

Bundesamt für Energiewirtschaft Office fédéral de l'énergie Ufficio federale dell'energia Uffizi federal da l'energia

Forschungsprogramm Biomasse

Vergasung von Biomasse für die Methanol-Synthese

Schlussbericht im Sektor Technik Projekt BIOMETH

ausgearbeitet durch

Philipp Hasler, Ingenieurbüro Verenum Thomas Nussbaumer, Ingenieurbüro Verenum Ruedi Bühler, Ingenieurbüro Energie + Umwelt

im Auftrag von

Paul Scherrer Institut, Villigen Bundesamt für Energiewirtschaft, Bern

April 1994

Paul Scherrer Institut Bundesamt für Energiewirtschaft

Vergasung von Biomasse für die Methanol-Synthese

Philipp Hasler Thomas Nussbaumer Ruedi Bühler

Anschrift der Verfasser:

Dr. Philipp Hasler Dr. Thomas Nussbaumer Verenum Langmauerstrasse 109 8006 Zürich

Ruedi Bühler Energie + Umwelt Dörfli 5 8933 Maschwanden

Bezugsquelle:

ENET Postfach 142 3000 Bern 6 Telefon 031 / 352 19 00 Fax 031 / 352 77 56

Inhaltsverzeichnis

	Sumn	nary	5					
1.	Zusar	7						
2.	Einlei	tung und Aufgabenstellung	9					
3.	Technologie der Vergasung zur Synthesegaserzeugung							
	3.1.	Grundlagen der Vergasung und der Methanolsynthese	10					
	3.2.	Anforderungen an das Synthesegas	13					
	3.3.	Kohlevergasung	14					
		3.3.1. Die wichtigsten Verfahren	15					
		3.3.2. Eignung zur Vergasung von Biomasse	16					
	3.4.	Thermoselect als Verfahrensalternative	17					
	3.5.	Biomassevergasung	19					
		3.5.1. Unterschiede zur Kohlevergasung	19					
		22						
		3.5.3. Anforderungen an den Brennstoff						
		3.5.4. Wichtigste Verfahren	26					
		3.5.4.1. IGT Renugas-Prozess	26					
		3.5.4.2. ASCAB Wirbelschichtvergaser	27					
		3.5.4.3. MTCI Wirbelschichtvergaser	28					
		3.5.4.4. Zirkulierende Wirbelschicht von TPS	30					
		3.5.4.5. Zirkulierende Wirbelschicht von Lurgi	32					
		3.5.4.6. HTW-Druckvergasungsverfahren	33					
		3.5.4.7. BCL Vergasungssystem	34					
	3.6.	Zusammensetzung verschiedener Brennstoffen	37					
	3.7.	Zusammensetzung von Aschen verschiedener Brennstoffe	38					
4.	Zusan	nmensetzung des Primärgases aus Biomassevergasern	40					
	4.1.	40						
	4.2.	Spurengase	42					
	4.3.	Partikel	43					
	4.4.	Teer	44					
	4.5.	Wässrige Kondensate	46					

5.	Kondit	ionierung des Primärgases	51			
6.	Gasrei	nigung	54			
7.	Beurteilung von Biomassevergasern zur Synthesegaserzeugung					
	7.1.	Bewertungskritererien zur Charakterisierung von Vergasern	56			
	7.2.	Anlagengrösse	56			
	7.3.	Vergasungsdruck	56			
	7.4.	CO2-Gehalt des Primärgases	58			
	7.5.	Spezifische H ₂ - und CO-Ausbeuten	58			
	7.6.	Teer- und Abwassermengen	59			
	7.7.	Energiebilanz	60			
	7.8.	Installations- und Betriebskosten	62			
	7.9.	Eignung für belastete Brennstoffe	65			
	7.10.	Zusammenfassender Variantenvergleich und Wertung	68			
8.	Schade	stofffrachten bei einer 20 MW Vergasungsanlage für Biomassen	71			
9.	Offene	Fragen	75			
10.	Schlus	sfolgerungen und weiteres Vorgehen	79			
11.	Anhang		81			
	11.1.	Experimentelle Angaben zu Kohlevergasern	81			
	11.2.	Zusammenfassung der Daten aus Biomassevergasern	86			
	11.3.	Experimentelle Daten zum IGT-Vergaser	92			
	11.4.	Experimentelle Daten zum ASCAB-Druckvergaser	95			
	11.5.	Experimentelle Daten zum MTCI-Vergaser	102			
	11.6.	Experimentelle Daten zum Lurgi-Vergaser	105			
	11.7.	Experimentelle Daten zum BCL-Vergaser	110			
	11.8.	Experimentelle Daten zur Vergasung von Torf	117			
	11.9.	Experimentelle Daten zur Vergasung von Müll	119			
	11.10.	Teeranalysen aus Biomassevergasern	121			
	11.11.	Kondensatanalysen aus Biomassevergasern	128			
	11.12.	Kostenschätzungen zur Methanolerzeugung aus Biomasse	131			
12.	Literatu	ırverzeichnis	134			

Summary

This report gives an overview of the most important technologies for the gasification of biomass in fluidized bed gasifiers. The gasifier should yield a producer gas for a methanol synthesis plant. Gas cleaning of the primary gas should be minimal. Beside uncontaminated biomass such as wood or bark the gasifier must be able to treat contaminated fuels such as urban waste wood, waste paper and/or waste plastic materials.

The first part of this report summarizes the fundamentals of solid fuel gasification. The second part describes the most important coal and biomass gasifier systems. The review showed that most coal gasifiers are not suitable for biomass gasification since either the heating value of the biomass is too low compared to coal or the producer gas contains too much tar or the biomass can not meet the fuel size requirements of the gasifier.

A detailed description of the following biomass gasifiers is given:

stationary fluidized bed:	IGT (pressurized gasifier)
	ASCAB (pressurized or ambient pressure gasifier)
	MTCI (indirectly heated gasifier at ambient pressure)
circulating fluidized bed:	TPS (pressurized or ambient pressure gasifier)
	Lurgi (ambient pressure gasifier)
	HTW (pressurized gasifier)
	BCL (indirectly heated gasifier at ambient pressure)

The MTCI and the BCL gasifier differ from the other gasifier types since they use external heating for the gasification reactions. These gasifier yield a nitrogen free producer gas even with air as a gasifying agent. The other processes with direct heat transfer require oxygen as a gasifying agent to yield a nitrogen free producer gas.

The third part of this report gives a judgement of the gasifiers according to:

- plant size
- gasification pressure
- carbon dioxide concentration in the producer gas
- yield of hydrogen and carbon monoxide
- amount of tar and waste water
- energy balance
- installation and running cost
- suitability for the gasification of contaminated biomass

Pressurized gasifiers are considered not suitable for the purpose studied due to the high running cost and the limited operation experience with some components (biomass feeding; ceramic filters; tar cracking catalysts). The ambient pressure gasifiers are discussed with respect to their suitability to use uncontaminated biomass as well as contaminated biomass. A thermal or a catalytic reforming of the tars in the primary gas is at least favourable since gas cleaning and waste water treatment is simplified. The experiments with the ASCAB gasifiers displayed high energy losses and high running costs for the thermal reforming. Therefore thermal reforming is not considered advantageous. The TPS gasifier is the only system which can run with urban waste wood and which uses a tar cracking system. The Lurgi gasifier has no gas conditioning but can also gasify urban waste wood. The BCL gasifier with a catalytic tar cracking system shows advantages with respect to running cost and energetic efficiency. However the BCL gasifier can not use urban waste wood as a fuel. The MTCI gasification system produces the highest yields of synthesis gas at low running costs. However, urban waste wood can not be gasified. Furthermore the amount and contamination of the waste water is significantly higher than with other gasification systems. There is no experience with catalytic tar cracking with the MTCI gasifier so far.

1. Zusammenfassung

Die vorliegende Untersuchung zeigt die wichtigsten Technologien zur Vergasung von Biomasse in Wirbelschichtvergasern auf. Der Vergaser soll dabei ein Primärgas liefern, welches mit möglichst geringem Aufwand in einer nachfolgenden Prozessstufe zur Methanolsynthese nutzbar ist. Nebst unbelasteter Biomasse wie Holz oder Rinde soll das Vergasungssystem auch belastete Brennstoffe wie Baurestholz, Altholz, Altpapier und/oder Kunststoffabfälle verarbeiten können.

Im ersten Teil dieses Berichtes wird eine Zusammenstellung der wichtigsten Grundlagen zur Vergasung von festen Brennstoffen gegeben. Der zweite Teil beschreibt die wichtigsten Kohle- und Biomassevergasungssysteme. Es zeigte sich, dass die meisten Kohlevergasungsverfahren für Biomassen nicht geeignet sind, da entweder der Heizwert der Biomasse im Vergleich zu Kohle zu gering ist, die Teergehalte im Gas zu hoch oder die Anforderungen an die Brennstoffstückigkeit nicht erfüllt sind.

Folgende Biomassevergasungssysteme werden beschrieben:

Stationäre Wirbelschicht:	IGT (Druckvergaser)		
	ASCAB (Druck-/Normaldruck-Vergaser)		
	MTCI (Normaldruckvergaser mit indirektem Wärmeübergang)		
Zirkulierende Wirbelschicht:	TPS (Druck-/Normaldruck-Vergaser)		
	Lurgi (Normaldruckvergaser)		
	HTW (Druckvergaser)		
	BCL (Normaldruckvergaser mit indirektem Wärmeübergang)		

Die Verfahren von BCL und MTCI unterscheiden sich von den anderen durch eine indirekte Wärmeübertragung, so dass auch bei Verwendung von Luft als Vergasungsmittel ein stickstofffreies Primärgas erzeugt werden kann. Bei den Verfahren mit direktem Wärmeübergang ist dagegen Sauerstoff notwendig.

Die Beurteilung der verschiedenen Vergasungssysteme erfolgt im dritten Teil nach folgenden Kriterien:

- Anlagengrösse
- Vergasungsdruck
- CO₂-Gehalt des Gases
- Ausbeuten an H₂ und CO
- Teer- und Abwassermengen
- Energiebilanz

- Installations- und Betriebskosten
- Eignung zur Vergasung von belasteten Brennstoffen

Wegen der hohen Kosten und der geringen Betriebserfahrung mit einigen Systemkomponenten (Beschickung; Hochtemperatur-Keramikfilter; Katalysator) scheiden die druckaufgeladenen Verfahren aus. Die Normaldrucksysteme werden im Hinblick auf ihre Eignung zur Vergasung von naturbelassenen und belasteten Biomassen beurteilt. Eine thermische oder katalytische Reformierung des Primärgases ist zumindest vorteilhaft, da die Gasreinigung und die Abwasserbehandlung einfacher wird. Eine thermische Reformierung wie bei den ASCAB-Verfahren ist mit hohem Zusatzenergie- und Kostenaufwand sowie mit grossen Wärmeverlusten verbunden und kommt daher eher nicht in Frage. Nur das TPS-Vergasungsverfahren ermöglicht sowohl die Vergasung von Baurestholz und Altholz als auch eine katalytische Reformierung des Gases. Das Lurgi-Verfahren weist keine Gaskonditionierung auf, kann jedoch auch Altholz vergasen. Das BCL-Verfahren mit katalytischem Reformer weist gegenüber den anderen Verfahren energetische und Kosten-Vorteile auf, kann jedoch kein Altholz verarbeiten. Das MTCI-Verfahren erzeugt die höchste spezifische Synthesegasausbeute bei niedrigen Betriebskosten, kann jedoch kein Altholz verarbeiten. Zudem entstehen mehr und stärker belastete Abwässer als bei anderen Vergasungsverfahren. Mit dem MTCI-Verfahren liegen bisher keine Erfahrungen mit katalytischer Gasreformierung vor.

2. Einleitung und Aufgabenstellung

Die vorliegende Untersuchung erfolgt im Rahmen des vom Paul Scherrer Institutes (PSI) initiierten Projektes 'Biometh'. Ziel dieses Projektes ist die Realisierung einer Demonstrationsanlage zur Herstellung von etwa 50 Tagestonnen Methanol aus Biomasse. Das hierzu erforderliche Synthesegas soll durch Vergasung der Biomasse erzeugt werden. Die Vergaserleistung beträgt ca. 20 bis 30 MW_{th} (100 bis 150 Tagestonnen getrocknete Biomasse). Aufgrund der Anlagengrösse und der geforderten Gasqualität ist die Vergasung in der Wirbelschicht das aussichtsreichste Verfahren. Der traditionelle Weg zur Synthesegasherstellung erfolgt entweder über eine Dampfreformierung von Erdgas (CH₄ + H₂O \leftrightarrow CO + 3 H₂) oder über die Vergasung von Kohle. Die Erdgas-Dampfreformierung wird nicht behandelt.

In einer ersten Betriebsphase der Demoanlage sollen naturbelassenes Holz, Waldrestholz und/oder Rinde zur Vergasung gelangen. Die Anlage muss jedoch auch belastetes Holz wie Baurestholz und Altholz verarbeiten können. Ebenso ist zu prüfen, ob sich Altpapier oder Kunststoffabfälle vergasen lassen. Die Problematik beim Einsatz von belasteten Brennstoffen ist aufzuzeigen.

Das Vergasungssystem beeinflusst zu einem wesentlichen Teil die Gesamt- und Betriebskosten. In die Gesamtkosten fliessen die Installationskosten des Vergasers, der Gaskonditionierung (z.B. Reformierung, Teercracking), der Gasreinigung und der Abwasserbehandlungsanlage ein. Die Betriebskosten ihrerseits sind stark vom Brennstoff und dem verwendeten Vergasungsmittel (Luft oder Sauerstoff) abhängig. Der Wahl des geeignetsten Vergasungsverfahrens kommt daher eine zentrale Bedeutung zu.

Das Ziel des vorliegenden Berichtes ist eine Zusammenstellung und Wertung der bestehenden Technologien zur Vergasung von Biomassen im Wirbelschichtreaktor bei Anlagengrössen um 20 MW. Die Studie stützt sich dabei auf Versuchsberichte (Pilotanlagen, kommerzielle Anlagen) und Literaturdaten sowie auf Informationen von Fachleuten der betreffenden Firmen ab.

3. Technologie der Vergasung zur Synthesegaserzeugung

3.1. Grundlagen der Vergasung und der Methanolsynthese

Bei der thermochemischen Umsetzung von festen Brennstoffen laufen mehrere Prozesse gleichzeitig ab. Je nach Vorhandensein einer bestimmten Menge Oxidationsmittel (beispielsweise Sauerstoff, Wasserdampf oder Kohlendioxid) sind dies:

- Pyrolyse
- Vergasung
- Verbrennung

Unter <u>Pyrolyse</u> ist die thermische Zersetzung des Brennstoffes unter Wärmezufuhr ohne Oxidationsmittel, d.h. $\lambda = 0$ ¹, zu verstehen. Sie liefert im wesentlichen Kohlenstoff, Kohlenmonoxid, Wasserstoff und Kohlenwasserstoffe.

Vereinfacht laufen bei der Pyrolyse folgende Reaktionen ab [Jüntgen et al. 1981]:

 $\begin{array}{rcl} \mathsf{CH}_{m}\mathsf{O}_{n} & \rightarrow & (1\text{-}n) \ \mathsf{C} + n \ \mathsf{CO} + m/2 \ \mathsf{H}_{2} \\ \\ \mathsf{CH}_{m}\mathsf{O}_{n} & \rightarrow & (1\text{-}n\text{-}m/8) \ \mathsf{C} + n \ \mathsf{CO} + m/4 \ \mathsf{H}_{2} + m/8 \ \mathsf{CH}_{4} \end{array}$

Daneben entstehen Pyrolyseöle, deren Menge und Zusammensetzung vor allem durch die Temperatur und die Verweilzeit im Reaktor bestimmt ist.

Bei der <u>Vergasung</u> wird dem Brennstoff eine unterstöchiometrische Menge an Oxidationsmittel zugeführt ($0 < \lambda < 1$). Vereinfacht laufen bei der Vergasung die folgenden Reaktionen ab [Supp 1990]:

Gas/Feststoff-Reaktionen

Teilverbrennung:	C + 1/2 O ₂	\leftrightarrow	CO	$\Delta Hr = -123 \text{ kJ/mol}$
Heterogene Wassergasreaktion:	C + H ₂ O	\leftrightarrow	$CO + H_2$	$\Delta H_r = +119 \text{ kJ/mol}$
Boudouard-Reaktion:	C + CO ₂	\leftrightarrow	2 CO	$\Delta H_r = +162 \text{ kJ/mol}$
Hydrierende Vergasung:	C + 2 H ₂	\leftrightarrow	CH4	$\Delta H_{r} = -87 \text{ kJ/mol}$

Die Luftüberschusszahl λ gibt das Verhältnis an effektiv vorhandener Menge Oxidationsmittel zur stöchiometrischen wieder. Die minimale, zur vollständigen Oxidation eines Brennstoffes notwendige Menge Oxidationsmittel wird als die stöchiometrische Menge bezeichnet.

Shiftreaktion:	CO + H ₂ O	\leftrightarrow	$CO_2 + H_2$	$\Delta H_r = -41 \text{ kJ/mol}$
Methanisierung:	CO + 3 H ₂	\leftrightarrow	CH ₄ + H ₂ O	$\Delta H_r = -206 \text{ kJ/mol}$

Reaktionen mit Reaktionsenthalpien $\Delta H_r > 0$ sind endotherm, d.h. bei einer Temperaturerhöhung verschiebt sich das Gleichgewicht zur Produktseite. Eine stark endotherme Reaktion ist beispielsweise die wasserstoffbildende heterogene Wassergasreaktion. Die Zusammensetzung des Gases in Abhängigkeit der zugegebenen Menge Vergasungsmittel zeigt Abb. 1.

<u>Abbildung 1:</u> Gleichgewichtszusammensetzung des Produktgases bei der adiabatischen Vergasung von Biomasse mit Luft [Reed 1981]

Die Vergasung von kohlenstoffhaltigen Brennstoffen liefert im wesentlichen ein Gasgemisch aus Wasserstoff, Kohlenmonoxid, Kohlendioxid und Methan. Dieses Gemisch wird im folgenden als Primärgas bezeichnet. Mit zunehmender Luftmenge sinkt der Wasserstoff- und der Methananteil, während der Anteil Kohlenmonoxid ein Maximum durchläuft. Die Gehalte an Kohlendioxid und Wasserdampf sind bei Luftüberschusszahlen um 0.3 minimal. Bei Gleichgewichtsbetrachtungen von Produkten aus der Vergasung (zumindest bei Kohle) ist jedoch zu berücksichtigen, dass nur in Ausnahmefällen der thermodynamische Gleichgewichtszustand erreicht wird [Franken 1984]. Der Anteil der Gase ist in hohem Masse beeinflusst vom Vergasungssystem, der Vergasungstemperatur und von möglichen katalytischen Effekten. Insbesondere die Methangehalte, dessen Bildung für die Methanolsynthese unerwünscht ist (s.a. Kap. 5), liegen in der Regel deutlich über den thermodynamischen Werten.

In geringen Mengen enthält das Primärgas brennstoffbedingt auch Spurengase wie Ammoniak und Schwefelwasserstoff, sowie als Folge unvollständiger Vergasung gasförmige Kohlenwasserstoffe, Teer- und Phenolverbindungen und Kohlenstoff. Bei der Vergasung von belasteten Brennstoffen ist ferner mit höheren Gehalten von Salz- und Flussäure sowie von Schwermetallen zu rechnen.

In Gegenwart einer mindestens stöchiometrischen Menge Oxidationsmittel findet die <u>Verbren-</u> <u>nung</u> statt. Der brennstoffgebundene Kohlenstoff und Wasserstoff setzt sich dabei in den stark exothermen Reaktionen (vereinfachte Gleichungen) um gemäss:

Verbrennung von Kohlenstoff:	C + O ₂	\leftrightarrow CO ₂	$\Delta H_r = -406 \text{ kJ/mol}$
Oxidation von Wasserstoff:	H ₂ + 1/2 O ₂	\leftrightarrow H ₂ O	$\Delta H_r = -242 \text{ kJ/mol}$
Oxidation von geb. Wasserstoff:	2 [H] + 1/2 O ₂	\leftrightarrow H ₂ O	

Gleichzeitig mit der thermochemischen Umsetzung des Brennstoffs findet auch eine <u>Trocknung</u> statt. Da dem System dadurch Wärme entzogen wird ², hat dies entweder eine Temperaturerniedrigung oder einen Mehrverbrauch an Oxidationsmittel und Brennstoff zur Folge.

Bei der Vergasung wird eine möglichst hohe Ausbeute an heizwertreichen Gasen angestrebt. Welche Gase zu maximieren sind, hängt auch vom Verwendungszweck des Gases ab. Die zur Vergasung notwendige Wärme wird durch Verbrennung eines Teils des Brennstoffes aufgebracht. Bei direkten Vergasungsverfahren erfolgt die Verbrennung in situ, d.h. in demselben Reaktor wie die Vergasung (autotherme Vergasung). Wird die Wärme über einen Wärmetauscher oder mittels heisser Bettasche aus einer Verbrennungswirbelschicht zugeführt, so handelt es sich um ein indirektes Vergasungs- bzw. Pyrolyseverfahren (allotherme Vergasung).

Bei der Bildung von Methanol, ausgehend von einem CO- und H_2 -reichen Gas, laufen folgende Reaktionen ab:

I.	CO + 2 H ₂	\leftrightarrow	CH ₃ OH	$\Delta H_r = -91 \text{ kJ/Mol}$
11.	CO ₂ + 3 H ₂	\leftrightarrow	CH ₃ OH + H ₂ O	$\Delta H_r = -50 \text{ kJ/Mol}$
III.	CO ₂ + H ₂	\leftrightarrow	$CO + H_2O$	$\Delta H_r = -41 \text{ kJ/Mol}$

² Verdampfungenthalpie von Wasser: 2500 kJ/kg

Die erwünschte Reaktion ist die Methanolbildung aus Kohlenmonoxid und Wasserstoff (Reaktion I). Reaktion II und III sind unerwünscht, weil ein Mehrverbrauch an Wasserstoff resultiert. Die Methanolbildungsreaktionen sind exotherm und mit einer Volumenverminderung verbunden, so dass optimale Umsätze bei möglichst tiefer Temperatur und hohem Druck stattfinden. Die Reaktionen laufen nur in Gegenwart von Katalysatoren, zumeist auf Kupferbasis, mit genügender Geschwindigkeit ab. Zur Erzielung einer maximalen Umsetzung des Kohlenmonoxides darf das Synthesegas jedoch nicht CO₂-frei sein [Supp 1990]. Optimal ist ein Gas, dessen Stöchiometriefaktor einen Wert grösser als 2 aufweist:

$$SF = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]} > 2$$

Die sogenannte Niederdruckmethanolsynthese arbeitet bei einem Reaktionsdruck zwischen 50 und 100 bar und bei Reaktionstemperaturen zwischen 230 und 270 °C.

3.2. Anforderungen an das Synthesegas

Die Anforderungen an das Primärgas sind durch den Verwendungszweck bestimmt. Gase zu Heizzwecken wie z.B. Heizgas in Zement- oder Kalköfen haben die geringsten Anforderungen zu erfüllen. In der nachfolgenden Zusammenstellung sind die maximal zulässigen Partikel-, Teer- und Alkaligehalte wiedergegeben.

	Anforderungen a		
	Partikelgehalt	Teergehalt	Alkaligehalt
Verwendungszweck	mg/Nm ³	mg/Nm ³	mg/Nm ³
Verbrennungsmotor	40	500	
Gasturbine	30		0.24
Methanolsynthese	0.01	100	

Tabelle 1: Verwendungsspezifische Anforderungen an das Primärgas [R.G. Graham et al. 1992]

Aus der Zusammenstellung ist ersichtlich, dass an die Methanolsynthese die höchsten Anforderungen bezüglich Partikel- und Teergehalt gestellt werden. Die Gehalte insbesondere bezüglich Partikel und Teer sind einerseits durch das verwendete Verfahren und andererseits durch die Vergasungstemperatur gegeben.

Bei der Verwendung des Synthesegases zur Methanolsynthese muss der Wassergehalt des Gases minimal sein. Ein hoher Wassergehalt hat nebst dem grösseren zu verdichtetenden

Gasvolumen auch einen Einfluss auf die unerwünschte Methanolbildungsreaktion II (siehe Kap. 3.1), indem sich das Gleichgewicht auf die Eduktseite verschiebt.

Die bisher realisierten Methanolsyntheseanlagen verwenden ein möglichst inertgasfreies Synthesegas. Insbesondere kommt eine Vergasung mit Luft als Vergasungsmittel nicht in Frage, da eine Stickstoffkonzentration von etwa 50 Vol.-% im Primärgas die Methanolsynthese ökonomisch uninteressant macht. Ebenso unerwünscht ist ein hoher CO₂-Gehalt. Die konventionelle Methanolsynthese arbeitet mit einem bis auf etwa 3 Vol.-% CO₂ abgereicherten Synthesegas. Hinzu kommt, dass für den Einsatz des Synthesegases zur Methanolsynthese Spurengase wie beispielsweise Ammoniak und Schwefelwasserstoff praktisch restlos entfernt werden müssen, damit der Katalysator eine hohe Aktivität und Lebensdauer beibehält. Bei der Vergasung von belasteten Brennstoffen müssen auch die sauren Gase und Schwermetalle vollständig abgetrennt werden.

In der Tabelle 2 sind die zulässigen Konzentrationen einiger Spurengase aufgeführt. Weitere Kenntnisse über die tolerierbaren Gehalte an Spurengasen im Synthesegas liegen nicht vor.

Spurengas	Lurgi-Katalysator	ICI-Katalysator
Chlor	< 0.1 Volppm	< 0.01 Volppm
Schwefel	< 1 Volppm	< 0.1 Volppm
Ethen		< 20 Volppm
Kohlendioxid	2.5 bis 3.5 Vol%	keine Einschränkung

Tabelle 2: Zulässige Gehalte an Spurengase im Methanolsynthesegas

3.3. Kohlevergasung

Die kommerzielle Erzeugung von Methanolsynthesegas basiert entweder auf einer Vergasung von Kohle oder der Dampfreformierung von Erdgas ($CH_4 + H_2O \leftrightarrow CO + 3 H_2$). Da Kohle in grossen Mengen vorhanden ist und Prozesse zur Herstellung von synthetischen Treibstoffen gegebenenfalls wichtig sein konnten, wurden seit Beginn dieses Jahrhunderts Verfahren zur Vergasung entwickelt.

Die Vergasung von Biomasse hatte lange Zeit eine untergeordnete Bedeutung. Es soll hier geprüft werden, ob Kohlevergasungsverfahren grundsätzlich für die Vergasung von Biomasse geeignet sind.

3.3.1. Die wichtigsten Verfahren

Für die Vergasung von Kohle stehen heute eine Anzahl von Verfahren zur Auswahl (Übersicht in [Franken 1984], [Asinger 1986], [Osteroth 1989], [Supp 1990]; s.a. Anhang 11.1). Nebst dem Verwendungszweck des Gases ist auch die Kohleart für die Verfahrenswahl ausschlaggebend. Die Verfahren lassen sich beispielsweise in Verfahren mit flüssigem Schlackenabzug und in solche mit trockenem Ascheabzug unterteilen. Die bekanntesten Vertreter mit Flüssigschlackenabzug sind:

Lurgi/BGC Schlackengenerator Koppers-Totzek Shell-(Koppers-)-Verfahren Texaco-Verfahren Molten-Iron-Prozess

In der nachfolgenden Tabelle sind für einige ausgewählte Vergasungsverfahren mit flüssigem Schlackeabzug die Zusammensetzungen der Hauptkomponenten im trockenen Gas aufgeführt:

Verfahre	n	LURGI-BGC	Koppers Totzek	Shell	Texaco	Molten Iron
Vergasu prinzip	ngs-	Festbett- vergaser	Flugstaub- verfahren	Flugstaub- verfahren	Kohle/Wasser- Slurry	Flüssigeisen- bad
Druck		24 bar	1 bar	20 bar	35 bar	3 bar
Temperatur		500-800 °C	1500-1600 °C	1500 °C	1400-1500 °C	1400-1500 °C
H ₂	Vol%	28.4	33.0	28.0	34.5	28.0
со	Vol%	60.0	54.0	71.1	53.0	63.0
CO2	Vol%	0-4	13.0	0.9	12.0	3-6
CH4	Vol%	6-7	0.2	0.0	0.02	0.0

<u>Tabelle 3:</u> Zusammensetzungen des trockenen Primärgases einiger Kohlevergasungsverfahren mit flüssigem Schlackeabzug [Asinger 1986, Franken 1984]

Vertreter von Kohlevergasungsverfahren mit trockenem Ascheabzug sind:

Lurgi-Druckgas-Verfahren

HTW-Verfahren

Die folgende Tabelle gibt die Zusammensetzung des trockenen Gases aus Kohlevergasern mit trockenem Schlackeabzug wieder:

Verfahren		Lurgi-Druckgas	нтw	
Vergasungsprinzip		Festbettvergaser	Zirkulierende Wir	belschicht
Brennstoff		Kohle	Braunkohle	Torf
Druck		24 bar	10 bar	10 bar
Temperatur		500-600 °C	850/1100 °C	710/915 °C
H ₂	Vol%	39	35.6	36.1
со	Vol%	19	52.0	28.1
CO2	Vol%	30	9.2	33.0
СН₄	Vol%	12	3.5	2.8

Tabelle 4:Zusammensetzungen des trockenen Primärgases einiger Kohlevergasungs-
verfahren mit trockenem Ascheabzug [Asinger 1986, Franken 1984]

Aus den beiden Zusammenstellungen geht hervor, dass das Lurgi-Druckgasverfahren ein Gas mit annähernd der geforderten Zusammensetzung bezüglich Wasserstoff und Kohlenmonoxid liefert. Die anderen Verfahren erfordern eine Konvertierung des Gases (sog. Shiftreaktion; Gleichung III, Kap. 3.1) zu einem höheren H₂:CO-Verhältnis, damit die Methanolausbeute maximiert werden kann.

Bemerkenswert sind die Unterschiede in der Gaszusammensetzung beim HTW-Verfahren, wenn anstelle von Braunkohle Torf vergast wird. Bei der Torfvergasung sind die CO-Gehalte deutlich geringer, die CO₂-Gehalte jedoch deutlich höher.

3.3.2. Eignung von Kohlevergasungsverfahren für Biomassen

Es stellt sich die Frage, welche Kohlevergasungsverfahren allenfalls für Biomassen geeignet sind. Die Beurteilung erfolgt anhand folgender Kriterien:

- Eignung zur Synthesegasherstellung als ausschliessliches Hauptprodukt
- Möglichkeit zur Vergasung von reiner Biomasse
- Vorhandensein einer kommerziellen Anlage auf Biomassebasis
- Anlagengrösse

Für die Herstellung eines Gases zur ausschliesslichen Methanolsynthese kommen die beiden Festbettvergaser von Lurgi nicht in Frage, da diese Vergaser nebst dem Gas pro Tonne Kohle etwa 80 kg Teer- und Leichtöle erzeugen. Die Verfahren wurden vor allem als Kohleverflüssigungsanlagen zur Herstellung von synthetischen Treibstoffen entwickelt, da die Infrastruktur zur Aufarbeitung der Teer- und Leichtöle bereits vorhanden ist. Das Gas weist zudem einen relativ hohen Methangehalt auf, was zu geringeren Ausbeuten an Wasserstoff führt. Im weiteren sind die Brennstoffanforderungen (Stückigkeit, Fliesseigenschaften) von Biomasse schwierig zu erfüllen.

Eine Machbarkeitsstudie zur Vergasung von Klärschlamm zeigte, dass mit dem Texaco-Verfahren nur Klärschlamm-Mischungen mit mind. 70 Gew.-% Kohle vergast werden können [Huisman et al. 1991].

Eine telefonische Anfrage bei KHD Humboldt Wedag AG in Köln (Herr Waldhecker) ergab, dass die Entwicklung des Molten-Iron-Prozess zur Vergasung von Kohlen sistiert ist. Eine Vergasung von Holz ist zudem nur mit Beimischung von mindestens 65 Gew.-% Kohle möglich, damit ein Heizwert von etwa 25 MJ/kg erreicht wird.

Da für das Texaco- und das Molten-Iron-Hochtemperaturverfahren nur Mischungen von Biomasse mit Kohle in Frage kommen, erübrigten sich für die Flugstaub-Hochtemperaturverfahren weitere Abklärungen. Diese Verfahren stellen zudem enorm hohe Anforderungen an den Brennstoff, da er auf eine Körnigkeit von 0.09 mm gemahlen werden muss. Dies führt zu hohen Aufbereitungskosten. Auch sind diese Verfahren eher im Leistungsbereich von mehreren 100 MW angesiedelt.

Von den Kohlevergasungsverfahren bleibt somit das HTW-Verfahren als möglicher Prozess für die Biomassevergasung übrig. In Finnland gibt es eine kommerzielle Anlage zur Vergasung von Torf.

3.4. Thermoselect als Verfahrensalternative

Thermoselect ist ein neuartiges Vergasungsverfahren, das zur Hausmüllvergasung mit Sauerstoff bei Atmosphärendruck entwickelt wurde (Abb. 2). Der Müll wird dabei in einem ersten Schritt mittels einer Presse stark verdichtet, um den Wärmeübergang und die Abdichtung im Entgasungskanal zu gewährleisten.

Durch äussere Wärmezufuhr pyrolysiert der organische Anteil in der Entgasungszone, wobei Pyrolysegase und Pyrolysekoks entstehen. Die Gase gelangen in die Nachvergasungszone, während der schlackehaltige Koks in einen Schmelzofen fällt und dort nachvergast. Aufgrund der reduzierenden Bedingungen trennt sich die flüssige Schlacke in eine eisenreiche und eine glasartige Fraktion. Die flüssigen Schlackefraktionen werden gemeinsam in einem Wasserbad abgeschreckt. Die eisenreiche Fraktion kann magnetisch abgetrennt werden. Das Gas wird gequencht und in einer nassen Gasreinigung von Schadstoffen befreit. Das gereinigte Gas eignet sich nach Konditionierung zur Methanolsynthese. Beim Versuchsbetrieb in der 10 tato-Anlage traten bisher keine gravierenden Probleme auf.

Das Verfahren weist gegenüber anderen Vergasungsverfahren eine Reihe von Vorteilen auf. Einerseits fallen etwa 99 Gew.-% der Reststoffe (bei Vergasung von Müll mit ca. 30 Gew.-% Schlackeanteil) in einer Qualität an, dass sie entweder Inertstoffqualität gemäss TVA aufweisen (90 Gew.-%) oder als Wertstoffe (9 Gew.-%) in die Hüttenindustrie verkauft werden. Andererseits ist das Primärgas durch die hohe Nachvergasungstemperatur praktisch frei von Teerverbindungen und gasförmigen Kohlenwasserstoffen. Dies vereinfacht die Gasreinigung und entschärft das Abwasserproblem. Es stellt sich die Frage, ob das Thermoselect-Verfahren zur Vergasung von Biomasse, insbesondere Holz, geeignet ist. Eine Anlagenbesichtigung und eine Besprechung vor Ort zeigten allerdings, dass das Beschickungssystem für Holz in der vorliegenden Art nicht geeignet ist. Ein zentraler Punkt beim Thermoselect-Verfahren ist die Verdichtung des Brennstoffs unmittelbar vor der Entgasung. Der Brennstoff muss derart kompakt sein, dass der Stoff- und Wärmetransport im Brennstoffpfropfen eine vollständige Pyrolyse ermöglicht. Andererseits muss der Pfropfen im Kanal förderbar sein und Gasdichtheit gewährleisten. Vorversuche mit Holz schlugen bisher fehl. Um die Verdichtbarkeit von Biomasse abzuklären, wären umfangreiche Versuche notwendig. Das Thermoselect-Verfahren wird deshalb für die Vergasung von Biomasse zum jetzigen Zeitpunkt nicht weiter verfolgt.

3.5. Biomassevergasung

3.5.1. Unterschiede zur Kohlevergasung

Nebst den Kohlevergasern wurden auch eine Reihe von Biomassevergasern entwickelt. Biomasse, insbesondere Holz, unterscheidet sich von Kohle neben der Zusammensetzung und dem Heizwert (s.a. Kap. 3.6) auch hinsichtlich der Reaktivität.

Holz weist mit ca. 80 Gew.-% einen deutlich höheren Flüchtigenanteil auf als Kohle, welche bei der Entgasung 40 bis 50 Gew.-% an flüchtigen Verbindungen freisetzt. Es ist daher naheliegend, dass für die Vergasung von Biomasse andere Systeme entwickelt oder bekannte Kohlevergasungssysteme bei anderen Betriebsbedingungen betrieben werden müssen.

