TECHNICAL REPORT:
CHANGE DETECTION IN REMOTE SENSING USING DEEP
SIAMESE CONVOLUTIONAL NEURAL NETWORKS

Vitek Ruzicka Stefano d’Aronco

ETH Zurich ETH Zurich

previtus@gmail.com stefano.daroncolgeod.baug.ethz.ch
Jan Dirk Wegner

ETH Zurich

jan.wegner@geod.baug.ethz.ch

ABSTRACT

We propose a method for change detection in aerial images acquired at two dif-
ferent points in time of the same region. For this task, we adopt a siamese deep
convolutional neural network model with a U-Net [1]] structure and pre-trained
ResNet50 [2] encoder, which we call Siamese U-Net ResNet50 in the following.
We achieve a per pixel AUC score of 92.92% =+ 0.84% and a per tile recall score
of 92.45% + 2.48%with this model. We show that using our automated method,
it is possible to reduce 98.44% =+ 0.16% of the necessary manual checking effort
of tiles in the process of updating Swisstopo map products while achieving very
high recall.

1 INTRODUCTION

In this work, we present a deep convolutional neural networks (CNN) approach for change detection
in aerial images of a region in Switzerland. To this end, we introduce a Siamese variant of the widely
used U-Net model [1]], which is efficient to compute while delivering state-of-the-art performance
for pixel-accurate semantic segmentation. All source code affiliated with this technical report is
available on GitHub]

A large body of literature exists for change detection [3]] and, similar to computer vision tasks, the
comeback of deep learning has led to significant progress [4] and [5]. While their are different vari-
ants of change detection depending on the data source and specific task, we define change detection
as labeling all pixels in an image that show a significant change of a building footprint compared to
another, co-registered image of the same place acquire earlier.

Defining a comprehensive set of rules that would include any kind of possible change in build-up
areas in Switzerland is unfeasible especially given that any other change caused by illumination dif-
ferences, moving objects etc. should be ignored. We thus approach this problem in a completely
data-driven way by training a classifier that learns to distinguish changed building footprints from
unchanged areas. Although one could possibly train a model for any kind of object category that
shows visible change in aerial images, we solely work with changes of building footprints in this
study because it was the only object category available with labels in a format amenable to a clas-
sifier. After training our model on a dataset of aerial image pairs provided by Swisstopo, we were
able to make pixel-accurate change predictions in the original resolution of the images. In addition,
we propose a simple yet accurate method to be more robust against small outliers by summing up
all changed pixels per image patch. We classify all image patches into patches without and with
relevant changes, which is a first step towards a semi-automated method to help a human annotator
check only patches classified as containing change.

!Code available at: https://github.com/previtus/ChangeDetectionBaseline/

https://github.com/previtus/ChangeDetectionBaseline/

To solve this task, we have developed and implemented a deep CNN model with a U-Net architecture
[L] using ResNet modules [2] pre-trained on the ImageNet dataset [[0] in a transfer learning setting
[7]. In order to compare images acquired of two different points in time, we have designed a Siamese
CNN variant of the original U-Net model, which will be explained in more detail in the following.
Using these models we were able to detect changes of building instances at image patch level with
high recall of 92.45% =+ 2.48% and at pixel-level with an AUC of 92.92% =+ 0.84%. With our
method, it is possible to reduce the amount of tiles of the map which need to be checked by human
annotators by 98.44% =+ 0.16% (only 1.56% of the entire scene has be checked) while detecting
92.45% + 2.48% of all existing changes.

2 METHOD

The task of change detection in our case consists of detecting change occurring between two aerial
images of the same place between two different points in time. In our case, we have pixel precise
annotations denoting change between building footprints as recorded in a vector map.

