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Preface

An international workshop on High-Temperature Solar Chemistry was held at
the Paul Scherrer Institut in Villigen, Switzerland, on August 17, 1995. This
event contributed to the international collaboration R&D Program carried out
under the umbrella of the SolarPACES Agreement of the International Energy
Agency (IEA).

The present notes contain documentation material (abstracts and viewgraphs),
presented by the invited speakers. More than 60 scientists, engineers, and stu-
dents from 7 countries (Australia, France, Germany, Israel, Japan, Switzerland,
and the United States) participated in the workshop.

The organizers express their gratitude to all speakers and participants for the
fruitful and motivating discussions and look forward to future activities.

A. Steinfeld and P. Kuhn
Chairmen of the Workshop

PAUL SCHERRER INSTITUT




"Solar Chemistry:
Putting Solar Energy in Motion"

Prof. R. Palumbo
PSI-Seminar, 6.7.1995
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PROGRAM

Morning Session

09:00

09:05

09:30

10:00

10:30

11:00
11:15

11:45

12:15

12:45

- Opening -

"Why Solar Chemistry?*

"Hydrogen Sulfide and Solar Energy
in the 21st Century”

"A New Energy Global System:
Combination of Solar and Fossil Fuel Energy
Using Metal Oxides"

“Reactivity of Solids - Basic Aspects for
the Chemical Conversion of High-
Temperature Solar Energy”

- Coffee Pause -

"New Opportunities for High-
Temperature Solar Chemistry”

"The Use of Metal Oxides in High-
Temperature Solar Processing”

"Solar-Assisted Chemical Processes -
A Way Qut of the Fossil Energy Systems?"

- Lunch -
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15:00

15:30
17:00

18:00

"Solar Thermal Processes Using Metal
Carbides and Nitrides®

"Approaches to High-Temperature Solar
Destruction of Hazardous Wastes"

"High-Pressure Solar Ammonia Dissociation"

- Visit to PSI Solar Facilities & Coffee Pause -

Prof. Alexander Wokaun
Paul Scherrer Institut
Switzerland

Dr. Paul Kesselring
Paul Scherrer Institut
Switzerland

Prof. Edward A. Fletcher
University of Minnesota
USA

Prof. Yutaka Tamaura
Tokyo Institute of Technology
Japan

Prof. H.R. Oswald
University of Zurich
Switzerland

Dr. Michael Epstein
Weizmann Institute of Science
Israel

Prof. Robert D. Palumbo
Valparaiso University
USA

Prof. Armin Relier
University of Hamburg
Germany

Prof. Jean P. Murray
Portland State University
USA

Dr. Karl H. Funken
DLR-K&In
Germany

Andreas Luzzi
Australian National University
Australia

Debate: "Solar Chemistry beyond the Year 2000 - Potentials, Possibilities,

and Applications”
- Closing -
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Why Solar Chemistry?

Paul Kesselring

Paul Scherrer Institut
CH-5232 Villigen PSI
Switzerland

Why solar chemistry? Sponsors might want to get a convincing answer to
this question before funding one of our projects. This here, however, is
the first contribution to a specialists’ meeting. So why this title!?

Before starting for a busy day, full of technical and scientific discussions,
it might be worthwhile to lean back for a moment and remind ourselves
why solar chemistry is important. The topics, | would like to touch in this
connection, have all to do with the substitution of fossil resources by re-
newables and, therefore, are connected with the modern catchword
"sustainability”. The questions related to these topics are:

- Why not an all electric energy system?

- Why is it so difficult to replace oil in some of its most valuable
functions?

- Why solar thermal chemistry?