Als Mass für die Reaktivität von Brennstoffen bezüglich Vergasung gilt die Geschwindigkeitskonstante der Boudouard-Reaktion (C + CO₂ \leftrightarrow 2 CO) der Brennstoffkokse in Funktion der Temperatur (Abb. 3).

<u>Abbildung 3:</u> Arrhenius-Diagramm der Vergasung verschiedener, verkokster Kohlenstoffträger mit CO₂ [Hedden et al. 1980], [Mehrling et al. 1986]

Biomassenkokse weisen eine um einen Faktor 100 höhere Reaktivität wie Kohlekokse auf. Biomassekoks kann somit mit gleicher Anlageleistung bei tieferer Temperatur vergast werden. Dies hat nebst geringeren Energieverlusten auch materialtechnische Vorteile. Eine Erklärung für die Reaktivitätsunterschiede von Holzkohle und von aktivierter Holzkohle wird nicht gegeben. Es ist jedoch wahrscheinlich, dass katalytische Effekte eine Rolle spielen [Hedden et al. 1980].

Aus Tabelle 5 ist ersichtlich, dass Biomasseaschen spätestens ab 1100 °C erweichen. Die Unterschiede von naturbelassenen Hölzern wie Kiefern oder Fichte zu Kohle sind allerdings nicht allzu gross.

Brennstoff	Erweichungspunkt	Halbkugelpunkt	Fliesspunkt
Ermelo-Kohle (Südafrika)	1150 °C	1320 °C	1360 °C
Torf (Finnland)	1280 °C	1340 °C	1380 °C
Kiefer	1100 °C	1440 °C	1445 °C
Fichte	1100 °C	1400 °C	1460 °C
Buche	1020 °C	1460 °C	1550 °C
Miscanthus	980 °C	1210 °C	1320 °C
Gras	960 °C	1040 °C	1120 °C
Winterweizen-Stroh	910 °C	1150 °C	1290 °C

<u>Tabelle 5:</u> Erweichungs-, Halbkugel- und Fliesspunkt von Kohle, Torf und biogenen Brennstoffen [Franken 1984], [Sipilä et al. 1989], [Nussbaumer 1992]

Der Ascheerweichungspunkt von Kohle und Torf ist um mindestens 50 °C höher als derjenige von Holz. Auffallend ist, dass Buchenholzasche ca. 80 °C früher zu schmelzen beginnt als beispielsweise Kiefer- oder Fichtenasche. Gras und Stroh weisen noch tiefere Erweichungspunkte auf.

In allen bekannten Biomassevergasern, insbesondere bei den Wirbelschichtverfahren, darf die Asche nicht flüssig werden, da dies zu Ablagerungen und Verschlackungen im Reaktor führt, die einen sicheren Dauerbetrieb verunmöglichen. Die Vergasungstemperatur muss deshalb mindestens 50 bis 100 °C unter dem Ascheerweichungspunkt liegen [Schmidt 1966]. Für die Vergasung von Holz ergibt sich demzufolge eine maximale Vergasungstemperatur von 950 °C, bei Stroh maximal 850 °C.

3.5.2. Vergasungssyteme

Im folgenden werden die verschiedenen Vergasungssysteme kurz beschrieben. Die Verfahren lassen sich in Festbett- und Wirbelschichtverfahren einteilen.

Festbettvergasungssysteme

In einem Festbettvergaser ist der Brennstoff in einer Schüttschicht dem Vergasungsmittel ausgesetzt. In einem aufsteigenden (engl. updraft) Vergaser strömen die Gase von unten nach oben, in einem absteigenden (downdraft) entsprechend von oben nach unten. Fliesst der Brennstoff in derselben Richtung wie das Vergasungsmittel, so handelt es sich um einen Gleichstromvergaser, ansonsten um einem Gegenstromvergaser (Übersichtsartikel: [Nussbaumer 1990a, 1990b und 1990c]). Daneben existieren auch gemischte Formen von Festbettvergasern.

Die wichtigsten Vorteile von Festbettvergasern sind:

- kein Dampfverbrauch (keine Fluidisierung des Brennstoffs notwendig)
- geringe Partikelgehalte
- geringe Teergehalte im Gas (Gleichstrom-Bauart)

Die wichtigsten Nachteile sind:

- Vergasungswirkungsgrade zwischen 50 und 85% (i.d.R. C-reiche Aschen)
- hohe Teergehalte im Gas (Gegenstromvergaser)
- i.d.R. hohe Anforderungen an den Brennstoff bezüglich Uniformität
- Ascheaustragsystem bei belasteten Brennstoffen (z.B. Altholz ³) störungsanfällig
- Anlagengrösse bis 2 MW
- Schwierigkeiten beim Scale-Up

³ Altholz und Bauabfallholz enthalten i.d.R. 1 bis 2 Gew% Metallteile in Form von Nägeln, Scharnieren etc.

Ein Beispiel eines absteigenden Gleichstrom-Vergasungssytem ist der Vergaser von *Syngas*, Inc. (USA). Der Vergaser ist in Abbildung 4 schematisch wiedergegeben. Einige wenige Versuche mit Holz fanden in einer 14.8 Tagestonnen-Pilotanlage statt. Als maximale Anlagengrösse ist eine Leistung von 96 Tagestonnen angegeben.

Abbildung 4: Schematische Darstellung des Syngas-Vergasers [Wan et al. 1990]

Wirbelschichtverfahren

Die Einteilung der Wirbelschichtverfahren erfolgt anhand der Wirbelschichtcharakteristik und der Wärmeübertragungsart.

Wird ein feinkörniger Feststoff von unten her durch einen Anströmboden vom einem Gas durchströmt, so bildet sich nach Überschreiten der minimalen Fluidisierungsgeschwindigkeit zunächst eine Wirbelschicht mit definierter Oberfläche aus, die an eine brodelnd aufkochende Flüssigkeit erinnert (stationäre Wirbelschicht; Abb. 5). Mit zunehmender Gasgeschwindigkeit expandiert die Wirbelschicht, bis der Feststoff nahezu gleichmässig über die Reaktorhöhe verteilt ist. Die hohe, vom Gas mitgerissene Feststoffmenge wird in einem Rückführzyklon abgeschieden und in den Reaktor zurückgeführt, wodurch sich der Zustand der zirkulierenden Wirbelschicht (ZWS) einstellt. Eine weitere Steigerung der Gasgeschwindigkeit führt dann zum pneumatischen Transport.

Abbildung 5: Grundsysteme für Gas/Feststoff-Wirbelbettreaktoren [Mehrling et al. 1986]

Die beiden Wirbelschichtverfahren unterscheiden sich voneinander grundsätzlich. Während in einer stationären Wirbelschicht ein markantes Temperaturprofil entlang der Reaktorlänge auftritt, arbeitet eine ZWS praktisch isotherm. Dies hat zur Folge, dass eine ZWS bei einer optimalen Temperatur betrieben werden kann, so dass die Gefahr der Ascheverschlackung geringer ist. Zudem sind der Kohlenstoffumsatz höher und die Teergehalte geringer. Die wesentlichsten Nachteile der ZWS im Vergleich mit einer stationären Wirbelschicht sind die etwa 10fach höhere Feststoffbeladung des Gases und der erhöhte Energieverbrauch zur Fluidisierung.

Verfahren mit stationärer Wirbelschicht :

- Institute of Gas Technology (IGT): Renugas-Prozess
- Association pour le développement des carburants par la gazéification du bois (ASCAB)
- Manufacturing and Technology Conversion International (MTCI)

Verfahren mit zirkulierender Wirbelschicht:

- Thermal Processes Studsvik (TPS)
- Lurgi
- Rheinbraun: Hochtemperatur-Winkler-Verfahren (HTW)
- Battelle-Columbus-Laboratories (BCL)

Das von unten in das Wirbelbett zugeführte Gas besteht in der Regel aus Luft, Sauerstoff oder einem Gemisch aus Sauerstoff und Wasserdampf. Die für die Vergasung notwendige Energie wird durch in situ Verbrennen eines Teils des Brennstoffes aufgebracht (Vergasung mit direkter Wärmeübertragung). Bei indirekten Verfahren erfolgt der Wärmeübergang mittels Wärmetauscher (MTCI-Verfahren) oder mittels heissem Bettmaterial aus einer Verbrennungswirbelschicht (BCL-Verfahren).

Die Verweilzeiten des Feststoffes in der Wirbelschicht betragen wenige Sekunden. Beim MTCI-Verfahren, welches Wasserdampf als Vergasungsmittel verwendet, verbleibt der Feststoff für einige Minuten in der Wirbelschicht.

3.5.3. Anforderungen an den Brennstoff

Die Anforderungen an die Brennstoffstückigkeit sind hauptsächlich vom Vergasungssystem bestimmt. Ein Festbettvergaser wie z.B. der Lurgi-Druckvergaser verlangt einen einheitlich stückigen Brennstoff. Für Biomasse ist diese Bedingung voraussichtlich nur durch Brikettierung des Brennstoffs zu erreichen.

Bei den Wirbelschichtverfahren ist einerseits zwischen Druckvergasung und atmosphärischer Vergasung und andererseits zwischen Verfahren mit direktem und indirektem Wärmeübergang zu unterscheiden. Bei den Verfahren mit direktem Wärmeübergang werden höhere Anforderungen an den Restfeuchtegehalt des Brennstoffes gestellt, da die zur Verdampfung des Wassers erforderliche Energie zu einer Verschlechterung der Gasqualität, d.h. geringerer H₂- und höherer CO₂-Gehalt, führt. Der *Wassergehalt* des Brennstoffes für eine Vergasung in einer ZWS (direkter Wärmeübergang) sollte im Bereich von 8 bis 10 Gew.-% liegen.

Die *Grösse der zu vergasenden Brennstoffstücke* ist bei den Wirbelschichtverfahren mit direktem Wärmeübergang limitiert. Bei zu grossen Stücken besteht die Gefahr, dass diese nicht verwirbelt werden und auf dem Anströmboden liegen bleiben. Da an dieser Stelle auch Sauerstoff eingebracht wird, verbrennen die Brennstoffstücke. Dies führt zu einem Mehrverbrauch an Vergasungsmittel und Brennstoff sowie zu einer Verschlechterung der Gasqualität. Ein Wirbelschicht-Druckvergasungssystem mit direktem Wärmeübergang wie beispielsweise das HTW- oder das TPS/MINO-Verfahren benötigt für eine Leistungsgrösse von etwa 20 MW Brennstoffpartikel von wenigen Millimetern Durchmesser. Ein ZWS-Vergaser bei Normaldruck und direktem Wärmeübergang (Lurgi, TPS) arbeitet mit mittleren Brennstoffstückigkeiten von 20 x 20 x 6 mm. Ein Feinanteil im Bereich von 10 bis 20 Gew.-% und vereinzelte grössere Stücke stören dabei nicht. Stationäre Wirbelschichten (ASCAB) verwenden ähnliche Brennstoffstückigkeiten wie eine ZWS, der Feinanteil sollte jedoch möglichst gering sein, um einen vorzeitigen Austrag zu vermeiden.

Vergasungssysteme mit indirektem Wärmeübergang (BCL, MTCI) stellen geringere Anforderungen an die Brennstoffstückigkeit, da hier die Gefahr einer lokalen Totaloxidation nicht gegeben ist. Da es sich auch um Wirbelschichtverfahren handelt, muss der Brennstoff jedoch wirbelfähig sein.

3.5.4. Wichtigste Verfahren

3.5.4.1. IGT Renugas-Prozess

Literatur: [Evans et al. 1987], [Gissy et al. 1992], [Katofsky 1993]

Die Entwicklung des Renugas-Biomassevergasungssytem erfolgte am Institute of Gas Technology in Chicago (USA). Es handelt sich dabei um ein druckaufgeladenes, stationäres Wirbelschichtverfahren mit Sauerstoff/Dampf als Oxidationsmittel (Abb. 6).

Abbildung 6: Schematische Darstellung des Renugas Vergasers [Evans et al. 1987]

Der Eintrag des Brennstoffes und der Austrag der Bettasche erfolgt über Druckschleusen (lock hoppers). Der Vergasungsdruck variiert zwischen 7 und 21 bar und hat keinen wesentlichen Einfluss auf die Gaszusammensetzung. Die Vergasungstemperatur liegt zwischen 750 und 950 °C. Die Grobabscheidung von Partikeln und unvergaster Holzkohle erfolgt in einem Zyklon. Eine Rückführung dieser Asche in den Vergaser ist bisher nicht vorgesehen. Eine Zusammenstellung von experimentellen Daten aus Versuchen zur Holzvergasung in der 0.9 MW Pilotanlage ist in Tab. 8 und im Anhang 11.3 zu finden. Die hohen CO₂-Gehalte im Gas sind wahrscheinlich auf Wärmeverluste zurückzuführen.

Die wichtigsten Vorteile des IGT-Druckvergasers sind:

- Kompakte Gasreinigung
- Effiziente physikalische Gasreinigung (bessere Gaslöslichkeit)
- Bei genügend hohem Druck fällt die Kondensationswärme des Wasserdampfes bei einer Temperatur über 100 °C an und kann daher zur Dampferzeugung genutzt werden

Die wichtigsten Nachteile sind:

- Gasreinigung nicht erprobt
- Druckschleusen neigen bei Brennstoffen mit geringer Schüttdichte und bei Brennstoffen wie Altholz zu Verstopfungen
- Ascheaustrag bei belasteten Brennstoffen (z.B. Altholz) ist störungsanfällig
- Kosten
- hoher Dampfverbrauch
- grosse Kondensatwassermengen
- Temperaturgradienten im Vergaser

Der Vorteil der geringeren Kompressionskosten des Gases bei der Vergasung unter Druck gegenüber Normaldruck hat für die Vergasung von Biomassen nur unwesentliche Bedeutung, da Biomassen eine deutlich geringere Schüttdichte als z.B. Kohle aufweisen und daher ein grosses Leervolumen bei der Kompression der Brennstoffes aufzubringen ist (s.a. Kap. 7.3).

3.5.4.2. ASCAB Wirbelschichtvergaser

Literatur: [Chrysostome et al. 1986], [Lamasle 1990]

Die Association pour le développement des carburants par la gazéification du bois, abgekürzt ASCAB, hat zwei stationäre Wirbelschichtvergaser gebaut, wobei die 2 MW-Anlage in Le Creusot bei Atmosphärendruck und die 12.5 MW-Anlage in Clamecy bei Drücken zwischen 3 und 10 bar arbeiteten. Die Vergasung des Holzes erfolgt bei Temperaturen zwischen 700 und

800 °C und mit Sauerstoff/Wasserdampf als Oxidationsmittel. Beiden Anlagen ist gemeinsam, dass Methan und höhere Kohlenwasserstoffe in einem Sekundärreformer durch Sauerstoffzugabe thermisch gecrackt werden. Die Temperaturen im Reformer betragen zwischen 1250 und 1300 °C. Das reformierte Primärgas wird ohne Nutzung der fühlbaren Wärme in einem Nasswäscher gequencht und gereinigt. Eine Zusammenstellung von experimentellen Daten ist in Tab. 8 und im Anhang 11.4 zu finden.

Die wichtigsten Vorteile der beiden ASCAB-Vergaser sind:

- geringer Kohlenwasserstoff- und Teergehalt im Gas
- kein Katalysator für die Reformierung notwendig
- Druckvergasung in Clamecy: Möglichkeit zur Nutzung der Kondensationswärme des Wasserdampfes bei einer Temperatur über 100 °C; kompakte Gasreinigung
- atmosphärische Vergasung in Le Creusot: hohe H2-Ausbeuten

Die wichtigsten Nachteile:

- hoher Sauerstoffverbrauch für die thermische Reformierung
- Temperaturgradient im Vergaser
- Druckvergasung (Clamecy): die spez. H₂-Ausbeuten sind relativ niedrig; keine erprobte Gasreinigung; grössere Kondensatwassermengen als bei Normaldruckverfahren; hoher CO₂-Gehalt im Gas; Ascheaustrag bei belasteten Materialien störungsanfällig

3.5.4.3. MTCI Wirbelschichtvergaser

Literatur: [Durai-Swamy et al. 1991], [Katofsky 1993]

Das Verfahren der Firma Manufacturing and Technology Conversion International Inc. (MTCI), ist ein stationäres Wirbelschichtverfahren bei Normaldruck mit indirekter Beheizung (Abb. 7).

Die zur Vergasung erforderliche Energie wird durch pulsierende Verbrennung von Erdgas oder eines Teils des Produktegases (entsprechend ca. 30% des Heizwertes des Primärgases) und dem im Zyklon abgeschiedenen Kohlenstoff in einer separaten Brennkammer aufgebracht. Das heisse Verbrennungsgas strömt durch einen in der Wirbelschicht eingebauten Wärmetauscher. Durch die oszillierende Verbrennung in Resonanzrohren (Frequenz im Bereich von 30 bis 300 Hz) soll der indirekte Wärmeübergang im Wärmetauscher deutlich besser sein. Als Vergasungsmittel dient Wasserdampf. Die Vergasungstemperatur beträgt etwa 700 °C. In der bisherigen Konstruktion erfolgt der Ascheaustrag nur über die Gasströme (Zyklonabscheidung).

<u>Abbildung 7:</u> Schematische Darstellung des MTCI Vergasungssystems [Durai-Swamy et al. 1991]

Eine Zusammenstellung von einigen Versuchsergebnissen ist in der Tab. 8 und im Anhang 11.5 zu finden.

Die wichtigsten Vorteile des MTCI-Vergasers sind:

- durch die indirekte Beheizung benötigt das Vergasungssystem keinen Sauerstoff
- sehr hohe spezifische H₂-Ausbeuten (Pyrolyse statt Vergasung; s.a. Abb. 1)
- das Verhältnis von H₂:CO beträgt etwa 2.25. Für die Methanolsynthese ist keine Shiftreaktion notwendig.

Die wichtigsten Nachteile sind:

- hoher Wasserdampfverbrauch
- hoher Wasserdampfgehalt im Gas
- Kondensationswärme des Wasserdampfes fällt bei Temperaturen unter 100 °C an.
- zur Beheizung ist nebst der ausgetragenen Holzkohle eine grosse Menge hochwertiges Heizgas notwendig.

3.5.4.4. Zirkullerende Wirbelschicht von TPS

Literatur: [Sinclair et al. 1985], [Blackadder et al. 1992], [SAFi 1993]

Thermal Processes Studsvik (abgekürzt TPS), früher Studsvik Energy, entwickelte ein atmosphärisches (Abb. 8) und ein druckaufgeladenes (30 bar) Vergasungssystem auf der Basis der zirkulierenden Wirbelschicht. Die Vergasung der Biomassen findet bei Temperaturen zwischen 700 und 850 °C statt.

<u>Abbildung 8:</u> Schematische Darstellung des atmosphärischen ZWS-Vergasers von TPS [Blackadder et al. 1992]

Beiden Verfahren ist gemeinsam, dass die Kohlenwasserstoffe und die Teerverbindungen nach der Vergasung katalytisch gecrackt werden. Der atmosphärischen ZWS ist eine zweite ZWS mit Dolomit als Bettmaterial nachgeschaltet. Dolomit erweist sich als sehr effektiver Katalysator zum Cracken von Teer und Kohlenwasserstoffen, ausgenommen Methan. Die druckaufgeladene Variante verwendet einen Dampfreformer mit einem schwefeltoleranten Katalysator auf Nickelbasis [Sinclair et al. 1987]. Ein Hochtemperatur-Keramikfilter scheidet die Partikel im Primärgas vorgängig ab. Die Reformertemperatur von 900 bis 1000 °C wird durch Teilverbrennen des Primärgases mit Sauerstoff erreicht. Von den beiden Vergasertypen liegen keine Resultate zur Auswertung von Versuchen mit Biomasse vor. Die wichtigsten Vorteile der beiden Verfahren sind:

- hoher Kohlenstoffumsatz
- das Primärgas ist nahezu teerfrei
- optimale Betriebstemperatur möglich (s.a. Kap. 3.5.2)
- die Abwasserbelastung ist durch das katalytische Teercracken wesentlich verringert
- Druckvergasung: Hochtemperaturreinigung von Partikeln möglich; Kondensationswärme des Wasserdampfes kann bei Temperaturen über 100 °C anfallen.
- Normaldruckvergasung: Feststoff kann in einem Gewebefilter abgeschieden werden und gelangt so nicht ins Abwasser; Dolomit ist ein billiges Katalysatormaterial

Die wichtigsten Nachteile sind:

- Hohe Feststoffbeladung im Rohgas
- Druckvergasung: Es <u>muss</u> eine Hochtemperaturgasreinigung vor dem Katalysator erfolgen; Langzeitverhalten des Keramikfilters und des Katalysators ist nicht bekannt; grössere Kondensatwassermengen; Ascheaustrag bei Brennstoffen wie Altholz störungsanfällig.
- Normaldruckvergasung: Dolomit desaktiviert bei hohen HCI-Gehalten im Gas; Standzeit des Dolomits als Katalysatormaterial ist auch bei Vergasung von unbelasteten Brennstoffen nicht bekannt; Reinigung von Primärgasen im Gewebefilter ist nicht erprobt; die hohe Feststoffbeladung nach der Vergasungs-ZWS führt zu einer Verdünnung des Katalysators im Dolomit-Cracker; hohe Installationskosten, da zweite ZWS erforderlich

3.5.4.5. Zirkullerende Wirbelschicht von Lurgi

Literatur: [Löffler 1991], [Mehrling et al. 1986a], [Mehrling et al. 1986b], [Mehrling et al. 1989], [Sturm 1991]

Lurgi hat ein Vergasungsverfahren auf der Basis der zirkulierenden Wirbelschicht bei Atmosphärendruck (Abb. 9) entwickelt. Die Vergasung von biogenen Brennstoffen erfolgt bei Temperaturen zwischen 750 und 850 °C. Der aus der ZWS ausgetragene Feststoff wird in einem nachgeschalteten Zyklon (secondary cyclone) abgeschieden und in die ZWS zurückgeführt.

<u>Abbildung 9:</u> Schematische Darstellung der ZWS von Lurgi zur Vergasung von Rinde mit Luft als Vergasungsmittel [Löffler 1992]

Das Verfahren unterscheidet sich nicht grundsätzlich von anderen zirkulierenden Wirbelschichten. In einer neuen Verfahrensvariante wird der aus der ZWS ausgetragene Kohlenstoff nass abgeschieden und in einer separaten Wirbelschicht nachvergast. Eine Zusammenstellung von Versuchen ist in Tab. 8 (16 MW ZWS-Vergaser mit Rinde) und im Anhang 11.2 und 11.6 (ca. 2.5 MW Pilot-ZWS-Vergaser) zu finden. Wichtigste Vorteile des Lurgi-Verfahrens:

- hoher Kohlenstoffumsatz (> 95%)
- optimale Betriebstemperatur möglich
- variables Brennstoffspektrum

Wichtigste Nachteile:

- hohe Feststoffbeladung im Gas
- Kondensationswärme des Wasserdampfes fällt bei Temp. < 100 °C an

3.5.4.6. HTW-Druckvergasungsverfahren

Literatur: [Bellin et al. 1984], [Sipilä et al. 1989], [Koljonen 1992]

Bei der Vergasung nach dem Hochtemperatur-Winkler-Verfahren, abgekürzt HTW, handelt es sich um eine druckaufgeladene zirkulierende Wirbelschicht (10 bar; Abb. 10). Die Entwicklung dieses vor allem für Braunkohle geeigneten Verfahrens erfolgte bei Rheinbraun, das Engineering wird von den Firmen Uhde und Lurgi gemacht. Das vorgeheizte Sauerstoff/-Wasserdampf-Gemisch wird auf mehreren Reaktorebenen zugegeben.

<u>Abbildung 10:</u> Schematische Darstellung des HTW-Druckvergasungsverfahren für Torf [Koljonen 1992]

Wichtigste Vorteile des HTW-Vergasers:

- hohe Leistungsdichte möglich
- hoher Kohlenstoffumsatz (> 95%)
- optimale Betriebstemperatur möglich
- die gestufte Zugabe des Vergasungsmittel erlaubt eine gewisse Kompensation von Variationen in der Brennstoffqualität
- Kondensationswärme des Wasserdampfes kann bei Temperaturen über 100 °C anfallen

Die wichtigsten Nachteile sind:

- hohe Feststoffbeladung im Primärgas
- bei Anlagen im Bereich 20 MW: höhere Anforderungen an Brennstoff als bei Normaldruck-ZWS
- hohe Druckschleusenverluste infolge geringer Brennstoffschüttdichte
- grössere Kondensatwassermengen als Normaldruckvergasung
- Installationskosten höher als bei Normaldruck-ZWS
- Ascheaustrag störungsanfällig bei Vergasung von Alt- oder Bauabfallholz

Es liegen keine Versuchsresultate von Holzvergasungsversuchen zur Auswertung vor. Im Anhang 11.8 sind Resultate von Vergasungsversuchen mit Torf zusammengestellt.

3.5.4.7. Das BCL Vergasungssystem

Literatur: [Feldmann et al. 1988], [Wan et al. 1990], [Katofsky 1993]

Das vom Battelle Columbus Laboratory (BCL) entwickelte Verfahren arbeitet wie der MTCI-Vergaser mit indirektem Wärmeübergang, unterscheidet sich in der Funktionsweise jedoch deutlich von allen anderen Verfahren. Im wesentlichen besteht es aus zwei Wirbelschichtreaktoren (Abb. 11). In einem schmalen, hohen Reaktor wird die Biomasse pyrolysiert. Der aus dem Zyklon ausgetragene, feste Pyrolyserückstand wird in einer zweiten Wirbelschicht verbrannt. Die aus dem Zyklon der Verbrennungswirbelschicht anfallende, heisse Asche wird in den Pyrolysereaktor zurückgeführt. Der Wärmeeintrag in den Pyrolysereaktor erfolgt durch Rückführung heisser Asche aus der Verbrennungswirbelschicht. In der bisherigen Konstruktion erfolgt der Ascheaustrag nur über die Gasströme (Zyklonabscheidung).

Abbildung 11: Schematische Darstellung des BCL Vergasungssystem [Feldmann et al. 1988]

Vom BCL-Vergaser liegen umfangreiche Messungen von Vergasungsversuchen mit verschiedenen Holzsorten vor. Ein Auszug ist im Anhang 11.7 zu finden. Die Abbildung 12 zeigt den temperaturabhängigen Verlauf der spezifischen H₂- und CO-Ausbeuten.

<u>Abbildung 12:</u> Spezifische Ausbeuten an H₂ und CO (in Nm³/kg atro Brennstoff ⁴) in Abhängigkeit der Vergasertemperatur beim BCL-Vergasungssystem. Brennstoff: Pinie [Feldmann et al. 1988]

Die Ausbeuten steigen mit zunehmender Temperatur, wobei die Ausbeute von H₂ stärker temperaturabhängig ist als diejenige von CO. Das Verhältnis H₂:CO nimmt dabei mit zuneh-

⁴ atro = absolut trocken, d.h. u = 0%

mender Temperatur zu. Bei einer Vergasungstemperatur von 700 °C beträgt die H₂-Ausbeute etwa 0.1 Nm³/kg atro Brennstoff, bei 1050 °C etwa 0.5 Nm³/kg. Zur Erzeugung von Synthesegas zur Methanolherstellung ist der Vergaser deshalb bei möglichst hoher Temperatur zu betreiben. Letztere kann jedoch nicht beliebig gesteigert werden, da einerseits der Heizwert des festen Pyrolyserückstandes limitiert ist ⁵ und andererseits der Ascheerweichungspunkt nicht überschritten werden darf. Bei einer maximal zulässigen Temperatur in der Verbrennungswirbelschicht von 1000 °C und einer Temperaturdifferenz von 90 °C (gemessener Wert in Pilotanlage mit 25 cm Durchmesser und max. Leistung von ca. 4 MW) zwischen Vergasungs- und Pyrolysereaktor resultiert eine Vergasungstemperatur von 910 °C. Mit dem BCL-Verfahren sind demzufolge H₂-Ausbeuten im Bereich von 0.18 Nm³/kg atro Brennstoff zu erwarten.

Wichtigste Vorteile des BCL-Verfahrens:

- zur Vergasung ist kein Sauerstoff notwendig
- CO₂-armes Primärgas
- gleichbleibende Gasqualität bei schwankender Brennstoffeuchte
- geringere Brennstoffanforderungen als Verfahren mit direkter Wärmeübertragung
- Nutzenergie auf hohem Temperaturniveau
- thermische Nutzung der ausgetragenen Holzkohle und der Teerverbindungen in der Verbrennungs-ZWS
- breites Brennstoffspektrum

Wichtigste Nachteile:

- geringe spez. Ausbeuten an H₂ und CO
- hoher Methangehalt des Primärgases
- Kondensationswärme des Wasserdampfes fällt bei Temperaturen unter 100 °C an
- Ascheaustrag bei Vergasung von Bauabfall- und Altholz nicht sichergestellt (bisher keine Untersuchungen in dieser Art)

Bei Battelle ist ein Versuchsbericht zur katalytischen Spaltung von Teeren und Teerölen in Bearbeitung. Für den verwendeten Dolomitkatalysator ist ein Patent beantragt.

⁵ Zur Temperaturerhöhung könnte der Verbrennungswirbelschicht allenfalls zusätzlicher Brennstoff oder Heizgas zugeführt werden.
3.5. Zusammensetzung verschiedener Brennstoffe

Die wichtigsten Biomassen, welche in Vergasern bisher Verwendung fanden, sind unbelastetes Holz, Waldrestholz und Rinde. Im Projekt 'Biometh' sollen jedoch auch belastete Materialien wie Altpapier, Kunststoffabfälle, Baurestholz und Altholz zur Vergasung gelangen. In der Tabelle 6 sind die Zusammensetzungen, so weit sie bekannt sind, einiger dieser Brennstoffe und einer Kohlesorte zusammengestellt.

Brennstoff		Holz	Rinde	Altholz	maximal	Altpapier	Kohle
Estas al all	0	F		WILLEIWEIL	IIIaxiiiiai		
Feinantell	Gew%	max. 5		10	20		
Schüttdichte	kg/m3	200-280		180			
Wassergehalt	Gew%	25-50		15	25	8	
Aschegehalt tot.	Gew%	0.5	3.7	2 bis 10		6.1	10
Elementarzusammense	etzung						
C	Gew%	49.5	- 50	48	_	-41.9	80.72
Н	Gew%	6.3	6	6.6		6.3	3.90
0	Gew%	44.2	43	42.5		45.3	3.18
Ν	Gew%	0.2	0.5	0.7		0.2	1.32
S	Gew%	0.02	0.03		0.20	0.12	0.78
Heizwert H _{u,ber}	MJ/kg waf	18.4	18.4	18.4		15.6	31.6
Gehalte an Chlor und S	Schwermetalle	n					
Chlor	mg/kg	< 100	150	930	1500	1200	1000
Cadmium	mg/kg	0.1	0.7	2.2	6	0	k.A.
Quecksilber	mg/kg	< 0.01	-	0.3	1.3	0	k.A.
Kupfer	mg/kg	1	6	25	60	15	k.A.
Nickel	mg/kg	< 0.01	4	10	19	4	k.A.
Chrom	mg/kg	1	2	17	21	7	k.A.
Blei	mg/kg	1	5	530	1470	15	k.A.
Zink	mg/kg	15	100	960	2340	35	k.A.

<u>Tabelle 6:</u> Zusammensetzung von möglichen Brennstoffen zur Vergasung.

Berechnung von Hu (aschefrei, u = 0; [Marutzky 1991]):

 $H_{u,ber} = 34.8^{\circ}C + 93.9^{\circ}H + 10.5^{\circ}S + 6.3^{\circ}N - 10.8^{\circ}O (C,H,S,N,O in Dezimal$ angabe; H_u in MJ/kg). waf = wasser- und aschefrei.

Quellen: naturbelassenes Holz: [Marutzky et al. 1984], [Marutzky et al. 1986], [Bühler 1988], [Marutzky et al. 1991], [Nussbaumer et al. 1993]; Rinde: [Marutzky et al. 1984], [Marutzky et al. 1986], [Marutzky et al. 1991], [Obernberger 1992]; Altholz: [Kasser 1990], [Hasler et al. 1993]; Altpapier: [Sturm 1991]; Kohle: [Althoff et al. 1983] Die Elementarzusammensetzungen der Brennstoffe unterscheiden sich mit Ausnahme der Kohle nicht wesentlich. Die grössten Unterschiede bestehen im Stickstoff- und Schwefelgehalt, wobei Rinde und Altholz die höchsten Stickstoffwerte und Altholz und Altpapier die höchsten Schwefelwerte aufweisen. Die Belastung mit Chlor und Schwermetallen ist erwartungsgemäss beim Altholz am grössten. Altpapier kann ebenfalls hohe Chlormengen enthalten, die Gehalte an Schwermetallen sind jedoch geringer als bei Altholz und etwa mit denjenigen von Rinde vergleichbar.

3.6. Zusammensetzung von Aschen verschiedener Brennstoffe

Über die Zusammensetzung der bei der Vergasung entstehenden Aschen liegen nur lückenhafte Kenntnisse vor. Es ist jedoch zu erwarten, dass sich mit Ausnahme des Restkohlenstoffs die Aschen aus einer Feuerung von denjenigen aus einem Vergaser nicht grundsätzlich unterscheiden. Der Restkohlenstoffgehalt einer Asche aus einem ZWS-Vergaser beträgt wenige Gew.-%.

In der Tabelle 7 sind Aschezusammensetzungen verschiedener Brennstoffe zusammengestellt. Die Hackgut- und Rindenasche stammen aus Feuerungsanlagen, die Altholz- und Altpapieraschen wurden im Labor erzeugt. Die verschiedenen Aschen zeigen in den Schwermetallgehalten deutliche Unterschiede. Altholzasche weist im Vergleich zu Rinde insbesondere in den Gehalten an Zink (Zn), Blei (Pb), Kupfer (Cu) und Chrom (Cr) um mindestens einen Faktor 10 höhere Werte auf. Die Altpapierasche weist gegenüber Hackgut- oder Rindenache etwas höhere Werte an Blei, Kupfer und Chrom auf.

Brennstoff		Hackgut	Rinde	Altholz	Altpapier
Aschegehalt	Gew%	0.9	4.1	1.7	6.1
SiO ₂	Gew%	k.A.	k.A.	32.7	39.5
CaO	Gew%	41.17	33.58	26.0	18.1
MgO	Gew%	4.64	3.32	3.7	1.8
K ₂ O	Gew%	7.89	5.27	4.3	2.2
Na	Gew%	0.26	0.57	1.7	2.7
Al ₂ O ₃	Gew%	2.44	4.87	6.8	26.8
TiO ₂	Gew%	k.A.	k.A.	2.9	1.1
BaO	Gew%	k.A.	k.A.	1.0	0.3
Р	Gew%	0.82	1.08	0.4	0.2
Fe	mg/kg Asche	32200	25000	52000	18000
Mn	mg/kg Asche	10800	11300	5800	540
Zn	mg/kg Asche	470	1010	10800	580
Pb	mg/kg Asche	15	7	1390	250
Cu	mg/kg Asche	130	90	990	250
Ni	mg/kg Asche	50	40	350	70
Co	mg/kg Asche	7	12	70	23
Cr	mg/kg Asche	46	32	1140	120
v	mg/kg Asche	12	31	60	< 25
Мо	mg/kg Asche	0.3	1.3	50	20
As	mg/kg Asche	1.24	11	40	9
Cd	mg/kg Asche	1.5	4	1.1	< 0.5
Hg	mg/kg Asche	0.04	< 0.05	1.9	< 0.5

Tabelle 7:Aschezusammensetzungen verschiedener BrennstoffeQuellen: Hackgut (unbelastet), Rinde: [Obernberger 1992]; Altholz, Altpapier:[Sturm 1991]

4. Zusammensetzung des Primärgases

4.1. Hauptbestandteile

Die Tabelle 8 (nächste Seite) gibt die Zusammensetzung der Hauptkomponenten des Primärgases aus einigen Biomassevergasern wieder. Eine vollständige Zusammenstellung findet sich im Anhang 11.2 bis 11.7.

Da viele Versuche zur Vergasung mit Biomasse mit Luft als Vergasungsmittel stattfanden und ein direkter Vergleich der Resultate miteinander schwierig ist, erfolgt jeweils eine Umrechnung der Gaszusammensetzung auf eine stickstofffreie Basis. Dabei ist angenommen, dass Luft anstatt Sauerstoff nur zu einem Verdünnungseffekt des Gases führt und die Gehalte an Feststoffen und Teer unverändert bleiben.

Die Gase weisen in allen Fällen einen für die Methanolsynthese ungünstigen Stöchiometriefaktor SF (s.a. Kap. 3.1) auf. Mit Ausnahme der indirekten BCL-Verfahrens bewegen sich die CO₂-Gehalte im Bereich von 20 bis 40 Vol.-%. Ein hoher CO₂-Gehalt deutet darauf hin, dass ein erhöhter Energieinput aufzubringen ist. Dies kann beispielsweise Folge von Wärmeverlusten des Vergasers, von einem Mehrenergiebedarf zur Trocknung des Brennstoffes oder Teilverbrennen des Gases für ein thermisches Cracken (ASCAB) sein.

