratur [°C]	rel. Feu cht e [%r .F.]	Tem- peratur [°C]	rel. Feu cht e [%r. F.]
Mit- tel- wert	22.7	44	692	22.9	44	22.6	45
Min. Wert	16.6	26	400	15.6	26	12.9	33
Max. Wert	27.8	58	2056	34.7	72	25.2	60

Tab. 9: Behaglichkeit in WHG06 (4 1/2 Zimmer Wohnung)

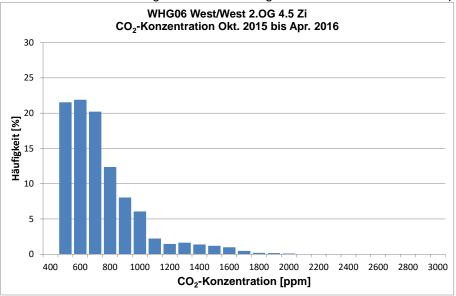
Die mittlere Raumlufttemperatur ist mit 22.7°C als "warm" zu beurteilen:

Dia. 8: "Warme" Raumlufttemperatur in WHG06 (4 ½ Zimmer Wohnung)


Gegenüber der Auslegetemperatur von 20°C hat die effektive, mittlere Raumtemperatur von 22.7°C einen 16% höheren Heizwärmebezug zur Folge.

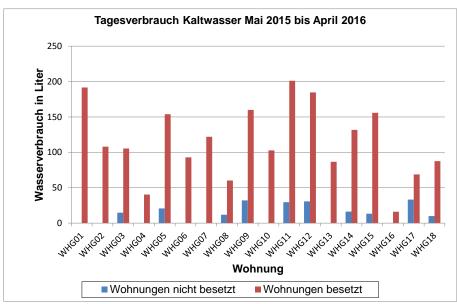
Die Berechnung erfolgt analog Beispiel Kapitel WHG01 West/West EG 3.5 Zi):

Qh_20°C Heizwärmebezug bei 20°C =4614 kWh


 $Q_{h_eff.}$ effektiver (gemessener) Heizwärmebezug 5480 kWh HGT_{20/12}. Heizgradtage bezogen auf 20°C = 2850 K Tage

HGT_{ti/12}. Heizgradtage bezogen auf die effektive, mittl. Raumtemperatur von 22.7°C = 3384 K Tage

Dia. 9: Raumfeuchte in WHG06 (4 1/2 Zimmer Wohnung) – als "behaglich" zu bewerten



Dia. 10: "Tiefe" CO₂-Konzentration in WHG06 (4 ½ Zimmer Wohnung)

Wasserverbrauch

Die nachfolgenden Diagramme Dia. 11 und Dia. 12 zeigen den Kalt- und Warmwasserverbrauch pro Wohnung und Tag über die bewohnte und leerstehende Dauer.

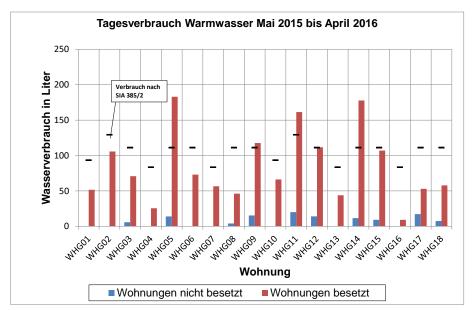
Dia. 11: Wasserverbrauch je Wohnung während der Messperiode Mai 2015 bis April 2016

Beim Diagramm Dia. 12 sind zur Vergleichbarkeit die nach SIA 385/2:2015, Anhang A berechnete Warmwasserverbräuche eingezeichnet. Diese wurden wie folgt ermittelt:

$$V_{\mathrm{w}} = V_{\mathrm{w,u}} \cdot \frac{50}{\left(\theta_{\mathrm{w}} - \theta_{\mathrm{c}}\right)} \cdot n_{\mathrm{P,i}}$$

Vw Nutzwarmwasserbedarf in Liter

V_{w,u} Nutzwarmwasserbedarf in Normliter pro Tag gemäss SIA 385/2: 2015, Anhang A, Tabelle 3: Mehrfamilienhaus, allgemeiner Wohnungsbau (35 Normliter / Person)


50 Temperaturdifferenz Warmwasser – Kaltwasser unter Normbedingung (60°C – 10°C)

 $\square_{\rm w}$ Warmwassertemperatur = 48°C

□c Kaltwassertemperatur = 10°C

n_{2P.i} Anzahl Personen in der Wohneinheit (eff. Belegung nicht bekannt)

Dia. 12: Wasserverbrauch je Wohnung während der Messperiode Mai 2015 bis April 2016