Emphasis will be put on the longterm importance of solar chemistry for
future energy systems. However, other issues such as "raw materials” or
"waste treatment and recycling" are different aspects of the same problem
area and should not be forgotten.
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IEA-SolarPACES International Workshop

on

High Temperature Solar Chemistry

PSI, August 17, 1995

Why Solar Chemistry?
P. Kesselring, PSI

e Why this title?!

e Sustainability and Substitution of oil:
Energy, commodities, ..., ...

e Energy
-  Why not all electric?
-  Why is oil so difficult to replace?
- Why solar thermal chemistry?

e Final remarks
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Energy System

o fossil energies
still dominant

e substitution

unavoidable in the
long term

PSIKESSELRING/S. Marz 1995/10.00C/SES0
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PSI Contributions

clean and efficient
combustion
laserdiagnostics
BIOMETH

thin solar cells
solar hydrogen
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l The Sun as a Primary Energy Source I

“"EFFICIENCY"

A,

Solar Electricity
T I

10 —t
Biomass (electricity, methanol)

] I
10

—t Hydroelectricity
-6
o 1 .
10”3 Fossil Fuels o )
-T . Electricity from Fossil Fuels
4 .
| | Cost
2 -1 Sfr./kW
10 10 1 [Str/kiWh]

PSI26. Juli 1994/KESSELRING/33.DOC/KPS0/SES0




15

PAUL SCHERRER INSTITUT

WHY NOT "ALL ELECTRIC" ?

STORAGE OF POTENTIAL ENERGY REQUIRES
BATTERIES

COMPARED TO GASOLIN:

- ENERGY DENSITY 2 ORDERS OF MAGNITUDE
SMALLER

- POWER DENSITY (ENERGY STORAGE + ENGINE) AT
LEAST 5x SMALLER FOR ELECTRIC SYSTEM

- CHARGING TIMES: ORDERS OF MAGNITUDE
LONGER FOR BATTERIES (102 - 103)

CAN YOU IMAGINE A "JUMBO-JET" ELYING WITH
BATTERIES 2!

RATHER: SYNTHETIC FUELS + FUEL CELLS

PSI/IS. September 199242 TXT/SES0
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Flow of Matter and Power

e (Gas station for cars:

11l/s of gasolin = > 30 MW
(chemical)

e River powerstation Eglisau:

River Rhein
>300'0001l/s, 10m= =30 MW
(electric)

PSI/28. Juli 1994/KESSELRING/33.DOC/KPS)/SESD
\_ .
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PAUL SCHERRER [NSTITUT

THE IMPORTANCE OF
STORAGE AND TRANSPORTATION OF ENERGY

IL

PUMPING: FROM GROUND

SOLAR ENERGY

RADIATION ON SURFACE

TRANSPORTATION TRANSPORT
STORAGE RECEIVER

v T
RAFFINATION ELECTRICITY  STORAGE ? ?
DISTRIBUTION TRANSPORT
STORAGE
DISTRIBUTION (RETAIL) DISTRIBUTION
STORAGE (END USER) STORAGE
FINAL USE " FINAL USE FINAL USE

25. Juni 1991/KP50/SE50
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PAUL SCHERRER INSTITUT

STORE POTENTIAL, NOT KINETIC ENERGY !

KINETIC ENERGY POTENTIAL ENERGY
FLY-WHEEL HYDRO-RESERVOIR
BULLET GUN POWDER

EL. CURRENT SEPARATED CHARGES
HEAT CHEMICAL BOND

RADIATION

Tt ket o s e i =

DIFFICULT TO STORE EASY TO STORE

POTENTIAL <-> FORCE

25, Juni 1891/KP50/SESD
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FORCES (MICROSCOPIC LEVEL)

GRAVIATION 107 (Lev)
VAN DER WAALS 1073
HYDROGEN BOND 1071
COVALENT BOND ) 1 (eV)
IONIC BOND 1
NUCLEAR FORCES 106 (MeV)
") TYPICALLY 418 kJ/Mol (100 k Cal/Mol)

or 4.3 eV
-»  CHEMICAL STORAGE IS

THE LONG-TERM STORAGE METHOD

25. Juni 1991/KP50/3E50
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PROBLEMS OF A POST FOSSIL ERA

- PRIMARY ENERGY SOURCES;

- RENEWABLES (SOLAR)
. NUCLEAR ENERGY (FISSION, FUSION)

- "PRODUCTS":
. SOLAR RADIATION
. HEAT
. ELECTRICITY

- CONVERSION TO CHEMICAL ENERGY:

- RADIATION - PHOTOCHEMISTRY
. HEAT — THERMOCHEMISTRY
. ELECTRICITY - ELECTROCHEMISTRY

11. August 1992/KP50/SESC
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Photochemistry and Thermochemistry

Theoretical limits of efficiencies

1Sun 10 100 1000
1.0 l | l l
: : ' | L
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picture according to R. Sizmann

Advan_tages and Disadvantages

Thermochemistry

Photochemistry

Advantages

High efficiency possible

Low temperature

Disadvantages

Direct radiation only

Efficiency more limited

05.04.1984/KESSELRING/1 3. DOC/KPS/SESD




22

s PAUL SCHERRER INSTITUT

Solar High Temperature
Chemistry

e Replace "fossil fire” by "solar fire" in
conventional thermal processes

= Failure ahead !

e Solar specific processes
— minimize material
— short time constant of first stage
— direct absorption/reaction

— combined thermo-/photochemical
reactions

PSIf26. Juli 1994/KESSELRING/33.DOC/KP50/SESD
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" Hydrogen Sulfide and Solar Energy in the 21st Century

Edward A. Fletcher

Department of Mechanical Engineering
University of Minnesota

Minneapolis, MN 55455, USA

Sulfur is present in all the oil and gas we refine. Hydrogen sulfide is a
disagreeable toxic waste. I's produced in sweetening fossil fuels. it
should be regarded as a valuable resource. Many gas wells contain so
much they cannot be used now. Many, all over the world, contain more
hydrogen sulfide than hydrocarbons. If the hydrogen associated with sul-
fur in U.S. and Canadian refining operations had been recovered rather
than oxidized to water in 1979, for example, it could have provided the
heating value of 17 million barrels of gasoiine. It would have had even
greater value as a feedstock for the chemical and petroleum industries. A
study we did eleven years ago (Diver and Fletcher) suggested that, if hy-
drogen sulfide were assigned a value of zero (as an industrial waste it has
a substantial negative value), a solar energy process could be marginally
competitive with the Claus process which is now used to deal with it. Less
costly energy from any current conventional source would provide a
strong, profitable alternative, now, if it were used to recover both hydro-
gen and sulfur without introducing air. The Claus process uses air to burn
the hydrogen to water. The nitrogen becomes a pollutant laden stack gas
which is very costly to clean up. When current environmental constraints
are met, the cost of the clean up unit alone cannot usually be recovered
from the sale of the sulfur.

Previous studies of hydrogen sulfide thermolysis were limited to upper
temperatures of about 1200K. There is an important thermodynamic ad-
vantage that would be realized by operating at the higher source tempera-
tures easily achievable with highly concentrated solar energy. That ther-
modynamic advantage exists regardless of the energy source. One can
show [1] that the maximum energy and conversion efficiencies of endo-
thermic processes are related, by Carnot's law, to the temperature at
which the process heat is taken up. That means that the higher the tem-
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perature of the reactor the lower will be the amount of high temperature
process heat required to split a mole of hydrogen sulfide. Moreover, the
fraction of the hydrogen sulfide that is converted will be greater. There will
be less hydrogen sulfide to separate from the products and recycle. Thus,
there will be fewer losses associated with heat exchangers, separators,
and all the other components of a system.

We have already done several studies, analytical and experimental, of
solar thermolysis [2]. We got very high yields and conversions in experi-
ments at temperatures ranging to about 1800K. High temperature thermo-
lysis in the absence of air can become an important and profitable suc-
cessor to the Claus process. In a transition period its successor might well
be supplied by conventional energy sources; Claus plants should be
phased out with the emergence of more profitable and more environmen-
tally benign alternatives. After that, as conventional energy sources are
depleted and become more costly, solar can provide a credible alterna-
tive. In addition it will make vast reserves of fuels with increasingly high
sulfur content profitable.

Thus solar hydrogen sulfide treatment has a strong potentiality for giving
credibility- for providing an entree to other solar industrial thermochemical
processes.