Ausser bei den beiden ASCAB-Vergasern sind die Methangehalte relativ hoch und demzufolge die H₂-Ausbeuten gering. Die Wasserstoffausbeute liesse sich mittels einer Dampfreformierung des Methans (CH₄ + H₂O \leftrightarrow CO + 3 H₂) erhöhen (s.a. Kap. 5).

Der Wassergehalt im Gas ist nebst dem Wassergehalt im Brennstoff auch vom Verfahren abhängig. Bei der Vergasung mit Sauerstoff/Wasserdampf sind die anfallenden Wassermengen grösser als bei Vergasung mit Luft, da der Luftstickstoff durch Wasserdampf ersetzt wird. Eine Druckvergasung in der Wirbelschicht hat einen höheren spezifischen Dampfverbrauch als ein Verfahren bei Atmosphärendruck, da zur Fluidisierung des Brennstoffs ein gleiches Volumen Dampf bei höherem Druck notwendig ist. Das IGT- und das ASCAB2-Verfahren weisen deshalb höhere Waserdampfgehalte auf. Die höchsten Dampfgehalte resultieren beim MTCI-Verfahren, da hier der Wasserdampf auch Vergasungsmittel ist und zur Erzielung hoher Umsätze ein grosser Überschuss an Wasser notwendig ist.

Firma		Syngas	Biosyn	ASCAB1	IGT	ASCAB2	Lurgi	BCL	MTCI
Vergasertyp		FG	WS	SM	WS	WS	SWZ	DZWS	WS
Anlageleistung		2.8 MW	90 kW	460 kW	0.89 MW	6.6 MW	16 MW	3.8 MW	42 kW
Druck		1 bar	1 bar	1 bar	22.0 bar	5.5 bar	1 bar	1 bar	1 bar
Temperatur	ပ	870	743	700/1150	837	720/1250	800	870	200
Vergasungsmittel		02	Luft	O2/Dampf	Luft/Dampf	O ₂ /Dampf	Luft	Dampf	Dampf
Brennstoff		Holz	Holz	Holz	Holz	Holz	Rinde	Holz	Holz
Wassergehalt d. Brennstoffs	Gew%	10.0%	14.0%	20.0%	10.8%	14.3%	15.0%	11.3%	22.0%
Dampfinput	kg/kg atro	0.00	0.00	0.23	1.32	0.62	00.00	0.29	1.37
Sauerstoffinput	kg/kg atro	0.48	0.41	0.29+0.27	0.29	0.23+0.35	0.34	0.00	0.00
Stickstoffinput	kg/kg atro		1.36	-	0.83		1.13	0.00	0.00
Produktgaszusammensetzung (trocken, im No	ormalzustand, stic	kstofffrei)							
H2	Vol%	21.8	19.5	33.6	32.5	24.0	28.8	21.2	50.0
00	Vol%	45.9	33.2	35.0	10.7	35.1	30.0	45.4	23.1
CO2	Vol%	24.0	35.2	28.2	41.4	40.8	29.2	11.5	19.4
CH4	Vol%	5.9	8.0	1.5	14.3	0.1	8.2	16.1	8.0
C2H4	Vol%		3.1		0.1				
C2H6	Vol%		0.5		0.5				
C3H6	Vol%		0.5			,			
CmHn	Vol%	2.5					3.9	5.7	0.4
Kaltgaswirkungsgrad	%	64 (HHV)		65.0	77.0			73 (HHV)	
Kohlenstoff-Umsatz ohne Teer	%				93.0			70.0	93.0
Kohlenstoff-Umsatz mit Teer	%	91.0			96.1				96.0
Teer	g/kg atro	17.0	34.0		16.5			5.0	6.1
'Holzkohle'	g/kg atro	32.0	26.0					170.0	8.1
Feststoffe	g/Nm ³				10		60.0		
'Kohlenstoff'	g/Nm3						40.0		
Gasausbeute (feucht, total)	Nm ³ /kg atro		2.44		3.77		2.37	-	
Gasausbeute (trocken, N2-frei)	Nm ³ /kg atro	1.18	0.96	1.38	1.26	1.27	1.21	0.87	1.45
Kondensatwassermenge	kg/kg atro	0.100	0.357	0.470	1.452	0.640	0.171	0.400	1.300
H2-Ausbeute	Nm ³ /kg atro	0.257	0.188	0.464	0.410	0.305	0.348	0.184	0.725
CO-Ausbeute	Nm ³ /kg atro	0.542	0.318	0.483	0.135	0.446	0.363	0.395	0.320
Ausbeute H2+CO	Nm ³ /kg atro	0.799	0.506	0.947	0.544	0.751	0.711	0.579	1.045
Stöchiometriefaktor SF	•	-0.03	-0.23	0.09	-0.17	-0.22	-0.01	0.18	0.74

Zusammenstellung von experimentellen Daten aus Biomassevergasern. <u>Abkürzungen:</u> ASCAB1: Le Creusot; ASCAB 2: Clamecy; FG: Festbett-Gleichstrom; WS: Wirbelschicht (stationär); ZWS: zirkulierende Wirbelschicht; DZWS: Doppel-ZWS; Quellen: siehe Anhang 11.2 Tabelle 8:

4.2. Spurengase

Das Primärgas enthält brennstoff- und verfahrensbedingt eine Reihe von Spurengasen. Die wichtigsten, vom Brennstoff herrührenden Spurengase sind Ammoniak (NH₃) und Schwefelwasserstoff (H₂S) sowie Salz- und Flussäure, letztere insbesondere bei der Vergasung von belasteten Brennstoffen. Die wichtigsten verfahrenstechnisch bedingten Spurengase sind Blausäure (HCN), Kohlenoxisulfid (COS), Ethan (C₂H₆) und Ethen (C₂H₄), allenfalls Ethin (C₂H₂). Für die nachfolgende Methanolsynthese müssen diese Spurengase praktisch restlos entfernt werden. Der Einfluss von ungesättigten Kohlenwasserstoffen wie Ethin und Ethen auf den Methanolsynthesekatalysator ist nicht genau bekannt. Die Lebensdauer und die Aktivität des Lurgi-Katalysators soll durch ungesättigte Kohlenwasserstoffe nicht negativ beeinflusst werden. Allerdings ist infolge Hydrierung mit einem Wasserstoffmehrverbrauch zu rechnen. Andererseits darf das Synthesegas für das ICI-Verfahren höchstens 20 ppm Ethen enthalten (Tab. 2).

In der Tabelle 9 sind berechnete und gemessene Spurengasgehalte bei der Vergasung von verschiedenen Biomassen zusammengestellt. Die Berechnung geht davon aus, dass sich die im Brennstoff vorhandenen Stickstoff-, Schwefelverbindungen und die Halogenide vollständig als Gase freisetzen (Zusammenstellung Schadstoffgehalte: Kap. 3.6).

		Berechnet		Messwerte		
Spurengas		Holz	Rinde	Altpapier	Altholz	Altholz
NH ₃	mg/Nm ³	2000	5000	1000	7000	7000
HCN	mg/Nm ³					100
HCI	mg/Nm ³	100	150	900	900	400
H ₂ S	mg/Nm ³	200	300	1500	max. 2000	400
cos	mg/Nm ³					< 10
C ₂ H6	mg/Nm ³					800
C ₂ H ₄	mg/Nm ³					8000
C ₂ H ₂	mg/Nm ³					100

Tabelle 9:Spurengasgehalte in mg/Nm3 (trocken) im Primärgas bei der Vergasung ver-
schiedener Brennstoffe mit Sauerstoff/Dampf. Annahme: keine Unterschiede bei
Vergasung mit Sauerstoff/Dampf oder Luft; 1 Nm3 Gas pro kg atro Brennstoff.
Messwerte Altholz (Pilot-ZWS): Sturm et al. 1991

Insbesondere die Salzsäuregehalte nehmen mit zunehmender Brennstoffbelastung zu. Auffallend sind die Unterschiede in den HCI- und H₂S-Gehalten zwischen den berechneten und den gemessenen Werten bei der Altholzvergasung. Es ist wahrscheinlich, dass die alkalische Asche ein Absorptionsvermögen für saure Gase wie Salzsäure aufweist und Schwermetalle den Schwefelwasserstoff in Form von Sulfiden zu binden vermögen.

4.3. Partikel

Vergasungssystem	Fes	tbett	WS	ZWS
	Gegenstrom	Gleichstrom		
Partikelgehalte in g/Nm ³	0.11	0.7	1	8100
	0.1	0.18		20
	0.11	0.33		
		0.1	8100	
	0.11	0.20.3	24	
Carlos a seconda la seconda da	13	0.011	123	- =
	1	0.010.12	10100	
	0.16	110		
			10	
		0.02		
		0.020.1	23	
			100	
			1	5
			5	
Mittelwerte	1 g/Nm ³	1 g/Nm ³	4 g/Nm ³	20 g/Nm ³

In der Tabelle 10 sind die Partikelgehalte verschiedener Vergasungssysteme aufgezeigt.

<u>Tabelle 10:</u> Partikelgehalte im Primärgas aus verschiedenen Vergasungssystemen [Graham et al. 1992]. WS: stationäre Wirbelschicht; ZWS: zirkulierende Wirbelschicht. Werte bei Wirbelschichtverfahren nach Zyklon

Die Festbettvergaser weisen eine deutlich geringere Partikelbeladung auf als die Wirbelschichtverfahren. Dies ist darauf zurückzuführen, dass der Brennstoff verfahrensbedingt nicht verwirbelt werden muss und die Strömungsgeschwindigkeiten dadurch geringer sind. Zudem verlangen Festbettvergaser i.d.R. stückigere Brennstoffe.

Aufgrund der hohen Gasgeschwindigkeiten weist die zirkulierende Wirbelschicht Partikelgehalte von bis zu 50 g/Nm³ auf (s.a. Anhang 11.2 und 11.9). Die Stäube sind extrem fein ($d_{50} < 10 \mu m$) und lassen sich nicht mit einem Zyklon abscheiden. Zudem enthalten sie ca. 80 Gew.- % Kohlenstoff. Dies führt dazu, dass der Energieinhalt der Partikel gross ist. Für die Vergasung von Rinde mit Luft teilen sich die Energieinhalte in etwa folgendermassen auf [Löffler 1991]:

Hu des staubfreien Produktgases:	5800 kJ/Nm ³
Fühlbare Wärme (Vergasung bei 800 °C):	840 kJ/Nm ³
C-haltiger Staub ⁶ :	1400 kJ/Nm ³

Erfolgt die Vergasung mit Sauerstoff, so beträgt der Heizwert des Produktgases etwa 12000 kJ/Nm³ (bei Luftvergasung weist das Gas einen Stickstoffgehalt von etwa 50 Vol.-% auf) und der Energieanteil des kohlenstoffhaltigen Staubes noch etwa 10%.

4.4. Teer

Bei der Abkühlung des Primärgases aus Biomassevergasern (Normaldruck) auf Temperaturen unter 300 °C beginnen die Teerverbindungen auszukondensieren und bei Temperaturen unter 100 °C fällt das wässrige Kondensat an. Die Mengen der gebildeten Teere ist vom Vergasungsverfahren und der Vergasungstemperatur abhängig [Baker et al. 1988].

	1			
Vergasungssystem	Fes	tbett	stat. WS	ZWS
5	Gegenstrom	Gleichstrom		
Teergehalte in g/Nm ³	10.100 30150 10100 42 10100	0.050.5 0.55 0.1.1.1 0.51.2	16 914 23 210 6.18	210 710 130
	32	0.040.2 0.11 0.66 0.010.24	5 110 1018 20	
Mittelwerte	50 g/Nm ³	0.5 g/Nm ³	12 g/Nm ³	8 g/Nm ³

Die Tabelle 1 gibt eine Zusammenstellung von Teergehalten aus verschiedenen Vergasungssystemen wieder.

<u>Tabelle 11:</u> Teergehalte im Primärgas aus verschiedenen Vergasungssystemen [Graham et al. 1992] (stat. WS: stationäre Wirbelschicht; ZWS: zirkulierende Wirbelschicht)

⁶ Die Berechnung erfolgt anhand folgender Angaben: Pro Nm³ enthält das Gas etwa 40 g Kohlenstoff; Der Energieinhalt von Kohlenstoff beträgt 34.8 MJ/kg.

Die höchsten Teergehalte produziert der Gegenstromvergaser, da das heisse Primärgas aus der Oxidationszone durch das kältere Brennstoffbett strömt, in welchem die Pyrolyse und die Trocknung des Brennstoffes stattfindet. Die Temperaturen reichen nicht mehr aus zur Spaltung der Pyrolysegase, so dass erhöhte Kohlenwasserstoff- und Teeremissionen auftreten. Im Gleichstromvergaser verlässt das Primärgas den Reaktor an der heissesten Stelle und weist geringe Teeremissionen auf. Die Teeremissionen von Wirbelschichtreaktoren liegen in einem mittleren Bereich. Die Temperatur hat jedoch auch bei den Wirbelschichtverfahren einen deutlichen Einfluss auf die Teergehalte. In einer stationären Wirbelschicht mit Luft als Vergasungsmittel nimmt der Teergehalt mit zunehmender Vergasungstemperatur deutlich ab (Abb. 13).

Bei Vergasungstemperaturen von 700 °C finden sich über 5 g Teer pro Nm³ Gas, bei Temperaturen über 800 °C sind es noch etwa 0.5 g/Nm³. Die Teergehalte können somit mit Wirbelschichtverfahren ebenfalls gering gehalten werden. Gelegentlich findet eine Klassifizierung der Teere in primäre und sekundäre statt [Baker et al. 1988]. Die primären Teere stammen aus der Pyrolyse der Biomasse, enthalten viele organische Sauerstoffverbindungen und sind gut wasserlöslich. Bei der thermischen Umsetzung der primären Teere entstehen phenolische Verbindungen, welche sich weiter zu aromatischen und polyaromatischen Kohlenwasserstoffen (abgekürzt PAK) umsetzen. Diese sekundären Teere sind schlecht wasserlöslich, womit die Abwasserbelastung abnimmt. In Labortests zeigten die sekundären Teere jedoch eine mutagene und tumorpromotierende Aktivität [Baker et al. 1988], [Elliott 1987]. Eine Zusammenstellung der Teerinhaltstoffe einiger Vergasersysteme befindet sich im Anhang 11.10.

4.5. Wässrige Kondensate

Der zur Fluidisierung und/oder zur Vergasung zugegebene Wasserdampf sowie die Restfeuchte des Brennstoffes führen bei der Kondensation des Gases zu Abwässern. Da Wasser auch an den Vergasungsreaktionen teilnehmen kann (Kap. 3.1), lassen sich die Mengen der anfallenden wässrigen Kondensate nicht in allen Fällen durch die in das System eingebrachte Wassermenge bestimmen. Die Bestimmung der Gesamtkondensatwassermenge erfolgt über den Wasserdampfgehalt des Primärgases. Um die Werte miteinander vergleichen zu können, werden die Angaben auf eine Brennstoffeuchte von u = 10 % normiert. Die Normierung erfolgt unter der Annahme, dass zwischen der Brennstoffwassermenge und dem Wasserdampfgehalt des Primärgases ein linearer Zusammenhang besteht.

Festbettvergasungssysteme (Syngas) und die autotherme Vergasung in der ZWS (Lurgi) verursachen bedeutend geringere Kondensatwassermengen (Abb. 14). Bei Druckvergasungsverfahren wie beispielsweise dem IGT-Verfahren oder dem ASCAB2-Verfahren sowie beim indirekten, atmosphärischen Vergasungsverfahren von MTCI fallen die grössten Kondensatmengen an.

<u>Abbildung 14:</u> Kondensatwassermengen aus verschiedenen Vergasungssystemen bei einer normierten Brennstoffeuchte von u = 10%

Die Belastung des Kondensatwassers mit organischen Stoffen ist eng mit der Teerproblematik im Gas verbunden. Bei höherer Vergasungstemperatur nimmt deshalb auch die Abwasserbelastung deutlich ab (Abb. 15). Es besteht eine Abhängigkeit zwischen der gebildeten Teerund Phenolmenge.

<u>Abbildung 15:</u> Belastung des wässrigen Kondensates mit organischen Stoffen aus dem druckaufgeladenen IGT-Wirbelschichtvergaser [Evans et al. 1987]. TOC = Totaler organischer Kohlenstoff

In der Tabelle 12 ist die Zusammensetzung eines typischen Abwassers aus der Vergasung von Holz in einer Pilot-ZWS-Vergasungsanlage aufgezeigt (s.a. Anhang 11.11).

Schadstoff	Dim.	Mittelwert
NH3	mg/l	2260
HCN	mg/l	80
H ₂ S	mg/l	510
cos	mg/l	60
Phenole	mg/l	400
Fettsäuren	mg/l	100
CSB _{ber}	mg O ₂ /I	1060
BSB5	mg O ₂ /I	300
TOCber	mg C/I	350

Tabelle 12:Zusammensetzung eines Abwassers aus einer ZWS-Pilotanlage bei der Vergasung von Holz (u = 15%) mit Luft bei etwa 800 °C [Mehrling et al. 1989],
[Bandel 1993]. Abkürzungen: CSB = chemischer Sauerstoff-Bedarf; BSB5 = biologischer Sauerstoff-Bedarf in 5 Tagen; TOC = Totaler organischer Kohlenstoff. Bemerkungen: 330 g Abwasser/kg atro Brennstoff; Der angegebene BSB5-Wert stammt aus einem Einzelversuch (siehe Anhang 11.11).

Bei der Vergasung von Holz resultieren relativ hohe Gehalte an Phenolen. Im Vergleich zu Braunkohle sind die Gehalte an den brennstoffbedingten Schadstoffen NH₃, H₂S und COS jedoch geringer [Mehrling et al. 1989].

Eine deutliche Reduktion der Abwasserbelastung ist mit einer thermischen oder katalytischen Reformierung möglich (Tab. 13). Aus der Zusammenstellung ist ersichtlich, dass einerseits die Reformierung eine deutliche Verbesserung der Gas- bzw. Abwasserqualität mit sich bringt und andererseits die katalytische Reformierung bei ca. 300 °C tieferen Temperaturen vergleichbare Werte liefert wie ein thermisches Cracken bei 1100 °C.

		Rohgas	thermisch	thermisch	katalytisch 7
Verbindung	Dimension		1000 °C	1100 °C	3° 008
Phenole	mg/l	7200	120	120	-
Toluol	mg/l	200	25	2	n.n.
Pyridin	mg/l	460	110	30	n.n. –
CSB	mg/l	16000	700	400	300
рН		9.3	9.1	8.8	8.7

Tabelle 13: Zusammensetzung des Abwassers aus einer druckaufgeladenen ZWS mit thermischer oder katalytischer Reformierung des Teers im Primärgas. Vergasung von Holz mit Sauerstoff/Dampf [Fagernäs 1991]. Bemerkungen: Keine Angaben zu Versuchsbedingungen; n.n. = nicht nachweisbar ; - = nicht gemessen; CSB = chemischer Sauerstoff-Bedarf.

Die brennstoffspezifische Abwasserbelastung einiger Wirbelschichtvergasungssysteme zeigt Tab. 14. Dabei wird angenommen, dass die Zahlenwerte repräsentative Betriebszustände wiedergeben.

Verfahren		Lurgi	TPS	IGT	BCL	MTCI
Vergasungstemperatur	°C	800	??/900	850	1010	700
TOC in Kondensat	mg C/I	350		2000	200	
BSB5 im Kondensat	mg O ₂ /I	300				3900
spez. Kondensatmenge	kg/kg Holz	0.33		0.82	1.05	1.30
spez. TOC-Menge im Kondensat	mg C/kg Holz	120	<100	1640	210	ca. 6000

Tabelle 14:Gesamtbelastungen in wässrigen Kondensaten aus verschiedenen Vergasungssystemen.Quellen: Lurgi [Mehrling et al. 1989], [Bandel 1993]; TPS [Blackadder et al.1992]; IGT [Elliott 1987]; BCL [Elliott 1987]; MTCI [Durai-Swamy et al. 1991]

Von den beiden ASCAB-Vergasern liegen keine auswertbaren Daten vor. Die Qualität des Abwassers dürfte jedoch mit derjengen des thermisch reformierten Gases aus der Druck-ZWS in Tab. 13 vergleichbar sein. Da bei den ASCAB-Vergasern das heisse Gas gequencht wird, fallen grössere Mengen an Abwasser mit geringeren Schadstoffgehalten an. Vom TPS-Vergasungssystem sind keine experimentellen Daten vorhanden. Die entsprechende spez. TOC-Menge im Kondensat ist eine Abschätzung. Beim MTCI-Verfahren wiederum ist besten-

⁷ Katalysator auf Nickelbasis. Vor dem Katalysator ist eine Feststoffabscheidung mittels eines Hochtemperatur-Keramikfilters notwendig.

falls eine Grobschätzung möglich. Unter der Annahme, dass das Verhältnis von BSB₅:TOC in den jeweiligen Abwässern konstant ist, lässt sich im Vergleich mit den Lurgi-Daten für den MTCI-Vergaser ein TOC-Wert von etwa 4500 mg/l abschätzen. Der spez. TOC Gehalt berechnet sich entsprechend zu ca. 6000 mg C/kg atro Brennstoff.

Die geringsten spezifischen TOC-Gehalte weisen die Abwässer aus den zirkulierenden Wirbelschichtvergasern von Lurgi und TPS auf. Das Verfahren von TPS ist mit einem katalytischen Teercracker (Dolomit als Katalysator in zweiter ZWS) ausgerüstet. Ebenfalls geringe TOC-Gehalte weist das Kondensat aus dem BCL Vergaser auf. Wegen der zu erwartenden Schlackebildung ist es allerdings fraglich, ob eine Dauerbetriebstemperatur von 1010 °C möglich ist. Der IGT-Vergaser andererseits weist trotz der hohen Vergasungstemperatur von 850 °C hohe spez. TOC-Gehalte auf.

5. Konditionierung des Primärgases

Wegen der mitunter hohen Gehalte von Teerverbindungen und Methan im Primärgas sowie wegen des hohen Energieanteils des unverbrannten Kohlenstoffs von ca. 10% (s.a. Kap. 4.3) kann eine weitere Behandlung des Primärgases vor der eigentlichen Gasreinigung sinnvoll sein.

Die im folgenden diskutierten Verfahren führen zu einer Konditionierung und Verbesserung des Gases für den späteren Verwendungszweck, im vorliegenden Fall für die Methanolsynthese. Die Reformierung des Primärgases bezweckt eine Verminderung der Teergehalte und eine Erhöhung der spezifischen Wasserstoffausbeute. Die Teerverbindungen erschweren die Gasreinigung, da sie entweder bei Temperaturen um 300 °C auszukondensieren beginnen und als klebrige Masse die Filter verstopfen oder mit dem Kondensatwasser anfallen und sich je nach Eigenschaften darin lösen (s.a. Kap. 4.4). Das Gas enthält i.d.R. zwischen 8 und 15 Vol.-% Methan. Der Wasserstoff im Methan ist dabei chemisch gebunden und somit für die Methanolsynthese nicht verfügbar.

Teerverbindungen und Kohlenwasserstoffe im Primärgas können katalytisch oder thermisch weitgehend eliminiert werden.

Die katalytische Reformlerung von Methan mit Wasserdampf

 $CH_4 + H_2O \leftrightarrow CO + 3 H_2$ $\Delta Hr = 206 \text{ kJ/mol}$

ist stark endotherm und es sind hohe Temperaturen erforderlich, um das Gleichgewicht auf die gewünschte Seite zu verschieben.

Bei der <u>Vergasung unter Druck</u> kommen nickelhaltige Katalysatoren zum Einsatz, wobei das Primärgas vorgängig in einem Hochtemperatur-Keramikfilter von Festoffpartikeln befreit werden muss. Anschliessend gelangt das gegebenenfalls durch Verbrennen eines Teils des Gases mit Sauerstoff auf etwa 800 °C aufgeheizte Gas in den Reformer. Die verwendeten Katalysatoren reagieren empfindlich auf Schwefelverbindungen [Katofsky 1993] und desaktivieren irreversibel. Es soll jedoch auch schwefeltolerante Katalysatoren geben [Sinclair et al. 1985]. Die höheren Kohlenwasserstoffverbindungen und ca. 90% des Methans setzen sich zu CO und H₂ um. Bei einem Methangehalt von 8.2 Vol.-% (Beispiel Lurgi, Tabelle 5⁸) und einem 90%igen Umsatz zu Wasserstoff errechnet sich eine Erhöhung der spez. Wasserstoffausbeute um 0.18 Nm³/kg atro Brennstoff bzw. um 50%. Die CO-Ausbeute steigt um 0.06

⁸ Da es sich um ein atmosphärisches Vergasungsverfahren handelt, müsste das heisse Primärgas vorgängig auf den erforderlichen Druck von 10 bis 35 bar komprimiert werden

 Nm^{3}/kg atro bzw. um 17%. Bei einer allothermen Durchführung der Methanreformierung erhöht sich der Stöchiometriefaktor SF von ursprünglich -0.01 auf einen für die Methanolsyntheses etwas günstigeren Wert von 0.23 (bei der konventionellen Methanolynthese ist der SF > 2). Um Verkokungen auf dem Katalysator zu vermeiden, muss das Gas pro Mol umzusetzender Kohlenstoff etwa 3 Mole Dampf enthalten.

Zur katalytische Reformierung in <u>Normaldruckvergasung</u>sverfahren wird Dolomit (CaMg(CO₃)₂) als aktives Material verwendet [Fjellerup 1989, Blackadder 1992, Paisley 1993], welches in einer Wirbelschicht als Bettmaterial kreist. Die resultierenden Teergehalte nach einem solchen Teercracking sollen derart gering sein, dass das gekühlte Gas anschliessend in einem Gewebefilter von Partikeln befreit werden kann [Katofsky 1993, Blackadder 1992]. Das im Gas vorhandene Methan wird jedoch vom Dolomitkatalysator nicht gecrackt [Rensfelt 1993]. Bei hohen HCI-Gehalten im Gas, beispielsweise bei der Vergasung von RDF (refuse derived fuel), desaktiviert der Katalysator [Aldén 1989] infolge Bildung von Calcium- und/oder Magnesiumchloriden ⁹. Bei 1000 ppm Salzsäure soll der Katalysator jedoch noch eine genügende Teercracking-Aktivität haben [Rensfelt 1993]. Das Verhalten des Katalysators im Langzeitbetrieb ist jedoch auch bei Vergasung von naturbelassenem Holz noch nicht bekannt.

Ein **thermisches Cracken** von Kohlenwasserstoffen im Primärgas ist durch Zugabe von Luft oder Sauerstoff bei Temperaturen deutlich über 1000 °C möglich. Methan setzt sich gemäss

 $CH_4 + 1/2 O_2 \leftrightarrow CO + 2 H_2$ $\Delta Hr = -36 \text{ kJ/mol}$

zu Kohlenmonoxid und Wasserstoff um. Die Teiloxidation des Methans steht jedoch in Konkurrenz zur unerwünschten Knallgasreaktion

 $H_2 + 1/2 O_2 \leftrightarrow H_2O$ $\Delta Hr = -242 \text{ kJ/mol}$

Das thermische Cracken findet auch in Biomassevergasern Anwendung, beispielsweise bei den Versuchsreaktoren der ASCAB in Le Creusot und Clamecy (s.a. Anhang 11.2). Aufgrund der vorliegenden Versuchsergebnisse ist eine detaillierte Beurteilung der Verbesserung der spez. Wasserstoffausbeute nicht möglich. Immerhin zeigte die Versuchsanlage in Le Creusot (Tab. 8, ASCAB 1) nach dem MTCI-Verfahren die zweithöchste spez. Wasserstoffausbeute aller betrachteten Systeme. Der Hauptvorteil der thermischen Reformierung liegt darin, dass kein Katalysator notwendig ist und daher auch keine Desaktivierungsprobleme auftreten. Da die Spaltung der Kohlenwasserstoffe erst bei Temperaturen deutlich über 1000 °C möglich ist,

⁹ Dieser Effekt lässt sich u.U. auch zu einer teilweisen in situ Dechlorierung des Primärgases nutzen.

schmelzen die mitgerissenen Aschepartikeln. Die ASCAB-Anlage ist so konzipiert, dass die Schmelze an den Reaktorwänden des Reformers herunterläuft. In der Quenchzone entsteht ein honigfarbenes Granulat. Eine thermische Nutzung der fühlbaren Wärme ist nicht vorgesehen.

Die Einstellung des H₂:CO-Verhältnisses im Synthesegas erfolgt über die Konvertierung von KohlenmonoxId mit Wasserdampf (sog. Shiftreaktion)

 $CO_2 + H_2 \leftrightarrow CO + H_2O$ $\Delta H_r = -41 \text{ kJ/Mol}$

unter Bildung von Wasserstoff und Kohlendioxid. Es kommen analoge Katalysatoren wie bei der Methanolsynthese zur Anwendung. Sie weisen eine hohe Empfindlichhkeit gegenüber NH₃, H₂S und HCl auf. Da das optimale Verhältnis von H₂:CO bzw. der Stöchiometriefaktor in hohem Masse von der Verfahrenswahl der Methanolsynthese abhängt, wird im Biometh-Teilprojekt *Methanolsynthese* auf die Shiftreaktion eingegangen.

6. Gasreinigung

Aufgrund der Reinheitsanforderungen an das Synthesegas (Kap. 3.2) kommt der Gasreinigung eine wichtige Bedeutung zu. Die Qualität der Gasreinigung beeinflusst im wesentlichen die Lebensdauer der downstream Aggregate (Kompressoren, Adsorptionssysteme, Katalysatoren, Gasturbine).

Die Reinigung des Gases aus einem Vergasungssystem unterscheidet sich von derjenigen aus Verbrennungsprozessen in verschiedener Hinsicht. Der wesentlichste Unterschied besteht darin, dass Primärgase beträchtliche Mengen an Teer enthalten, welche in einem Verbrennungsabgas höchstens in Spuren vorhanden sind. Die Teerstoffe aus der Biomassevergasung beginnen ab etwa 300 °C auszukondensieren, so dass Gewebefilter zur Gasreinigung nicht in Frage kommen. Bei der Vergasung in einer zirkulierenden Wirbelschicht weist das Gas auch einen grösseren Feststoffanteil auf als bei der Verbrennung. Während bei der Verbrennung in der ZWS etwa 2 g Feststoff pro Nm³ Abgas resultieren, ist bei der Vergasung mit 50 g Feststoff pro Nm³ zu rechnen, wobei der Feststoff zu ca. 80 Gew.-% aus Kohlenstoff besteht. Die Abscheidung von Feststoffen aus Primärgasen ist prinzipiell mittels einer Hochtemperaturgasreinigung in einem Keramikfilter möglich. Wegen des hohen Druckverlustes werden Keramikfilter bisher ausschliesslich bei Druckvergasungssystemen eingesetzt. Die Erkenntnisse des Hot-Gas-Cleanings beschränken sich zur Zeit noch auf Untersuchungen im Labor- und Pilotmassstab und auf die Reinigung unter erhöhtem Druck [Babu 1991]. Mit dem Primärgas aus einem Holzvergaser traten die grössten Betriebsschwierigkeiten auf [Kurkela et al. 1991]. Die Entwicklung des Hot-Gas-Cleanings ist auf Gasturbinenanwendungen ausgerichtet.

Es ist grundsätzlich fraglich, ob ein Filter die Anforderungen bezüglich Reststaubgehalte, nämlich 0.01 mg Staub/Nm³ Gas (Tab. 1), erfüllen kann. Eine zuverlässige Abscheidung von Feststoffen und Teerverbindungen ist voraussichtlich nur über eine nasse Gasreinigung möglich, wobei einzelne Teerstoffe wie Naphthalin mit einem organischen Lösungsmittel extrahiert werden müssen. Eine der Nasswäsche vorschaltete filternde Feststoffabscheidung hat jedoch den Vorteil, dass sich die im Filter abgeschiedenen Partikel nicht mit dem Kondensatwasser vermischen. Eine derartige Trennung ist insbesondere für schwermetallbelastete Brennstoffe vorteilhaft. Bei unbelasteten Brennstoffen kann die trockene Filterasche z.B. zur Umsetzung des Restkohlenstoffs in den Vergaser zurückgeführt werden.

Da das Synthesegas möglichst wasserfrei sein muss, ist eine Temperaturerniedrigung des Gases zur Kondensation des Wasserdampfes in einem Quench notwendig. Dabei fallen auch ein Teil der Verunreinigungen (Phenole, NH₃, HCI, evtl. Schwefelverbindungen) an. Die im Primärgas enthaltenen Spurengase müssen vollständig entfernt werden, um die Katalysatoren

im nachfolgenden Shift- oder Methanolreaktor vor irreversiblen Aktivitätseinbussen zu schützen. Je nach Verunreinigung kommen dazu z.B. eine chemische (sauer/alkalisch) und/oder eine physikalische Gaswäsche (Absorption in Lösungmittel; Adsorption auf Aktiv-kohle) in Frage (Übersicht in [Supp 1990]).

Die konventionelle Methanolsynthese arbeitet mit einem CO₂-armen (ca. 3 Vol.-% CO₂) Synthesegas. Die CO₂-Elimination erfolgt in einer physikalischen Wäsche mittels Lösungsmittel.

In welcher Art die Gasreinigung aufgebaut sein muss, kann zur Zeit nicht angegeben werden, da die Anforderungen an das Synthesegas für die Methanolsynthese, insbesondere der tolerierbare CO₂-Anteil, noch nicht abschliessend bekannt sind.

7. Beurteilung von Biomassevergasern zur Synthesegaserzeugung

7.1. Bewertungskriterien zur Charakterisierung von Vergasern

Die Beurteilung der verschiedenen Biomasse-Vergasungssysteme erfolgt anhand der folgenden Kriterien:

- Anlagengrösse
- Vergasungsdruck
- CO2-Gehalt des Primärgases
- spez. H₂- und CO-Ausbeuten
- Teer- und Abwassermengen
- Energiebilanz
- Installations- und Betriebskosten
- Eignung für belastete Brennstoffe

7.2. Anlagengrösse

Die im Biometh-Projekt geplante Demonstrationsanlage weist voraussichtlich eine Vergaserleistung von etwa 20 MW (bzw. etwa 100 Tagestonnen getrocknete Biomasse) auf. Die Anlage soll die Basis für spätere Grossanlagen sein. Das auszuwählende Vergasungssystem muss deshalb die Möglichkeit zum Scale-up bieten. Aus diesem Grund fallen Festbettvergasungssysteme ausser Betracht. Zudem gibt es zur Zeit weltweit keinen im Betrieb stehenden Festbettvergaser für Biomasse, welcher annähernd eine Leistung von 20 MW erreicht. Die Anforderungen hinsichtlich Anlagengrösse und Ausbaupotential werden heute nur von Wirbelschicht-Vergasern erfüllt.

7.3. Vergasungsdruck

Die wichtigsten Vorteile der Druckvergasung sind:

- kompaktere Anlage als bei Normaldruckvergasung
- Kondensationswärme des Wasserdampfes fällt bei Temperaturen > 100 °C an ¹⁰
- Primärgas fällt unter Druck an

¹⁰ Bei hohem Vergasungsdruck kann die Kondensationswärme des abzuscheidenden Wassers zur Dampferzeugung genutzt werden. Dieser Dampf kann z.B. zur Trocknung des Brennstoffes oder als Fluidisierungsmittel eingesetzt werden.

Die wichtigsten Nachteile sind:

- höhere Anforderungen an die Beschickung für Biomassen als bei Normaldruckverfahren
- bei Biomassen hohe Spülgasverluste in den Druckschleusen infolge geringer Schüttdichte
- Betriebszuverlässigkeit der Druckschleusen bei Brennstoffen mit geringen Schüttdichten und variabler Brennstoffqualität ist nicht gewährleistet
- Ascheaustrag über Druckschleusen bei Vergasung von belasteten Brennstoffen wie Baurestholz oder Altholz ist wegen Steinen und Metallteilen störungsanfällig
- Ca. 50% teurer als atmosphärische Variante
- höhere Anforderungen an die Brennstoffstückigkeit (Randeffekte bei Anlagen < 100 MW)

Im weiteren zeigten die Versuche mit dem IGT-Vergaser, dass eine Druckerhöhung keinen wesentlichen Einfluss auf die Gaszusammensetzung hat (Anhang 11.2 und 11.3).