Wohnung Besetzt ab			d der Messperiode Mai 2015 bis April 20° Kaltwasser			Warmwasser				
	_		Summe		Tage: brau			mme	Tage: brat	
			nicht be- setzt	Liter Liter	nicht be- setzt	Liter	nicht be- setzt	Liter Liter	riter setzt	Liter
WHG01 W	W EG 3.5Zi	01.11.2014	0	70109	0	192	0	18895	0	52
WHG02 W	O EG 5.5Zi		0	39517	0	108	0	38699	0	106
WHG03 W	/W 1.OG 4.5Zi	15.03.2016	4515	6429	15	105	1764	4320	6	71
WHG04 SV	W 1.OG 2.5Zi	01.04.2015	0	14782	0	40	0	9352	0	26
WHG05 W	O 1.OG 4.5Zi	01.02.2016	5726	13847	21	154	3854	16466	14	183
WHG06 W	W 2.OG 4.5Zi	01.03.2015	0	34019	0	93	0	26715	0	73
WHG07 SV	W 2.OG 2.5Zi	01.04.2015	0	44635	0	122	0	20694	0	57
WHG08 W	O 2.OG 4.5Zi	01.01.2016	2896	7291	12	60	977	5580	4	46
WHG09 At	ttika West 5.5Zi	01.04.2016	10785	4797	32	160	5152	3528	15	118
WHG10 O	W EG 3.5Zi	01.12.2014	0	37602	0	103	0	24219	0	66
WHG11 O	O EG 5.5Zi	01.01.2016	7238	24342	30	201	4909	19528	20	161
WHG12 O	W 1.OG 4.5Zi	01.04.2016	10327	5541	31	185	4739	3351	14	112
WHG13 SC	O 1.OG 2.5Zi	01.03.2015	0	31713	0	87	0	16050	0	44
WHG14 O	O 1.OG 4.5Zi	01.03.2016	4962	8035	16	132	3538	10840	12	178
WHG15 O	W 2.OG 4.5Zi	01.12.2015	2865	23683	13	156	1972	16266	9	107
WHG16 SC	O 2.OG 2.5Zi	15.12.2014	0	5881	0	16	0	3353	0	9
WHG17 O	O 2.OG 4.5Zi	01.06.2015	1031	23059	33	69	535	17756	17	53
WHG18 At	ttika Ost 5.5Zi	01.04.2016	3360	2627	10	88	2509	1733	7	58
Summe			53706	397908	213	2069	29950	257348	119	1518

Tab. 10: Wasserverbrauch je Wohnung während der Messperiode April 2015 bis April 2016

Monat	Werkzähler KW ge- samt [Li- ter]	Wasserbe- zug allge- mein [Liter]	Kaltwasser WHG [Liter]	Warmwas- ser WHG [Liter]	SIA 385/2 WHG [Liter]
Mai 15	48'396	8'854	25'916	13'625	58618
Jun 15	75'610	32'013	28'552	15'045	56727
Jul 15	244'226	205'333	27'504	11'389	58618
Aug 15	69'126	30'250	27'381	11'495	58618
Sep 15	45'273	6'951	25'887	12'434	56727
Okt 15	60'155	9'783	30'292	20'080	58618
Nov 15	64'098	7'679	33'928	22'491	56727
Dez 15	72'966	9'333	39'811	23'822	58618
Jan 16	83'243	11'754	41'943	29'545	58618
Feb 16	91'848	12'427	45'685	33'737	54836
Mrz 16	123'917	16'865	61'415	45'637	58618
Apr 16	129'800	18'503	63'299	47'997	56727
Summe	1'108'800	369'746	451'614	287'298	692'071

Tab. 11: Monatlicher Wasserverbrauch

Der gemessene Wasserbezug für das gesamte Gebäude beläuft sich auf 1'109 m³ Wasser. Davon wurden 370 m³ für den allgemeinen Gebäudeunterhalt und 739 m³ in den Wohnungen verbraucht. In den Wohnungen beträgt der Anteil an Warmwasser 39% (bezogen auf den gesamten Wasserbezug). Verglichen mit der Berechnung nach SIA 385/2 wurde über die gesamte Messperiode 2.5 mal weniger Warmwasser verbraucht. Im April 2016, wo alle Wohnungen vermietet waren, liegt der effektive Verbrauch nur 15% unter dem SIA 385/2 Wert.

9. Aussenklima

Vergleicht man die Heizgradtage HGT20/12 während der Messperiode mit dem langjährigen Mittelwert nach SIA 381/4 (2001 – 2010) für den Standort Luzern, können die klimatischen Verhältnisse während den Heizmonaten als eher warm bezeichnet werden. Die gemessenen Heizgradtage HGT20/12 liegen 6.5% unter dem langjährigen Mittelwert. Ein eher kalter Monat war der Oktober 2015, hier liegen die Heizgradtage 27% über dem langjährigen Mittelwert. Ein warmer Monat mit 28% der Heizgradtage unter dem langjährigen Mittelwert war der April 2015.

		Temperatu	ır		HGT20/12	
Monat	Mittel- wert [°C]	Maxi- mum [°C]	Mini- mum [°C]	swiss- wood- house	Langjäh- riges Mit- tel Lu- zern	Differenz [%]
Apr 15	10.5	22.3	-1.7	181	252	27.8
Mai 15	14.5	28.0	5.5	-	-	-
Jun 15	18.7	30.3	9.3	-	-	-
Jul 15	22.6	34.4	11.2	-	-	-
Aug 15	20.4	34.3	11.5	-	-	-
Sep 15	13.6	25.8	5.4	-	-	-
Okt 15	9.6	19.3	2.0	290	229	-26.6
Nov 15	7.3	19.4	-3.8	361	448	19.4
Dez 15	3.6	15.3	-2.5	515	588	15.0
Jan 16	3.2	11.0	-7.6	521	599	14.9
Feb 16	5.4	16.0	-0.8	436	512	14.9
Mrz 16	5.2	21.0	-2.0	452	431	-4.9
Apr 16	9.6	20.7	0.8	275	252	-9.0
Total				2850	3059	7.7

Tab. 12: Aussenklima während der Messperiode April 2015 bis April 2016 – April 2015 dient als Referenz