[1] E.A. Fletcher and R. Moen, Science 197, 1050 (1977).
[2] R.B. Diver and E.A. Fletcher, Energy 10, 831 (1985).



Hydrogen Sulfide and Solar Energy in
the 21st Century

Hydrogen Sulfide Thermolysis

Jon Noring
Richard Diver
Todd Kappauf
Robert Palumbo
Jean Murray

Kent Scholl

Electrolysis and Solarthermal
Electrolysis

Kirk Nygren
Aldo Steinfeld
William Smyrl

Radoslav Atanasoski
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Table 1 - World Oil Reserves by Region,

1980 and 1989 ~
Oil Reserves  Share of 1989 . Reserves
Remaining at 1989
Region 1980 1989 Reserves Production Rate
(billion barrels) (percent) (years)
Middle East 362 660 65 110
70
Latin America 125 12 51
Soviet Union & 66 60 6 13
East. Europe
Africa 55 o9 6 28
Australia 40 47 5 20
North America 39 42 4 10
Western Europe 23 18 2 13
TOTAL 655 1,011 200 44

Source: British Petroleum, PB Statistical Review of World Energy
(London: various years) '
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Global Hydrogen Sulfide Content, % by Weighta

Location Hydrogen Sulfide, %
France (Lacq) 16

Germany (Varnhom) 22

Canada (Harmatten, Alberta) 54

Canada (Panter River, Alberta) 70

Canada (Bearberry, Alberta) 30

USA (Smackover, Mississippi) 25-45
Astrakhan (former USSR) 23

China (Zhaolanzhuang) 60-90

aT. Kappauf, J.P. Murray, R. Palumbo, R.B. Diver, and E.A. Fletcher,
Energy 10, pp. 119-1137 (1985).
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CONCLUSIONS

The diverse attack on hydrogen sulfide to obtain two salable
products is very striking. Every yeara large amount of potential
resource is being wasted and there is no doubt it should be
stopped. The success in the development of a suitable
technology for the production of hydrogen and sutfur will signify
the attainmnent of the triple objectives of waste minimization,
resource utilization and environmental pollution reduction.

J. Zaman, A. Chakma, Fuel Processing Technology 41,
pp. 159-198 (1995).
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Table 1 - Thermal Decomposition of Hydregen Sulfide
Using Different Types of Reactors

Type of Reaction
System
[References]

Operating Variables

Important Results

Tubular Reacior
[22]

Tubular Reactor
[19,25]

Tubular Reactor
[18,20,21]

Tubular Reactor
[26]

Tubular Reactor
[63.64]

873-1133 K, pressure Kinetic studies were carried

131-314 kPa,
noncatalytic
1013-1133 K,
pressure 103-314
kPa MoS2 catalyst

800-1260 K, catalysts
silica, cobalt
molybdate and 1%
presulfided Pt 1230
K, 13-50 kPa, Alp0O3
catalyst

1230 K, 13-50 kPa,
Al203 catalyst

723-873 K, catalysts:
Al203, 5%
V20s5/AI203, 10%
V20s/Al203, 5%
VoS3/Alo03

out for thermal decomposition

MoS2 catalyst attains stable
activity at 65% of the initial
value. Hougen Watson Type
rate equations developed.
Equilibrium conversion
maiched the thermodynamic
data

A detailed study of the
thermodynamics and rate
processes were made

Single pass conversion of
27% at 1230 K and 13 kPa. A
commercial plant with capacity
106 m3 112/d proposed
Kinetic studies were made

Recirculating
Reactor

[28]
Recirculating
Reactor
[29,31]

Recirculating
Reactor
[27,44,45]

773-1073 K, pressure
5.3-12.0 kPa, MoSo
and WS2 catalysts
823 K, 6.0 kPa initial
HoS pressure, MoS»o
and other catalyst
formulation

673-1073 K, sulfides
of Mo, V, Fe, Cu and
Zn as catalyst

95% conversion of H2S by
continuous removal of S and
intermittent removal of Ho
Mechanism studies and
promoter effects in catalysts

The effects of the sulfides on
hydrogen evolution were
investigated.