Der Vorteil der geringeren Kosten bei der Kompression des Gases wird bei Biomassebrennstoffen durch die hohen Spülgasverluste teilweise kompensiert. Da die Schüttdichte von Holzschnitzeln im Bereich von 140 bis 200 kg/m³ (Kohle: ca. 800 kg/m³) liegen, muss in den Druckschleusen ein Leergasvolumen von etwa 800 m³ pro Tonne Biomasse verdichtet werden. Bei einer Vergasung mit Sauerstoff entstehen etwa 1200 Nm³ Gas (pro Tonne Biomasse), so dass bei einer atmosphärischen Vergasung die Kompressionskosten des gesamten Prozesses etwa um 50% höher sind. Der Vorteil der nutzbaren Kondensationswärme kann die hohen Kosten kaum aufwiegen. Die folgenden Vergasungssysteme werden deshalb nicht weiter verfolgt:

- IGT Renugas-Prozess
- HTW Druckvergaser
- ASCAB Vergaser Typ Clamecy
- TPS Vergaser Typ MINO

Die Biomassevergasung im Leistungsbereich von etwa 20 MW zur Erzeugung von Synthesegas erfolgt demzufolge bevorzugt bei Atmosphärendruck. Dies hat auch Konsequenzen für die Primärgasreinigung und Konditionierung, indem ein Hochtemperatur-Keramikfilter und eine katalytische Reformierung mit Katalysatoren auf Nickelbasis nicht in Frage kommen. Es ist zwar grundsätzlich möglich, das Primärgas vor dem Keramikfilter auf den erforderlichen Druck zu verdichten. Bei den mitunter hohen Feststoff- und Teergehalten sind Betriebsschwierigkeiten bei der Kompression nicht auszuschliessen. Zudem ist bei einer Gastemperatur von ca. 800 °C ein grosses Volumen zu verdichten. Hinzu kommen die Unsicherheiten in den Standzeiten des Keramikfilters und des Katalysators.

7.4. CO₂-Gehalt des Primärgases

Der CO₂-Gehalt des Primärgases hat insofern eine Bedeutung, als die möglicherweise notwendige CO₂-Wäsche mit hohem Energieaufwand verbunden ist oder der Methanolkatalysator nicht bei optimalen Bedingungen betrieben werden kann.

Vergasungsverfahren mit indirektem Wärmeübergang erzeugen ein Gas mit geringem CO₂-Gehalt, da die zur Vergasung notwendige Energie von aussen zugeführt wird. Das BCL-Vergasungsverfahren liefert einen CO₂-Gehalt von etwa 12 Vol.-%, während Verfahren mit direktem Wärmeübergang zwischen 25 und 40 Vol.-% CO₂ aufweisen. Eine Gegenüberstellung der Verfahren mit direktem Wärmeübergang ist jedoch schwierig, da die Wärmeverluste in den (Pilot-) Anlagen mitunter gross sind.

7.5. Spezifische H₂- und CO-Ausbeuten

Die Ausbeuten an Wasserstoff und Kohlenmonoxid bestimmen die möglichen Mengen Methanol in der Synthesestufe. Da Methanol das Hauptprodukt ist, sind Verfahren mit hohen Ausbeuten an H₂ und CO vorteilhaft.

Die spez. Ausbeuten an H₂ und CO einiger bei Atmosphärendruck betriebenen Wirbelschichtsysteme ist in der Tabelle 15 zusammengefasst.

Verfahren		ASCAB1	Lurgi	BCL	MTCI
Тур		ws	ZWS	DZWS	WS
H ₂ -Ausbeute	Nm ³ /kg atro	0.464	0.348	0.184	0.725
CO-Ausbeute	Nm ³ /kg atro	0.483	0.363	0.395	0.320
total H ₂ +CO	Nm ³ /kg atro	0.947	0.711	0.579	1.045
Verhältnis H ₂ :CO	-	0.96	0.96	0.47	2.27

<u>Tabelle 15:</u> Brennstoffspezifische Ausbeuten an H₂ und CO einiger Wirbelschichtsysteme bei der Vergasung von Holz bei Atmosphärendruck.

In diesem Vergleich schneidet das MTCI-Verfahren am besten ab, da es pro kg atro Brennstoff am meisten Synthesegas mit dem besten Verhältnis H₂:CO erzeugt.

Der atmosphärisch betriebene ASCAB Wirbelschichtvergaser liefert erstaunlich hohe Ausbeuten an H₂ und CO. Die thermische Nachvergasung scheint sich nicht allzu negativ auf die H₂-Ausbeute auszuwirken, obwohl letzterer viel reaktiver ist als beispielsweise Methan. Am schlechtesten schneidet das BCL-Verfahren ab. Der Hauptgrund hierfür liegt im hohen Methangehalt des Primärgases (ca. 15 Vol.-%). Zur Zeit ist bei BCL ein Untersuchungsbericht zur katalytischen Reformierung des Primärgases in Bearbeitung [Paisley 1993]. Die Ergebnisse sind noch nicht veröffentlicht. Es ist jedoch anzunehmen, dass der verwendete Dolomitkatalysator wie beim TPS-Verfahren das Methan <u>nicht</u> zu reformieren vermag.

7.6. Teer- und Abwassermengen

Aufgrund fehlender Angaben ist eine detaillierte Beurteilung der Teermengen und der Abwasserqualität schwierig. Trotzdem lassen sich einige grundsätzliche Anmerkungen machen:

- Festbettvergasungssysteme nach dem Gegenstromprinzip (z.B. Lurgi-Druckvergaser) scheiden aufgrund der sehr hohen Teergehalte aus (s.a. Kap. 4.4).
- Festbettvergasungssysteme nach dem Gleichstromprinzip (z.B. Biosyn-Vergaser) weisen die niedrigsten Teergehalte auf. Allerdings können durch 'channeling' auch hier hohe Teergehalte von bis zu 60 g/Nm³ auftreten [Elliott 1987]. Diese Problematik dürfte mit einer Zunahme des Vergaserdurchmessers bzw. -leistung eher noch zunehmen.
- Wirbelschichtverfahren können einerseits durch Steigerung der Vergasungstemperatur geringe Teergehalte liefern. Andererseits kann eine katalytische Reformierung oder ein thermisches Cracken die Teergehalte ebenfalls gering halten.
- Die beste Gas- und Abwasserqualität liefert das ZWS-Verfahren mit anschliessendem Dolomitcracker von TPS.
- Innerhalb der atmosphärischen Wirbelschichtverfahren unterscheiden sich mit Ausnahme des MTCI-Verfahrens die Kondensatwassermengen nicht signifikant (Anhang 11.2). Bei der Druckvergasung sind die Abwassermengen und die Belastung mit organischen Stoffen höher.
- Zwischen den Teer- und Phenolgehalten im Gas besteht eine Parallelität (Kap. 4.5, Abb.
 15).
- Die Belastung des Abwassers mit organischen Stoffen, insbesondere Phenolen, ist bei Verfahren mit katalytischer oder thermischer Nachbehandlung deutlich geringer.

Das MTCI-Verfahren und das IGT-Verfahren schneiden am schlechtesten ab, da sie etwa um eine Grössenordnung höhere spezifische Abwasserbelastungen erzeugen. Wegen der aussergewöhnlich hohen Pyrolysetemperatur von 1010 °C, welche einen Dauerbetrieb ohne Verschlackungsprobleme in Frage stellt, ist beim BCL-Verfahren keine abschliessende Beurteilung möglich.

7.7. Energiebilanz

Im folgenden soll für einzelne Normaldruck-Vergasungsverfahren eine Energiebilanz erstellt werden. In dieser Bilanz sind die Energieaufwände folgender Prozesse <u>nicht</u> enthalten:

- Trocknung des Brennstoffs auf die erforderliche Restfeuchte von 8 bis 10 Gew.-%
- Energie zur Erwärmung des Sauerstoffs und der Überhitzung des Dampfes
- Energiebedarf für den Betrieb des Vergasers (Pumpen, Gebläse etc.)
- Wärmeverluste durch Abstrahlung
- Überschuss der fühlbaren Wärme (nach Dampferzeugung für Vergasung)
- Energieaufwand zur CO₂-Abtrennung.

Weiter liegen den Angaben folgende Annahmen oder Vereinfachungen zugrunde:

- Sämtliche Energieaufwendungen werden in thermischen Equivalenten ausgedrückt.
- Der Heizwert des getrockneten Brennstoffs beträgt 16.6 MJ/kg
- Die fühlbare Wärme des Gases betrage etwa 10% des Energieinhaltes des Brennstoffes. Ausser beim ASCAB-Verfahren wird sie bei allen Verfahren zur Dampferzeugung verwendet.
- Heizwert Gas = Summe der Heizwerte der Komponenten H₂ (H_u = 10.8 MJ/Nm³), CO (H_u = 12.6 MJ/Nm³) und CH₄ (H_u = 37.8 MJ/Nm³). Zusammensetzung gemäss Tabelle 5 (Kap. 4.1).
- Die Erzeugung von 1 kg Sauerstoff benötigt 0.4 kWh elektrischen Strom [Larson et al. 1992]. Aus 3 kWh thermischer Energie (1 kWh = 3.6 MJ) lassen sich 1 kWh elektrischen Strom erzeugen.
- Die Kondensations- bzw. Verdampfungswärme des Wassers beträgt 2.5 MJ/kg
- BCL-Vergaser: Keine Angabe bezüglich H₂O-Gehalt im Primärgas. Da das Vergasungsmittel keinen Einfluss auf die Produktzusammensetzung hat [Feldmann et al. 1988], wird angenommen, dass die Kondensatmenge der Summe der Wassermenge im Brennstoff und der Dampfmenge entspricht, die Pyrolyse also weder Wasser verbraucht noch erzeugt.
- MTCI-Vergaser: Die indirekte Wärmeübertragung erfordert die Verbrennung von ca. 30% des Gases. Diese Energiemenge wird der Hilfsenergie zugeschlagen. Eine Abschätzung zeigt, dass der Heizwert des Methans im Purgegas (nach der Methanolsynthese) ausreicht, um 90% dieser Hilfsenergie abzudecken. Da der aus der Wirbelschicht ausgetragene Restkohlenstoff ebenfalls zur Hilfsenergieerzeugung verwendet werden kann, steht die gesamte Wasserstoff- und Kohlenmonoxidmenge zur Methanolsynthese zur Verfügung. Die zur Vergasung notwendige Dampfmenge kann vollständig aus dem Heissgas nach dem Wärmetauscher erzeugt werden.

Verfahren		ASCAB1	Lurgi	BCL	MTCI
Fühlbare Wärme	MJ/kg atro	0	1.7	1.7	ca. 4
O ₂ -Verbrauch	kg/kg atro	0.56	0.33	0	0
spez. el. Energie Sauerstoff	kWhel/kg atro	0.22	0.13	0	0
therm. Energieäquiv. O2-Erzeugung	MJ/kg atro	2.38	1.43	0	0
Dampfverbrauch	kg/kg atro	0.23	0.15	0.29	1.37
spez. Energieinhalt Dampf	MJ/kg atro	0.58	0.38	0.73	3.43
Zusatzenergie Dampferzeugung *	MJ/kg atro	0.58	0	0	0
Heizgas	MJ/kg atro	0	0	0	4.90
Total Input Hilfsenergie	MJ/kg atro	2.96	1.43	0	4.90
Kondensatwasser	kg/kg atro	0.37	0.20	0.39	1.2
Kondensationsverlust	MJ/kg atro	0.93	0.50	0.98	3.00
Heizwert Gas	MJ/Nm ³	8.60	10.00	14.10	11.21
spez. Heizwert Gas	MJ/kg atro	11.88	12.10	12.27	16.25
spez. Heizwert H ₂ +CO	MJ/kg atro	11.10	8.33	6.96	11.86
Energlekoeffizient η _E	•	0.56	0.64	0.68	0.62
Vergasungswirkungsgrad ηγ	•	0.61	0.67	0.74	0.76
Synthesegaswirkungsgrad ns	*	0.57	0.46	0.42	0.55

* zusätzliche, von aussen zuzuführende Dampfmenge

(= spez. Energieinhalt Dampf - fühlbare Wärme)

Tabelle 16:Abschätzung des Energieeinsatzes und der Wirkungsgrade bei der Vergasung
von Biomasse bei Atmosphärendruck mit einem Feuchtegehalt von 10 Gew.-%.
Quellen: ASCAB1: [Chrysostome et al. 1986]; Lurgi: [Mehrling et al. 1986b];
BCL: [Feldmann et al. 1988]; MTCI: [Durai-Swamy et al. 1991], [Katofsky
1993]. Bezugsgrösse: 1 kg atro Brennstoff

Der Energiekoeffizient η_E ist dabei folgendermassen definiert:

 $\eta_E = \frac{\text{Heizwert Gas - Kondensationsverlust}}{\text{Heizwert Brennstoff + Hilfsenergie}} \qquad (\eta_E < 1, \eta_E < 0 \text{ möglich})$

Der Vergasungswirkungsgrad η_V ist definiert als:

 $\eta_V = \frac{\text{Heizwert Gas}}{\text{Heizwert Brennstoff + Hilfsenergie}}$ (0 < η_V < 1)

Der Synthesegas-Wirkungsgrad η_S ist definiert als:

 $\eta_{S} = \frac{\text{Heizwert H}_{2} + \text{CO}}{\text{Heizwert Brennstoff} + \text{Hilfsenergie}} \qquad (0 < \eta_{S} < 1)$

wobei Heizwert Brennstoff: H_u des Brennstoffs Heizwert Gas: H_u des Gases Kondensationsverlust: Kondensationswärme Wasserdampf Hilfsenergie: Energie Sauerstofferzeugung, Dampferzeugung, Heizgas

Aus der Zusammenstellung geht hervor, dass ausser beim MTCI-Verfahren eine gewisse Korrelation zwischen dem Energiekoeffizienten bzw. dem Vergasungswirkungsgrad und dem Synthesegaswirkungsgrad besteht. Bei hohen Energiekoeffizienten ist der Synthesegaswirkungsgrad gering. Das MTCI-Verfahren weist sowohl einen hohen Vergasungs- als auch einen hohen Synthesegaswirkungsgrad hat.

Aufgrund der Sekundärreformierung zeigt der ASCAB1-Vergaser den höchsten Synthesegaswirkungsgrad, gefolgt dem MTCI-Vergaser. Den tiefsten Synthesegaswirkungsgrad weist das BCL-Verfahren auf.

7.8. Installations- und Betriebskosten

Nebst den Installationskosten einer Anlage haben die Betriebskosten einen wichtigen Einfluss auf die Wirtschaftlichkeit eines Prozesses. Die Anlage von Kemira Oy in Oulu (Finnland; Torfvergasungsanlage nach dem HTW-Verfahren zur Ammoniaksynthese) wurde zwar gebaut, jedoch nach kurzer Betriebszeit aus wirtschaftlichen Gründen stillgelegt. Die Vergasungsanlage in Clamecy (ASCAB2; Holzvergasung mit druckaufgeladener Wirbelschicht zur Methanolsynthese) diente lediglich der Demonstration der Vergasertechnologie. Trotzdem wurden wegen der hohen Versuchskosten nur wenige Versuche durchgeführt. Das Synthesegas wurde dabei abgefackelt.

• Installationskosten

Die meisten Angaben der Installationskosten von Vergasungssystemen (Tab. 17) stammen aus Wirtschaftlichkeitstudien. Von kommerziellen Anlagen sind nur wenige Informationen vorhanden.

Wirtschaftlichkeitsstudien							
Leistung [MW]	Kosten [Mio Fr.]	Verwendungszweck, Bemerkungen	Quelle				
370	42	MeOH-Synthese; nur Vergaser	Katofsky 1993				
	130	inkl. Brennstoffaufbereitung, O2-Anlage					
370	Katofsky 1993						
	43	inkl. Brennstoffaufbereitung					
BCL 380		MeOH-Synthese; nur Vergaser	Katofsky 1993				
	40	inkl. Brennstoffaufbereitung					
200	32	MeOH-Synthese; nur Vergaser	Bridgwater 1991				
360	75	H ₂ -Herstellung; Gesamtkosten	Löffler 1993				
Kommerzielle Anlagen (Ort in Klammern)							
24	11	Heizgas für Kalkofen, nur Vergaser					
150	75	Vergasung von Torf zur NH ₃ -Synthese;	Koljonen 1993				
		exkl. O2-Anlage und Gasreinigung					
20	30	Vergasung von RDF; inkl. Verbrennung	Blackadder 1993				
		und Gasreinigung					
17	24	<u>keine</u> Vergasung, nur Verbrennung; inkl.	Suppa 1992				
	Leistung [MW] 370 370 380 200 360 e Anlagen 24 150 20 17	Leistung Kosten [MW] [Mio Fr.] 370 42 130 130 370 21 43 43 380 11 40 200 200 32 360 75 e Anlagen (Ort in Klau 150 75 20 30 17 24	Leistung [MV]Kosten [Mio Fr.]Verwendungszweck, Bemerkungen37042MeOH-Synthese; nur Vergaser130inkl. Brennstoffaufbereitung, O2-Anlage37021MeOH-Synthese; nur Vergaser43inkl. Brennstoffaufbereitung38011MeOH-Synthese; nur Vergaser40inkl. Brennstoffaufbereitung20032MeOH-Synthese; nur Vergaser36075H2-Herstellung; Gesamtkostene Anlagen (Ort in Klammern)24112411Heizgas für Kalkofen, nur Vergaser15075Vergasung von Torf zur NH3-Synthese; exkl. O2-Anlage und Gasreinigung2030Vergasung von RDF; inkl. Verbrennung und Gasreinigung1724Keine Vergasung, nur Verbrennung; inkl. Abgasreinigung; turn-key Anlage				

Tabelle 17: Zusammenstellung der Installationskosten verschiedener Vergasungssysteme

Ein Vergleich der Daten ist schwierig, da die Werte unterschiedliche Anlagengrössen, Verwendungszwecke und Umfang der Angebote umfassen. Trotz der Unsicherheiten lassen sich einige allgemeine Bemerkungen anfügen:

- Die Kosten des BCL- und des MTCI-Vergasers sind sehr gering. Eine Angabe von effektiven Kosten ist nicht möglich, da keine kommerziellen Anlagen gebaut wurden.
- Ein Scale-down der Kosten ¹¹ auf 24 MW ergibt f
 ür den IGT-Vergaser einen Preis von ca. 6 Mio Fr., f
 ür den Uhde-Vergaser etwa 21 Mio Fr.. Es ist daher anzunehmen, dass die Kostensch
 ätzung f
 ür den IGT-Vergaser zu tief ist, da bisher keine Erfahrung aus einer kommerziellen Anlage vorliegt und die Kostenangaben auf Wirtschaftlichkeitsrechnungen beruhen.
- Der Kostenvergleich zwischen den kommerziellen Anlagen von Lurgi (Pöls) und Uhde (Oulu) zeigt, dass die atmosphärische Vergasung deutlich günstiger ist als die Druckvergasung.
- Der TPS-Vergaser (ohne Dolomitcracker) kostet etwa gleich viel wie der Lurgi Vergaser (ohne Nachvergasung)

Betriebskosten

Einen entscheidenden Einfluss auf die Wirtschaftlichkeit des Prozesses haben die Brennstoffkosten und die Kosten für das Vergasungsmittel.

Der Grosshandelspreis von Methanol beträgt zwischen 300 SFr./t [Mills et al. 1993] und 400 SFr./t Methanol [Bridgwater et al. 1991].

Die *Brennstoffkosten* sind einerseits durch den Preis des Brennstoffes und andererseits durch die spezifische Synthesegasmenge gegeben. Aus einer spezifischen Synthesegasmenge von 0.71 Nm³/kg atro Brennstoff (Tabelle 8: Lurgi ZWS) liesse sich ohne Sekundärreformierung, jedoch mit einer Shiftreaktion eine maximale Methanolmenge von 340 kg pro t atro Brennstoff synthetisieren (100% Ausbeute; Methanol nur über CO). Bei einem Brennstoffpreis von 20 SFr./m³ bzw. 100 SFr./t (Anlieferungspreis für Sägereirestholz bei Zellulosefabrik Attisholz) ergibt dies einen Kostenanteil von 300 SFr./t Methanol.

Die Bedeutung der Brennstoffkosten lässt sich anhand der Erfahrungen von Kemira (Torfvergasung nach dem HTW-Verfahren; in Oulu, Finnland) aufzeigen. Die Vergasung von Torf ergibt eine höhere spezifische Synthesegasausbeute als Holz, nämlich 950 Nm³ pro Tonne atro Torf ([Koljonen 1992]). Bei einem Torfpreis von 51 SFr./t atro [Koljonen 1993]) und Ausbeuten von 100% bezüglich CO-Shiftreaktion (CO + H₂O \leftrightarrow CO₂ + H₂) und Ammoniaksynthese (N₂ + 3 H₂ \leftrightarrow 2 NH₃) ergibt sich ein Kostenanteil des Brennstoffs von 105 SFr./t

¹¹ Kosten bei anderer Anlageleistung: Kosten2 = Kosten1 x $\left(\frac{\text{Leistung2}}{\text{Leistung1}}\right)^{0.7}$ [OPPA 1989]

Ammoniak. Zur Zeit der Betriebseinstellung in Oulu (1992) betrug der Weltmarktpreis von Ammoniak ca. 150 SFr./t. Der Hauptgrund für die Betriebseinstellung waren die hohen Brennstoffkosten [Koljonen 1993].

Die *Kosten des Vergasungsmittels* sind hauptsächlich durch den Vergasungstyp bestimmt. Mit einem indirekten Vergasungsverfahren (beispielsweise BCL, MTCI) kann auf den Einsatz von Sauerstoff verzichtet werden, bei einem direkten Vergasungsverfahren (z.B. ASCAB, TPS, Lurgi) kommt nur Sauerstoff in Frage.

Eine Anfrage bei Pangas in Luzern ergab, dass Sauerstoff zu einem Preis von 224 SFr./t O₂ auf den Platz geliefert werden könnte (50 Tagestonnen flüssiger Sauerstoff; Kosten inkl. Transport und Lagerung). Ausgehend von einer spezifischen Methanolausbeute von 340 kg MeOH/t atro Holz und einem Sauerstoffbedarf von 330 kg O₂/t atro Holz (Anhang 11.2) ergibt sich ein Kostenanteil des Sauerstoffs von 220 SFr./t Methanol. Eine Senkung der Sauerstoff-gestehungskosten ist durch eine Verflüssigungsanlage vor Ort möglich. Eine weitere Möglich-keit zur Senkung der Energie- und Gestehungskosten ist eine Sauerstoffanreichung mittels Pressure-Swing-Adsorption (PSA). In diesem Falle enthält der angereicherte Sauerstoff noch etwa 7 Vol.-% Stickstoff, was zu einer Verdünnung des Synthesegases führt.

7.9. Eignung für belastete Brennstoffe

Die Vergasung von belasteten Brennstoffen kann wirtschaftlich interessant sein, weil entweder geringere oder keine Brennstoffkosten anfallen.

Die hauptsächlichen Schadstoffe, welche in belasteten Brennstoffen in erhöhtem Masse vorliegen, sind Schwermetalle, Chlor-, Stickstoff- und Schwefelverbindungen. In erster Linie verursachen diese Verunreinigungen Abwasserprobleme und erhöhte Anforderungen an die Gasreinigung. Ein erhöhter Salzsäuregehalt beeinflusst zudem die Werkstoffwahl und die maximal zulässige Dampftemperatur im Abhitzebereich. Bei Verfahren mit katalytischer Reformierung sind Desaktivierungsphänomene zu erwarten.

Während die Gasreinigung wegen der höheren Schadstoffbelastung etwas anders zu dimensionieren ist, kann sich die Qualität des Abwassers derart verschlechtern, dass enorme Zusatzaufwendungen notwendig sind. Die wichtigsten Schadstoffe im Abwasser, welche bei der Vergasung von belasteten Brennstoffen in erhöhtem Masse anfallen, sind Ammoniak, Schwefelwasserstoff, Salzsäure und Schwermetalle (gelöst und fest). Die Verfahren mit katalytischer (ev. auch mit thermischer) Reformierung weisen gegenüber anderen Verfahren den Vorteil auf, dass eine Feststoffabscheidung vor der Kondensation des Wassers möglich ist. Dadurch liesse sich zumindest das Schwermetallproblem im Abwasser deutlich entschärfen.

Baurestholz und Altholz

Die grössten Probleme in Bezug auf die Betriebszuverlässigkeit sind bei der Vergasung dieser Brennstoffsortimente zu erwarten. Steine und Metallteile können bei der Beschickung und beim Ascheaustrag zu Verstopfungen führen, so dass ein störungsfreier Betrieb nicht gewährleistet ist. Von den in Frage kommenden Brennstoffen weist Altholz die höchste Schwermetallbelastung auf. Die gesamthaft anfallenden Reststoffmengen sind beim Baurestholz und bei Altholz unterschiedlich und variieren zwischen 2 und 10 Gew.-% (Rinde: ca. 4 Gew.-% Asche).

Die Vergasung von Baurestholz und Altholz ist in den Vergasungssystemen von *Lurgi und TPS* mit grosser Wahrscheinlichkeit möglich. Beide Verfahren weisen einen Ascheaustrag am unteren Ende des Vergasers auf, so dass die nichtfluidisierbaren Bestandteile ausgetragen werden können. Beide Firmen besitzen auch einige Erfahrung mit der Vergasung von BRAM (Brennstoff aus Müll), Lurgi zudem bei der Vergasung von Altholz.

Das *BCL- und das MTCI-Verfahren* sind zur Vergasung von Baurestholz und Altholz nicht geeignet, da in den bisherigen Konstruktionen kein Ascheaustrag aus dem Reaktor vorgesehen ist. Der Ascheaustrag erfolgt nur über den Gasstrom. Steine und Metallteile dürften sich somit im System akkumulieren. Beim BCL-Verfahren gelangen in der Regel Brennstoffe mit 1 bis 2 Gew.-% Asche zum Einsatz, in Einzelversuchen auch solche mit 16 Gew.-%. Im MTCI-Vergaser ist die Vergasung von Brennstoffen mit 20 Gew.-% Asche möglich (Anhang 11.5).

Wegen fehlender Kenntnisse ist das Vergasungsverfahren der *ASCAB* schwierig zu beurteilen. Es ist jedoch wahrscheinlich, dass ein Ascheaustrag in Gegenwart von Metallteilen möglich ist.

Aitpapier und Kunststoffabfälle

Obwohl keine Versuchsunterlagen zu Vergasungsversuchen von Altpapier und Kunststoffabfällen und nur spärliche Angaben zur Zusammensetzung vorliegen, sind einige grundsätzliche Aussagen möglich.

Der Aufbereitungsaufwand zur Vergasung reiner Sortimente Altpapier und/oder Kunststoffabfälle ist grösser als bei Holzbrennstoffen, da die Brennstoffschnitzel voraussichtlich pelletiert oder zumindest verdichtet werden müssen. Bei einer Zumischung von 20 Gew.-% zu einem Holzbrennstoff ist eine derartige Vorbehandlung nicht notwendig [Sturm 1991], möglicherweise sind auch höhere Anteile möglich.

Wegen der geringen Feuchtegehalte ist der Trocknungsaufwand bei Altpapier geringer als bei Holz oder Rinde, bei Kunststoffabfällen ist voraussichtlich keine Trocknung notwendig.

Das Abwasserproblem dürfte bei der Vergasung von Altpapier und Kunststoffabfällen weniger gravierend sein als bei der Altholzvergasung, sofern PVC- und cadmiumhaltige Kunststoffabfälle vermieden werden.

Die Vergasung von Kunststoffabfällen erhöht die Synthesegasausbeute (Wasserstoff und Kohlenmonoxid), da der Heizwert und i.d.R. auch der Wasserstoffgehalt in Kunststoffen höher ist als bei Holz oder Rinde. Der Heizwert von Papier ist geringer als derjenige von Holz, so dass die Synthesegasausbeute bei Papiervergasungetwas geringer ist als bei der Holz- oder Rindenvergasung.

Die Vergasung von Altpapier und Kunststoffabfällen ist mit allen diskutierten Vergasungsverfahren möglich, da bei der Ascheaustragung keine Schwierigkeiten zu erwarten sind. Bei hohen Aschegehalten weist das MTCI-Verfahren gegenüber den anderen Verfahren Nachteile auf, da die Asche als kohlenstoffreiche Flugasche anfällt.

Während bei der Vergasung von Kunststoffabfällen nur geringe Reststoffmengen anfallen, sind die Aschemengen beim Altpapier deutlich höher und schwanken zwischen 6 und 15 Gew.-%.

7.10. Zusammenfassender Variantenvergleich und Wertung

Für die diskutierten Wirbelschichtvergasungssysteme sind in einer Bewertungstabelle die wichtigsten Kriterien zusammengestellt (Tab. 18). Nicht aufgeführt sind Festbettvergaser und Druckvergasungssysteme.

	Verfahren				
Charakteristik bezüglich	ASCAB	Lurgi	TPS	BCL	MTCI
C-Umsatz zu Gas	++	++	++	+	+
Teergehalte	++	+?	++	-?	-?
CO2-Gehalt im Primärgas	-	-	_	++	+? =
H ₂ - und CO-Ausbeute	++	+	+?		++
Verhältnis H ₂ /CO im Gas	-	-	-	-	++
Abwasserqualität	+?	+	++	?	
O ₂ -Verbrauch		-	-	++	++
Dampfverbrauch	+	+	?	+ '	
Energiebilanz (Input/Output)		+	?	+	-
Installationskosten	?	-	-	+?	?
Betriebskosten		-	-	++	+?
Gesamtkonzept Vergasung/Gasreinigung	?	++	-	-	-
kommerzielle Anlagen	-	+	+	-	+
Betriebszuverlässigkeit	- ?	+	+	+?	+?
Ascheaustrag bei Altholz	+?	++	++		

<u>Tabelle 18:</u> Bewertung von Biomasse-Vergasungssystemen (Vergasung bei Atmosphärendruck).

Zeichenerklärung: ++: deutliche Vorteile gegenüber anderen Verfahren

- + : Beurteilung eher positiv
- : Beurteilung eher negativ
- --: deutliche Nachteile gegenüber anderen Verfahren
- ?: mit Unsicherheiten, keine Beurteilung möglich

Der Gesamtvergleich zeigt, dass keines der betrachteten Vergasungssysteme den anderen deutlich über- oder unterlegen ist. Eine abschliessende Beurteilung der Verfahren ist daher nicht möglich, da die Randbedingungen zur Einbettung des Verfahrens in ein Gesamtkonzept noch nicht festgelegt sind.

Das atmosphärische Wirbelschichtverfahren von *ASCAB* weist den höchsten Synthesegaswirkungsgrad auf (Kap. 7.7, Tab. 16). Für die thermische Reformierung des Gases ist jedoch ein zusätzlicher Sauerstoffbedarf in der gleichen Grössenordnung wie zur Vergasung notwendig. Wegen der hohen Reformierungstemperatur schmelzen die Flugaschepartikel, sodass die Nutzung der fühlbaren Wärme nicht möglich ist (Verstopfen des Wärmetauschers). Dadurch geht eine relativ grosse Energiemenge (ca. 10% des Heizwertes des Brennstoffes) auf einem hohen Temperaturniveau verloren. Zudem vergrössern sich die Abwassermengen.

Aufgrund umfangreicher Untersuchungen ist eine Beurteilung des *Lurgi*-Vergasungsverfahrens gut möglich. Es weist am wenigsten Unsicherheitsfaktoren (d.h. möglichst wenig '?' in Tab. 18) auf. Das Verfahren weist insbesondere keine schwerwiegenden Nachteile auf. Sowohl die Energiebilanz als auch der Vergasungswirkungsgrad sind ansprechend. Der Synthesegaswirkungsgrad entspricht dem eines guten autothermen Vergasungssystem ohne Sekundärreformierung. Es wurden auch Versuche zur Vergasung von Altholz durchgeführt [Sturm 1991]. Hingegen ist eine Feststoffabscheidung in einem Gewebefilter nicht denkbar, da die Teerproblematik auch bei Nachvergasung des ausgetragenen Kohlenstoff nicht entschärft wird. Bei der Vergasung von belasteten Brennstoffen kann somit ein schwermetallbelastetes Abwasser entstehen.

Wegen mangelnder Information ist eine Gesamtbeurteilung des *TPS-Vergasers* mit Unsicherheiten behaftet. Es ist anzunehmen, dass die Vergasereigenschaften mit denjenigen des Lurgi-Vergasers vergleichbar sind. Der wesentlichste Vorteil ist aber das katalytische Teercracking, welches die Teer- und Abwasserproblematik deutlich entschärft. Gelingt es zudem, die Feststoffe aus einem derart gecrackten Gas in einem Gewebefilter abzuscheiden, hat dies Vorteile für das TPS-Verfahren, insbesondere bei der Vergasung von belasteten Brennstoffen. Von den autothermen Verfahren bietet das TPS-System mit dem Dolomitcracker mehr Variationsmöglichkeiten. Im Hinblick auf eine Vergasung von belasteten Brennstoffen ist es dem Lurgi-Verfahren überlegen. Der Mehrverbrauch von Dolomit durch Absorption von Salzsäure dürfte sich in Grenzen halten. Eine Beurteilung des Langzeitverhaltens des Katalysators ist jedoch nicht möglich.

Das *BCL-Verfahren* weist den höchsten Energiekoeffizienten und den zweithöchsten Vergasungswirkungsgrad auf. Vom energetischen Standpunkt ist dieses Verfahren optimal. Der Hauptnachteil ist der schlechte Synthesegaswirkungsgrad, welcher um 13% geringer ist als z.B. beim MTCI-Vergaser. Die Betriebskosten sind dadurch stärker von den Brennstoffkosten abhängig. Der Nachteil des geringeren Synthesegaswirkungsgrad lässt sich aufheben, wenn ein Teil des Methans aus dem Purgegas (nach der Methanolsynthese) in einem konventionellen Dampfreformer zu Wasserstoff und Kohlenmonoxid umgesetzt und in den Synthesereaktor zurückgeführt wird. Weitere wichtige Vorteile des BCL-Systems sind der geringe CO₂-Gehalt des Primärgases, der sauerstofffreie Betrieb sowie die Möglichkeit der katalytischen Teerreformierung mit Dolomit. Im Vergleich etwa zur TPS-Variante schneidet das BCL-Verfahren besser ab. Die Vergasung von Baurestholz und Altholz ist mit dem BCL-Verfahren voraussichtlich nicht möglich.

Das indirekte Vergasungsverfahren von *MTCI* weist den höchsten Vergasungswirkungsgrad auf und produziert die höchsten Synthesegasmengen aller untersuchten Systeme. Da das Verhältnis von H₂:CO grösser als 2 ist, erübrigt sich eine Shiftreaktion des Gases, so dass nach der Gasreinigung voraussichtlich nur eine CO₂-Abtrennung erforderlich ist. Die wichtigsten Nachteile des Verfahrens sind der hohe Energieeinsatz sowie die hohen Kondensationsverluste und Abwassermengen. Wegen der tiefen Vergasungstemperatur von rund 700 °C ist die Belastung des Abwassers mit organischen Stoffen deutlich höher als bei den anderen Verfahren. Zur Vergasung von Baurestholz und Altholz ist das MTCI-Verfahren voraussichtlich ebenfalls nicht geeignet. Bisher fehlen Betriebserfahrungen zur Vergasung von Biomassen in einer Grossanlage.

Zusammenfassend ergibt die Gesamtbeurteilung folgendes Bild:

- keines des Verfahren ist den anderen deutlich über- oder unterlegen
- das BCL-Verfahren weist eine hohe Variabilität (Brennstoff ausser Baurestholz und Altholz; Nutzenergie auf hohem Temperaturniveau; Reformierung oder Verstromung des Purgegases) und niedrige Betriebskosten (kein Sauerstoffbedarf) auf.
- das TPS-Verfahren ist dem Lurgi-System eher überlegen (Reformierung, Gasreinigung, Abwasserbelastung)
- das MTCI-Verfahren weist den höchsten Synthesegaswirkungsgrad bei niedrigen Betriebskosten (kein Sauerstoffbedarf) auf. Der Energieaufwand und die Abwassermengen sind deutlich höher als bei den anderen Verfahren. Die Vergasung von Baurestholz und Altholz ist voraussichtlich nicht möglich.
- das ASCAB-Verfahren schneidet energetisch am schlechtesten ab, weist jedoch eine hohe Synthesegasausbeute auf.
- eine abschliessende Beurteilung ist zum jetzigen Zeitpunkt nicht möglich.

8. Schadstofffrachten bei einer 20 MW Vergasungsanlage für Biomassen

Anhand der vorhandenen Daten zum ZWS-Vergasungssystem von Lurgi wird eine Abschätzung der täglichen Frachten von Reststoffen und Abwässern bei einer Anlagegrösse von 20 MW bzw. 100 Tagestonnen getrockneter Biomasse gemacht. Die Vergasung erfolgt bei Atmosphärendruck und mit Sauerstoff/Dampf als Vergasungsmittel. Eine Nachvergasung der kohlenstoffreichen Flugasche ist nicht enthalten. Der Referenzbrennstoff ist Rinde. Die spezifischen Vergaserangaben basieren auf den Versuchsdaten in der Versuchsanlage (ca. 570 kg/h bzw. 2.5 MW) für naturbelassenes Holz als Brennstoff [Mehrling et al. 1986b], Mehrling et al. 1989].