10. Energieverbrauch

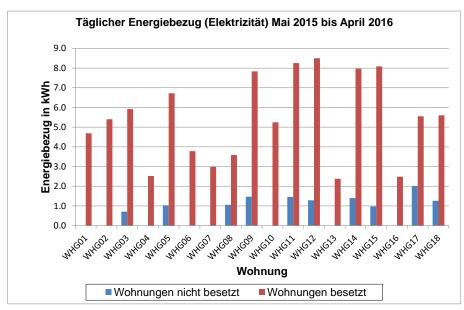
Die nachfolgende Tabelle zeigt die einzelnen Energieverbräuche auf. Die Energiebezüge der Grundwasser-, Heizungs- und Zirkulationspumpen sowie der elektrischen Zusatzheizung für Warmwasser (Legionellenschutz) wurden durch periodisch manuelle Zählerablesung vor Ort erfasst. Eine Aufschlüsselung nach Monaten ist daher nicht möglich.

Die Energiebezüge in den Wohnungen beinhalten die Bezüge aller Wohnung, über die gesamte Messperiode. Der Wärmebezug für das Warmwasser wurde zentral für alle Wohnung gemessen. Die Aufteilung für die bezogenen und leerstehenden Wohnungen wurde prozentual anhand der Warmwasserverbräuche berechnet.

	Grundwasser- pumpe	Sole/Wasser Wärmepumpe	Heizungspum- pen	Zirkulations- pumpe	Elektr. Zusatz- heizung Boiler	Wärmemenge aus Grundwas- ser	Heizwärmebe- zug Wohnungen	Wärmebezug Warmwasser	Energiebezug Wohnungen	Energiebezug Allgemein	Photovoltaik- Anlage
							n.be./be.	Nicht be- legt./ belegt.			
	E _{G_Pu} [k <u>Wh</u>]	E _{WP} [k <u>Wh</u>]	E _{h_Pu} [k <u>Wh</u>]	E _{w_Pu} [k <u>Wh</u>]	E _{w_EI} [k <u>Wh</u>]	Q _{GW} [k <u>Wh</u>]	Q _h [k <u>Wh</u>]	Qw [k <u>Wh</u>]	E _{WHG} [k <u>Wh</u>]	E _{ALG} [k <u>Wh</u>]	E _{Solar} [k <u>Wh</u>]
Mai 15	-	1'192	-	-	-	2'426	991/633	85/1'077	1'115	714	3'670
Jun 15	-	671	-	-	-	1'010	147/113	210/870	1'168	720	4'072
Jul 15	-	484	-	-	-	644	20/27	94/748	1'086	736	4'307
Aug 15	-	580	-	-	-	850	147/98	74/816	1'108	721	3'405
Sep 15	-	1'303	-	1	1	2'854	1'212/1'170	2/968	1'194	698	2'379
Okt 15	ı	2'323	-	1	ı	5'782	2'554/3'031	195/1'207	1'456	718	1'387
Nov 15		2'667	-	-	-	6'848	3'207/3'756	430/1'010	1'467	763	1'016
Dez 15		4'037	-	-	-	10'742	5'248/6'467	255/1'485	1'881	934	747
Jan 16		4'579	-	-	-	12'154	4'601/8'581	228/1'912	2'139	1'036	507
Feb 16	-	3'961	-	-	-	10'332	3'091/7'704	143/2'077	2'147	1'004	929
Mrz 16	-	4'237	-	-	-	10'856	2'495/8'401	351/2'571	2'848	1'288	2'038
Apr 16	-	2'826	-	-	-	6'976	0/6'153	0/2'602	2'973	1'174	2'619
Total	2'872	28'860	806	25	616	71'474	23'713/46'134	2'065/17'345	20'582	10'506	27'076
Total	1.14	11.43	0.32	0.01	0.24	28.31	9.4/18.3	082/6.87	8.15	4.16	10.72

Tab. 13: Monatlich gemessener Energieverbrauch der einzelnen Verbraucher – Messperiode Mai 2015 – April 2016

Der gemessene Endenergiebedarf für die Wärmeerzeugung ($E_{G_PU} + E_{WP} + E_{h_Pu} + E_{w_Pu} + E_{w_El}$) beträgt 13.14 kWh/m². Dies ergibt einen effektiven, gewichteten Endenergiebedarf gemäss MINERGIE-P Reglement von 26.28 kWh/m².


Somit wird der MINERGIE-P Grenzwert von 30.0 kWh/m² um 12% unterschritten. Eine genauere Analyse der Messdaten zeigt jedoch, dass der Heizwärmebedarf deutlich über dem berechneten Wert nach SIA 380/1 liegt Der daraus resultierende Mehrbedarf an Endenergie wird, verglichen mit dem theoretischen Verbrauch, durch einen dreimal tieferen Warmwasserverbrauch kompensiert (siehe 0 Heizwärmebedarf und 0 Wärmebezug Warmwasser)

Energiebezug Wohnungen

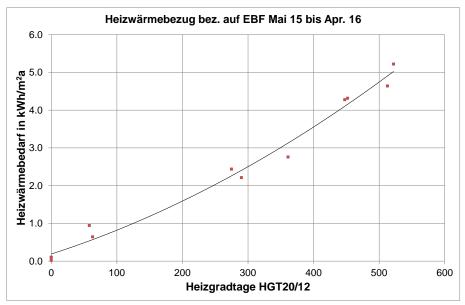
Der elektrische Energiebezug wurde für jede Wohnung gemessen. Darin enthalten ist neben der Nutzenergie der Bewohner auch der elektrische Energiebezug der Lüftungsgeräte, welche sich im Untergeschoss befinden.