Membrane Reactor
[33,38]

673-1073 K, sulfides
of MoS2 catalyst

Conversion twice the
equilibrium value obtained
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Themal Diffusion
Reactor [43]

Thermal Diffusion
Reactor
[44,45]

Hot wall at 773 K,
cold wall at 293-298
K, catalysts used

Cro83, CoS, NiS and

FeS

Hot wall at 673-
1073 K, cold wall at
353-373 K,
Catalysts/sulfides
used:; MoSo,
V2S3/FeS,
V2S3/CugSs,
V283/ZnS, Fe7S8g
Fe7S8/MoS2 and
Fe75g/NiS1 .2

40% decomposition in 4 h
(batch), H2 concentration at
the top of the column 96%.
H2S conversion of 10%
obtained while the equilibrium
value at 500°C was only 0.6%.
Equilibrium shift obtained
because of separation of
products. The performance
evaluated with different
catalysts and reactor variables

Solar Reactor
[46,46]

Solar Reactor
[48,49]

Temperature 893-
1043 K, catalysts
used: Ni-W, Ni Mo,
Co Mo and alumina

1000-1700 K,
50.6 kPa

Cobalt-molybdenum catalyst
has the highest activity. A
hydrogen yield of 19% was
obtained at 770°C and
residence time of 0.3 s.
Kinetic rate equations were
developed

Ceramic materials like ZrO»,
Al203 and mullite appear to
be chemically suitable for high
temperature reactor. High
yields (of the order 0.5} and
quench fractions (of the order
0.7) were obtained over a
range of temperatures and
feed rates '
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1.0p

ideal conversion

0.2 conversion

0.0 s 1 1 1 ;
1500 1600 1700 1800 1900 2000

Temperature, K
Fig. 3. Varation of the experimentally observed and
the ideal conversions with temperature. The pressure
used to calculate the ideal conversions is 0.033 atm, and
since the feed rate was held constant at 0.1 mole/min,

the experimental pressures actually varied from 0.026 to
0.037 atm.
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A New Energy Global System:
Combination of Solar Energy and Fossil Fuel Energy
Using Metal Oxides

Yutaka Tamaura

Tokyo Institute of Technology

Research Center for Carbon Recycling and Utilization
2-12-1, Ookayama, Meguro-ku, Tokyo, Japan

Fossil fuel such as coal and methane can be combined with solar energy
by the endothermic solar chemical process (Solar/Fossil energy mixing)
(S/F-EM). By this process (S/F-EM process), solar energy is converted to
chemical energy, which can be transported and stocked. Also, the suifur
in the fossil fuel will be removed using solar energy in the S/F-EM. This
will reduce the air pollution load of sulfur causing acid rain. During the
period of the shift from fossil fuel to solar energy, both fossil and solar en-
ergy should be used. The endothermic solar chemical reactions using
metal oxides, which are atiractive candidates and have been thermody-
namically analyzed [1], are:

1. Coal + ZnO = CO (with small Hz) + Zn
2. Coal + Fe304 = CO (with small H2) + Fe
3.CH4 +ZnO =CO + 2H2 + Zn

4, CH4 + Fe3z04 = 3 Fe + 4CO + 8H2

In Egs. 1 and 2, the reactants are solids. Egs. 3 and 4 have been exten-
sively studied [2, 3]. In this paper, we have studied the reaction rates of
Egs. 1 and 2. Based on the results for the reaction rates of Egs. 110 4, a
new energy global system, which can combine fossil fuels and solar en-
ergy, will be presented.

[1] A. Steinfeld, C&E'95 - Proc. Int. Symp. CO2 Fixation and Efficient
Utilization of Energy, pp. 123-132, Tokyo, Nov. 29 - Dec. 1, 1993.

[2] A. Steinfeld, P. Kuhn, J. Karni, Energy - The International Journal 18,
pp. 239-249, 1993.