Die Abschätzung erfolgt unter folgenden Annahmen:

- Die Zusammensetzung der Rindenasche entspricht derjenigen in Tab. 7 (Kap. 3.6). Die Rinde enthält 4.1 Gew.-% Asche.
- Restfeuchte der Rinde: u = 8 Gew.-%.
- Die Bettasche aus der ZWS weist einen Kohlenstoffgehalt von 1 Gew.-% auf.
- Das Abwasser aus der Rindenvergasung unterscheidet sich ausser in den Stickstoff-(NH₃, HCN) nicht von demjenigen aus der Holzvergasung. Ansonsten entspricht die Zusammensetzung des Abwassers derjenigen in Tab. 12.
- Da Rinde etwa 2.5 mal höhere Stickstoffgehalte aufweist wie naturbelassenes Holz, ist die Abwasserbelastung mit Stickstoffverbindungen (NH₃, HCN) bei der Rindenvergasung ebenfalls 2.5 mal höher.
- Der Partikelgehalt im rohen Primärgas beträgt 50 g/Nm³ Gas. 80 Gew.-% des Feststoffes besteht aus Kohlenstoff.
- Die Zusammensetzung des anorganischen Anteils der Flugasche ist mit Ausnahme des Cadmiums identisch mit der Zusammensetzung des anorganischen Anteils der Bettasche.
- Das im Brennstoff enthaltene Cadmium (0.5 mg/kg; [Obernberger 1992]) wird vollständig in die Flugasche eingebunden.
- Die Vergasung von 1 kg atro Rinde benötigt 0.33 kg Sauerstoff und 0.15 kg Dampf. Pro kg atro Brennstoff entstehen 1.21 Nm³ trockenes Primärgas und 0.23 kg Abwasser (keine Dampfspaltung und kein Reaktionswasser; Anhang 11.2)
- Wegen des hohen Aschegehaltes der Rinde muss der ZWS kein Bettmaterial zugegeben werden.
- Die Quenchkühlung des Primärgases benötigt kein zusätzliches Brauchwasser.

<u>Abbildung 16:</u> Stofffluss einer ZWS zur Vergasung von 100 Tagestonnen atro Rinde. Vergasung mit Sauerstoff/Dampf bei Atmosphärendruck. Datengrundlage: [Mehrling et al. 1986b]

Auffallend ist, dass die Flugaschemenge grösser als die Bettaschemenge ist. Dies hat zwei Gründe. Einerseits weist das ZWS-Verfahren hohe Feststoffbeladungen auf und andererseits besteht die Flugasche zu etwa 80 Gew% aus Kohlenstoff. Da die Flugasche in der Quenchkühlung anfällt, enthält sie etwa 50 Gew.-% Wasser (u = 100%). In der Bilanzierung ist angenommen, dass die nasse Flugasche getrocknet wird.

Die Zusammensetzungen der Bett- und (getrockneter) Flugasche, sowie des Abwassers sind anhand von experimentellen Resultaten unter den aufgeführten Annahmen in der Tabellen 19 und 20 zusammengestellt.
			getrocknete
Element		Bettasche	Flugasche
С	Gew%	1.0	80
CaO	Gew%	33.2	6.7
MgO	Gew%	3.3	-0.7
K ₂ O	Gew%	5.2	1.1
Na	Gew%	0.6	0.1
Al ₂ O ₃	Gew%	4.8	1.0
P	Gew%	1.1	0.2
Fe	mg/kg Asche	24750	5000
Mn	mg/kg Asche	11187	2260
Zn	mg/kg Asche	1000	202
Pb	mg/kg Asche	7	1
Cu	mg/kg Asche	89	18
Ni	mg/kg Asche	40	8
Cr	mg/kg Asche	32	6
V	mg/kg Asche	31	6
As	mg/kg Asche	11	2
Cd	mg/kg Asche	-	9

<u>Tabelle 19:</u> Berechnete Zusammensetzung der Bett- und Flugasche aus einem ZWS-Vergaser mit Rinde. Datenbasis Aschezusammensetzung: [Obernberger 1992]

Mit Ausnahme der Gehalte an Eisen, Mangan und Zink enthalten die Aschen keine nennenswerte Gehalte an Schwermetallen. Die Bettasche kann voraussichtlich als Bodendünger in der Landwirtschaft eingesetzt werden. Die Flugasche ist wegen des hohen Gehaltes an Kohlenstoff und möglichweise PAH's (Kap. 4.4) nicht als Dünger geeignet. Da die trockene Flugasche energiereich ist (H_u ca. 27 MJ/kg atro), ist eine Weiterverwertung durch Nachvergasung oder Verbrennung sinnvoll.

Schadstoff	Zusammensetzung	Tagesfracht (23 m ³)
HCN	200 mg/l	5 kg
NH3	5650 mg/l	130 kg
H ₂ S	510 mg/l	12 kg
cos	60 mg/l	1.4 kg
Phenole	400 mg/i	9 kg
Fettsäuren	100 mg/l	2 kg
CSB	1060 mg O ₂ /l	24 kg O ₂
BSB5	300 mg O ₂ /l	7 kg O ₂
тос	350 mg C/l	8 kg C

Tabelle 20:Geschätzte Schadstoffgehalte und Tagesfrachten im Abwasser aus einemZWS-Vergaser mit einer Kapazität von 100 Tagestonnen Rinde. Vergasung bei
Atmosphärendruck, 800 °C und mit Sauerstoff/Dampf als Vergasungsmittel

Die mengenmässig grösste Tagesfracht entfällt auf den Ammoniak (NH₃). Die problematischsten Belastungen rühren von der Blausäure (HCN), dem Schwefelwasserstoff (H₂S) und den Phenolen her.

Die BSB₅-Fracht ist mit 7 kg/Tag gering. Andere Vergasungsverfahren können wesentlich höhere Werte liefern. Aufgrund der experimentellen Angaben in Kap. 4.5 (Tab. 14) ergibt sich z.B. für das MTCI-Verfahren bei gleicher Anlageleistung eine BSB₅-Fracht von rund 510 kg O₂ pro Tag.

9. Offene Fragen

Beim Vergleich und der Beurteilung der verschiedenen Vergasungssysteme ergaben sich eine Reihe von offenen Fragen, welche die Beurteilung zwar nicht grundsätzlich in Frage stellen, jedoch die Gewichtung der einzelnen Verfahren bzw. deren Entwicklungspotential verändern. Im weiteren tauchten einige Fragen von wissenschaftlichem Interesse auf.

Brennstoffzusammensetzung:

Die Elementarzusammensetzung (C, H, N, S, N, Cl), die Schwermetallgehalte und Heizwerte insbesondere von belasteten Brennstoffen wie Altpapier oder Kunststoffabfällen sind zumeist nicht bekannt oder zuwenig abgesichert. Die Kenntnis der Stickstoff-, Schwefel-, Chlor- und Schwermetallgehalte gibt zur Abschätzung der Abwasserbelastung wichtige Hinweise.

Ascheschmelzverhalten:

Über das Schmelzverhalten von naturbelassenen Biomasseaschen liegen einige Untersuchungen vor, das Schmelzverhalten von Aschen belasteter Brennstoffe ist jedoch weitgehend unbekannt. Die maximal zulässige Vergasertemperatur ist jedoch hauptsächlich durch den Ascheschmelzpunkt des Brennstoffes bestimmt.

Reaktivität:

Zur Auslegung eines Vergasungssystems ist die Kenntnis der Reaktivität der Brennstoffkokse (s.a. Kap. 3.5.1) hilfreich. Ausser einigen wenigen Angaben von unbelasteten Brennstoffen fehlen derartige Untersuchungen insbesondere für die Brennstoffe Rinde, Altpapier, Kunststoffabfälle sowie für Baurest- und Altholz.

Vergasungsmittel:

Die Übertragbarkeit von Versuchsergebnissen bei Vergasung mit Luft auf Bedingungen bei Sauerstoff/Dampf-Vergasung ist nicht abgesichert. Die diesem Bericht zugrunde liegenden Umrechnungen erfolgten unter der Annahme, dass die Gaszusammensetzung bei gleichem Vergasungsstyp nicht vom Vergasungsmittel abhängig ist.

Spurengase:

Das ICI-Methanolsyntheseverfahren toleriert maximal 20 ppm *Ethen*. Ob diese Grenze auch für das Lurgi-Verfahren zutrifft, kann nicht beurteilt werden. Es liegen wenige Versuchsresultate zu Ethengehalten von Primärgasen aus Biomassevergasungssystemen vor. Die gemessenen Ethengehalte liegen im Bereich von mehreren tausend ppm.

Erhöhte *Salzsäure*gehalte im Primärgas können eine Nutzung der fühlbaren Wärme wegen Korrosionserscheinungen erschweren. Bei der Vergasung von BRAM (Brennstoff aus Müll; 50% Plastik, 50% Papier) ist der maximale Dampfdruck auf etwa 20 bar begrenzt [Löffler 1993]. Bei der Vergasung von belasteten Brennstoffen werden im Vergaser und im Abhitzebereich andere Werkstoffe eingesetzt. Es liegen keine Kenntnisse zu Standzeiten dieser Materialien vor. Die Vergasung von belasteten Brennstoffen führte beim TPS-Verfahren mit katalytischer Primärgas-Reformierung zu Desaktivierungserscheinungen beim Dolomit-Katalysator [Aldén 1989]. Eine Beurteilung dieses Phänomens ist aufgrund fehlender Angaben nicht möglich.

In situ Entschwefelung:

Pilotversuche zeigten, dass Schwefelwasserstoff durch Zugabe von Zinkkarbonat (ZnCO₃; zerfällt bei Temperaturen über 300 °C zu Zinkoxid und Kohlendioxid) bzw. Zinkoxid aus Primärgasen eines HTW-Braunkohlevergasers praktisch vollständig eingebunden werden kann [Mittelviefhaus 1986]. Hierzu waren nur leicht überstöchiometrische Zinkmengen notwendig. Falls durch dosierte Zinkzugabe ein deutlich tieferer Schwefelwasserstoffgehalt im Primärgas möglich ist, resultiert daraus einerseits eine Verringerung der Abwasserbelastung mit H₂S und andererseits eine vereinfachte Gasreinigung.

Katalytisches Teercracking:

Das Reformieren von Teerstoffen mit Dolomit als Katalysator kann einen wesentlichen Beitrag zur Verringerung der Abwasserbelastung leisten. Es liegen jedoch keine Erfahrungen zum Langzeitverhalten des Katalysators sowohl bei unbelasteten wie belasteten Biomassen vor. Im weiteren sind Untersuchungen über die Effektivität des Katalysators nicht verfügbar. Ebenso ist ungeklärt, ob eine separate Wirbelschicht für das katalytische Cracken notwendig oder sinnvoll ist.

Methan-Reformierung:

Da bei einer Vergasung bei Atmosphärendruck eine katalytische Reformierung des Methans nicht möglich ist, kann eine Reformierung nach der Methanolsynthese sinnvoll sein. Das Purgegas fällt unter Druck an und ist frei von störenden Schadstoffen. Der zu reformierende Purgegasanteil ist gegeben durch den Gehalt an inerten Komponenten wie Kohlendioxid und Stickstoff. Ein katalytischer Methanreformer bietet auch die Möglichkeit, zusätzlich Erdgas zu reformieren, um den Wasserstoffanteil im Synthesegas zu erhöhen.

Gasreinigung:

Bei den Verfahren mit katalytischer Teerreformierung (TPS, BCL) ist eine Festoffabscheidung wegen der geringeren Teerbelastung mittels eines Gewebefilters denkbar. Es liegen jedoch keine Betriebserfahrungen vor.

Die Abscheidung von Schadstoffen aus reduzierenden Gasgemischen ist eine wenig erprobte Technologie. Es ist ungeklärt, ob die vorhandenen Erfahrungen ausreichen, um die Anforderungen an das Synthesegas zu erfüllen.

Teer- und Abwasserbelastung:

Aufgrund fehlender Angaben ist ein Vergleich der Teerzusammensetzungen sowie der wasserlöslichen Organika bei Luft- bzw. Sauerstoff/Dampf-Vergasung von Biomassen nicht möglich. Es ist jedoch möglich, dass die Qualität der Teere und der Abwässer nebst der Vergasungstemperatur und dem Vergasungssystem auch vom Vergasungsmittel abhängig ist. Insbesondere ist zu verifizieren, ob der Lurgi ZWS-Vergaser eine vergleichbare Abwasserqualität zu liefern vermag wie der TPS ZWS-Vergaser mit nachfolgendem Dolomit-Teercracker.

Eine besondere Bedeutung kommt der Kenntnis des Naphthalingehaltes im Rohgas zu, da Naphthalin einerseits mittels einer wässrigen Gaswäsche nicht abscheidbar ist und andererseits zu Verstopfungen in Wäschern und Ausfällen von Kompressoren führt [Koljonen 1993].

Es fehlen systematische analytische Untersuchungen von Abwässern verschiedener Biomassevergaser. Das Wissen ist punktuell, wodurch eine Beurteilung der Systeme untereinander äusserst schwierig ist. Eine Optimierung des Vergasers hinsichtlich Abwassermenge und konzentration war nicht Gegenstand von Messungen. Untersuchungen zur biologischen Abbaubarkeit der gelösten Schadstoffe, insbesondere die bei der Holzvergasung in erhöhtem Masse gefundenen Kohlenwasserstoffe, Phenole und Cyanide, liegen nicht vor.

Die Flugaschen bei der Vergasung von belasteten Brennstoffen weisen einen erhöhten Schwermetallgehalt auf. Falls eine vorgängige Feststoffabscheidung nicht möglich ist, fällt der Flugstaub gemeinsam mit dem Kondensatwasser an. Das Verhalten der Schwermetalle in den Kondensatabwässern wurde bisher nicht untersucht.

Scale-Up:

Die meisten Untersuchungen an Vergasungsanlagen erfolgten an Pilotanlagen und mit Luft als Vergasungsmittel. Wegen den geringeren Wärmeverlusten durch Abstrahlung weist das Primärgas in einer Grossanlage einen höheren Heizwert und eine andere Zusammensetzung auf. Aufgrund der vorliegenden Ergebnisse ist eine Berechnung der Gaszusammensetzung in einer kommerziellen Anlage nicht möglich.

Ascheaustrag:

Die im Baurestholz und Altholz enthalten Metallteile (1 bis 3 Gew%; Steine, Nägel und Beschläge etc) verursachen beim Ascheaustrag Probleme (Verstopfen des Anströmbodens, Verklemmen des Ascheaustragsystems). Die Abscheidung von magnetischen Metallteile aus dem Brennstoff ist zwar möglich, die Abscheidung von nichtmagnetischen Metallteilen ist jedoch ungelöst.

10. Schlussfolgerungen und weiteres Vorgehen

Die vorliegende Untersuchung zeigt, dass zur Vergasung von Biomasse mehrere Verfahren zur Verfügung stehen. Aus Kostengründen und Gründen der geringen Betriebserfahrung mit Biomassen scheiden Druckvergasungssysteme jedoch aus. Obwohl sich die einzelnen Normaldruck-Verfahren in der Funktionsweise stark unterscheiden, eignen sie sich grundsätzlich zur Synthesegaserzeugung aus Biomasse. Die Verfahren mit den höchsten Synthesegasausbeuten (MTCI, ASCAB) erfordern jedoch einen höheren Energieaufwand und erzeugen mehr Verlustwärmen und Abwasser. Das indirekte Vergasungsverfahren von MTCI verursacht in jedem Falle die geringsten Vergasungsbetriebskosten, da es sowohl den höchsten Synthesegaswirkungsgrad als auch keinen Sauerstoffbedarf aufweist. Bei einem Gratisbrennstoff sind die Betriebskosten beim BCL-Verfahren minimal.

Eine thermische oder katalytische Reformierung des Primärgases bringt bedeutende Vorteile. Aus energetischen Gründen und wegen der besseren Gasqualität ist eine katalytische Reformierung mit Dolomit vorzuziehen, obwohl das Methan nicht gecrackt wird. Durch die katalytische Reformierung ist einerseits die Abwasserbelastung mit organischen Stoffen deutlich geringer und andererseits ist eine separate Abtrennung der Schwermetalle z.B. in einem Gewebefilter voraussichtlich möglich. Eine der Wäsche bzw. Kondensation vorgeschaltete Staubabscheidung hat insbesondere bei der Vergasung von belasteten Brennstoffen deutliche Vorteile. Zudem bewirkt die katalytische Reformierung mit Dolomit eine Umwandlung der gasförmigen Kohlenwasserstoffe ausser Methan, insbesondere von Ethen und Ethin. Da zumindest für das Methanolsyntheseverfahren von ICI ein Ethen-Gehalte von bloss 20 ppm zulässig ist, das nicht reformierte Primärgas jedoch etwa 8000 ppm Ethen (und etwa 100 ppm Ethin) enthält, muss für diesen Fall eine Reformierung erfolgen.

Das TPS-Verfahren mit einem nachgeschalteten Dolomitcracker ist das einzige Verfahren, welches sowohl alle in Betracht gezogenen Brennstoffsortimente (unbelastetes Holz, Rinde, Baurestholz, Altholz, Altpapier, Kunststoff) zu verarbeiten vermag als auch die bestmögliche Abwasser- und Gasqualität liefert. Falls keine Gasreformierung notwendig ist und trotzdem Baurestholz und Altholz vergast werden soll, ist auch das Lurgi-Verfahren in Betracht zu ziehen. Bei Ausschluss der Brennstoffe Baurestholz oder Altholz weist das BCL-Verfahren mit nachgeschaltetem Dolomitcracker trotz der schlechten Synthesegasausbeute gegenüber den anderen Verfahren deutliche Vorteile bezüglich Betriebskosten, Gasqualität und Energiebilanz auf. Das MTCI-Verfahren erzeugt bei geringen Betriebskosten und hohem Vergasungswirkungsgrad die höchste Synthesegasausbeute. Die Abwasserbelastung mit organischen Stoffen ist jedoch deutlich höher als bei anderen Verfahren. Um die Verfahrensauswahl einzugrenzen und detailliertere Angaben zu ermöglichen, sind einerseits die Randbedingungen um den Vergaser festzulegen sowie die Einbettung in verschiedene Gesamtkonzepte vorzunehmen. Neben einer Gesamtenergiebilanz haben insbesondere folgende Aspekte unmittelbaren Einfluss auf die Wahl des Vergasungssystem:

- definitive Festlegung des Brennstoffsortimentes (z.B. erste Betriebsphase: Rinde, später Altpapier/Kunststoff)
- Falls der maximale Ethengehalt (ev. Ethingehalt) unter 100 ppm liegen muss, weisen Vergasungsverfahren mit thermischer oder katalytischer Reformierung Vorteile auf. Eine Abscheidung von leicht flüchtigen Kohlenwasserstoffen ist mit hohem Kosten- und Energieaufwand verbunden.
- Abbaubarkeit des anfallenden Abwassers und/oder Abscheidung von kritischen Abwasserkomponenten (z.B. H₂S, HCN, NH₃, Phenole, Schwermetalle).
- Eine katalytische Methanreformierung eines Purgegasteilstromes (nach der Methanolsynthese und der Wasserstoffabtrennung) und Rückführung des Reformates in den Synthesereaktor könnte die Methanolausbeuten deutlich verbessern, insbesondere beim BCL-Verfahren.
- Der maximal tolerierbare CO₂-Anteil im gereinigten Primärgas kann ein indirektes Verfahren (BCL, ev. MTCI) gegenüber den autothermen bevorzugen.

Andererseits sind nach Auswahl eines bevorzugten Vergasungssystems experimentelle Untersuchungen durchzuführen:

- Charakterisierung der Brennstoffe (Zusammensetzung, Feuchte, Reaktivität, Ascheschmelzverhalten)
- Bestimmung der Hauptanteile (H₂, CO, CO₂, CH₄), Spurengase (Ethen, Ethin, HCN, NH₃, H₂S, COS) und der Teerverbindungen (insbesondere Naphthalin) im Primärgas an einer adäquaten Anlage mit den festgelegten Brennstoffen und mit Sauerstoff/Dampf als Vergasungsmittel
- Bestimmung der Abwasserzusammensetzung an bestehenden Anlagen (z.B. Rindenvergaser in Pöls)
- Bestimmung der Effizienz der Gasreinigung.

11. Anhang

11.1. Experimentelle Angaben zu Kohlevergasern

- Zusammenstellung von Daten zum Lurgi Festbettvergaser [Asinger 1986]
- Zusammenstellung von Daten zum Koppers Totzek-Flugstromvergaser [Asinger 1986]
- Zusammenstellung von Daten zum Texaco-Flugstromvergaser [Althoff 1983], [Asinger 1986]

Quelle: Asinger 1986

Beschreibung des Verfahrens:

- Gegenstromvergaser mit 24 bar.
- Die Asche wird als Trockenschlacke unten abgezogen
- Temperatur am unteren Ende ca 700-800
 °C (max. 1000 °C wegen Klinkerbildung), am oberen Ende ca 500-600 °C
- Korngrösse der Kohle: 3-40 mm
- Das Gas fällt in der Zusammensetzung des Synthesegases an und muss nicht mehr konvertiert werden.
- Weiterentwicklung des LURGI-Verfahrens ist das Ruhr 100-Verfahren (joint venture des Landes Nordrhein-Westfalen mit der Ruhrgas-Ruhrkohle und der Steag). Aufgrund des höheren Druckes entsteht mehr Methan.
- -Variante: LURGI-BGC-Prozess (BGC = Britisch Gas Company) mit flüssigem Schlackeabzug. Das Verfahren liefert ein Rohgas mit höherem CO-Gehalt und der Dampfverbrauch ist im Vergleich zum Standard-Prozess geringer.

Lurgi Druck-Vergaser

	Steinkohle waf	(4-50 mm)	Braunkohle TBK	0 (Briketts)
Trockenkohlebedarf:	488 kg/1000 Nm	³ Rohgas	610 kg/1000 Nm	³ Rohgas
Sauerstoffbedarf:	150 Nm ³ /1000 N	m ³ Rohgas	90 Nm ³ /1000 Nn	1 ³ Rohgas
	247 Nm ³ /t Stein	cohle waf	188 Nm ³ /t Braun	kohle TBK0
Wasserdampfbedarf	1100 kg/1000 Nn	n ³ Rohgas	700 kg/1000 Nm	³ Rohgas
	bzw. 1.336 t/t Sł	KE	bzw. 1.0 t/t TBK	0
C-Umsatz	98 bis 99%		98 bis 99%	
Teeröl	65 kg/t Kohle		56 kg/t Kohle	
Leichtöl	11 kg/t Kohle		23 kg/t Kohle	
Durchschnittliche Gasz	usammensetzunge	en bei ca. 25 bar /	Arbeitsdruck:	
	Gasflan	mkohle	Rhein. Br	aunkohle
Gasanalyse in Vol%	Rohgas	Reingas	Rohgas	Reingas
CO	18.5	25.6	17.4	25.2
H ₂	41.1	57.0	37.2	54.0
$CO_2 + H_2S$	29.2	2.0	32.3	2.0
CH4	10.0	13.9	12.1	17.6
CmHn	0.5	0.5	0.5	0.5
N ₂	0.7	1.0	0.5	0.7

Zusammenstellung von Daten zum Koppers Totzek-Vergaser

Quelle: Asinger 1986

Beschreibung des Verfahrens:

- Das KT-Verfahren ist ein autothermes Gleichstrom-Verfahren (entrained bed). Die Vergasung findet bei Atmosphärendruck statt.
- Die Kohle wird auf eine Körnung von 0.09 mm gepulvert, mit einer Förderschnecke einem Mischkopf zugeführt, dort von einem O2/Dampfstrom aufgenommen und in den Vergaser eingeblasen (Verweilzeit 0.6 bis 1 sec).
- Die Temperaturen liegen im Bereich von 1500 bis 1600 °C
- Wegen den hohen Temperaturen fallen kein Methan und keine höheren Kohlenwasserstoffe an.
- Die Schlacke wird flüssig abgezogen
- Die Gasreinigung ist einfach
- Der Sauerstoffverbrauch ist relativ hoch
- Die Kohleaufbereitung ist aufwendig

Durchschnittliche Betriebsergebnisse einer konventionellen KT-Anlage:

	Steinkohle	Braunkohle
Aschegehalt	30 %	7.4 %
Wassergehalt	1 %	8 % (TBK ₈)
Trockenkohlebedarf	535 kg/1000 Nm3	591 kg/1000 Nm ³
Sauerstoff	573 Nm ³ /t Kohle	564 Nm ³ /t TBK8
Dampf	380 kg/t Kohle	? kg/t TBK8
C-Umsetzungsgrad	98 %	98 %
Gasanalyse in Vol%	Rohgas	Rohgas
CO	53.0	62.6
H ₂	33.3	25.7
CO2	12.0	10.3
CH4	0.2	0.1
CmHn	-	-
N ₂ und sonstiges	1.5	0.9

Zusammenstellung von Daten zum Texaco-Vergaser

Quellen: Althoff 1983, Asinger 1986

Beschreibung des Verfahrens:

- Das Verfahren ist wie das Koppers-Totzek ein autothermes Gleichstrom-Verfahren (Entwicklung: Ruhrkohle Niederrhein AG). Der Vergasungsdruck beträgt 35 bis 40 bar.
- Das Verfahren wurde ursprünglich für die Vergasung von Schwerölen entwickelt.
- Die Kohle muss mit Rohrmühlen sehr fein (nass) aufgemahlen werden. Danach wird mit Wasser eine Suspension hergestellt mit 60 bis 70 Gew% Kohlenstaub. Diese Suspension wird mit Sauerstoff einem Mischkopf zugeführt und intensiv vermischt.
- Das Abhitzesystem bestand wegen der Anwesenheit von kleb- und sinterfähiger Schlacke aus einem Strahlungs- (Abkühlung der Schlacke, bis sie ihre Klebe- und Sinterfähigkeit verliert) und einem Konvektionskühler.
- Die Temperaturen liegen im Bereich von 1350 bis 1500 °C
- Wegen den hohen Temperaturen fallen kein Methan und keine höheren Kohlenwasserstoffe an.
- Die Schlacke wird flüssig abgezogen
- Die Gasreinigung ist einfach
- Die Kohleaufbereitung ist aufwendig

	gem. Althoff et al.	gem. Asinger
Aschegehalt		bis 30%
Flüchtigengehalt		bis 32%
Partikelgrösse (>90%)		14 - 60 mm
Suspensionskonz.	71%	>70%
Reingasausbeute	1850 Nm ³ /t Kohle wf	
spez. O2-Bedarf	350 m ³ /1000 m ³ CO+H2	
	bzw. 930 kg/t Kohle wf	
Wirkungsgrad Kaltgas	76%	74%
therm. Wirkungsgrad		92%
C-Umsetzungsgrad	99%	> 98%
Gasanalyse in Vol%	Rohgas	Rohgas
СО	38.9 - 50.4	52
H ₂	34.0 - 37.8	35
C O ₂	13.2 - 22.0	12
CH4	< 0.1	0.01
H ₂ S/COS	0.2 - 0.9	0.3
N ₂	0.4 - 0.6	0.6
HCN	2 - 48 ppm	
NH3	0.5 - 2 ppm	
NOx	< 0.1 ppm	

Durchschnittliche Betriebsergebnisse einer Texaco Vergaseranlage (Steinkohle):

Abb. gem. Althoff et al. 1983

11.2. Zusammenfassung der Daten aus Biomassevergasern

- Festbettvergaser (Normaldruck)von Syngas [Wan et al. 1990]
- Festbettvergaser (Normaldruck) von Bioneer [Kurkela et al. 1989]
- Wirbelschichtvergaser (Normaldruck) von Biosyn [Gravel et al. 1987], [Czernik et al. 1991]
- Renugas Druckwirbelschichtvergaser vom Institute of Gas Technology IGT [Evans et al. 1987], [Gissy et al. 1992]
- Wirbelschichtvergaser(Normaldruck) von Lurgi [Aarsen van den 1985]
- ASCAB-Wirbelschichtvergaser (Normaldruck) von Creusot-Loire [Chrysostome et al. 1983]
- ASCAB-Druckwirbelschichtvergaser von Stein Industrie [Lamasle 1990]
- Zirkulierender Wirbelschicht- (ZWS-) Vergaser(Normaldruck) von Ahlstrom [Siro 1989]
- ZWS-Vergaser (Normaldruck) von Lurgi [Mehrling et al. 1986b], [Sturm 1991], [Löffler 1992]
- ZWS-Vergaser (Normaldruck) von Battelle Columbus Laboratory (BCL) [Wan et al. 1990], [Feldmann et al. 1988]
- Wirbelschichtvergaser (Normaldruck) von Manufacturing and Technology Conversion International (MTCI) [Durai-Swamy et al. 1991], [Katofsky 1993]

Firma		Syngas	Ahlstrom	Biosyn		······································	
Vergeserbun		Festbett-Gleichstrom	Updraft-Festbett	Wirbelschicht			1
lobr		1990	1989	1991		1987	
		Wan et al	Kurkela et al	Czernik et al		Gravel et al	
Voreuch Nr		wan et al.	Nurkeia et al.	16	20	Gravor or al.	
Aplagalaiatung		2.8 MW	1 MW		100 kW	max 25 MW	max 25 MW
Anageleistung		1 bor	1 bor	1 bar	1 har	3 7 har	12 har
	<u>م</u>	1 Dai	2	7/2	957	825	812
	-0	070	I Luft/Domof	1.04	Luft	1.0#	Luft
Vergasungsmittei			Waldbacksshritzal	Späno/Sägomet		50 Säcomobi/50 E	Rindo (Granulat)
Brennston	Court	10.0%	52 0%	Spane/Sagemen	12.8%	20 Oagemeni/30 P	20.0%
Wassergenalt d. Brennstons		10.0%	52.078	- 0.1%	- 0.1%	20.0%	20.078
Aschegenalt (Bez.: atro)	Gew%	0.00		0.00	0.00	2.378	2.378
Dampinput	Ny Ny alio	0.00		0.00	0.00		
	ka/ka otro	0.49	L A	0.41	0.45		
	kg/kg alro	0.40	n.A.	1.96	0.45	L A	L A
Stickstoffinput	kg/kg atro			1.30	1.49	<u>к.</u>	<u>к.</u>
Produktgaszusammensetzung (ron)		440	7.0	0.7		10.0
H2	VOI%		14.0	7.6	6./	8.0	10.3
со	vol%		20.0	12.9	11.0	13.9	12.8
CO2	vol%		10.0	13.7	13.5		
CH4	vol%		2.5	3.1	2.9	5.5	8.6
C2H4	vol%			1.2	1.3	1.3	0.9
C2H6	vol%			0.2	0.1	0.4	1.1
СЗН6	vol%			0.2	0.1		
CmHn	vol%						
N2	vol%			43.2	45.4	69.5 (inki. CO2, exkl. H2O)	65.4 (inkl. CO2, exki. H2O)
02	vol%			0.7	0.7		
H2O	vol%			18.2	16.8		
Produktgaszusammensetzung (trocken, ohne	N2)					
H2	vol%	21.8		19.5	18.8	19	22
со	vol%	45.9		33.2	30.9	33	27
CO2	vol%	24.0		35.2	37.9	31	28
CH4	vol%	5.9		8.0	8.1	13	18
C2H4	vol%			3.1	3.7	3	2
C2H6	vol%			0.5	0.3	1	2
СЗН6	vol%			0.5	0.3		
CmHn	vol%	2.5					
MJ/Nm3	HHV dry gas	11.9					
MJ/Nm3	LHV dry gas						
Kaltgaswirkungsgrad	%	64 (HHV)					
Kohlenstoff-Umsatz ohne Teer	%						
Kohlenstoff-Umsatz mit Teer	%	91.0					
Teer	g/kg atro	17.0		34.0	12.0		
Teer	a/Nm3		80-160	14.6	2.8		
'Holzkohle'	a/ka atro	32.0		26.0	7.0		
Feststoffe	a/Nm3						
'Kohlenstoff'	a/Nm3						
Gasausbeute (feucht_total)	Nm3/kg atro			2 44	2 57		
Gasausbeute (trocken N2-frei)	Nm3/kg atro	1 18		0.96	1.01		
Kondensatwassermence	ka/ka atro	0 100		0.357	0.347		
H2-Ausbouto	Nm3/kg atro	0.100		0.189	0.190		
	Nm3/kg atro	0.207		0.100	0.190		
	Nm3/kg atro	0.042		0.010	0.512		-
Remerkungen	namorky and	Scale In his		Teer - (Holzkobie	TOC Kondense	Nicht abgesicharte D	I
Demerkungen		may 96 tod			lenstoff in den		ohaas sei.
1		παλ. 30 φυ		Zyklongechon		1394 CO2 204 U20	ongao 001.
			l	LYNOIASCHEL		1370 002, 2070 120	

the second se							· · · · · · · · · · · · · · · · · · ·
Firma		Renugas (IGT)					
Vergasertyp	ļ!	Wirbelschicht					
Jahr	ļ'	1987					1992
Quelle	ļ!	Evans et al.		T			Gissy et al.
Versuch Nr.	Į!	GT-10	GT-16	T12-4a	T12-2	T3D-1a	HBT-2
Anlageleistung	ļ!	0.81 MW	1.6 MW	0.79 MW	0.75 MW	0.89 MW	0.98 MW
Druck	ļ!	7.1 bar	21.4 bar	5.7 bar	7.9 bar	22.0 bar	21.1 bar
Temperatur	°C	800	790	820	815	837	850
Vergasungsmittel	!	Luft/Dampt	Luft/Dampt	Luft/Dampt	Luft/Dampt	Luft/Dampt	O2/N2/Dampt
Brennstoff		Ahorn P	Ahom P	Ahorn W	Ahorn W	Ahorn W	Haw. Bagasse
Wassergehalt d. Brennstons	Gew%	12.170	(./70	9.070	(.170	10.8%	18.4%
Aschegehalt (Bez.: atro)	Gew%	0.0%	0.0%	0.070	0.070	0.0%	3.30%
Damptinput	kg/kg auro	U.7 1	0.00	U./3	U.73	1.32 k A	0.42+0.70
Dampiqualitat (Temp./Druck)		K.A.	<u> </u>	K.M.	K.M.	K.A.	370 °C / 4/4 °C
Sauerstoffinput	kg/kg atro	0.20	0.24	0.30	0.20	0.29	0.34
Stickstottinput	kg/kg atro	0.00	U.40	0.93	0.99	0.83	0.45
Produktgaszusammenseizung (roh)	75	10.5	75	50	10.0	5.0
H2	V01%	7.0	6.1	7.0	3.5	10.91	J.5 0 4 7
CO	V01%	11.0	15.0	12.0	11.5	13.0	0.4/
CO2	V01%	49	62	4.3	46	4.8	5.6
CH4	V01%		0.2		0.7		0.0
	V01%	0.0	0.1	0.0	0.0	0.0	0.05
	V0170	v	0.0	0.4	0.0	V.L	0.01
	V0170	ł '	├	ł'	ł'	l	0.001
	VU176	31.0	15.3	25.8	27.6	18.6	11.5
	VU1 /6		10.0			10.0	0.04
	V0176	36.1	45.0	41.1	41.2	47.9	56
H2U	wooken ohne	NO1				<u></u>	
Produktgaszusammensetzeng (22.8	26.5	22.7	18.9	32.5	18.1
n2 ^^	101%	22.0	15.3	23.6	24.8	10.7	26.1
<u></u>	VOI /6	36.1	40.0	36.2	37.0	41.4	37.6
	VOI /6	14.8	15.5	13.1	14.7	14.3	17.3
0014 02HA	vol%	1.4	0.3	2.0	2.1	0.1	0.3
02/14	vol%	1.1	1.5	1.1	1.8	0.5	0.2
CaHe	vol%	l,		ł,			0.003
CmHn	vol%	l	l	<u> </u>	ł	ł	0.34
Ommin	10170	·		·	L		
M.I/Nm3	HHV dry gas	15.1	13.3	14.4	14.3	11.8	
M.I/Nm3	LHV dry gas	1					
Kaltgaswirkungsgrad	%	82.2	75.8	75.6	70.3	77.0	
Kohlenstoff-Umsatz ohne Teer	%	95.4	90.2	91.8	87.4	93.0	
Kohlenstoff-Umsatz mit Teer	%	96.0	94.4	96.9	92.7	96.1	96
Teer	a/kg atro	3.4	19.6	26.9	33.2	16.5	35.4
Teer	a/Nm3	l ,	l	l	t,	l · · · · · · · · · · · · · · · · · · ·	
'Holzkohle'	a/kg atro	l,			,	ļ	22.5
Feststoffe	a/Nm3	l			1		
'Kohlenstoff'	a/Nm3				1		
Gasausbeute (feucht, total)	Nm3/kg atro	3.18	2.65	3.07	3.00	3.77	3.17
Gasausbeute (trocken, N2-frei)	Nm3/kg atro	1.05	1.05	1.02	0.94	1.26	0.99
Kondensatwassermenge	kg/kg atro	0.923	0.959	1.014	0.994	1.452	1.427
H2-Ausbeute	Nm3/kg atro	0.239	0.278	0.232	0.178	0.410	0.179
CO-Ausbeute	Nm3/kg atro	0.231	0.161	0.241	0.233	0.135	0.258
Ausbeute H2+CO	Nm3/kg atro	0.470	0.439	0.472	0.411	0.544	0.438
Bemerkungen		, · · · · · · · · · · · · · · · · · · ·			······································		
		l '	1				
		· ·					