Der Energiebezug je Wohnung in der Messperiode Mai 2015 bis April 2016 ist unten ersichtlich:

Dia. 13: Energiebezug Elektrizität je Wohnung – Messperiode Mai 2015 bis April 2016

Heizwärmebedarf

Diagramm 12 zeigt den Heizwärmebezug aller Wohnungen in Funktion der Heizgradtage. Der gemessene Heizwärmebedarf von 27.7 kWh/m²a liegt deutlich über dem nach SIA 380/1 berechneten eff. Heizwärmebedarf mit Lüftungsanlage von 13.1 kWh/m²a.


Der gemessene monatliche Heizwärmebedarf ist in Tabelle 12 aufgeführt.

Monat	HGT20/12 [kWh]	Heizwärmebezug [kWh/m² a]
Mai 15	63	0.6
Jun 15	0	0.1
Jul 15	0	0.0
Aug 15	0	0.1
Sep 15	58	0.9
Okt 15	290	2.2
Nov 15	361	2.8
Dez 15	513	4.6
Jan 16	522	5.2
Feb 16	448	4.3
Mrz 16	452	4.3
Apr 16	275	2.4
Total		27.7

Tab. 14: Gemessener monatlicher Heizwärmebedarf – Messperiode Mai 2015 bis April 2016

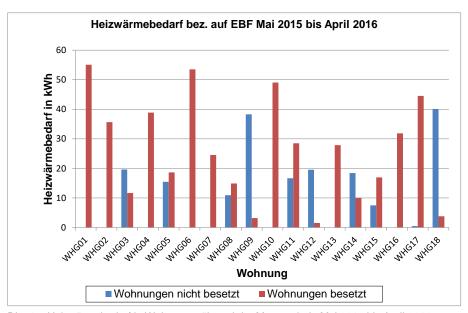


Diagramm Dia. 14 zeigt den Heizwärmebedarf in Abhängigkeit der Heizgradtage HGT20/12

Dia. 14: Heizwärmebezug in Abhängigkeit der Heizgradtage 20/12 während der Messperiode Mai 2015 bis April 2016

Auffallend unterschiedlich ist der Heizwärmebedarf der einzelnen Wohnungen. Das untenstehende Diagramm zeigt den Heizwärmebedarf je Wohnung.

Dia. 15: Heizwärmebedarf je Wohnung während der Messperiode Mai 2015 bis April 2016 – grosse Schwankungen

Anhand der Messdaten können keine abschliessenden Ursachen für den hohen Heizwärmebedarf identifiziert werden. Zwei Einflüsse sind jedoch zu fest zu stellen:

Wärmeabgabe leeerstehender Wohnungen
Der Wärmebedarf in den leerstehenden Wohnung ist aufgrund der fehlenden internen Lasten
(Wärmeabgabe Personen, elektrische Verbraucher) und reduzierter Lüftung höher.
Die beiden 5.5-Zimmer Wohnungen WHG02 und WHG11 sind identisch. Von September bis
Dezember 2015 war die WHG02 besetzt und die WHG11 leerstehend. Aufgrund der CO2

Messung kann davon ausgegangen werden, dass eine Fensterlüftung ausgeschlossen werden kann (siehe 0 WHG02 West/Ost EG 5.5 Zi).

Heizwärmebedarf bei HGT_{20/12}

	t _{i.eff.}	HGT _{22/12}	HGT _{18/12}	HGT _{20/12}	Q _{h.eff.}	Q _{h.HGT20/12}
	°C	K Tage	K Tage	K Tage	kWh	kWh
HGT		1334	998	1166		
WHG02 WO EG 5.5Zi	22				1981	1732
WHG11 OO EG 5.5Zi	18*				2010	2348

^{*} Temperatur geschätzt

Tab. 15: Vergleich Heizwärmebedarf WHG02 mit WHG11

Der gemessene Heizwärmebedarf ist bei beiden Wohnungen in etwas gleich. Bezogen auf eine Raumtemperatur von 20°C in der Wohnung WHG02 liegt der Heizwärmebedarf der leerstehenden Wohnung (WHG11) um 16% höher als derjenige der besetzten Wohnung (WHG02).

Benutzerverhalten (z.B. Raumtemperatur, Bedienung des Sonnenschutzes, offene Fenster) Beispiel 1: Die in den drei Referenzwohnungen gemessenen Raumtemperaturen sind bis 3 K höher als die bei der Berechnung des Heizwärmebedarfs nach Norm SIA 380/1 von 20°C. Liegt die mittlere Raumtemperatur in allen Wohnungen ist um 2 K höher als die Auslegetemperatur, hätte dies einen Mehrbedarf an Heizwärme um ca. 12%.

Beispiel 2: Wohnung WHG011 wurde im Januar 2016 bezogen. Der Heizwärmebedarf der besetzten Wohnung nahm im Vergleich zum Bedarf der nicht besetzten Wohnung um über 40% zu.