[3] A. Steinfeld, A. Frei, P. Kuhn, Metallurgical and Materials
Transactions 26B, pp. 509-515, 1995.
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A New Energy Global System:

Combination of
Solar Energy and Fossil Fuel Energy
Using Metal Oxides

Y utaka Tamaura

Tokyo Institute of Technology
Research Center for Carbon Recycling and Utilization
2-12-1, Ookayama, Meguro-ku, Tokyo, Japan '
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Mid—term Tech
(30 ~ 100years)

=ossil {ue
power plant

I on

<> H,power plant

Newly developed
liquified Hp tank .
Long-term Tech

(100 ~ years)
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CO2 reduction effectiveness
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Comparison of CO2 reduction effectiveness
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| Reactivity of Solids - Basic Aspects for the Chemical
Conversion of High-Temperature Solar Energy

H.R. Oswald

Institute for Inorganic Chemistry
University of Zurich
Winterthurerstr. 190

CH-8057 Zurich

Switzerland

The diversity of substances in their solid appearance is by far more abun-
dant than in the other states of matter. Due to the rigid structure of most
solids, their behaviour towards gaseous, or liquid, or solid reactants is
fundamentally different from processes taking place in the homogeneous
liquid or gaseous states of aggregation. In the given context of high tem-
perature solar energy conversion our interest is centered on the thermal
reactivity of metal oxides. Apart from the obvious condition that a process
aiming in the storage of energy has to be endothermic, the respective
thermodynamics are not emphasized. Rather the kinetics and mechanis-
tics, based on transport properties, exen a crucial influence on the course
of heterogeneous solid state reactions. Investigations on the reactivity of
solids as a function of the external parameters temperature, pressure,
atmosphere, perhaps irradiation, require the use of well defined samples.
A solid is, however, by far not sufficiently characterized solely by its
chemical composition and crystal structure. In addition, further properties
constituting the 'individuality of solids' such as size and shape of particies,
crystallographic faces making up the surface, texture, domain structure,
specific kinds of lattice defects as e.g. vacancies in nonstoichiometric ox-
ide phases, optical properties, etc. are decisive for the thermochemical re-
activity. Therefore a consistent description of the chemical behaviour of
solids requires manifold complementary techniques of investigation.

In particular, these general considerations will get illustrated by exiracts
from a recent Ph.D. thesis [1] in the framework of a collaboration between
the Solar Chemistry Group at the PSI and our Institute. It deals with a two
step process cycle: the solar thermal reduction of magnetite resp. iron
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manganese spinels at temperatures above 2000 K, followed by the oxida-
tion of the resulting Fe(1-y)O, wustite resp. manganowustite by water va-
pour in a low temperature region of 600 - 700 K under formation of mo-
lecular hydrogen. On the high temperature side it is shown that the inser-
tion of bivalent manganese or cobalt into the FezOg4-lattice leads to a
significant lowering of the thermal reduction temperature. Nevertheless
reaction times in the order of seconds have to be achieved. The experi-
ments on the reoxidation of the metal oxide [2] proved that the efficiency
to split water remains. Detailed kinetic experiments about the reactivity of
ternary metal oxide phases under defined water vapour pressure were
undertaken in a fixed bed reactor and quantitatively followed by gas ana-
lytical techniques. They resulted furthermore in defining an optimal com-
position (Fep.oMng.1)0.970 for the envisaged purpose.

[1] K. Ehrensberger, Zweistufiger Metalloxidzyklus zur chemischen
Speicherung von Sonnenenergie: Kinetische Untersuchungen
thermochemischer Redox-Reaktionen an binéaren und ternaren
Eisenoxidphasen mit Kochsalz- oder Spinelistruktur; Diss. Univ.
Zurich, 1995.

[2] K. Ehrensberger, A. Frei, P. Kuhn, H.R. Oswald, P. Hug; Solid State
lonics 78 (1995) 151.
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Reactivity of Solids — Basic Aspects for the Chemical
Conversion of High-Temperature Solar Energy

H.R. Oswald

Institute for Inorganic Chemistry, University,
Winterthurerstrasse 190, CH-8057 Ziirich / Switzerland

Introducing myself I have to say that I am no specialist for Solar Energy Conversion
or related topics, but just an Inorganic Chemist with some experience about the Solid
State. In addition to the generation of new phases and determination of their structure
and physical properties, this field also encloses the investigation of the Reactivity of
Solids. This term comprises the behaviour of a solid substance when confronted with
chemical partners in another solid, or a liquid, or a gaseous phase, and also the
influence of heat. The main goal of such work is to correlate the macroscopically
observable processes with those occurring on a microsopical, even atomic level.