Firma		Lurgi		Creusot-Loire (L	e Creusot)	Stein Industrie (Clamecy)
Vergasertyp		Wirbelschicht		Wirbelschicht		Wirbelschicht	
Jahr		1985		1983		1990	
Quelle		van den Aarsen		Chrysostome et al.		Lamasle	
Versuch Nr.				no. 75/900	no. 75/2300	3-3	8-1
Anlageleistung		115 kW	120 kW	460 kW	460 kW	6.6 MW	11.0 MW
Druck		1 bar	1 bar	1 bar	1 bar	5.5 bar	7.2 bar
Temperatur	°C	840	815	700/>1300	700/1150	720/1250	720/1240
Vergasungsmittel		Luft	Luft	O2/Dampf	O2/Dampf	O2/Dampf	O2/Dampf
Brennstoff		Holz	Holz	Holz	Holz	Holz	Holz
Wassergehalt d. Brennstoffs	Gew%	5.0%	5.0%	20.0%	20.0%	14.3%	14.3%
Aschegehalt (Bez.: atro)	Gew%						
Dampfinput	kg/kg atro	0.00	0.00	0.23	0.23	0.62	0.44
Dampfqualität (Temp./Druck)		-	-	200 °C	200 °C	233 °C/30 bar	233 °C/30 bar
Sauerstoffinput	kg/kg atro	0.44	0.41	0.29+0.24	0.29+0.27	0.23+0.35	0.22+0.32
Stickstoffinput	kg/kg atro	1.45	1.34				
Produktgaszusammensetzung (roh)						
H2	vol%					20.3	21.4
со	vol%					29.7	32.9
CO2	vol%					34.6	34.4
CH4	vol%					0.1	0.2
C2H4	vol%						
C2H6	vol%						
C3H6	vol%						
CmHn	vol%						
N2	vol%	52.2	53.9			15.3	11.0
O2	vol%						
H2O	vol%						
Produktgaszusammensetzung (trocken, ohne	N2)					
H2	vol%	18.1	21.1	31.5	33.6	24.0	24.1
CO	vol%	35.0	36.6	34.0	35.0	35.1	37.0
CO2	vol%	31.2	31.2	31.5	28.2	40.8	38.7
CH4	vol%	12.6	8.5	1.6	1.5	0.1	0.2
C2H4	vol%	3.2	2.6				
C2H6	vol%						
СЗН6	vol%						
CmHn	vol%						
MJ/Nm3	HHV dry gas						
MJ/Nm3	LHV dry gas	6.2	5.4			6.1	6.5
Kaltgaswirkungsgrad	%			63.0	65.0		
Kohlenstoff-Umsatz ohne Teer	%						
Kohlenstoff-Umsatz mit Teer	%						
Teer	g/kg atro						
Teer	a/Nm3	1.0	1.6		······		
'Holzkohle'	g/kg atro						
Feststoffe	a/Nm3						
'Kohlenstoff'	a/Nm3						
Gasausbeute (feucht, total)	Nm3/kg atro						
Gasausbeute (trocken N2-frei)	Nm3/kg atro			1.39	1 38	1 27	1 22
Kondensatwassermenge	ka/ka atro			0 470	0 470	0 640	0.510
H2-Ausbeute	Nm3/kg atro			0.438	0 464	0.305	0.294
CO-Ausbeute	Nm3/kg atro			0.473	0 483	0.000	0.451
Ausbeute H2+CO	Nm3/kg atro			0.910	0.430	0.751	0.451
Bemerkungen				Kondensatwass	ermende	Heizwert hez	If trock Bohnes
				aus Massehilan	,	Kondensatwass	ermende
					-	aus Massohilan	,
		L				add maddouidil4	-

Firma		Ahlstrom	Lurgi		Lurgi	Lurgi
Vergasertyp		Pyroflow CFB	CFB		CFB Pöls	CFB
Jahr		1989	1986b		1992	1991
Quelle		Siro	Mehrling et al.		Löffler	Sturm
Versuch Nr.						2
Anlageleistung			1.3 MW	1.3 MW	16 MW	1.5 MW
Druck		1 bar	1bar	1 bar	1 bar	1 bar
Temperatur	°C	900	750	870	800	850
Vergasungsmittel		Luft	O2/Dampf	O2/Dampf	Luft	Luft
Brennstoff		70 Sägernehl, 30 Rinde	Birke	Birke	Rinde	Altholz
Wassergehalt d. Brennstoffs	Gew%	15.0%	17.0%	22.5%	15.0%	14.0%
Aschegehalt (Bez.: atro)	Gew%					
Dampfinput	kg/kg atro		0.07	0.11	0.00	0.00
Dampfoualität (Temp./Druck)			k.A.	k.A.	-	-
Sauerstoffinput	kg/kg atro		0.33	0.48	0.34	0.65
Stickstoffinput	ka/ka atro				1.13	2.41
Produktgaszusammensetzung (roh)					
H2	vol%				14.8	
co	vol%				15.4	
CO2	vol%				15.0	
CH4	vol%				42	
C2H4	vol%					
C2H6	vol%					
C3H6	vol%					
CmHp	V01%				2.0	
No	V01%		3.3 (ovkl H2O)	3.9 (ovkl H2O)	30.6	40.2
	VOI /6		3.3 (BARI. 1120)	3.9 (BANI. 1120)	39.0	49.2
02	V0176		20.0	22.0		0.0
Reduktroorwoommonootrung (trackan abaa	N(2)	20.0	33.0	9.0	11.4
	wol%	31 bis 36	22.4	20.9	20.0	22 5
n2 CO	VOI /6	20 bis 44	33.4	20.0	20.0	23.3
<u>60</u>	V0176	29 DIS 44	33.5	23.0	30.0	27.9
	V0170	20 bis 20 9 bis 14	20.0	44.2	29.2	30.3
	V0176	0 015 14	4.9	9 .2	0.2	0.0
	VO:70		0.7	11.u.		1,0
	V0170		0.6			
	VUI70		0.0	11.0.		
Cmrin	100176				3.9	L
	I H D C alar and					
MJ/Nm3	HHV dry gas					
MJ/Nm3	LHV dry gas		0.0 5	50.0		
Kaitgaswirkungsgrad	%		C.08	56.0		
Kohlenstoff-Umsatz ohne Teer	%	· · · · · · · · · · · · · · · · · · ·				
Kohlenstoff-Umsatz mit Teer	%		99.0	98.0		
Teer	g/kg atro					
Teer	g/Nm3		0.4			1.1
'Holzkohle'	g/kg atro					· · · · · · · · · · · · · · · · · · ·
Feststoffe	g/Nm3				60.0	19.0
'Kohlenstoff'	g/Nm3				40.0	6.5
Gasausbeute (feucht, total)	Nm3/kg atro		1.40	1.13	2.37	3.40
Gasausbeute (trocken, N2-frei)	Nm3/kg atro		1.12	0.67	1.21	1.32
Kondensatwassermenge	kg/kg atro		0.200	0.400	0.171	0.312
H2-Ausbeute	Nm3/kg atro		0.374	0.139	0.348	0.310
CO-Ausbeute	Nm3/kg atro		0.375	0.173	0.363	0.368
Ausbeute H2+CO	Nm3/kg atro		0.749	0.312	0.711	0.678
Bemerkungen			bei 870 °C: Al2C	03 Bettmat.		hohe Wärme-
			zugesetzt; hohe	Wärmeverluste		verluste

Firma		Battelle Columbus	MTCI
Vergasertvo		Multi solid CFB	
Jahr		1990	1991/93
Quelle		Wan et al.	Durai-Swarnv/Katofskv
Versuch Nr.			
Anlageleistung		3.8 MW	42 kW
Druck		1 bar	1 bar
Temperatur	°C	870	700
Vergasungsmittel		Damof	Damof
Brennstoff		Holz	Holz
Wassergehalt d. Brennstoffs	Gew%	11.3%	22.0%
Ascherebalt (Bez : atro)	Gew%		0.2%
Demoficout	ka/ka atro	0.29	1.37
Damofoualität (Temo /Druck)		400 °C	160 °C/ 1 3 har 2
Severetofficeut	ka/ka atro		0.00
Sticketofficput	kg/kg atro	0.00	0.00
Breduktreezueemmensetzung /	rob)	0.00	0.00
Lo			25.0
<u>CO</u>	VOI 76		20.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VOI /0		11.2
	V01%		9.9
	V01%		4.0
	V01%		
	V01%		
	V01%	· • • • • • • • • • • • • • • • • • • •	
CmHn	VOI%		0.2
N2	VOI%		
02	vol%		
H2O	vol%		49.5
Produktgaszusammensetzung (	trocken, ohne	N2)	
H2	vol%	21.2	50.0
со	vol%	45.4	22.1
CO2	vol%	11.5	19.4
CH4	vol%	16.1	8.0
C2H4	vol%		
C2H6	vol%		
СЗН6	vo %		
CmHn	vol%	5.7	0.4
MJ/Nm3	HHV dry gas	17.5	12.2
MJ/Nm3	LHV dry gas		
Kaltgaswirkungsgrad	%	73 (HHV)	
Kohlenstoff-Umsatz ohne Teer	%	70.0	93.0
Kohlenstoff-Umsatz mit Teer	%		96.0
Teer	g/kg atro	5.0	6.1
Teer	g/Nm3		
'Holzkohle'	g/kg atro	170.0	8.1
Feststoffe	g/Nm3		
'Kohlenstoff'	g/Nm3		
Gasausbeute (feucht, total)	Nm3/kg atro		
Gasausbeute (trocken, N2-frei)	Nm3/kg atro	0.87	1.45
Kondensatwassermenge	kg/kg atro	0.400	1.300
H2-Ausbeute	Nm3/kg atro	0.184	0.725
CO-Ausbeute	Nm3/kg atro	0.395	0.320
Ausbeute H2+CO	Nm3/kg atro	0.579	1.045
Bemerkungen		Kondensatwasser-	
_		menge abge-	
		schātzt	

# 11.3. Experimentelle Daten zum IGT-Vergaser

- Ergebnisse von Vergasungsversuchen in der Pilotanlage (max. 500 kg/h) mit unbelastetem Holz bei Drücken zwischen 6 und 22 bar [Evans et al. 1987]

Test No.	CT-1	CT-2	CT-4	cT-5	CT-6	CT-8	CT-9	<u>CT-10</u>	CT-11	CT-16
Pressure, paia	323.7	323.7	308.7	308.7	311.7	308.7	314.7	104.7	296.7	314.7
Temperature, °F	1500	1650	1800	1390	1500	1510	1500	1465	1500	1450
Feed Rate, 1b/h (wet)	813.4	<b>690.6</b>	9.167	724.3	693.5	750.4	765.9	399.5	1029.7	768.6
Moisture, wt X	8.35	9.50	9.70	10.47	10.72	11.15	12.44	12.08	10.02	1.7.1
Steam Input, 1b/1b feed (wet)	0.79	0.71	0.60	0.77	0.86	0.65	0.50	0.62	0.48	0.74
Oxygen, lb/lb feed (wet)	0.21	0.25	0.34	0,17	0.24	0.22	0.21	0.23	0.20	0.22
Nitrogen, lb/lb feed (wet)	0.52	0.45	0.51	0.42	0*50	0.52	0.21	0.76	0.29	0.44
Product Cas Flow Rate, SCF/h	33,446	27,154	31,218	27,662	31,155	30,371	25,103	17,918	34,407	30,164
Superficial Gas Velocity, ft/s	2.20	1.93	2.49	1.80	2.13	2.11	1.70	3.59	2.47	1.99
Gas Composition, vol X										
н ₂	10.58	11.82	13.58	9.62	8.08	9.97	9.81	7.52	10.37	10.52
C	60.9	6.38	9.92	4.07	5.36	6.63	7.05	7.24	9.39	<b>60</b> •9
co2	15.63	17.15	15.49	15.92	13.98	15.04	17.64	11.89	15.61	15.89
CH &	7.39	7.39	5.29	6.20	5.95	6.78	7.96	4.87	7.30	6.17
C2H4	0.10	0	0	0.10	0.08	0.19	0.27	0.45	0.27	0.12
C ₂ H ₆	0.27	0.03	0	0.84	0.45	0.31	0.56	0.37	0.54	0.61
C ₃ H _B	0	0	0	0.02	¢	0	0	10"0	C	0
C ₆ H ₆	0.08	0.29	0	0.21	0.12	0.21	0.44	0.60	0.43	0.34
N2	17.08	15.42	16.23	14.93	15.17	17.45	8.64	22.85	11.71	15.28
H20	42.78	41.52	34.96	48.09	45.44	39.00	40.84	36.06	38.11	44.98
År	с	0	4.53	0	5.37	4.42	6.79	8.14	6.27	0
Gross Molecular Weight, 1b/1h-mol	22.63	22.78	23.36	22.62	23.59	23.74	24.28	25.04	24.09	22.75
Cas Yield, SCF/1b feed (wet)	41.12	39.32	42.65	38.19	44.92	40.47	32.78	44.85	33.41	39.25
Dry, Inert Free Gas, vol 2										
H2	26.36	27.45	30.67	26.01	23.75	25.48	22.43	22.82	23.62	26.47
CD	15.17	14.82	22.40	11.01	15.76	16.94	16.12	21.97	21.38	15.32
cuz	38.94	39.83	34.98	43.05	41.09	38.44	40.34	36.08	35.55	39.98
CH 4	18.41	17.16	11.95	16.77	17.49	17.33	18.20	14.78	16.62	15.53
C2H4	0.25	0	0	0.27	0.24	0.49	0.62	1.37	0.61	0.30
C ₂ H ₆	0.67	0.07	0	2.27	1.32	0.79	1.28	1.12	1.23	1.53
C ₃ H ₈	0	0	•	0.05	0	0	0	0°03	0	0
C6H6	0.20	0.67	0	0.57	0.35	0.54	1.01	1.82	0.98	0.86
Gross Heating Value, Btu/SCF	344.20	337.07	292.61	356.93	345.34	354.64	379.35	405.31	382.19	356.62
Dry, Inert Free Cas Yield, SCF/1b feed (wet)	16.51	16.93	18.89	14.12	15.28	15.84	14.33	14.78	14.67	15.60
Cold Cas Thermal Efficiency, X	75.08	76.15	73.85	68.80	71.31	76.42	74.63	82.17	74.94	75.76
Carbon Conversion to Cas, 2	88.2	92.2	94.2	82.3	88.2	90.5	88.5	95.4	87.4	90.2
Carbon Conversion to Cas and Liquids, X	92.0	94.4	8.46	87.2	92.0	92.7	92.0	96.0	91.8	94.4

 $\mathbf{\hat{x}}$ 

9.59 0.93 0.50 0.30 0.01 0.40 27.29 39.99 23.65 46.45 23.20 1.53 0.92 0.03 1.22 377.89 15.20 1516 0.73 0.28 17,439 3.80 7.59 11.93 4.61 22.56 36.46 14.09 76.89 93.3 T12-4b 375.4 7.38 0 98.0 98.7 16,813 0.47 25.80 23.58 386.05 T12-4a 0.85 0.35 0.01 41.14 44.79 22.66 0.03 1.42 14.81 375.4 0.72 0.27 4.31 11.98 4.32 0.65 23.56 36.24 13.07 1.97 1.06 75.62 91.8 96.9 83.7 1 509 8.98 7.79 7.49 25,373 15.13 23.13 35.83 74.95 T12-3b 1413 9.14 0.68 0.18 0.40 5.59 15.72 6.95 0.28 0.00 0.57 46.31 0 22.17 14.50 40.77 18.02 0.73 2.33 1.48 19.901 13.82 87.1 93.8 317.7 708.1 1.63 0 ¢ 8.55 0.26 0.41 27,472 17.42 7.60 14.34 40.30 22.75 38.80 27.98 15.92 38.40 16.75 346.39 17,60 80.72 1672 0.69 0.02 0.41 0.90 96.2 From Wisconsin T3D-1b T12-3s 317.7 708.1 9.14 2.01 12.69 7.22 0 0 0 0 0.04 0 98.4 27,695 15.59 41.60 37.03 371.16 15.85 748.0 10.80 0.23 0.43 28.73 40.46 323.7 1562 0.63 5.58 17.32 6.36 0.04 0.20 0 0.81 23.04 13.03 15.32 0.09 0.47 1.89 79.57 93.8 96.8 1.88 12.30 T3D-1a 23,003 18.63 0 22.12 53.81 315.72 18.03 76.99 1538 427.5 10.80 1.18 0.26 0.74 3.59 13.86 4.79 0.04 0.18 47.86 10.71 41.36 14.29 0.12 93.0 323.7 1.55 0.17 0 32.47 0.51 0 0.54 10.88 96.1 15,693 44.47 7.72 0.24 27.64 41.18 23.77 384.74 13.87 70.26 0.69 0.26 11.52 4.58 0.65 0.56 10.0 18.92 24.76 36.95 14.69 1.80 0.77 T12-2 116.7 1500 352.9 0.91 2.87 5.90 7.72 2.08 0.03 87.4 92.7 19.18 17.19 314.7 24,603 17.06 0.03 0.22 35.82 23.27 38.21 17.78 37.91 16.38 0.49 09*0 342.21 16.47 1530 643.9 4.94 0.25 0.54 7.37 0.27 26.78 0.07 9.56 0.61 1.69 8.00 90.2 T12-1 12.05 37.53 320.7 1530 684.8 26.74 0.46 0.33 1.34 33,016 7.96 3.99 13.42 3.95 0.09 0 0.17 32.89 24.40 13.49 45.37 0.30 0.57 292.95 14.26 69.52 9.96 9.96 2.23 0 0 48.21 26.91 0 1-1-CT-13 CT-14 CT-15 28,271 0.20 28.24 30.03 25.59 38.36 366.27 14.15 320.7 1520 673.4 14.47 0.25 0.87 1.90 6.89 12.93 4.79 64.0 8.02 41.98 24.15 20.44 14.21 0.59 0.80 1.45 72.71 90.2 0.41 0.27 4.46 8.14 440.15 1510 0.95 27,772 13.26 5.83 0.36 0.60 46.37 14.53 5.41 27.59 33.59 21.37 95.96 17.30 1.78 2.49 11.32 71.05 344.7 826.9 15.02 0.18 1.73 7.20 0.84 16.62 1.07 86.1 92.1 5.60 1 27,220 10.165 16.76 323.7 13.16 23.66 15.50 37.83 75.33 9.58 0.23 17.28 6.82 0.14 35.02 6.14 36.68 30.30 14.93 0.02 1.12 0.31 88.3 89.9 1520 742.1 0.53 1.81 13.84 7.08 0.01 0.51 Dry, Inert Free Gas Yield, SCF/1b feed (wet) Carbon Conversion to Cas and Liquids, Z Gross Molecular Weight, 1b/1b-mol Cold Cas Thermal Efficiency, X Superficial Cas Velocity, ft/s Steam Input, 1b/1b feed (wet) Product Gas Flow Rate, SCF/h Gas Yield, SCF/1b feed (wet) Cross Heating Value, Btu/SCF Carbon Conversion to Cas, X Dry, Inert Free Cas, vol Z Nitrogen, lb/lb feed (wet) Oxygen, lb/lb faed (wet) Cas Composition, vol Z Feed Rate, 1b/h (wet) Temperature, *F Moisture, wt Z Pressure, psia co₂ С₂Н4 С2Н6 С2Н6 С3Н8 С3Н8 С6Н6 N2 с₂н4 c2H6 c_3¹¹8 с0**2** GH, H₂0 сн**"** Test No. н⁴ ¥ 6 ⁷

# 11.4. Experimentelle Daten zum ASCAB-Druckvergaser

- Ergebnisse von Vergasungsversuchen in der Pilotanlage (max. 2500 kg/h) mit unbelastetem Holz bei Drücken zwischen 5 und 7 bar [Lamasle 1990]

	CONDI	TIONS NOMINA	LES		
ESSAI N° 3.3	DATE :	24/07/90		DUREE :	5 H 00
Matóriau do	nature			chamotte	FR 42/45
fluidisation	quantité,	kg		6	00
Essence de bois :	humidité	humidité %		1	4,3
Chêne	débit bru	t kg/h		1 5	00
ununu	débit sec	kg/h		1 2	85
Débits	02	Nm3/h		2	11
gazéifieur	Vapeur de	dilution Nm	37h	1	63
	Vapeur fl	uidisation N	m3/h	840	
Vitesse de fluidisat	ion a	m/s			0,5
Débit O ₂ réformeur		Nm3/h		3	23
Températures gazéifieur	Lo	calisation		lit	Z.D
	Maxi		°C	735	687
	Moyenne	** *	°C	722	670
Températures	Maxi		°C	1 2	59
réformeur	Moyenne °C		1 246		
Pression gazéifieur l	oar abs				5,5
Débit gaz de synthès		mesure		2 0	36
Kg7 II		traçage Ar	r	18	90
		C02	<del>%</del>	3	4,441
		C ₂ H ₄	%		-
Composition gaz sec		H ₂	<i>%</i>	2	0,562
	×	Ar	%	0.	0,077
		N ₂	%	1	4,83
		CH4	<del>%</del>		0,089
		CO	%	3	10,00

5.1 Bilan essai 3-3

5.1.1 Données

-	débit	bois brut	:	1505	kg/h
-	humid	ité		14,29	9 %
-	débit	bois sec	:	1290	kg/h
-	débit	oxygène gazéifieur	:	<b>2</b> 08	Nm ³ /h
-	débit	oxygène réformeur	:	318	Nm ³ /h
-	débit	global de vapeur	:	796	kg/h
-	débit	de gaz sec	:	1990	kg/h

M = 23g/mole : 1938  $Nm^3/h$ 

P= 5.5 Bar ZO2 atre Hay = 0.41

How we belle it !! - composition moyenne du gaz sec -104.22

	COMPOSITION	DEBIT Nm ³ /h	DEBIT C kg/h	DEBIT H kg/h	DEBIT O kg/h
CO	<2//2≠≥ 29,71	575,8	308,4		411,3
CO2	34,55	669,6	358,7		956,6
Н ₂	20,30	393,4		35,12	
CH4	0,090	1,74	0,93	0,31	
Ar 	0,091	1,76			
N2	15,259	295,7	r		
TOTAL	100,00	1938	668,03	35,43	1367,9

5.1.2 Bilan C

· 535 2 4 C entrée =  $1505 \times \frac{100 - 14,29}{100} \times \frac{72}{145} = 640,52 \text{ kg/h}$ - - - ²

C sortie = 668,03 kg/h

 $\frac{\text{Taux de conversion}}{640,52} = \frac{104,3 \%}{104,52}$ 

	COND	ITIONS NOMINALES	5			
ESSAI N° 6.1	DATE	: 18/07/90		DUREE	2 H 00	
Matériau de	nature			chamotte FR 42/45		
fluidisation	quantité	kg		600		
Fesence de bois :	humidité	%		15,5		
Chêne	debit bri	ut kg/h	2 (	000		
onene	débit sec	c kg/h	1 6	90		
	02	Nm3/h		2	85	
gazéifieur	Vapeur de	e dilution Nm3/h	1	84		
	Vapeur fl	luidisation Nm3/	8	18		
Vitesse de fluidisati	on	m/s	-	0,5		
Débit 0 ₂ réformeur		Nm3/h	Nm3/h 406			
	Lo	ocalisation		lit	Z.D	
Températures gazéifieur	Maxi		733	638		
	Moyenne	<u> </u>	720	635		
Températures	Maxi		°C	1 3	06	
réformeur	Moyenne		°C	1 251		
Pression gazéifieur b	ar abs					
Débit gaz de synthèse	G	mesure		26	13	
N9711		traçage Ar		29	57	
8		CO2	%	3	4,391	
		C2H4	%		-	
Composition gaz sec		H ₂	%	2	1,141	
		Ar	%		0,137	
	N ₂	%	1	4,205		
		CH4	%		0,184	
		CO	%	2	9,942	

5.2 Bilan essai 6-1

5.2.1 Données

-	débit bois brut	:	1995 kg/h
-	humidité	:	15,5 %
-	débit bois sec	:	1685,8 kg/h
-	débit oxygène gazéifieur	:	283,7 Nm ³ /h
-	débit oxygène réformeur	:	406,3 Nm ³ /h
-	débit global de vapeur	:	817 <b>,3</b> kg/h
-	débit de gaz sec	:	2633 kg/h
	M = 23g/mole	:	2564.3 Nm ³ /h

P= 6605 202 abothon = 0.41

- composition moyenne du gaz sec

	COMPOSITION	DEBIT Nm ³ /h	DEBIT C kg/h	DEBIT H kg/h	DEBIT O kg/h
C0	29,66	760,6	407,5		543,3
^{CO} 2	34,68	889,3	476,4		1270,4
H ₂	20,80	533,4		47,63	
CH ₄	0,151	3,87	2,1	0,69	
Ar	0,134	3,43			
N ₂	14,575	373,7			
TOTAL	100,00	2564,3	886,0	48,32	1813,7

5.2.2 Bilan C

C entrée = 837,12 kg/h

C sortie = 886,0 kg/h

<u>Taux de conversion</u>  $\frac{886,0}{837,1} = \frac{105,8\%}{105,8\%}$ 

	COND	ITIONS NOMINALE	S					
ESSAI N° 8.1	DATE	: 24/07/90		DUF	REE :	3 H	00	
·····	nature		chamotte FR 42/45					
Materiau de fluidisation	quantité	kg		600	)			
	humidite	°,		14,	,35			
Essence de bois :	debit br	ut kg/h		2 500	)			
Chêne	débit se	c kg/h		2 14	L			
	02	Nm3/h		330	)(1)	264	(2)	
Débits gazéifieur	Vapeur d	e dilution Nm3/	194	4	195			
	Vapeur f	luidisation Nm3	98	3	957			
Vitesse de fluidisa	tion	m/s			0	,5		
Débit 0 ₂ réformeur		Nm3/h	Nm3/h				468	
	L	ocalisation	8	1	it	Z.D		
Températures	Maxi	Maxi °(				665	602	
guzerrieur	Moyenne		°C	718	718	656	590	
Températures	Maxi	<u> </u>	° C	1 24	5	1 254		
réformeur	Moyenne		°C	1 243 1 2			46	
Pression gazéifieur	bar abs		21	7,2			-	
Débit gaz de synthè	se	mesure		3 00	7	26	2 654	
Kg/n		traçage Ar		2 94	9	}		
		C02	%	34	,248	36,4	01	
		C ₂ H ₄	%	+		-		
Composition gaz sec		H ₂	%	21	,496	21,1	.77	
(1) : grand balayag	e 32 B 08	Ar	%	0	,073	0,0	85	
(2) : Dalayage redu		N ₂	%	11	,98	7,1	.83	
		CH4	%	0	,194	0,2	65	
		CO	%	32	,008	34,8	389	
		1		1		1.		

2

5.3 Bilan essai 8-1

5.3.1 Données

-	débit	bois brut	:	2499 kg/h
-	humid	ité	:	14,35 %
-	débit	bois sec	5	2140,4 kg/h
-	débit	oxygène gazéifieur	:	330,7 Nm ³ /h
-	débit	oxygène réformeur	:	475,3 Nm ³ /h
	débit	global de vapeur	:	942,7 kg/h
-	débit	de gaz sec	:	3007,3 kg/h
	М	= 23g/mole	:	2929 Nm ³ /h

P=7.2 los Zoz ache by C.28

- composition moyenne du gaz sec

	COMPOSITION	DEBIT Nm ³ /h	DEBIT C kg/h	DEBIT H kg/h	DEBIT O kg/h
C0	32,87	962,8	515,8		687,7
^{C0} 2	34,43	1008,4	540, <u>2</u>		1440,6
Н2	21,43	627,7		56,04	
CH4	0,183	5,36	2,87	0,96	
Ar	0,074	2,17			
N2	11,013	322,57			
TOTAL	100,00	2929	1058,87	57,0	2128,3

5.3.2 Bilan C

C entrée = 1062,8 kg/h

C sortie = 1058,89 kg/h

 $\frac{\text{Taux de conversion}}{1062,8} = \frac{99,6 \text{ \%}}{99,6 \text{ \%}}$ 

# 11.5. Experimentelle Daten zum MTCI-Vergaser

- Ergebnisse von Vergasungsversuchen im Testreaktor (max. 16 kg/h) mit verschiedenen Brennstoffen [Durai-Swamy et al. 1991]
- Massenstrombilanz: [Katofsky 1993]

I. Analysis for feedstocks tested in pulse-enhanced indirect gasifier

_	Ultimate analysis, MAF wt%								
	Pistachio shells	Wood chips	Rice hulls	Recycle paper mill sludge	Kraft mill sludge				
Carbon	49.51	49.33	49.09	50.00	59.36				
Hydrogen	6.18	6.74	6.17	6.55	6.90				
Oxygen (by diff.)	43.96	43.67	44.19	42.76	28.02				
Sulfur	0.11	0.16 ,	0.04	0.31	1.04				
Nitrogen	0.24	0.10	0.51	0.38	4.68				
Total	100.00	100.00	100.00	100.00	100.00				
Heating value									
(MJ/kg)	19.4	19.4	19.4	20.6	24.1				
Ash (as rec'd. wt%)	0.41	0.18	20.48	2.8	7.10				
Moisture									
(as rec'd. wt%)	8.74	20.46	8.67	49.5	62.4				

#### II. Operating summary and process conditions for biomass test runs

Feedstock	Temperature, °K	Average feed rate, kg/h	Steam rate, kg/h	Steam to biomass, kg!kg	Total leed, kg/h	
Pistachio shells	987	16	12	0.73	152.9	
Pistachio shells	931	14	14	1.02	52.3	
Wood chips	970	10	14	1.37	93.3	
Rice hulls	992	14	12	0.84	NZM	
Recycle mill sludge waste	950	8	17	2.07	53.9	
Kraft mill sludge waste	950	14	16	1.2	135.9	

Composition, vol %	Pistachio sheels	Pistachio shells	Wood chips	Rice hulls	Recycle mill fiber waste	Recycled waste paper w/plastic	Kraft mill sludge
H2	37.86	35.04	48.11	42.83	38.86	50.50	52.94
00	18.84	23.43	22.91	19.67	23.34	19.26	11.77
CO₂	28.73	25.20	20.18	24.40	23.27	20.10	21.94
CH₄	10.65	11.31	8.32	11.56	8.31	8.42	8.95
Ethylene	2.12	2.86	0.05	N/D	3.44	N/D	0.96
Ethane	0.28	N/D	N/D	N/D	N/D	N/D	0.43
Propylene	0.95	1.31	0.04	N/D	2.19	N/D	0.85
Propane	0.18	0.12	0.03	0.48	0.42	0.57	0.26
-Butane	N/D	N/D	N/D	0.29	0.27	0.32	0.24
N-Butane	0.36	0.72	0.06	0.40	0.07	0.46	0.26
-Pentane	0.03	0.01	0.30	0.37	0.01	0.37	N/D
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00
HHV, MJ/m³	13.7	15.0	12.2	13.6	15.2	13.5	13.7
HHV, Btu/scf	370	406	329	367	412	364	372
Temperature, °K	987	931	970	992	950	992	950
Yield, % carbon							
Dry gas	94.1	92.1	93.0	N/A	86.8	N/A	56.0
Char	4.6	5.8	4.0	18.1	8.5	N/A-	37.0
Tar/oil	1.3	2.1	3.0	N/A	4.7	N/A	7.0

Table 6A-23: Calculated material flows for methanol production from biomass based on the MTCI Gasifier.

_	Name	Тетр (К)	Pres. [bar]	Total Volume Flow [kmol/hr]	Mol Wei (kg	ecular ght /kmol]	H20	Compo H ₂	nent V CO	olume CO ₂	Flow R CH ₄	ates C ₂ +	()cm01/h O2	11) N2	сязон
1	Raw Biomass				3000	tonnes	per day	8 45%	moist	ure					
2	Dried biomass				2126	tonnes	per day	9 223	moist	ure					
3	Gasifier exit	970	1.50	10093		17.65	4997	2550	1125	987	408	24	0	2	0
4	Quench inlet	673	1.50	10093		17.65	4997	2550	1125	987	408	24	0	2	ŏ
5	Quench exit	370	1.50	11092		17.69	5996	2550	1125	987	408	24	0	2	ŏ
6	Selexol feed	400	15.00	5203		17.31	107	2550	1125	987	408	24	Ō	2	ŏ
7	Selexol exit	400	15.00	4197		11.58	0	2550	1125	88	408	24	0	2	ō
8	Makeup compressor exit	489	105.88	4197		11.58	0	2550	1125	88	408	24	0	2	ŏ
9	Hot synthesis feed 1	338	105.88	7665		12.93	0	3044	805	200	3492	76	Ö	21	26
10	Hot synthesis feed 2	523	105.38	7665	<b>`</b> 1	12.93	0	3044	805	200	3492	76	ō	21	26
11	Synthesis product	533	97.28	18721		14.50	52	6019	1122	497	9560	209	0	58	1202
12	Crude methanol product	300	96.78	1251		31.57	51	2	1	18	35	16	Ó	0	1128
13	Recycle stream	300	96.78	17469		13.27	1	6017	1122	479	9525	193	ŏ	58	74
14	Recycle compressor feed	300	96.78	16787		13.27	1	5782	1078	460	9153	186	ŏ	56	71
15	Recycle compressor exit	308	105.88	16787		13.27	1	5783	1078	460	9152	186	ŏ	56	21
16	Cold synthesis feed 1	338	105.88	13318		12.93	1	5289	1398	348	6068	133	ŏ	37	45
17	Cold synthesis feed 2	320	105.38	13318		12.93	ī	5289	1398	348	6068	111	ň	37	45
18	Purge stream	300	96.78	683		13.27	ō	235	44	19	372		ŏ	- ⁻ 2	1
19	Heated purge stream	533	96.78	683		13.27	ō	235	44	19	372	ě	ŏ		2
20	Char to pulse combustor	500	1.00		2542	kg per	hour				••••		•	•	
21	Pulse combustor flue gases	1000	1.00	6254		28.15	1019	0	0	678	0	٥	52	4506	•
22	Stack gases	393	1.00	6254		28.15	1019	ŏ	ŏ	678	ō	ŏ	52	4506	ě
23	Pulse combustor air	298	1.00	5700		28.85	0	ŏ	ŏ		ŏ	ň	1107	4603	×
24	Heated pulse combustor air	615	1.00	5700		28.85	ŏ	ŏ	ō	ň	ŏ	ŏ	1107	4503	Ň
25	Gasifier steam	430	1.30	5228		18.02	5228	ŏ	ň	ň	Ň	Ň	1137	4203	0
26	Carbon dioxide removed	400	15.00	1007		41.23	107	ŏ	ň		ň	Ň	Ň	Ň	Ň
27	Quench feed water	293	1.50	18652		18.02	18652	ŏ	ŏ	0,00	ň	ň	Ň	Ň	, v
28	Ouench condensate	370	1.50	17654		18.02	17653	ň	ŏ	ň	Ň	Ň	Ň	Ň	ů,
29	Stage 1 condensate	330	3.23	5763		18.02	5763	ŏ	ň	ŏ	ň	Ň	Ň	Ň	0
30	Stage 2 condensate	330	6.96	125		18.02	125	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ň	0
		-									•		~ ~		



Process configuration for the modeling of methanol production from biomass based on the MTCI indirectly-heated gasifier.