	Monat	ж Натол В НGT20/10	x Heizwärme S bedarf	A spez. 나 Heizwärme 의 bedarf
Wohnungen	Okt 15	290	401	
nicht besetzt	Nov 15	361	496	
	Dez 15	515	1113	
	Summe	1166	2010	1.7
Wohnungen	Jan 16	521	1321	
besetzt	Feb 16	436	1103	
	Mär 16	452	1083	
	Apr 16	275	626	
	Summe	1162	2812	2.4

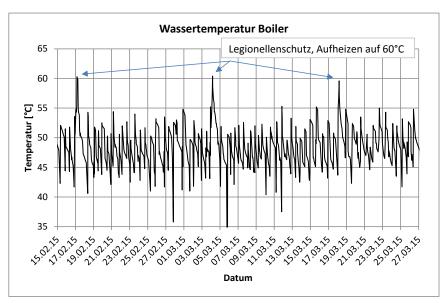
Tab. 16: Heizwämebedarf WHG11

$$\text{Mehrbedarf Heizwärmebedarf: } \frac{\left(2.4\,k\,Wh/K\,_Tage-\left(1.7\,k\,Wh/K\,_Tage-1.7\right)\right)}{\left(1.7\,k\,Wh/K\,_Tage-1.7\right)} \cdot 100\,\%V = \underline{\underline{42\%}}$$

Wärmebezug Warmwasser

Aufgrund der leerstehenden Wohnungen während der Messperiode ist der gemessene Wärmebedarf für das Warmwasser mit 7.69 kWh/m²a tiefer als der in der Berechnung eingesetzte Standardwert (gemäss SIA 380/1) von 23.8 kWh/m²a.

Der Wärmebezug für das Warmwasser wurde mit einem Wärmezähler in der Warmwasserspeicher-Ladeleitung gemessen. Diese Messwerte enthalten daher den Wärmebezug für das Aufheizen des Warmwassers inkl. der Speicher-, Leitungs- und Ausstossverluste. In den Wohnungen wurde der Warmwasserverbrauch mit einem Wasserzähler erfasst.


Tab. 17 zeigt den monatlichen Wärmebezug für die Warmwasseraufbereitung. Die Aufteilung für die bezogenen und leerstehenden Wohnungen wurde prozentual anhand der Warmwasserverbräuche berechnet. Der Vergleich mit SIA 385/2 ist in 0

Wasserverbrauch aufgeführt.

Monat	Alle WHG [kWh]	WHG nicht be- legt [kWh]	WHG belegt [kWh]
Mai 15	1'162	85	1'077
Jun 15	1'080	210	870
Jul 15	842	94	748
Aug 15	890	74	816
Sep 15	970	2	968
Okt 15	1'402	195	1'207
Nov 15	1'440	430	1'010
Dez 15	1'740	255	1'485
Jan 16	2'140	228	1'912
Feb 16	2'220	143	2'077
Mrz 16	1'922	351	2'571
Apr 16	2'902	0	2'602
Total	19'410	2'067	17'345

Tab. 17: Wärmebedarf Warmwasser aller Wohnungen

Das Warmwasser wurde mit der Wärmepumpe auf ca. 53°C aufgeheizt. Die mittlere Warmwassertemperatur im Speicher betrug ca. 48°C. Zur Vermeidung von Legionellenbildung wurde im 14-Tage-Rhythmus das Warmwasser elektrisch auf 60°C erwärmt. Folgende Grafik zeigt diesen Zyklus:

Dia. 16: Wassertemperaturverlauf im Warmwasserspeicher (Februar und März 2015) - Elektrische Aufheizung durch Spitzen erkennbar

Nutzungsgrad Wärmepumpe

Die zur Verfügung stehenden Messdaten der Wärmepumpe lassen keine Unterscheidung zwischen Warmwasser- und Heizungsbetrieb zu. Daher können für die Wärmepumpe nur Nutzungsgrade für den gesamten Wärmebezug berechnet werden.

Jahresarbeitszahl Wärmepumpe

Die Jahresarbeitszahl der Wärmepumpe berechnet sich wie folgt:

$$JAZ_{hw} = \frac{Q_h + Q_w}{E_{WP} + E_{G-Pu}} = \frac{69847 + 19410}{28860 + 2872} = \underline{\underline{2.8}}$$

Legende:

Heizwärmebezug Wohnungen in kWh Q_h Q_w Wärmebezug Warmwasser in kWh E_{WP} Energiebedarf Wärmepumpe in kWh Energiebedarf Grundwasserpumpe in kWh $\mathsf{E}_{\mathsf{G}_\mathsf{Pu}}$

Systemnutzungsgrad des gesamten Wärmebezugs

Im Systemnutzungsgrad (SNG) werden auch die Energiebezüge der elektrischen Zusatzheizung, der Heizungspumpen und der Zirkulationspumpe berücksichtigt. Der SNG berechnet sich folgendermassen:

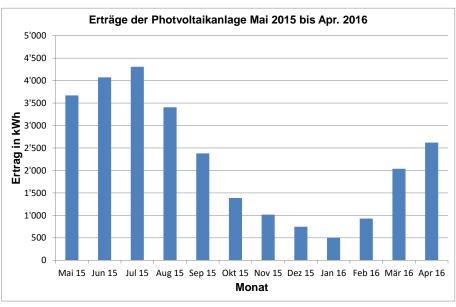
$$SNG_{hw} = \frac{Q_h + Q_w}{E_{WP} + E_{G-Pu} + E_{h-Pu} + E_{Z-Pu} + E_{w-El}} = \frac{69847 + 19410}{28860 + 2872 + 806 + 25 + 616} = \underline{\underline{2.7}}$$

Legende:

 Q_h Heizwärmebezug Wohnungen in kWh Q_w Wärmebezug Warmwasser in kWh Ewp Energiebedarf Wärmepumpe in kWh Eg Pu Energiebedarf Grundwasserpumpe in kWh $\mathsf{E}_{\mathsf{h}_\mathsf{Pu}}$ Energiebedarf Heizungspumpe in kWh Ez Pu Energiebedarf Zirkulationspumpe Warmwasser in kWh

Energiebedarf elektr. Zusatzheizung Boiler in kWh Ew EI

Bemerkung zu Ew_Ei: Die Verteilverluste von der Heizungsverteilung bis zu den Wohnungen sind nicht in Qh enthalten (werden nicht messtechnisch erfasst).