The dataset provided by Swisstopo consists of images recorded over a 303 km? region of Aarau
(recorded in maps as area No. 1089 in 25 cm resolution) in 2012 and 2015. Each image contains
infrared and RGB channels. However, here we only rely on RGB information to generalize better
to possible further applications (e.g., street-level imagery from mobile mapping) that usually come
without infrared information. Furthermore, we work with change annotations in an image of the
same resolution where pixels with values “0” mark no change and pixels with values “1” mark
change. We split the original, very large region into individual image patches of size 256 x 256 pz
with 32 px overlap of adjacent patches in all four directions. Tiling the original images into small
patches is done as a pre-processing step using ArcGIS and the Split Raster tool from the Raster
Processing toolset. We empirically found an image size of 256 x 256 px a good compromise between
containing entire buildings and their context while enabling computational efficiency.

We initially generated the change label reference map by automatic subtraction of two versions
of vector maps made manually for both years. However, since both manually generated building
footprint maps had been generated separately and with slightly different definitions of footprints, we
had to manually clean change labels to reduce the amount of label noise. Our understanding is, that
these inconsistencies of building footptint labels were partially caused by a change in the processing
setup of Swisstopo for generating the vector maps. In addition, some building footprint labels were
added to the maps from additional sources of information without the change being visually present
in the corresponding pair of images. Moreover, we also noted some examples where a change
present in the image pairs was not recorded in manually annotated building footprint maps. At a
later poject stage we were supplied with an additional dataset that contained only the incremental
building footprint updates. However, many updates seemed to originate from auxiliary sources and
were not visible in the aerial images, while obvious, relevant building changes in the aerial images
were still missing. We thus decided to proceed with our own, cleaned version as described above.

Tiling of the dataset into small image patches results in 83144 pairs of 256 x 256 x 3 images, each
pair accompanied with the same resolution image label of two classes indicating the presence of
change. In addition to pixel-accurate change labels, we also marked each patch pair as containing
a significant change or not. More precisely, we assigned each image patch with more than 3%
of changed pixels to the “change” class and those with less than 1% of changed pixels to the “no
change” class. We chose these thresholds empirically to account for small amounts of label noise
near the boundaries of houses. An example for our patch classification strategy is shown in Fig. [T}

2.1 SIAMESE CNN APPROACH

Following the recent progress in deep learning [4], [5] we use a CNN model for change detection
in aerial images. We adapt U-Net model [[1] architecture, which consists of two segments - a down-
scaling encoder section (left in Fig. [2) and an up-scaling decoder section (right in Fig. [Z). These
two parts are connected with so-called skip connections (blue and red arrows in Fig. [2), which are
concatenated with features of the same resolution in the decoder stage. These skip connections help
retain all detailed information of the original resolution (in our case 256 x 256 pz). In our imple-
mentation, we use the ResNet50 model [2] as the encoder with initial weights from pre-training on

2012 2015 per pixel label per tile label

change pixels

. " "
7 all pixels > 3%: "change

change pixels

o7. n n
ol pixels < 1%: "no change

Figure 1: Example of pairs of aerial images in the dataset and their labels.

the ImageNet dataset [6]]. Starting from a model with weights pre-trained on a very large, auxiliary
dataset of the same image modality is good practice if labeled training data is scarce for a certain task
(i.e., pixels with changes in our case). Moreoverm, we adopt the Siamese neural network paradigm,
where for our pair of two input image patches of 2012 and 2015, an encoder with shared weights [§]
is used. The high level features of these two inputs are concatenated whenever we are either using
skip connections, or at the end of the shared encoder section.