# 11.6. Experimentelle Daten zum Lurgi-Vergaser

- Ergebnisse von Vergasungsversuchen in der Pilotanlage (max. 570 kg/h) mit unbelastetem Holz [Mehrling et al. 1989]

RUN		304	305	306	307
Gasification					
Temperature	(F)	1382	1294	1450	1497
Feed		Wood	Wood	Wood	Wood
Moisture	(% wt)	16	15	15	15
Feed raw	(1b/hr)	858	847	1076	1067
daf	(1b/hr)	719	715	915	911
Air	(SCFM)	342	440	384	375
Air preheat	(°F)	1026	1036	1044	1042
Purge-N2	(SCFM)	41	41	41	41
Raw Gas					
Specific gas					
production rate ^a	(scf/lb daf)	43.3	52.4	43.0	40.7
Composition ^a					
CO	(% vol)	12.61	1.99	14.00	13.07
CO ₂	(% vol)	16.44	12.53	15.73	15.31
H ₂	(% vol)	12.10	13.07	14.21	13.07
CH4	(% vol)	3.03	3.71	3.05	3.37
C ₂ H ₆	(% vol)	. 20	. 13	. 10	.10
C ₂ H ₄	(% vol)	.91	. 90	.71	.81
N ₂	(% vol)	54.71	57.67	52.20	54.27
H ₂ S	(grain/100 scf)	1.49	1.94	3.27	2.15
cos	(grain/100 scf)	. 49	. 25	. 37	. 50
Moist. raw gas	(scf/scf)	. 16	. 19	. 13	. 12
нну ^ь	(Btu/scf)	128	143	135	133
Cold gas efficency	/ (%)	56.1	69.4	63.5	55.8

### PERFORMANCE DATA

-

a dry gas b moisture free gas

## PERFORMANCE DATA

RUN		301	302	303
Gasification				
Temperature	(F)	1386	1384	1382
Feed		Wood	Wood	Wood
Moisture	(% wt)	33	17	13
Feed raw	(lb/hr)	1049	886	814
daf	(1b/hr)	696	731	707
Air	(SCFM)	397	314	360
Air preheat	(°F)	1038	1026	50
Purge-N2	(SCFM)	-41	41	41
Raw Gas				
Specific gas				
production rate ^a	(scf/lb [°] daf)	50.2	43.2	48.1
Composition ^a				
СО	(% vol)	8.61	12.63	12.60
CO ₂	(% vol)	18.22	16.16	16.14
H ₂	(% vol)	8.60	12.11	11.60
СНа	(% vol)	3.04	3.33	2.83
C ₂ H ₆	(% vol)	. 12	. 18	. 16
C ₂ H ₄	(% vol)	.80	1.01	. 96
N ₂	(% vol)	60.61	54.58	55.71
H ₂ S	(grain/100 scf)	2.81	1.86	1.49
cos	(grain/100 scf)	. 37	. 50	. 12
Moist. raw gas	(scf/scf)	. 32	. 17	. 14
нну _р	(Btu/scf)	101	133	125
Cold gas efficency	(%)	 57.7	 65.0	67.9

a b dry gas b moisture free gas

RUN		308	309	310	311
Gasification					
Temperature	(F)	1506	1377	1375	1510
Feed		Wood	Wood	Wood	Wood
Moisture	(% wt)	15	29	32	15
Feed raw	(1b/hr)	1250	1096	1113	1257
daf	(1b/hr)	1063	776	757	1064
Air	(SCFM)	424	409	379	462
Air preheat	(°F)	1036	50	1022	1054
Purge-N2	(SCFM)	41	41	41	0
Raw Gas					
Specific gas					
production rate	^a (scf/lb daf)	40.7	46.4	48.4	43.2
Composition ^a					
CO	(% vol)	14.84	7.64	9.62	18.69
CO ₂	(% vol)	15.53	19.36	18.23	14.65
H ₂	(% vol)	13.04	9.18	12.16	14.14
сн ₄	(% vol)	3.81	3.26	3.44	3.54
C ₂ H ₆	(% vol)	. 10	0.13	. 10	. 10
C ₂ H ₄	(% vol)	. 90	0.90	. 82	1.22
N ₂	(% vol)	51.78	59.53	55.63	47.66
H ₂ S	(grain/100 scf)	5.13	1.24	1.20	1.20
cōs	(grain/100 scf)	. 62	.21	. 17	. 29
Moist. raw gas	(scf/scf)	. 15	. 28	. 32	. 14
ннv ^b	(Btu/scf)	144	110	120	163
Cold gas efficend	cy (%)	66.2	46.2	65.5	80.2

## PERFORMANCE DATA

a b dry gas moisture free gas

.
#### CARBON CONVERSION - WOOD GASIFICATION -

301	302	303	304	305	306
97.5	91.9	92.4	90.6	90.0	89.2
A	A	C	A	A	A
	97.5	97.5 91.9	97.5 91.9 92.4	97.5 91.9 92.4 90.6	97.5 91.9 92.4 90.6 90.0
	A	A A	A A C	A A C A	A A C A A

RUN	307	308	309	310	311
Carbon conversion (%) Method ^a	83.0 A	89.4 A	91.6 A	93.2 C	96.0 C

^a method A:  $\frac{\text{carbon in gas}}{\text{carbon in lignite or wood fuel}}$  · 100 = carbon conversion %

B:  $\frac{(\text{carbon in fuel} - \text{carbon in dust} - \text{carbon in ash}) \cdot 100}{\text{carbon in fuel}} = \frac{(\text{carbon con-version } \%)}{\text{version } \%}$ 

.

-

C: average of A + B

## 11.7. Experimentelle Daten zum BCL-Vergaser

- Auszug aus den Vergasungsversuchen mit unbelasteten Biomassen in der Pilotanlage (max. 900 kg/h) [Feldmann et al. 1988]

Versuchsnummer		110	111	112	113	114	115	117
Holzart		pine	pine	pine	pine	pine	pine	pine
Wassergehalt des Brennstoffs	wt%	9.7	S	S	5.79	5.79	5.79	7.9
Aschegehalt des Brennstoffs	wt% atro	0.13	0.44	0.44	0.44	0.44	0.44	0.32
Vergasertemperatur	ပ့	859	732	712	931	962	871	941
Combustortemperatur	ŝ	951	893	866	1038	1038	1038	1021
Brennstoffeintrag	kg atro/h	167.1	520.7	606.1	172.5	172.5	508.5	113.0
Dampfinput	kg/kg atro	0.00	0.30	0.26	0.00	0.00	0.00	1.49
Stickstoffinput	kg/kg atro	0.27	0.09	0.08	0.23	0.23	0.08	0.39
Primärgasmenge	Nm3/kg waf	0.814	0.603	0.584	1.003	0.966	0.817	1.008
Kohlenstoffumsatz zu Gas	%	70.93	57.37	54.48	81.43	80.99	74.23	72.06
Zusammensetzung des Primärg	gases (N2-frei,	trocken)						
H2	Vol%	22.99	16.13	15.2	24.81	23.19	18.18	27.97
00	Vol%	46.43	49.46	50.72	46.18	47.98	49.05	43.29
CO2	Vol%	9.62	12.43	12.3	8.91	7.89	8.25	10.46
CH4	Vol%	14.99	16.05	15.96	15.89	16.77	17.04	14.12
C2H2	Vol%	0.41	0.17	0.18	0.24	0.2	0.16	0.5
C2H4	Vo%	5.22	4.36	4.22	3.71	3.67	5.57	3.66
C2H6	Vol%	0.34	1.35	1.42	0.26	0.3	0.75	0
spez. H2-Menge	Nm3/kg waf	0.187	0.097	0.089	0.249	0.224	0.149	0.282
spez. CO-Menge	Nm3/kg waf	0.378	0.298	0.296	0.463	0.464	0.401	0.436

Versuchsnummer		118	119	120	121	122	123	124
Holzart		pine	pine	pine	pine	pine	pine	pine
Wassergehalt des Brennstoffs	wt%	7.8	5.82	5.82	5.82	0	4.4	4
Aschegehalt des Brennstoffs	wt% atro	0.32	0.07	0.07	0.07	0.44	0.44	0.13
Vergasertemperatur	ပံ	876	918	877	845	974	822	954
Combustortemperatur	ŝ	971	1022	993	960	1085	1071	1055
Brennstoffeintrag	kg atro/h	518.5	185.7	582.5	850.3	226.1	823.6	220.2
Dampfinput	kg/kg atro	0.33	06.0	0.29	0.23	0.22	0.02	00.00
Stickstoffinput	kg/kg atro	0.00	0.25	0.00	0.00	0.00	0.00	0.19
Primärgasmenge	Nm3/kg waf	0.812	0.901	0.908	0.736	0.953	0.684	0.944
Kohlenstoffumsatz zu Gas	%	66.77	72	74.17	61.32	75.04	62.38	78.12
Zusammensetzung des Primärg	jases (N2-frei,	trocken)						
H2	Vol%	20.96	24.66	20.23	18.46	26.96	17.1	23.4
00	Vol%	47.69	46.67	48.71	49.41	46.34	50.63	49.74
CO2	Vol%	9.3	9.03	9.16	9.53	8.5	9.66	7.13
CH4	Vol%	15.92	14.85	15.78	16.24	14.37	16.48	15.45
C2H2	Vol%	0.26	0.45	0.23	0.17	0.34	0.14	0.37
C2H4	Vol%	5.43	4.18	5.36	5.3	3.03	4.84	3.74
C2H6	Vol%	0.44	0.15	0.54	0.85	0.46	1.16	0.16
spez. H2-Menge	Nm3/kg waf	0.170	0.222	0.184	0.136	0.257	0.117	0.221
spez. CO-Menge	Nm3/kg waf	0.387	0.421	0.442	0.364	0.441	0.346	0.470

Versuchsnummer		125	126	127	128	129	130	131
Holzart		pine	pine	pine	pine	pine	pine	pine
Wassergehalt des Brennstoffs	wt%	4	4	12.41	12.41	12.41	10.81	7.07
Aschegehalt des Brennstoffs	wt% atro	0.13	0.13	0.33	0.33	0.33	0.35	0.37
Vergasertemperatur	ပ့	906	881	959	996	981	773	960
Combustortemperatur	င	1082	1043	1066	1066	1071	1066	1043
Brennstoffeintrag	kg atro/h	533.5	805.9	214.7	152.1	50.8	7.797	243.8
Dampfinput	kg/kg atro	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stickstoffinput	kg/kg atro	0.07	0.03	2.01	0.22	2.47	0.04	0.22
Primärgasmenge	Nm3/kg waf	0.798	0.728	1.109	1.077	1.159	0.666	1.116
Kohlenstoffumsatz zu Gas	%	71.34	66.87	85.85	86.96	88.56	61.32	86.62
Zusammensetzung des Primärg	jases (N2-frei,	trocken)						
H2	Vol%	19.59	17.1	23.29	23.81	28.39	14.46	25.85
CO	Vol%	49.25	50.3	49.07	48.81	47.47	52.45	48.52
CO2	Vol%	8.93	10.06	7.46	7.51	7.09	11.27	7.24
CH4	Vol%	16.21	16.33	15.75	15.45	13.56	15.82	15.17
C2H2	Vol%	0.17	0.13	0.28	0.3	0.63	0.3	0.32
C2H4	Vol%	5.18	4.83	3.92	3.86	2.35	4.08	2.849
C2H6	Vol%	0.66	1.24	0.23	0.26	0	1.6	0
spez. H2-Menge	Nm3/kg waf	0.156	0.125	0.258	0.256	0.329	0.096	0.289
spez. CO-Menge	Nm3/kg waf	0.393	0.366	0.544	0.526	0.550	0.349	0.542
	-							

Versuchsnummer		132	133	134	135	136	137	138
Holzart		pine	pine	pine	pine	pine	pine	pine
Wassergehalt des Brennstoffs	wt%	6.61	6.61	6.28	6.28	5.92	7.71	8.01
Aschegehalt des Brennstoffs	wt% atro	0.38	0.38	0.25	0.25	0.35	0.46	0.23
Vergasertemperatur	ပ့	916	896	968	773	1014	1004	1011
Combustortemperatur	ŝ	1091	1077	1038	1082	1182	1116	1132
Brennstoffeintrag	kg atro/h	269.7	429.5	260.6	846.3	167.1	179.8	140.3
Dampfinput	kg/kg atro	0.00	0.00	0.00	0.00	0.99	0.92	1.15
Stickstoffinput	kg/kg atro	0.16	0.10	0.27	0.08	0.24	0.20	0.28
Primärgasmenge	Nm3/kg waf	0.906	0.822	1.036	0.551	1.251	1.317	1.339
Kohlenstoffumsatz zu Gas	%	77.32	72.89	84.54	56.62	85.52	94.42	95.09
Zusammensetzung des Primärç	gases (N2-frei	, trocken)						
H2	Vo‰	21.24	19.24	23.99	15.81	35.57	33.31	33.89
8	Vol%	49.22	49.33	48.38	49.77	38.74	41.64	42.42
CO2	Vo%	7.74	8.54	7.5	11.87	10.43	9.65	8.96
CH4	Vo%	16.41	16.4	16.19	16.12	12.54	12.93	12.8
C2H2	Vo%	0.23	0.2	0.28	0.48	0.39	0.47	0.35
C2H4	Vo‰	4.8	5.7	3.46	4.39	1.33	2	1.59
C2H6	Vo%	0.36	0.59	0.2	1.55	0	0	0
spez. H2-Menge	Nm3/kg waf	0.192	0.158	0.248	0.087	0.445	0.439	0.454
spez. CO-Menge	Nm3/kg waf	0.446	0.405	0.501	0.274	0.485	0.548	0.568

Versuchsnummer		139	140	141	142	67	68	69
Holzart		sawdust	bark	hogfuel	pine	sawdust	sawdust	sawdust
Wassergehalt des Brennstoffs	wt%	13.67	12.3	33.85	10	8.18	8.18	8.18
Aschegehalt des Brennstoffs	wt% atro	1.33	3.99	2.15	0.23	0.36	0.36	0.36
Vergasertemperatur	ပ့	713	974	919	954	813	822	828
Combustortemperatur	°C	1016	1038	1054	1071	913	924	947
Brennstoffeintrag	kg atro/h	829.5	119.4	165.3	182.5	46.3	43.1	38.1
Dampfinput	kg/kg atro	0.21	1.22	0.92	0.83	3.37	3.79	4.60
Stickstoffinput	kg/kg atro	0.05	0.33	0.24	0.21	0.00	0.00	0.00
Primärgasmenge	Nm3/kg waf	0.615	1.224	0.927	0.998	0.793	0.831	0.831
Kohlenstoffumsatz zu Gas	%	52.51	95.67	78.44	77.35	73.1	76.6	76.6
Zusammensetzung des Primärg	gases (N2-frei,	trocken)						
H2	Vol%	13.03	30.48	32.25	27.86	18.76	19.28	19.77
S	Vo%	54.79	40.41	36.03	45.3	51.38	50.82	50.44
CO2	Vol%	12.13	10.849	14.75	9.19	7.14	7.33	7.76
CH4	Vo%	14.74	13.43	12.33	13.83	15.62	15.64	15.57
C2H2	Vol%	0	1.08	0.48	0.44 -	•	•	
C2H4	Vol%	3.63	3.25	4.17	3.39	6.48	6.14	6.34
C2H6	Vol%	1.68	0.46	0	0	0.55	0.49	0.43
spez. H2-Menge	Nm3/kg waf	0.080	0.373	0.299	0.278	0.149	0.160	0.164
spez. CO-Menge	Nm3/kg waf	0.337	0.495	0.334	0.452	0.408	0.422	0.419

Table 6A-27: Calculated material flows for methanol production from biomass based on the BCL Gasifier.

_	Name	Temp [K]	Pres. [bar]	Total Volume Flow [kmol/hr]	Nolecular Weight [kg/kmol]	H20	Н2	Compon CO	ent Vo CO ₂	lume F CH ₄	low Rat	tes ()o C ₂ H ₆	ol/hr O ₂	ן איז	сн₃он
1	Raw Biomass				3000 tonnes	per day	8 451	moist	ure						
2	Dried biomass				1673 tonnes	per day	8 101	moist	ure						
3	Gasifier exit	1200	1.01	4005	21.15	1223	577	1283	309	437	144	20	0	12	0
- 4	Quench inlet	673	1.01	4005	21.15	1223	577	1283	309	437	144	20	0	12	0
- 5	Quench exit	355	1.01	4974	20.54	2192	577	1283	309	437	144	20	0	12	0
6	Splitter exit to compressor	355	1.01	4667	20.54	2057	542	1204	290	410	135	19	0	11	0
7	Compressor exit	577	15.50	4667	20.54	2057	542	1204	290	410	135	19	0	11	0
8	Reformer feed	850	15.00	5125	20.31	2514	542	1204	290	410	135	19	0	11	0
9	Reformer exit	1140	14.50	6172	16.87	1502	2447	1373	711	127	0	0	0	11	0
10	Shift feed	623	14.00	1170	16.87	285	464	260	135	24	0	0	0	2	0
11	Shift bypass	623	14.00	5002	16.87	1217	1983	1113	576	103	0	0	0	9	0
12	Shift exit	743	13.50	1666	17.21	587	658	66	329	24	0	0	0	2	0
13	Mixer exit	655	13.50	6668	16.95	1804	2641	1179	905	127	0	0	0	11	0
14	Selexol feed	400	13.00	5959	16.83	1095	2641	1179	905	127	0	0	0	11	0
15	Selexol exit	400	13.00	4040	10.96	0	2641	1179	81	127	0	0	0	11	0
16	Makeup compressor exit	502	105.88	4040	10.96	0	2641	1179	81	127	0	0	0	11	0
17	Hot synthesis feed 1	344	105.88	2991	10.98	0	1537	290	59	999	0	0	0	97	8
18	Hot synthesis feed 2	523	105.38	2991	10.98	0	1537	290	59	999	0	0	0	97	8
19	Synthesis product	533	97.28	16579	12.61	63	7261	680	311	6362	0	0	0	620	1283
20	Crude methanol product	300	96.78	1336	31.14	62	2	1	14	26	0	0	0	1	1229
21	Recycle stream	300	96.78	15244	10.98	1	7258	679	297	6336	0	0	0	619	54
22	Recycle compressor feed	300	96.78	15000	10.98	1	7142	669	292	6234	0	0	0	609	53
23	Recycle compressor exit	308	105.88	15000	10.98	1	7142	669	292	6234	0	0	0	609	53
24	Cold synthesis feed 1	344	105.88	16048	10.98	1	8246	1557	315	5362	0	0	0	523	45
25	Cold synthesis feed 2	320	105.38	16048	10.98	1	8246	1557	315	5362	0	0	0	523	45
26	Purge stream	300	96.78	244	10.98	0	116	11	5	101	0	0	0	10	1
27	Fuel gas to reformer	355	1.01	307	20.54	135	36	79	19	27	9	1	0	1	0
28	Heated reformer fuel gas	700	1.01	550	16.31	135	152	90	24	128	9	1	0	11	1
29	Reformer furnace products	1160	1.00	2666	27.56	565	0	0	262	0	0	0	61	1776	1
30	Stack gases	393	1.00	2666	27.56	565	0	0	262	0	0	0	61	1776	1
31	Reformer furnace air	298	1.00	2235	28.85	0	0	0	0	0	0	0	469	1766	0
32	Heated reformer furnace air	1000	1.00	2235	28.85	0	0	0	0	0	0	0	469	1766	0
33	Reformer steam	523	15.50	458	18.02	458	0	0	0	0	0	0	0	0	0
34	Shift steam	623	14.00	496	18.02	496	0	0	0	0	0	0	0	0	0
35	Gasifier steam	430	1.30	1098	18.02	1098	0	0	0	0	0	0	0	0	0
36	Carbon dioxide removed	400	13.00	1919	29.18	1095	0	0	825	0	0	0	0	0	0
37	Condensate	400	13.00	709	18.02	709	0	0	0	0	0	0	0	0	Ó
38	Quench feed water	293	1.50	1500	18.02	1500	0	0	0	0	0	0	0	0	0
39	Quench condensate	355	1.01	531	18.02	531	0	0	0	0	0	0	0	0	0
40	Combustor air	298	1.00	6492	28.85	0	0	0	0	0	0	0	1364	5128	0
41	Preheated combustor air	866	1.00	6492	28.85	0	0	0	0	0	0	0	1364	5128	0



Process configuration for the modeling of methanol production from biomass based on the Battelle Columbus Laboratory indirectly-heated gasifier.

### **11.8. Experimentelle Daten zur Vergasung von Torf**

- Ergebnisse im HTW-Pilotvergaser (keine Angabe zur Anlageleistung) [Bellin et al. 1984]
- Aus Pilotversuchen im MINO-Vergaser von Thermal Processes Studsvik (TPS; keine Angabe zur Anlageleistung) auf eine kommerzielle Anlagengrösse (54 t/h) hochgerechnete Gaszusammensetzung [Sinclair et al 1985]

Firma		Rheinbraun			Studsvik MINO
Vergasertyp		HTW Vergaser			MINO
Jahr		1984			1985
Quelle		Bellin et al.			Sinclair
Versuch Nr.		5	6	8	77 77
Anlageleistung		Technanlage			300 MW
Druck		10 bar	10 bar	10 bar	30 bar
Temperatur	°C	780/800	775/1030	710/915	
Vergasungsmittel		O2/N2/Dampf	O2/N2/Dampf	O2/N2/Dampf	O2/Dampf
Brennstoff		Torf	Torf	Torf	Torf
Wassergehalt d. Brennstoffs	Gew%	ca. 12%	ca. 12%	ca. 12%	10.0%
Aschegehalt (Bez.: atro)	Gew%	ca. 6.5	ca. 6.5	ca. 6.5	
Dampfinput	kg/kg atro	0.23	0.35	0.42	0.44
Dampfqualität (Temp./Druck)		k.A.	k.A.	k.A.	360 °C/38 bar
Sauerstoffinput	kg/kg atro	0.43	0.70	0.75	0.41
Stickstoffinput	kg/kg atro	0.23	0.42	0.62	0.00
Produktgaszusammensetzung (	(roh)			• • • • • • • • • • • • • • • • • • • •	
H2	vol%	27.7	18.4	21.1	32.7
со	vol%	21.0	21.1	16.4	29.8
CO2	vol%	17.6	15.8	19.3	13.1
CH4	vol%	27	07	1 6	10
C2H4	vol%				
C2H6	V01%				
C3H6	V01%				
CmHn	V01%				
	V0176	10.6	14.6	16.3	0.4
02	101%	10.0	14.0	10.0	0.4
U2	VO176	20.4	20.4	25.3	22.8
Redukta sozu sommonsotzung (	trockon obno	20.4 N(2)	25.4	23.3	22.0
Frodukigaszusaninenseizung (		10.1	32.0	36.1	126
n2	V0176	40.1	32.9	28.1	42.0
<u>co</u>	V0176	30.5	37.0	20.1	17.1
	V0176	20.0	20.2	33.0	12
	V01%	3.9	1.0	2.0	0.1
	V01%				
	V01%				
	V01%				
CmHn	V01%				
MJ/Nm3	HHV dry gas	·			
MJ/Nm3	LHV dry gas				
Kaltgaswirkungsgrad	%				
Kohlenstoff-Umsatz ohne Teer	%				
Kohlenstoff-Umsatz mit Teer	%	87.9	92.1	98.0	
Teer	g/kg atro				
Teer	g/Nm3				
'Holzkohle'	g/kg atro				66.0
Feststoffe	g/Nm3				
'Kohlenstoff'	g/Nm3				
Gasausbeute (feucht, total)	Nm3/kg atro	1.79	1.97	2.42	2.13
Gasausbeute (trocken, N2-frei)	Nm3/kg atro	1.37	1.37	1.71	1.73
Kondensatwassermenge	kg/kg atro	0.290	0.460	0.490	0.390
H2-Ausbeute	Nm3/kg atro	0.549	0.451	0.617	0.737
CO-Ausbeute	Nm3/kg atro	0.418	0.515	0.481	0.671
Ausbeute H2+CO	Nm3/kg atro	0.97	0.97	1.10	1.41
Bemerkungen		C-Umsatz wahrs	scheinlich mit Kor	ndensat	Hochrechnung
		Zur Bilanzierung	und Best. der Pi	oduktgasmenge	Gas nach Sek.
		wurde Stickstoff	zugegeben		Reformer

## 11.9. Experimentelle Daten zur Vergasung von Müll

- Ergebnisse im Vergaser von Thermal Processes Studsvik (max. 4200 kg/h) bei der Vergasung von BRAM [SAFi 1993]
- Ergebnisse im Vergaser von Thermoselect (max. 4200 kg/h) bei der Vergasung von Müll [Stahlberg 1993]

Firmo	1	Studevik	ThermoSelect
			Fondetees (It)
Vergasertyp			
		1993	1993
		SAFI	Staniberg
Anlageleistung		16.5 MW	8.4 MW
		1 bar	1 bar
Temperatur	°C	800 - 900	> 1200
Vergasungsmittel	- · · · · · · · · · · · · · · · · · · ·	Luft	02
Brennstoff		RDF	MSW
Wassergehalt d. Brennstoffs	Gew%	3.4%	32.0%
Aschegehalt (Bez.: atro)	Gew%	13.2%	24.5%
Dampfinput	kg/kg atro	0.00	0.00
Dampfqualität (Temp./Druck)	°C/bar		
Sauerstoffinput	kg/kg atro	0.41	0.30
Stickstoffinput	kg/kg atro	1.37	0.00
Produktgaszusammensetzung	(roh)		
H2	vol%	3-5	30 - 34
со	vol%	9 - 13	32 - 36
CO2	vol%	12 - 14	23 - 26
CH4	vol%		4-5?
C2H4	vol%		
C2H6	vol%		
C3H6			
Contro	VOI /6	6.0	
NO	VOI /8	47 - 52	3.0
	V0176	47 - 52	
02	V01%	10 11	1.0.2
		10 - 14	1.0 ?
Produktgaszusammensetzung (		2)	00.0
H2	VOI%	10.4	33.0
	V01%	28.6	35.0
<u>CO2</u>	VOI%	33.8	26.0
CH4	V01%		5?
C2H4	vol%		
C2H6	vol%	-	
СЗН6	vol%		
CmHn	vol%	19.5	
MJ/Nm3	HHV dry gas		
MJ/Nm3	LHV dry gas	8.0	9.5
Kaltgaswirkungsgrad	%		
Kohlenstoff-Umsatz ohne Teer	%		
Kohlenstoff-Umsatz mit Teer	%		
Teer	g/kg atro	23.7	
Teer	g/Nm3	32.0	
'Holzkohle'	g/kg atro		
Feststoffe	g/Nm3	40.0	ca. 4
'Kohlenstoff'	g/Nm3		
Gasausbeute (feucht. total)	Nm3/kg atro	2.18	
Gasausbeute (trocken, N2-frei)	Nm3/kg atro	1.35	0.89
Kondensatwassermenge	kg/kg atro	0.210	0.320
H2-Ausbeute (ohne Verl.)	Nm3/kg atro	0 140	0 293
CO-Ausbeute	Nm3/kg atro	0 386	0.311
Ausbeute H2+CO	Nm3/kg atro	0.527	0.603
Bemerkungen	nanong auo	+ Angeben NH3	0.000
		HCI H29	
		101, 1120	L

### 11.10. Teeranalysen aus Biomassevergasern

- Teeranalysen aus Versuchen mit unbelastetem Holz im Renugas-Vergaser von IGT [Evans et al. 1987]
- Teeranalysen aus Versuchen mit unbelastetem Holz in verschiedenen Vergasungssystemen [Elliott 1987]

Bemerkungen zu den Probenahmen:

- IGT-Vergaser:	Isokinetische Probenahme, Partikelabscheidung in einem Heiss-
	Keramikfilter; Kondensation des Wassers und der Teerstoffe in
	Impingern.
- BCL-Vergaser:	Probeentnahme aus dem Sumpf des Nasswäschers
- Syngas-Vergaser (SGI):	Vergasung mit Luft: Totalkondensation eines isokinetischen
	Teilstromes
	Vergasung mit Sauerstoff: Probeentnahme aus dem Sumpf des
	Nasswäschers. Analyse der unlöslichen Teerfraktion.

#### COMPOSITION OF OILS FOUND IN PRODUCT GAS IN PRU GASIFICATION TESTS

Test No.	<u>CT-5</u>	<u>CT-6</u>	<u>GT-8</u>	<u>CT-9</u>	<u>CT-10</u>	<u>GT-11</u>	<u>GT-13</u>	<u>CT-14</u>	<u>CT-15</u>
Temperature, °F	1390	1500	1510	1 500	1465	1 500	1520	1510	1520
Oil Yield, lb/100 lb biomass*	2.84	2.18	1.33	1.83	0.34	2.33	1.66	3.00	2.26
Products, wt % in Oils									
One-Ring Hydrocarbons	28.6	30.6	24.4	40.8	15.0	39.9	8.4	31.2	26.8
Benzene	8.9	24.9	20.1	36.2	4.1	34.9	6.1	23.7	23.9
Toluene and Xylenes	12.1	2.9	2.3	2.1	2.9	2.3	0.7	4.7	1.2
Others	7.6	2.8	2.0	2.6	8.0	2.7	1.6	2.9	1.7
Two-Ring Hydrocarbons	28.8	39.0	39.5	33.5	40.4	29.7	54.5	32.2	36.5
Naphthalene	17.6	32.2	32.1	28.4	26.5	24.5	48.7	25.7	30.3
Methylnaphthalene	4.5	0.9	0.8	0.6	3.0	0.6	0.6	1.2	0.6
Others	6.7	5.9	6.6	4.5	11.0	4.5	5.3	5.4	5.6
Three-Ring Hydrocarbons	14.0	10,8	13.2	9.1	20.3	10.3	12.3	11.6	11.7
Fluorene	3.5	2.8	2.6	2.2	4.3	2.2	3.2	2.2	2.3
Phenanthrene and Anthracene	5.8	7.0	8.6	5.9	11.8	6.6	7.9	7.5	7.9
Others	4.7	1.8	2.0	1.0	4.3	1.5	1.3	1.9	1.5
Four-Ring Hydrocarbons	9.6	9.7	13.3	8.2	13.2	10.7	10.1	10.8	12.6
Five-Ring Hydrocarbons	2.2	2.2	2.6	2.4	2.5	3.1	4.1	4.4	4.7
Higher Aromatic Hydrocarbons	0.0	0.8	1.4	1.8	1.0	1.9	1.6	2.4	2.6
Total Hydrocarbons	83.2	93.1	94.4	95.8	92.4	95.6	91.1	92.6	94.8
O-Containing Compounds	7.5	1.1	0.9	0.7	3.5	1.0	0.5	1.9	0.4
Phenol and Cresols	3.2	0.1	0.04	0.1	0.4	0.1	0.0	0.9	0.04
Benzofurans and Dibenzofurans	3.7	1.0	0.6	0.5	2.4	0.7	0.004	1.0	0.4
Others	0.6	0.0	0.3	0.1	0.7	0.2	0.1	0.02	0.03
N-Containing Compounds	0.7	0.4	0.3	0.4	0.5	0.5	0.4	0.9	0.7
S-Containing Compounds	0.2	0.1	0.02	0.02	0.04	0.02	0.2	0.0	0.01
Total Heterocyclic Compounds	8.4	1.6	1.2	1.1	4.0	1.5	1.1	2.8	1.1
Unidentified Compounds	8.4	5.3	4.4	3.1	3.6	3.0	7.8	4.6	4.1

* Dry Basis.

#### COMPOSITION OF OILS FOUND IN PRODUCT GAS IN PRU GASIFICATION TESTS

Test No.	<u>CT-16</u>	<u>T12-1</u>	<u>T12-2</u>	<u>T3D-1a</u>	<u>T3D-1b</u>	<u>T12-3</u>	<u>112-35</u>	<u>T12-4a</u>	<u>T12-4b</u>
Temperaturs, °F	1450	1530	1 500	1538	1562	1672	1413	1509	1516
Oil Yield, 1b/100 1b biomass*	1.96	3.16	3.32	1.65	1.93	1.12	3.51	2.69	2.48
Products, wt % in Oils									
One-Ring Hydrocerbons	31.5	18.2	23.5	21.8	26.0	17.2	38.8	15.1	11.9
Benzene	26.1	14.9	9.0	19.5	23.2	15.6	27.5	6.6	6.7
Toluene and Xylenes	2.0	1.0	7.1	0.8	1.2	0.6	6.6	2.2	1.1
Others	3,4	2.3	7.4	1.5	1.6	1.0	4.6	6.2	4.1
Two-Ring Hydrocarbons	33,8	38.3	39.0	46.9	39.5	35.9	35.8	41.8	42.3
Nephthalene	28.5	31.9	27.0	41.1	33.4	32.7	27.9	30.2	32.4
Methylnaphthalena	0.6	0.4	3.9	0.6	0.9	0.5	1.9	2.2	1.5
Others	4.7	6.0	8.1	5.2	5.1	2.8	6.0	9.4	8.4
Three-Ring Hydrocerbons	9.2	16.6	12.5	12.1	12.8	11.6	9.8	16.0	14.9
Fluorene	2.3	2.3	2.7	2.6	2.5	1.3	3.0	3.6	2.9
Phenenthrans and Anthracena	5.8	9.7	7.3	8.2	8.4	7.9	4.9	8.9	8.9
Others	1.1	4.6	2.5	1.3	1.9	2.4	1.9	3.6	3.1
Four-Ring Hydrocarbons	8.2	13.4	7.3	10.9	11.3	17.1	5.3	10.6	12.6
Five-Ring Hydrocarbons	3.4	4.9	3.0	3.1	^{:.} 3.3	6.8	1.2	4.1	5.1
Higher Aromatic Hydrocarbons	2.0	2.6	0.8	1.1	1.7	5.7	1.0	2.8	3.0
Total Hydrocarbons	88.0	94.0	86.1	95.9	94.6	94.2	91.9	90.4	89.8
O-Containing Compounds	0.6	0.6	2.6	0.3	0.3	0.1	2.5	2.8	2.0
Phenol end Cresols	0.04	0.02	1.0	0.0	0.0	0.0	1.0	0.3	0.1
Benzofurans and Dibenzofurans	0.5	0.3	1.6	0.3	0.3	0,1	1.5	2.3	1.8
Others	0.01	0.3	0.0	0.0	0.0	0.0	0.0	0.2	0.1
N-Conteining Compounds	1.3	0.6	1.4	0.08	0.7	0.3	0.8	0.8	1.1
S-Containing Compounds	0.02	0.3	0.03	0.0	0.1	0.0	0.0	0.02	0.2
Total Heterocyclic Compounds	1.9	1.7	4.0	0.4	1.1	0.4	3.3	3.6	3.3
Unidentified Compounds	<u>10.1</u>	4.3	9.9	3.7	4.3	5,4	4.9	6.0	6.9

* Dry Basis.