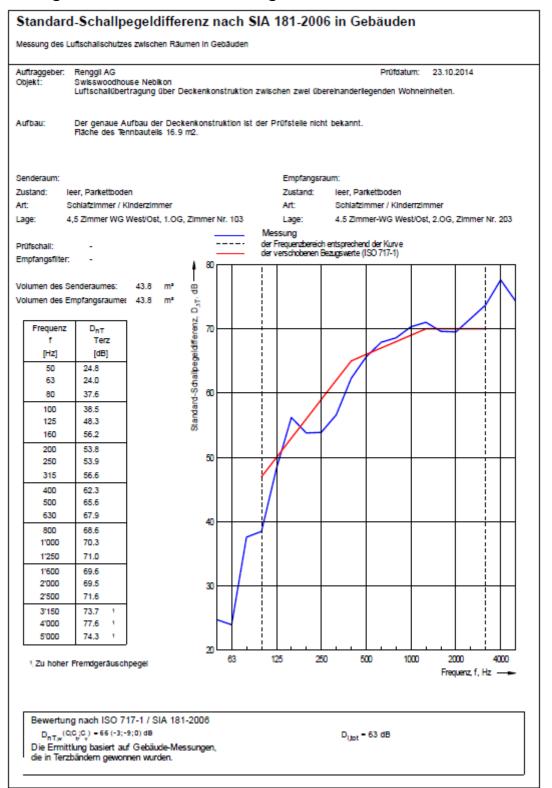

11. Photovoltaikanlage

Mit der Photovoltaikanlage, mit einer Fläche von 157 m² und 25.9 kWp, konnte ein Ertrag von 27'076 kWh/a erzielt werden. Die monatlichen Erträge belaufen sich auf folgende Werte:

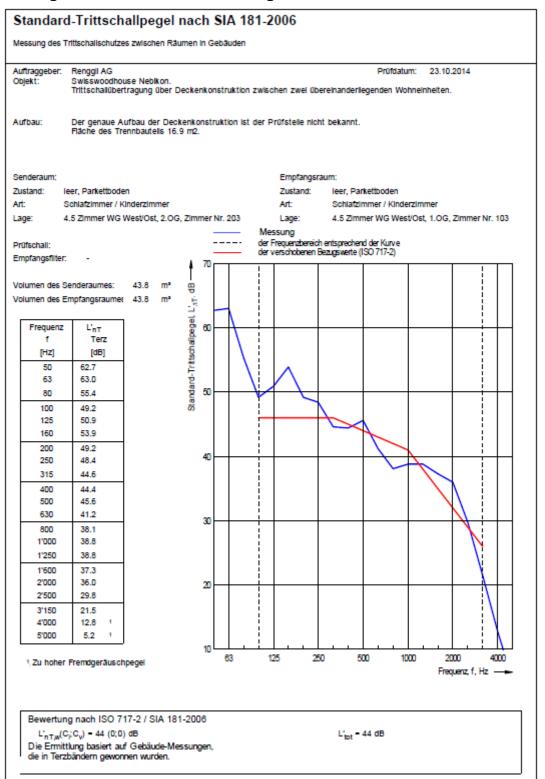
Monat	Ertrag der Photovoltaikanlage [kWh]
Mai 15	3'670
Jun 15	4'072
Jul 15	4'307
Aug 15	3'405
Sep 15	2'379
Okt 15	1'387
Nov 15	1'016
Dez 15	747
Jan 16	507
Feb 16	929
Mrz 16	2'038
Apr 16	2'619
Total	27'076

Tab. 18: Monatliche Erträge der Photovoltaikanlage zwischen Mai 2015 und April 2016

Folgende Grafik ergänzt den Ertragsverlauf der Photovoltaikanlage aus der obigen Tabelle:


Dia. 17: monatliche Erträge der Photovoltaikanlage während der Messperiode Mai 2015 bis April 2016

12. Luft und Trittschalldämmung Deckenkonstruktion


Zur Verifikation der Deckenkonstruktion wurde die Luft- und Trittschalldämmung zwischen zwei übereinanderliegenden Wohneinheiten bestimmt. Die Messungen wurden nach "SIA 181:2006, Schallschutz im Hochbau" durchgeführt (siehe auch Prüfbericht HP-141342/a).

Prüfergebnisse Luftschalldämmung

Prüfergebnisse Trittschalldämmung

Beurteilung der Prüfergebnisse

Luftschalldämmung

SIA 181: 2006 [1] stellt nachfolgende Mindestanforderungen an den Schutz gegen Luftschall von Innen $(D_{i,tot} \ge D_i)$.