See the full model structure on Figure [2| and note that the encoder is initiated from a pre-trained
ResNet model.

shared weights of the Siamese encoder

stage 1 [128x128x64, 128x128x64]

stage 2 [64x64x256, 64x64x256]

stage 3 [32x32x512, 32x32x512]

S —
stage 4

256x256x3 —
j—

>

>

concatenation:

8x8x2048 256x256
8x8x2048

to
8x8x4096

256x256x3

ResNet50 encoder downsample

Figure 2: Siamese U-Net architecture with ResNet50 encoder

2.2 EXPERIMENT SETUP

We note that our dataset is severely unbalanced regarding labels changed and unchanged. Only 1072
image patches out of 83144 patches in total contain changes. Furthermore, for the vast majority of
patches with changes, the proportion of changed pixels is very small (usually far below 10%). It
should also be noted that there are many differences in the images of the two aerial campaigns
due to different season, time during the day (different direction of shadows) and further changes
in vegetation etc. that the classifier should ignore while correctly predicting changes of building
footprints. To cope with this lack of balance in our dataset, we adopt two approaches. First, we
give three times higher weight to all pixels containing change in the training loss function. Second,
we curate a balanced subset of the whole dataset to train the model by sampling all 1072 pairs

Table 1: Results of the Siamese U-Net ResNet50 model

AUC (per pixel) Recall (per tile)
balanced set (class distribution 1:1) 92.02 £ 0.56 92.45 £+ 2.48
unbalanced set (class distribution 1:80) 92.92 +£0.84 9245 +£2.48

containing change and randomly sampling additional 1072 pairs without any change. During testing
we evaluate on both, a dataset with the original dataset distribution (1:80) and a balanced set (1:1).

We also use data augmentation techniques on our full training set to generate one additional pair for
each pair of images in the training set using one of the following transformations: flip horizontally,
flip vertically, rotation of 90 or 270 degrees.

To achieve statistically meaningful results, we apply a k-fold cross validation scheme and we sample
data from non-overlapping regions into the training, validation and testing sets for all experiments.
The model predicts classes per pixels with output scores that range between 0 and 1. We therefore
have to choose a threshold to assign predictions to the two classes. This threshold is selected by
finding the one that maximizes the f1-score of per-tile evaluation on the validation set. Final score
is reported with the AUC (area under curve, i.e., the integral under the recall-precision curve, higher
is better) metric score on the non-thresholded per pixel predictions and on the thresholded per tile
predictions with the recall metric. We report results for per-pixel and per-patch evaluation.

For our task, we mainly care about the recall metric as it reflects on how many “changed” tiles will
be successfully detected from all changed tiles in the dataset. Finally we have also calculated the
human annotators cost by the formula cost = (TP + FP)/N. This reflects the cost of how many tiles
does the human annotator have to manually check after using our algorithm. All tiles labelled as
change need to be manually checked, either to detect False Positive classifications (when there is in
fact no change in the pair, but it has been marked as one containing change) or to add the manual
annotation of the True Positives containing newly built houses to the maps.

We train the proposed model for 100 epochs with batch size of 16 pairs, the Adam optimizer and
learning rate of 0.00001 with weighted categorical cross entropy loss.

3 RESULTS

Table[T]shows the results of our trained model evaluated on a balanced test set (with class distribution
1:1) and on an unbalanced test set with class distribution corresponding to the one of the original
dataset (1:80). Using a balanced test set, we report our results as 92.02 £ 0.56 AUC in the per-pixel
evaluation and as 92.45 £ 2.48 recall in the per-patch evaluation. Using a test set with the original
distribution of data we get results of 92.92 + 0.84 AUC in the per-pixel evaluation and as 92.45 +
2.48 recall in the per-patch evaluation. Fig. [3]and Fig. fi] show additional metrics measured on these
test sets such as recall, precision, accuracy and the AUC score for the per-pixel prediction.

Qualitative results are shown in Fig. [fa) for correctly predicted examples and in Fig. [[b) for
typical errors. The first row in Fig. [5[b) of the error cases shows a False Negative error, where the
model has missed a change which was present in the image pair. This is the most severe type of
error since it directly influences the update quality of the mapping procedure. Consequently, this
error type is reflected by the recall metric (which is influenced by False Negatives). The second row
shows a False Positive error, where the model is predicting a change in a case where there is none
in the image pair. We note that this kind of error is less serious as we are not missing any changes
from the dataset. The third row shows a case where our model correctly detected a change, while
the correct annotation was missing in the labelﬂ The last row shows an example of a hard case,
where the change is barely visible even for a human annotator.