Table C.1 Detailed Listing of Components in Tars From Several Gasification Systems

Rompessed	RT UMO		IGT 3D		BCL 5		SGI Air		SGI	02	
Compound	and the second second	<u>Arec</u>	Amt.	<u>Ar ee</u>	Amt.	Ar es	Amt.	Areo	AMT		ATTA
benzene	2.68	20.63	0.11	10990	7.07	74.67	0.26	189.75	1. 18	80.04	0.19
tol uene	4.21	<b></b>	-	844.51	0.55			-		38.68	0.09
turtural	5.12	-	-	-	-	-		128.27	0.96	224.05	0.63
methyl cycl opentenone	6.38	-	-	-	-		***			103.80	0.29
furanyi ethanone	6.44	-	-	-	-	-	**	33.32	0.25	-	
benzal dehyde	7.34	-	-	4040	***		-	69.43	0.52	115.08	0.32
methyl turtural	7.37	-			-		-	68.59	0.51	201.53	0.56
phenol	7.62	76.96	0.57	-	-	-	-	1900.85	16.62	1399.96	4.58
benzoturañ	8.0	-	-	3.83	0.003		-			70.36	0.30
methyl styrene	8.85	-	-	60-63	-	**	-	-		137.93	0.45
ameresal	8.93	125.78	0.92	-				474.83	4.15	1031.33	3.37
ladene	8.93		-	1713.76	1.10	59.71	0.20	-	ale ani		-
n. oucressi	9.29	207.23	1.52	- -	-		-	981.88	8.58	1670.5	5.46
trimethyl avai abentenañe	9.60		-			-		361.13	2.71	57.53	0.16
methyl obenal	10.34	23.44	0.17		-	-		44.31	0.39	56.61	0.19
dimethyl shanol	10.52	164.52	1.20			-		264.34	2.31	733.09	2.40
methyi Indete	10.7	-	-		-	خات			-	143+62	0.40
n. peeth vi shensi	10.81	181.03	1.32		-		-	265.41	2,32	930.40	3.04
d jesthvi shenol	11.03	36,13	0.26	-		-	-			138.38	0.45
neohthal ene	11.28	51.78	0.29	95933.2	61.69	3569.41	11.96	1056.26	6.60	1742.97	4.07
catechol	11.31	-	-				-			427.77	4.20
d i hwicobenzóf uran	11.49	-			-				فننهه	192.91	0.76
ethyl athyl shanol	11.81	45.15	0.33	-			-	-		173.41	0.79
nethyl ethyl phenol	11.98	85.54	0.62	' <b></b>	-	-	-	111.43	0.97	283.83	0.93
methyl ethyl phenol	12.06	33,18	0.24				-			93.83	0.43
	12.07				-		-	-		113.09	0.44
nethyl athyl phanol	12.30	58,66	0.43							78.24	0.36
methyl catachol	12.34				**		-	64.18	1.20	167.74	1.65
athy calacol	12.67						-	233.95	2.34	225.99	1.18
propert aband	12.74	137-90	1,01								
	12.77							-		271.41	2.66
	12.81	31A .QA	1.98					-			-
	12.84		_	-				261.08	1.62		
12 <b>* Kan</b>	14404		-	•							

Aut. - ut'o

# Table C.1 (cont'd)



Compound	RT	UM	0	· IG	T 319	BC	L 5	SG	I.Air	SGI	02
		Ared	Amt.	<u>Ar ee</u>	Amt,	Ar 66	Amt.	Areo	Ant.	Ar 66	Amt.
propenyl phenol	12.96	172.00	1.26	,				-	-		-
methyl naphthal ene	13.03	201.69	1.14	730.24	0.47	84.84	0.28	162.65	1.02	695.06	2.27
propenyl phenol	13.06			-	-	-	-			205.59	0.94
d i methyl ethyl phenöl	13.12	70.59	0.52				49-95	-		-	-
methyl = 1= i ndanone	13.20	23.11	0.14								-
methyl naphthai ene	13.30	212.64	1.20	442.7	0.28	68.77	0.24	100.36	0.63	515.90	1.69
vinyibenzai dehyde	13.48	169.28	1.05	هنته	-	-			-	486.21	1.91
C ₂ benzal dehyde	13.59	61.11	0.38	-			-			151.44	0.59
vinyibenzaidehyde	13.66	88.25	0.55	-	-		-			157+61	0.62
vî nyi benzal dehyde	13.81	217.66	1.35	•••						478.66	1.88
openyi gua lacol	13.89		-	, <del></del>			-	259.32	2.59		
ethyl catechol	14.16				al de	**		130.75	2.45	119.22	1.17
b i phenyi	14.27	115.63	0.65	1431.24	0.92	345.71	1.15			367.05	1.20
C ₁₄ al kane	14.33	-	-	-	-			147.84	0.92	-	
i-ethyi naphthal ene	14.49	142.47	0.80	-	-				-	329.36	1.08
hydroxymethylbenzal dehyde	14.52				-		-	263.76	2.64		
2-ethyi naphthal ene	14.55	104.22	0.59		-					226.03	0_74
dimethyl naphthál ene	14.66	218.33	1.23							223.58	0.73
dimethyl naphthal ene	14.88	193.10	1.09							176.00	0.58
dimethyl naphthal one	14.93	180.98	1.02			<b>40-40</b>		34.94	0.22	186-66	0.61
scenaphthene	15.01	323.15	1.82			169.62	0.58	31.55	0.20	411.87	1.35
dimethyl nachthal ene?	15.16	88.09	0.50			_	-				
propenyl qua lacol	15.20			-			_	174.75	1 74	315.00	1 48
Smethyl naphtbal eng?	15.23	18060	1.02								
acanahthyi ana	15.36	771.74	4.35	4006 12	2 64	4807 47	18.42	178 40		1718 43	
C. alkane	15 70		4.55	4030612	2.004	437/04/	12442	170.040	1.11	1/12443	2.01
dishetyl pethane	15.75	115 50	0.76	-				01.17	0.21		
	12.12	122.00	V. /0	-						142.18	0.48
		278 17					•••	240.10	2,45		•••
	12.03	6/0.1/	1.27	1910.76	1.23	80.25	0,28				
arabapat Susaharangi sus	CU.01	101.02	V•37	-							
	10.004									290.01	1.33
angentation	1.0.10	•••	•••							277 <b>.29</b>	1.27
pnenyipnenci 7 + 7	16.17	124.22	0.91				-				

# Table C.1 (cont'd)

Compound	RT	UM	0	IG	<u>T_3C_</u>	BC	1_5_	SGI A	ir	SGI O	2
• •		Ar eo	Amt.	Area	Amt.	<u>Ar 60</u>	ART.		MATA		
d ib enzofuran	16.25	157.37	0.98	227.42	0.16	351.61	1.29	-		404,40	1402
gua lacyl propanone	16.35		-	<b>dip</b>		-	-	197.56	1.97		
naphthofuran	16.54	224.41	1.39					-		151.62	0.69
naphthofuran	16.64	166.39	1.03		-		-		alkali	-	
methylb i phenyl 7	16.78	40.47	0.23			4144A	4948			171,64	0.56
methyi acenaphthyi ene	16.90	322.91	1.82	53.92	0.04				-	190.62	0.62
7 + naphthol 7	16.98	104+65	0.76			-	-		-		-
C ₁₆ al kane	17.00		48448	ندني. ا	-	-		54.78	0.34		-
methyl aconaphthyl one	17,08	269.69	1.52	-	-					199.89	0.65
fluoréne	17.16	516.73	2.91	2940.18	1.89	828.32	2.78	<b>***</b>	-	582.79	1.91
methyi acenaphthyi ene	17.20	225.67	1.66		-				-	92.11	0.30
wethyl fl uorene	17.41		-			-	-		-	233.32	0.76
methyl naphthol	17.50	-				-				324.34	1.48
dimethyl b Iphanyl	17.61	-						93.49	0.58	234.34	0.77
methyl acenaphthyl ene	17.70	461.82	2.61	76.70	0.05		-			240.69	0.79
phényi benzal dehyde	17 <b>.7</b> 8	204.72	1.27		-		-	•		166.56	0.71
gualacylacetic acid	17.85			-			-	188.45	2.35	<b></b> .	
hydroxyfluorene ?	18.06	109.43	0.80	-			-				
methyl fluorene 1	18,51	202.08	1.14	-							
nethyl fluorene	18.59	634,53	3.58	:		47.22	0.16	<b>dem</b>		264.52	1.04
methyl fil uorene	18.68	319.30	1.80	-					-		-
aethyl fluorene	18.83	171.66	0.97								-
nethyl fluorene	19.10	445.20	2.51	-	4000					146.33	0.53
methyl [ (methyl phenyl ) methyl ]benzene	19.22					-				85.22	0,31
dibenzodiacin	19.32		-				-			118.74	0.44
phenanthrene	19.62	648.93	3.66	7207.95	4.64	5535.9	18.55	220.40	1.79	926.19	2,81
enthracene	19.74	325.68	1.83	739.16	0.49	1030.4	3.45			276.48	0.84
methyl phenenthrene	20.91	126.56	0.72	31.69	0.02	28.66	0.10			94.04	0.29
methyl phonanthrone	21.06	240.42	1.35	42.93	0.03		-			184.90	0.56
methyl enephenanthrane	21.16									383.00	1.25
nethyl phenanthrene	21.21	274.93	1.55	434.92	0.28	487.51	1.63				-
phonyl nephthal one	21.7	189.55	1.07	229.95	0.15	191.24	0.63			158.47	0.52

# Table C.1 (cont'd)

. Compound	RT	U	10	10	T 3D	BC	<u>L 5</u>	SGI	Air	SGI	02
		<u>Ar 60</u>	Amt.	Aree	Amta	<u>Ar eo</u>	Amta	<u>AF 60</u>	AMTa	<u></u>	Amra
fluoranthene	22.8	•••••		4111.15	2.64	2372.9	7.96	59,02	0.48	363.46	1.25
scephenanthryl ene	23.0			231,19	0.15	466.14	1.57	-		158.28	0.52
pyrene	23.4	144.01	0.81	3982.16	2.56	2301.02	7.72	126.46	1.03	459.42	1.50
C ₄ phenanthrene	24.2		-	-	-		-	38.02	0.31	109.14	0.36
218 PAHT	24.3	189.55	1.07	179.09	0.12	67.65	0.34		-		-
226 MW	26.0	-		47.15	0.03	162.43	0 •8 i	dindi	-	-	-
226 benzfl uoranthene	26.5		-1			557.51	2.80		-	4848	4545
benzanthracene	26.5	18.34	0.11	353.69	0.22	139.37	0.69			134+10	0.44
"ysene	26.7	38.9	0.22	784 . 74	0.51	258.86	1.31	all the	-	-	-
nephthecene	27.0	<b>d</b> 10	-	428.52	0.27	35.86	0.18	خی	40.40		
gualacyi pyranone	28.2						-	84.91	0.85	-	
b i naphthyi t	28.3			106.33	0.07	23.71	0.12	-		-	-
benzpyrenet	29.6		-	1343.63	0.86 0.37	109.43 153.66	0.73 1.03	-			
252 PAH	29.9			146.25	0.10	35.84	0.24			-	
252	30.5		-	1392.7	0.90	108.27	0.73				
HW }	30.7			1972+6	1.27	183.06	1.23				
PAH	30.95	-		711.12	0.46	-					-
276 }	35.4	alian in	-	2213.42	1.42	87.06	0.57		-		
MW }	36.7	-	-	2169.68	1,39	99.38	0.67		<b></b> .		
PAH	1 37.3			902.87	0.59	44.17	0.30				
functional groups as percent of identified spounds		-OH 14. carbony furan 3 PAH 72. 70.8% is	2 9,5 ,7 7 dent,	furan 0. PAH 99.8 97.6\$ id	2 ent.	furan 0. PAH 99.4 88.15 id	6 ent.	-OH 34.3 carbonyi furan 23 PAH 32.4 gusiacyi 65.4\$ id	/ 	-OH 40.0 carbonyl furan 12 PAH 43.1 gualacyl 91.8\$ 10	) 5.3 1 3.0 dent.

#### RT = retention time

Area = integrated peak area from flame ionization detector

Amt. = amount of component as percent of whole tar

### 11.11. Kondensatanalysen aus Biomassevergasern

- Analysen des wässrigen Kondensates bei der Vergasung von unbelastetem Holz im Lurgi ZWS-Pilotvergaser [Mehrling et al. 1989], [Bandel 1993].

<u>Bemerkung</u>: Isokinetische Probenahme aus dem Rohgasstrom mit anschliessender Totalkondensation des Wassers und der Teerstoffe.

- Analysen des wässrigen Kondensates bei der Vergasung von unbelastem Holz in Versuchsanlagen (keine näheren Angaben) [Fagernäs 1991]
  - <u>Bemerkung</u>: Die Angaben zum katalytischen Teercracken stammen aus dem MINO-Ver gaser (Katalysator auf Nickel-Basis). Feststoffabscheidung mittels eines Keramikfilters vor dem Katalysator.

Versuch	306	307	308	310	311	mean	
Vergasungstemperatur	790 °C	810 °C	820 °C	750 °C	820 °C		
NH3	mg/i	2823	2437	3409	976	1646	2260
CN ⁻	mg/t	65	70	79	56	109	80
Stot	mg/i	712	508	968	106	238	510
Phenole	mg/i	837	112	142	500	407	400
Fettsäuren	mg/l	123	120	122	72	80	100
CSB	mg O ₂ /I			570			
BSB5	mg O ₂ /I			300			
тос	mg C/I			165			
CSB _{ber}	mg O ₂ /I	2126	395	469	1268	1055	1060
TOCber	mg C/I	690	134	158	412	344	350

### Abwasserzusammensetzung bei der Holzvergasung in der Lurgi Pilot-ZWS

CSB = Chemischer Sauerstoff-Bedarf

TOC = Totaler organischer Kohlenstoff

BSB5 = Biologischer Sauerstoffbedarf in 5 Tagen

### Bemerkungen:

- NH₃ berechnet aus dem NH₃-Gehalt im Rohgas
- CN⁻ berechnet aus dem HCN-Gehalt im Rohgas
- Stot berechnet aus dem H₂S-Gehalt im Rohgas
- Eine Bestimmung der HCN- und H₂S-Gehaltes im Abwasser führt zu fehlerhaften Gehalten, da die Stoffe miteinander reagieren und Rhodanid (SCN⁻), Dithionit und Elementarschwefel bilden.
- Phenole: wasserdampfflüchtiger Anteil
- Fettsäuren: als Essigsäure
- CSBber: berechnet aus Phenolen und Fettsäuren
- TOCber: berechnet aus Phenolen und Fettsäuren

Cosponent	Perox(a	) RIT Rev I	(b) Gas II	Thermal 1000C	reforming 1100C	Catalytic reforming 800C
Methenol	24400		084			10
Acetic acid	19800	1013	129	74		158
Ethanol	9500	1013				
Acetone	9500		_	-	-	-
Hethylethyl-	/////		-	_	-	- n
ketone	1900	-	-	-	-	
Propionic acid	7600	-	-			-
Bytyric acid	1900	-	-	-	-	-
Furfural	9500	-	-	-	-	-
Phenol	1900	7116	7300	118	116	· •
Benzene	1100	18	253	24	2	-
Toluene	-	208	n.d	25	ž	a.d
Xylene	-	2	18	n.d	a.d	n.d
Pyridine	-	336	589	108	28	<b>n.d</b>
Naphtalepe	-	124	29	6	2	63
Quinoline	-	6	12	22	19	n.d 👘
Not Identified	7200	1451	6881	364	179	35
NE3	124	-	-	-		-
<b>H2</b>	1	-	-	-	•	-
<b>BC03(</b> -)	7500	-	-	-	-	-
CO3(2-)	57	-	-	-	-	-
NH2000(-)	102	-		-	-	©
NH4	2300	-	-		-	-
<b>HS(-)</b>	19	-	-	-	-	-
COD		13680	18570	692	403	306
° p⊞		9.33	9.3	9.(	07. 8.83	8.7

(a) Purox is a process used only for gasification of chemical feedstock.
(b) RIT: Royal Institute of Technology, Stockholm Sueden, a process developed for producing methanol from biomass. The chemical composition before and after a secondary gasifying (thermal or catalytic reforming step is given (Espenis, 1982 pers comm).
n.d= not detected < 1 ppm</li>

# 11.12. Kostenschätzungen zur Methanolerzeugung aus Biomasse

- Kostenschätzungen für Anlagen zur Erzeugung von Methanol aus Biomasse mit Vergasern von IGT, BCL und MTCI [Katofsky 1993]

Table 7-2: Estimated production costs for methanol from natural gas, coal and biomass. All energy quantities are on a higher heating value basis. All costs are in 1991 U.S. Dollars.

Conversion technology	SMR	SMR-CO-	Shell-	Shell-	IGT	WM	MTCL	BCI
		0	coal	bio		** ***	MI I CI	DCD
Feedstock throughput capacity ^a				•••				
Dry tonnes per day	1224	1224	5000	1650	1650	1650	1650	1650
GJ per hour	2700	2700	6188	1325	1325	1439	1334	1383
		-				• • • • •	••••	
Output production capacity ^a								
Tonnes per day	2012	2114	4252	950	794	1012	868	945
GJ per hour	1903	1999	4023	898	751	957	821	894
_								-
Annual feed and output ^b								
Feed (10° GJ per year)	21.30	21.30	48.82	10.46	10.46	11.35	10.52	10.91
Product output (10° GJ per year)	15.01	15.77	31.74	7.09	5.93	7.55	6.48	7.06
CAPITAL COSTS (10° 5)								
Hardware (installed cost)	0.00	0.00						
Gosifier	0.00	0.00	04.52	36.83	16.44	7.40	13.69	19.74
High temperature and applies ⁶	0.00	0.00	113.97	28.23	28.23	64.00	15.16	7.23
Orvigen plant ^f	0.00	0.00	107.63	0.00	0.00	0.00	0.00	0.00
Sulfur recovered	0.00	0.00	107.52	22.32	41.07	0.00	0.00	0.00
Reformer feed compressou ^h	0.00	0.00	34.41	0.00	0.00	0.00	0.00	0.00
Reformer ¹	28.42	22.97	0.00	0.00	17.70	0.00	12.40	11.04
Vessels/exchangers/pumps/filters	20.43	23.07	20.42	0.00	17.70	10.30	0.00	15.50
CO. removal ^k	9.40	21.80	20.43 \$0.50	9.40	9.40	9.40	9.40	9.40
Methanol synthesis & purification ¹	76 51	70.05	125 20	46.60	20.20 A1 A2	12.72	13.38	14.47
Itilities/auxiliaries ⁿ	28.50	33 55	164 72	40.00	41.42	48.02	43.93	40.47
Subtotal	142.03	167.75	873.64	249.01	43.77 219.94	109 11	127 45	30.90
Contingencies ^o	28.50	33 55	164 73	40.61	A3 77	20.62	27.40	20.06
Owners costs, fees, profits ^p	14 29	1678	82 36	24 81	21.88	10.81	13.75	15 48
Startup ^q	6.91	6.91	23.92	6.91	6.91	6.91	6.91	6 91
Total capital requirement	192.71	224.99	1094.66	329.41	291.40	264.46	185 61	208 16
Working capital ^p	14.29	16.78	82.36	24.81	21.88	19.81	13.75	15.48
Land ⁹	2.30	2.30	6.97	2.30	2.30	2.30	2.30	2.30
OPERATING COSTS (10 ⁶ \$ per year)								
Variable costs								
Feed ^r	42.60	42.60	73.23	20.91	20.91	22.70	21.05	21.82
Catalysts and chemicals ^q	2.54	2.54	8.80	0.49	1.73	1.73	0.49	2.59
Purchased energy ^a	5.45	3.19	11.45	3.96	2.15	7.00	3.53	1.63
Subtotal	50.59	48.33	93.47	25.37	24.79	31.43	25.08	26.04
Fixed costs'								
Labor	0.70	0.70	3.30	0.99	0.99	1.18	1.18	1.18
Maintenance	4.29	5.03	24.71	7.44	6.57	5.94	4.12	4.64
General Overhead	3.25	3.73	18.21	5.48	4.91	4.63	3.45	3.79
Direct Overhead	0.32	0.32	1.49	0.45	0.45	0.53	0.53	0.53
	8.56	9.78	47.71	14.36	12.91	12.28	9.28	10.14
l'otal operating costs	59.14	58.11	141.18	39.73	37.70	43.72	34.36	36.19
LEVELIZED COSTS (S per GI)								
Capital ⁴	2.05	2 27	6 10	7 20	7.00	6 60	4.67	4 70
Labor & maintenance	2.05	2.27	2.40 1.79	7.39	7.82	2.28	4.57	4.70
Purchased energy	0.74	0.76	1.70	2.10	2.4/	1.80	1.51	1.80
Feedstock	0.30 2 84	2 70	0.50	2.20	2 < 2	2 01	0.33	2 00
Total	\$ 90	5.06	0.01	13.00	5.55 14 19	11 27	3.43 0.99	0 92
Total (S/liter)	011	0.11	0.18	0.24	0.26	0.21	7.00 () 19	0 19
		0.11	<b>U</b> .10	0.24	0.20	0.21	0.10	0.10

#### Notes to Table 7-2

- (a) Based on the *Energy Ratios* presented in Chapter 6.
- (b) Assuming a 90% capacity factor.
- (c) Based on Wyman, et al. (1992) and OPPA (1990). The Shell-biomass case includes the cost of sizing. The WM case does not include any drying. The MTCI cost is assumed to be proportionately lower because less drying is needed.
- (d) The Shell-coal cost is scaled from OPPA (1989), which estimated the cost for a "second generation" entrained-bed coal gasifier similar to the Shell gasifier. The IGT and BCL gasifier costs are scaled from Wyman, et al. (1992). Scaling is based on the ratio of the dry feed rates raised to the 0.7 power. Since no cost estimates are available for the Shell gasifier operating on biomass, the cost of this gasifier was assumed to be the same as the IGT gasifier: both gasifiers are pressurized, and the lower cost associated with the higher throughput of the entrained-bed gasifier was assumed to be offset by the higher cost associated with higher temperature operation. The WM costs are for 10 gasifiers that would operate in parallel (Coffman, 1991). The MTCl gasifier cost is scaled linearly from a baseline cost of \$1 million for a 4.5 tonnes/hour black liquor gasifier (Steedman, 1993).
- (e) Gas cooling costs are based on OPPA (1989) scaled to the 0.7 power.
- (f) Oxygen plant costs for the biomass cases are scaled from the estimate in Wyman, et al. (1992) according to the O₂ production rate raised to the 0.7 power. For the coal case, the estimate is based on OPPA (1989) scaled to the 0.7 power.
- (g) Based on OPPA (1989) using a 0.7 scale power factor.
- (h) Compressor cost is assumed to be \$700 per kW of compressor capacity required. In the MTCI case the reformer feed compressor refers to the feed compressor used prior to CO₂ removal (methanol production) or H₂ separation (hydrogen production).
- (i) Reformer cost is scaled according to feed rate raised to the 0.7 power, based on an estimate from Kessler (1991) of \$16.9 million for a feed rate of 5800 kmol/hour.
- (j) This includes shift reactors, heat exchangers, pumps, filters, etc. (Kessler, 1991) and is assumed to be the same for all biomass and natural gas cases, and is scaled according to throughput raised to the 0.7 power for the coal cases.
- (k) Using Union Carbide's SELEXOL[®] process, leaving approximately 2% CO₂ in the exit gas. Costs are scaled according to the volume of CO₂ removed raised to the 0.7 power. The baseline cost estimate is \$14.3 million for 810 kmol/hour of CO₂ removed (Epps, 1991). Includes the cost of compressing recycled CO₂ in the SMR-CO₂ case.
- (1) Using the ICI low-pressure methanol synthesis process. Baseline costs are \$50 million for a plant with a methanol production capacity of 1056 tonnes/day. A scale power factor of 0.66 is used (Mansfield, 1991). The cost estimates assume synthesis gas available at suction of makeup gas compressor at 1.5 MPa, the synthesis loop is operated at 10 MPa, single column distillation producing fuel grade methanol, equipment and erection in a developed location (e.g. U.S. Gulf Coast). Equipment included in the costs are the make-up compressor, recycle compressor, synthesis loop equipment, distillation column and shift tanks for intermediate storage.
- (m) Using the "Gemini-9" pressure swing adsorption system from Air Products, which removes CO₂ and H₂O in the first bed and produces a fuel gas and 99.999% purity H₂ in the second bed. Baseline costs are \$23 million for a feed rate of 9600 kmol/hour including the recycle feed (Solomon, 1991). Costs are scaled according to the feed rate using a scaling power factor of 0.7. The cost excludes the recycle compressor.
- (n) Assumed to be 25% of the sum of all other hardware costs (Wyman, et al., 1992).
- (o) Assumed to be 20% of installed hardware costs (Wyman, et al., 1992).
- (p) Assumed to be 10% of installed hardware costs (Wyman, et al., 1992).
- (q) From Wyman, et al. (1992). Assumed to be the same for both methanol and hydrogen production. The MTCI "catalyst and chemicals" costs were assumed to be the same as the Shell-biomass case since no reformer was required.
- (r) Assuming a feedstock cost of \$2/GJ for biomass and natural gas. Coal is assumed to cost \$1.50/GJ. (HHV basis).
- (s) Assuming electricity costs 5 cents/kWh and heat costs \$4/GJ. See Chapter 6 for the quantities of purchase energy required.
- (t) Fixed costs are based on Wyman, et al. (1992). Labor costs for the biomass cases are assumed to be the same as those estimated for a slightly larger methanol production facility (1983 dry tonnes biomass per day). The coal and natural gas costs are scaled using the feed rate raised to the 0.7 power. Maintenance cost is assumed to be 3% of the hardware subtotal, general overhead is assumed to be 65% of labor and maintenance, and direct overhead is assumed to be 45% of labor.
- (u) The annual capital charge rate for plant and equipment is assumed to be 15.1% per year, which is based on average financial parameters for major U.S. corporations over the period 1984-88 (9.91% real rate of return on equity, 6.2% real rate of return on debt, a 30% debt fraction, a 44% corporate income tax rate), a property and insurance rate of 1.5% per year, and a 25 year plant life. For land and working capital, the annual capital charge rate is taken to be 9.91% per year, the corporate discount rate.

## 12. Literaturverzeichnis

Aldén, H. 1989: Decomposition reactions on dolomite. The effects of hydrogen chloride on the tar reduction capability of dolomite. Studsvik Report nr. 22 (1989). (nicht zugänglich)

Althoff, E.; Brunke, W.; Henckens, A. 1983: Herstellung von Synthesegas bzw. Wasserstoff durch Druckvergasung von Kohlenstaub in Sauerstoff und Wasser nach dem Texaco-Verfahren, Bundesministerium für Forschung und Technologie, BMFT-FB-T 83-203, 1983

Asinger, F.: Methanol - Chemie- und Energierohstoff. Die Mobilisation der Kohle, Springer-Verlag Berlin u.a., 1986

*Babu, S.P. 1991:* Summary Report for Hot-Gas Cleanup. IEA Bioenergy Agreement. Task VII. Biomass Conversion, Activity 4: Thermal Gasification. Compiled by IGT Chicago, Dec. 1991

Bandel, G. 1993: persönliche Mitteilung, Sept. 1993

*Baker, E.G.; Brown, M.D.; Elliott, D.C.; Mudge, L.K. 1988:* Characterization and Treatment of Tars from Biomass Gasifiers, Pacific Northwest Laboratory Report PNL-SA-16148, Richland 1988

Bellin, A.; Schrader, L. 1984: Vergasungsversuche mit finnischem Torf (HTW-Vergasung), Bundesministerium für Forschung und Technologie, BMFT-FB-T 84-295, 1984

*Blackadder, W.H.; Lundberg, H.; Rensfelt, E.; Waldheim, L. 1992:* Heat and Power Production via Gasification in the Range 5-50 MW_e. Paper presented at the IEA Biomass Gasification Meeting in Magog, Quebec (Canada), 1992

Blackadder, W.H. 1993: persönliche Mitteilung, April 1993

*Bridgwater, A.V.; Double, J.M. 1991:* Production cost of liquid fuels from biomass, Fuel 1991, Vol. 70, 1209-1224

Bühler, R. 1988: Holz-Zentralheizungen. Grundlagen für Planung, Projektierung und Ausführung, Anhang 2. Bundesamt für Konjunkturfragen, Bern, Nov. 1988

*Chrysostome, G., Lamasle, J.M. 1986:* Fluidized Bed Oxygen Gasification of Wood, Energy from Biomass 8 (1986), 29-71

*Czernik, S.; Köberle, P.G.; Jollez, P.; Bilodeau, J.F.; Chornet, E. 1992:* Gasification of Residual Biomass via the Biosyn Fluidized Bed Technology. Paper distributed at the IEA Biomass Gasification Meeting in Magog, Quebec (Canada), 1992

Durai-Swamy, K.; Warren, D.W.; Mansour, M.N. 1991: Indirect Steam Gasifiaction of Paper Mill Sludge Waste, Tappi Journal 74 (1991), no. 10, 137-143

*Elliott, D. C. 1987:* Analysis of Medium-BTU Gasification Condensates June 1985- June 1986, Pacific Northwest Laboratory, Richland, PNL-5979, May 1987

*Evans, R.J.; Knight, R.A.; Onischak, M.; Babu, S.P. 1987:* Process Performance and Environment Assessment of the Renugas Process, Energy from Biomass and Wastes 10 (1987), 677-694.

*Fagernäs, L. 1991:* Waste waters from biomass-based synthesis gas production. VTT Research Notes 1266, Project Nr. POV9002, Espoo (Finland), Aug. 1991

Feldmann, H.F.; Paisley, M.A.; Appelbaum, H.R.; Taylor, D.R. 1988: Conversion of Forest Residues to a Methane-Rich Gas in a High-Throughput Gasifier, Pacific Northwest Laboratory, Richland 1988

*Fjellerup, J. 1989:* Optimale processbetingelser for en dolomitkrakker til kraking af tjäre fra forgasning af biobrändsler, Riso National Laboratory, Roskilde (DK), Aug. 1989

Franken, G.: Der Einfluss von Kohleeigenschaften auf die Leistungsfähigkeit ausgewählter Vergasungsverfahren, Diss TH Aachen (Fakultät für Bergbau und Hüttenwesen) 1984

*Gissy,J.; Knight, R.A.; Onischak, M.; Charty, R.H.; Babu, S.P. 1992:* Technology Development and Commerzialization of the Renugas Process, paper presented at the USA and Finland Biofuels II Workshop, Aug. 24-27 1992, Espoo Finland

Graham, R.G.; Bain, R. 1992: Hot Gas Clean-Up. Paper presented at the IEA Biomass Gasification Meeting in Magog, Quebec (Canada), 1992

*Gravel, G.; Chamberland, A. 1987:* Testing and Evaluation of a Pressurized 10 t/h Fluid-Bed Wood Gasifier, Energy from Biomass and Wastes X, ed. D.L. Klass, Elsevier Appl. Sci. and IGT 1987, 713-718

Hasler, Ph.; Nussbaumer, Th. 1993: Stofffluss bei der Verbrennung und Vergasung von Altholz. DIANE 8, Energie aus Altholz und Altpapier, Bundesamt für Energiewirtschaft, EDMZ-Nr. 805.172 d, Nov. 1993

*Hedden, K.; Wilhelm, A. 1980:* Catalytic Effects of Inorganic Substances on Reactivity and Ignition Temperature of Solid Fuels, German Chemical Engineering 3, 142-147 (1980)

*Heil, J. 1980:* Einfluss der Pyrolysebedingungen und der Abfallarten auf die entstehenden Produkte bei der Entgasung von Haushaltabfällen, Dissertation TU Berlin, 1980

Huisman, G.H.; Hoefnagels, J.H.C.; van Heekeren, E.V.; Smakman, G.: Sevage Sludge Gasification, Novem Report 9102, Oct. 1991 (Contract number: 55120/0310)

*Kasser, U. 1990*, In: Arbeitsgemeinschaft Altholzkonzept 1990: Altholzkonzept Kanton Zürich, Direktion der öffentlichen Bauten des Kantons Zürich, Zürich 1990, Anhang 17-A

*Katofsky, R.E. 1993:* The Production of Fluid Fuels from Biomass, Princeton University, center for energy and environmental studies, PU/CEES Report No. 279, June 1993

*Koljonen, J. 1992:* Peat as a Raw Material for Ammonia. paper presented at the Final Seminar 'Power Production from Biomass' of the JALO Programme, Espoo Finland, Dec. 3./4. 1992

Koljonen, J. 1993: persönliche Mitteilung, September 1993

*Kurkela, E.; Stahlberg, P.; Laatikainen, J.; Nieminen, M. 1991:* Removal of Particulates and Alkali Metaks from Pressurized Fluid-Bed Gasification of Peat and Biomass - Gas Cleanup for Gas Turbine Applications, Energy from Biomass and Wastes 14 (1991)

*Kurkela, E.; Stahlberg, P.; Simell, P.; Leppälahti, J. 1989:* Updraft Gasification of Peat and Biomass, Biomass 19 (1989), 37-46

*Lamasle, J.M.; Marcellin, M. 1990:* Production de gaz de synthese par gazéification de bois en lit fluidisé sous pression, ASCAB Studie 1990

Larson, E.D.; Katofsky, R.E. 1992: Production of Hydrogen and Methanol from Biomass, Paper presented at Advances in Thermochemical Biomass Conversion, Interlaken, Switzerland, May 11-15, 1992 *Löffler, J.C. 1991:* CFB-Gasification Pöls. Lime Kiln Operation, paper presented at the IEA Biomass Gasification Meeting in Espoo, Finland, Sept. 17-20, 1991

Löffler, J.C. 1993: persönliche Mitteilung, Juli 1993

*Marutzky, R.; Schriever, E. 1984:* Untersuchungen zur Emission von Kleinverbrennungsanlagen bei der Verbrennung von Holz, Torf und pflanzlichen Reststoffen, Abschlussbericht, Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut, Braunschweig, 1984

*Marutzky, R.; Schriever, E. 1986:* Emissionen bei der Verbrennung von Holzspanplattenresten, Holz als Roh- und Werkstoff 44, 185-191, 1986

*Marutzky, R. 1991:* Erkenntnisse zur Schadstoffbildung bei der Verbrennung von Holz und Spanplatten, Habilitationsschrift, Wilhelm-Klauditz-Institut WKI, Bericht Nr. 26, 1991

*Mehrling, P.; Reimert, R. 1986a:* Entwicklung eines Verfahrens zur Vergasung von Biomassen nach dem Prinzip der Zirkulierenden Wirbelschicht, Bundesministerium für Forschung und Technologie, BMFT-FB-T 86-009, 1986

*Mehrling, P.; Reimert, R. 1986b:* Synthetic Fuel from Wood via Gasification in the Circulating Fluid Bed, Energy from Biomass 8 (1986), 73-113

*Mehrling, P.; Vierrath, H. 1989:* Gasification of Lignite and Wood in the Lurgi Circulating Fluidized-Bed Gasifier. Electric Power Research Institute (EPRI; Project Manager: Epstein, M.), Portland, Final Report GS-6436, June 1989

*Mills, G.; Overend, R.; Bain, R. 1993:* Status and Future Opportunities for Conversion of Synthesis Gas to Liquid Energy Fuels: Final Report. National Renewable Energy Laboratory, Golden, Colorado, May 1993

*Mittelviefhaus, C. 1986:* In-Furnace-Entschwefelung im HTW-Vergaser und Modellierung der Technikumsanlage. Diss TH Aachen, 1986

Nussbaumer, Th. 1990a: Grundlagen der Holzvergasung, Heizung/Klima Nr. 7 (1990)

*Nussbaumer, Th. 1990b:* Anlagentechnik der Holzvergasung und offene Fragen beim Einsatz von belastetem Altholz, Heizung/Klima Nr. 9 (1990)

*Nussbaumer, Th. 1992:* Jahresbericht 1992 Energiegras/Feldholz, Bundesamt für Energiewirtschaft, Forschungsprojekt 'Verbrennung und Vergasung von Energiegras und Feldholz (Teilprojekt C und D)

*Nussbaumer, Th.; Bühler, R.; Jenni, A. 1990:* Holzvergasungsanlagen in Europa im Bereich 2 bis 5 MW_{th}, Forschungsprojekt Holzvergasung-Altholz Phase 1, Bundesamt für Energiewirtschaft, 3003 Bern, April 1990

*Nussbaumer, Th.; Bühler, R.; Jenni, A. 1993:* Abgasentstickung bei Holzfeuerungen durch selektive katalytische und selektive nicht-katalytische Reduktion SCR und SNCR, Bundesamt für Energiewirtschaft, Forschungsprogramm Biomasse, Schlussbericht Phase 2, 1993

*Obernberger, I. 1992:* Erforschung der Verwendungsmöglichkeiten von Aschen aus Hackgutund Rindenfeuerungen, Tätigkeitsbericht 1991, TU Graz, Institut für Verfahrenstechnik, Febr. 1992

OPPA (Office of Policy, Planning and Analysis) 1989: Assessment of Costs and Benefits of Flexible and Alternative Fuel Use in the US Transportation Sector. Technical Report 3: Methanol Production and Transportation Costs. DOE/PE-0097P. Washington DC, November 1989

Osteroth, D. 1989: Von der Kohle zur Biomasse. Chemierohstoffe und Energieträger im Wandel der Zeit, Springer Verlag, Berlin u.a.O., 1989

Paisley, M.A. 1993: persönliche Mitteilung, Mai 1993.

*Reed, T. B. 1981:* Biomass Gasification. Principles and Technology, Noyes Data Corp., N. J. 1981

Rensfelt, E. 1993: persönliche Mitteilung, Juni 1993

SAFi (Servizi Ambientali Area Florentina Spa) 1993: Dati caratteristici dell'impianto di gassificazione di testi, note informative, Firence, Aprile 1993

Schmidt, J. 1966: Technologie der Gaserzeugung, Band II Vergasung, VEB-Verlag Leipzig 1966, 222-244 *Sinclair, A.; Waldheim, L. 1985:* MINO Feasibility Study. Concluding Report, Studsvik Arbetsrapport-Technical Note EB-85/72, November 1985

Sipilä, K.; Koljonen, J.; Fagernäs, L.; Kurkela, E.; Moilanen, A.; Rautalin, A.; Södervall, T.; Wilen, C. 1989: Turpeen Kaasutustekniikan Kehittäminen -Oulun Turveammoniakkitehdas. Kauppa - Ja Teollisuusministeriö, Energiasasto, Helsinki 1989 Siro, M. 1989: Operation Experiences from Bark Gasification for a Lime Kiln, Low Grade Fuels 1 (1989), VTT Symposium 107, ed. M. Korhonen, p. 373-382

Stahlberg, R. 1993: Thermoselect - Energy and Raw Material Recovery Through Thermal-Chemical Tranformation in a Closed-Loop System, paper presented at the IEA Gasification Meeting in Pisa, April 26-28 1993

*Sturm, P. 1991:* Vergasungsversuche mit Altholz und Altholzmischungen in der 0.7 m ZWS-Pilotanlage, int. Bericht Lurgi, August 1991

Supp, E. 1990: How to Produce Methanol from Coal, Springer-Verlag, Berlin u.a. 1990

*Van den Aarsen, F.G. 1985:* Fluidised Bed Wood Gasifier Performance and Modeling, Thesis TU Twente (NL) 1985

*Wan, E.I.; Fraser, M.D. 1990:* Economic Assessment of Advanced Biomass Gasification Systems, Energy from Biomass 13 (1990), 791ff.