Mindestanforderung gemäss Tabelle 4 [1] bei mässiger Lärmbelastung (Nutzung normal; Wohn-, Schlafraum, Küche, Bad WC, Korridor) und hoher Lärmempfindlichkeit	Anforderungs- wert D _i = 57 dB	Gemessener Wert D _{i,tot} = 63 dB	Anforderung erfüllt
Erhöhte Anforderungen gemäss Kapitel 3.2.1.3 [1] bei mässiger Lärmbelastung (Nutzung normal; Wohn-, Schlafraum, Küche, Bad WC, Korridor) und hoher Lärmempfindlichkeit	Anforderungs- wert D _i = 60 dB	Gemessener Wert D _{i,tot} = 63 dB	Anforderung erfüllt

Trittschalldämmung

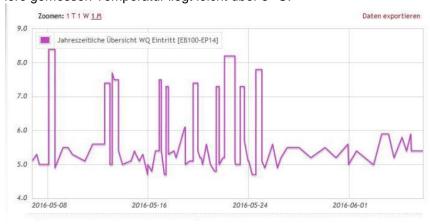
SIA 181: 2006 [1] stellt nachfolgende Mindestanforderungen an den Schutz gegen Trittschall ($L'_{tot} \leq L'$).

Mindestanforderung gemäss Tabelle 5 [1] bei mässiger Lärmbelastung (Nutzung normal; Wohn-, Schlafraum, Küche, Bad WC, Korridor) und hoher Lärmempfindlichkeit	Anforderungs- wert L' = 48 dB	Gemessener Wert L' _{tot} = 44 dB	Anforderung erfüllt
Erhöhte Anforderungen gemäss Kapitel 3.2.2.3 bei mässiger Lärmbelastung (Nutzung normal; Wohn-, Schlafraum, Küche, Bad WC, Korridor) und hoher Lärmempfindlichkeit	Anforderungs- wert L' = 45 dB	Gemessener Wert L' _{tot} = 44 dB	Anforderung erfüllt

13. Diskussion / Erkenntnisse

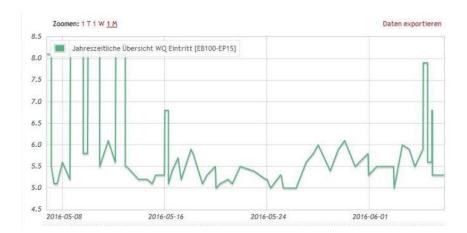
Aufgrund der während der Messperiode teilweise leerstehenden Wohnungen lassen sich die Messresultate nicht direkt mit den Auslegedaten vergleichen.

Die gemessene Jahresarbeitszahl (JAZ) von 2.8 weicht stark von der im MINERGIE-P Zertifizierungsantrag ausgewiesenen, hohen JAZ von 3.7 ab. Einerseits wurde nicht die im MINERGIE-P Zertifizierungsantrag aufgeführte Wärmepumpe Stiebel-Eltron WPF 40, sondern eine Sigmatic NIBE 1345-40 eingebaut:


Wärmepumpe	COP W10 / W50	COP W10 / W35	Heizleistung	JAZ
			bei W10 / W35	
Stiebel-Eltron WPF 40	4.01	6.08	59	3.66
Sigmatic NIBE 1345-40	3.98	5.34	51.8	3.25*

Tab. 19: Monatliche Erträge der Photovoltaikanlage zwischen Mai 2015 und April 2016

Der Minergie-Nachweis mit der neuen Wärmepumpe muss von Renggli AG angepasst werden. Eine überschlagsmässig Berechnung zeigt, dass der MINERGIE-P Grenzwert auch mit der neuen Wärmepumpe eingehalten werden kann.


Andererseits wurden vom Planer aufgrund einer Analyse der Anlage mögliche Gründe für die tiefere JAZ identifiziert. wo möglich wurden entsprechende Anpassungen vorgenommen.

- Heizkurve zu hoch (alt -8°C/36°C, neu -8°C/32°C)
- Anpassung Freigabe für Warmwasseraufbereitung (alt 22:00 Uhr bis 06:00 Uhr, neu 22:00 Uhr bis 06:00 Uhr und 14:00 bis 16:00 Uhr)
- Tiefere Quellentemperatur als angenommen. Nachfolgendes Diagramm zeigt den Verlauf der WP-Eintrittstemperatur Verdichter 1 und 2 im Mai 2016 (Messwerte Wärmepumpe intern). Die JAZ im MINERGIE-P Zertifizierungsantrag bezieht sich auf eine Temperatur von 7°C, die mittlere gemessen Temperatur liegt leicht über 5 °C.

^{*} Jahresarbeitszahl vom Planer mit WPesti berechnet.

Der gemessene Heizwärmebedarf ist doppelt so hoch wie der berechnete. Folgende Gründe konnten identifiziert werden:

- Der Heizwärmebedarf der leerstehenden Wohnung ist aufgrund fehlender interner Lasten (Wärmeabgabe Personen, elektrische Verbraucher) und reduzierter Lüftung zwischen 10% bis 20% höher als der Planungswert.
- Aufgrund des Benutzerverhaltens (z.B. höhere Raumtemperatur, Bedienung des Sonnenschutzes, offene Fenster) wurde Mehrbedarf von über 40% festgestellt.

Der gemessene Wärmebedarf für die Warmwasseraufbereitung von 7.69 kWh/m²a ist dreimal tiefer als der berechnete Warmwasserbedarf nach SIA 380/1 von 23.8 kWh/m²a. Die letzten zwei Wohnungen wurden erst gegen Ende der Messperiode, im April 2016, besetzt. Mit dem Verbrauch im April 2016 als Referenz muss mit einem jährlichen Wärmebedarf für das Warmwasser von 20 kWh/m²a gerechnet werden.