2We have excluded these cases from the evaluation statistics.

KFoldCrossval statistics (per masks) - resnet50 KFoldCrossval statistics (per tiles) - resnet50

1.0 1.0 —
o — —
I =
0.8 o 0.8
— ?

L T

0.6 o 0.6
[o}

0.4 0.4
0.2 0.2
0.0 0.0

recall precision accuracy fl AUC recall precision accuracy fl

(a) Per pixel evaluation (b) Per tile evaluation

Figure 3: Performance over balanced set (class distribution 1:1).

10 KFoldCrossval statistics (per pixels) - ResNet50 1o KFoldCrossval statistics (per tiles) - ResNet50
o]
0.8 0.8
T
L1
0.6 0.6
[=

0.4 \T] 0.4 ’l‘
T

0.2 0.2

0.0 0.0
recall precision accuracy fl AUC recall precision accuracy fl

(a) Per pixel evaluation (b) Per tile evaluation

Figure 4: Performance over unbalanced set (class distribution 1:80). Note that the lower precision
(and consequentially f1 score) when compared with the balanced set is caused by the disproportion-
ately large amount of additional “no change” points in the test set. This leads to more pixels/patches
without any change being wrongly classified as changed (see Fig. [5|b) second row from top for an
example). The performance on “change” remains the same as indicated by recall and AUC score.

4 CONCLUSION

In this work we propose a Siamese U-Net ResNet50 architecture which is novel for the task of
change detection and delivers promising results. We achieve an AUC of 92.92% =+ 0.84% for per-
pixel evaluation and a recall of 92.45% =+ 2.48% for per-tile evaluation on a test set with the original
unbalanced distribution. On the original dataset this results in 98.44% =+ 0.16% reduction of manual
change detection while maintaining the reported high recall. More precisely, instead of checking all
image patches for changes, a human annotator would only have to check 1.56% of all patches (those
labeled as changed) while detecting 92.45% + 2.48% of all existing changes.

A promising direction to further improve performance while moving closer to an application sce-
nario is active learning, which combines human experts with deep learning to sample the most
meaningful examples for training the classifier. More precisely, a human annotator could retrain the
classifier on hard cases that were initially missed to further fine-tune the model on-the-fly.

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” CoRR, vol. abs/1505.04597, 2015. [Online]. Available: |http:
/larxiv.org/abs/1505.04597

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[3] D. L. C. author, P. Mausel, E. Brondzio, and E. Moran, “Change detection techniques,’
International Journal of Remote Sensing, vol. 25, no. 12, pp. 2365-2401, 2004. [Online].
Available: https://doi.org/10.1080/0143116031000139863

[4] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese networks for change
detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP). 1EEE,
2018, pp. 4063—4067.

[5] R. C. Daudt, B. L. Saux, A. Boulch, and Y. Gousseau, “High resolution semantic change detec-
tion,” arXiv preprint arXiv:1810.08452, 2018.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierar-
chical image database,” in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248-255.

[71 J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?”’ CoRR, vol. abs/1411.1792, 2014. [Online]. Available:
http://arxiv.org/abs/1411.1792

[8] S.Zagoruyko and N. Komodakis, “Learning to compare image patches via convolutional neural
networks,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1512.03385
https://doi.org/10.1080/0143116031000139863
http://arxiv.org/abs/1411.1792

(a) Correct prediction examples (from left to right: 2012 aerial image, 2015 aerial image, ground truth,
prediction)

-

(b) Incorrect prediction examples

Figure 5: Qualitative results

	Introduction
	Method
	Siamese CNN approach
	Experiment setup

	Results
	Conclusion