Ergebnisse Kommunikationsmassnahmen

In einem über mehrere Jahre dauernden Prozess wurden verschiedene Investoren mit dem Konzept swisswoodhouse vertraut gemacht, interne und externe Referate sowie Events durchgeführt, die Projektunterlagen laufend angepasst, optimiert, ausgebaut. Während die Bemühungen in den ersten Jahren vor allem darauf abzielten, das theoretische Konzept swisswoodhouse vorzustellen und einen Investor sowie geeignetes Bauland zu finden, haben sich die Kommunikationsmassnahmen nach Vertragsabschluss mit dem Investor Personalvorsorgestiftung Müller Martini für das Pilotprojekt in Nebikon auf ein "lebendes Projekt" konzentrieren können. Seit Herbst 2014 steht das erste swisswoodhouse mit 18 Wohneinheiten in Nebikon LU. Anhand des nun erlebbaren Referenzprojekts war es einfacher, die Sensibilisierungskampagne für mehrgeschossige Holzbauprojekte im Wohnbau zu schärfen. Nachstehend zusammengefasst sind die Massnahmen der letzten drei Jahre, welche rund um swisswoodhouse Nebikon geplant und realisiert wurden. Das Interesse und Publikationen in der Presse über swisswoodhouse sind aber noch voll im Gange und noch nicht abgeschlossen.

Erschienene Objektreportagen (Auszug in Bezug auf Renggli AG):

- Schweizer Energiefachbuch (2010)
- NZZ (September 2013)
- Tec21 (September 2013)
- Willisauer Bote (Oktober 2013 und Oktober 2014)
- Immolnvest (Juni 2014)

- architektur & technik (November 2014)
- CH.Holzbau (November 2014)
- Das Einfamilienhaus (Dezember 2014)
- Architektur und Technik (Dezember 2014)
- aee suisse (Januar 2015)
- Hochparterre (Januar 2015)
- Wir Holzbauer (Februar 2015)
- Immobilia (Februar 2015)
- Tachles (Februar 2015)
- EVB BauPunkt aktiv (März 2015)
- Schweizer Holzzeitung (März 2015)
- CH.Holzbau (Mai 2015)
- Le Matin Dimanche (Juni 2015)
- Bauen (September 2015)
- Energiebau AT (Oktober 2015)
- Umwelt BAFU (Februar 2016)
- Intelligent bauen (Februar 2016)
- Nachhaltig bauen (März 2016)
- Architektur und Technik (Oktober 2016)

Online-Marketing

- Eigene Projektwebseite http://www.swisswoodhouse.ch/ verzeichnet 16'400 externe Zugriffe seit Online-Schaltung im September 2011
- 9'973 Besuche auf swisswoodhouse-relevanten Inhalten auf Renggli-Website
- Objektfilm "swisswoodhouse" verzeichnet 2'064 Aufrufe
- Newsletterbeiträge:
 - swisswoodhouse in Nebikon, 31.10.2013, Anzahl Empfänger: 7'000, Total Klicks: 165 (11%)
 - swisswoodhouse aufgerichtet, 01.05.2014, Anzahl Empfänger: 7'394, Total Klicks:
 198 (16%)
 - Schöne Mietwohnungen im swisswoodhouse bezugsbereit, 03.11.2014, Anzahl Empfänger: 8'248, Total Klicks: 3'251 (67%)
 - Appartements à louer: swisswoodhouse, 03.11.2014, Anzahl Empfänger: 1'464, Total Klicks: 33 (10%)

Print – Renggli-Magazin "Faktor Raum", Auflage 8.500 Stück

- Mai 2009: Ein Mehrfamilienhaus, das nach Belieben passt Projektvorstellung
- November 2015: Gut für die Mieter, gut für den Investor Erfahrungsbericht Mieter

Auszeichnungen

- Real Estate Award 2013 | 1. Platz
- best architects award 2016 | gewonnen in der Kategorie Wohnungsbau/Mehrfamilienhäuser

Diskussion / Würdigung der Ergebnisse / Erkenntnisse

Kommunikationsmassnahmen

Die gesetzten Ziele in Bezug auf die Realisierung und Vermarktung konnten dank der Entschlossenheit zur Projektumsetzung erreicht werden.

Das swisswoodhouse in Nebikon LU wird nach wie vor von verschiedenen Projektpartnern für persönliche/individuelle Besichtigungen/Führungen genutzt.

In Reportagen und Vorträgen wird das swisswoodhouse regelmässig aufgegriffen und als Pilotprojekt in seiner Gesamtheit oder teilweise aufgezeigt.

Das Interesse von Seiten der Berichterstatter ist gestiegen; es ist eine aktive Nachfrage von Journalisten nach Informationen und Besichtigungen zu verzeichnen. Das swisswoodhouse wurde auch über die Landesgrenzen hinaus bekannt und wurde in Deutschland mit dem best architects award 2016 ausgezeichnet.

Ausblick, nächste Schritte nach Projektabschluss

Die Energieeffizienz wird gemäss dem Schlussbericht der HSLU weiterhin überwacht und optimiert.

Das Konzept des" swisswoodhouse" konnte bereits in ein weiteres Projekt überführt werden, das sich aktuell in der Planungsphase befindet.