[Folie 1]

This sounds quite simple — but, as we all know, due to the rigid structure of most
solids, their reactions proceed fundamentally different from those in the
homogeneous liquid or gaseous states of aggregation.

The contacts which have developed during the last few years between the Solar
Chemistry Group at the Paul Scherrer Institute and the Solid State Division of the
Inorganic Chemistry at the Zurich University are, at least to my opinion, of mutual
interest. Our tradition in dealing with metal oxide systems meets indeed well with the
activities at the PSI in high temperature solar energy conversion by means of oxides.
Besides the demand that a process aiming at the storage of energy must be
endothermic, thermodynamic aspects are not in the center of our interest. There are
rather the kinetics and mechanistics which — based on transport properties — exert a
crucial influence on the course of heterogeneous solid state reactions. If you can
forgive me the simplicity of this comparison, I may mention that the negative value of
the Gibbs Free Enthalpy (per mole oxygen) for the oxidation of aluminum is about
four times as big as the one of copper — the velocity of aluminum oxidation at 500 to
600°C is, however, by orders of magnitude slower than the one of copper!
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Investigations on the reactivity of solids as a function of the external parameters
temperature, atmosphere, pressure, perhaps irradiation require the use of well
defined samples. A given solid is, however, not sufficiently characterized by merely
knowing its chemical formula and crystal structure.

[Folie 2]

Instead, there are numerous further properties constituting the 'individuality' of
solids and strongly influencing their behaviour. Therefore, a consistent description
requires the use of manyfold complementary techniques of investigation (analytical,
structural, morphological, etc.).

Extracts from the recent Ph.D. thesis by Kobi Ehrensberger will serve now as a more
concrete information about the specific systems which are dealt with. They root in a
two step process cycle first proposed by Nakamura in 1977: the solar thermal
reduction of magnetite resp. ternary iron metal spinels at temperatures above 2000 K,
followed by the oxidation of the resulting Fe(1-y)O, wustite resp. manganowustite by
water vapour in a low temperature region of 600 - 700 K under formation of
molecular hydrogen.

[Folie 3]

The motivation to use ternary oxides is to influence the solid state chemical properties
of the involved spinels resp. their thermal reduction products.

On the high temperature side, thermodynamic calculations reveal that AGR for the
thermal reduction of the spinel phase Mn304 to MnO equals zerc at about 500 K
lower temperature than for magnetite,

[Folie 4]

Such an effect is desirable for technical reasons but, unfortunately, the rock salt type
MnO is no more able to split water as FeO (resp. Fe1.yO) well does.

As high temperature investigations in the powder clouds finally striven for are not
very easy for us, two types of model experiments on pressed pills were performed:
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- in the laboratory with a HT fumace
- on the solar furnace.

As non-iron metal M, rﬁainly Mn was chosen, but also Co, Ca, Mg, Zn looked at. The
laboratory experiments with 10 s irradiation prove that introduction of M definitely
reduces the reduction temperature.

[Folie 5]

For the solar furnace tests, a device named "SAROCOI" was constructed by K&bi
Ehrensberger.

[Folie 6]

It allows an exact monitoring of the gas atmosphere resp. oxygen production by mass
spectrometry, control of the reaction time at a resolution of 1/10 s, both at known flux
density distribution. It could for instance be proved that with Mn-dotation a
significantly shorter reaction time is sufficient to achieve the thermal decomposition.

[Folie 7]

As the product analysis by X-ray diffraction demonstrates, the (200) reflection of the
rock salt phase appears after 1 s under presence of Mn, but only after 1.5 - 2 s using
pure magnetite.

A factor which is not yet sufficiently known is the radiation absorption of the solid
and its temperature dependence (set equal for the compared materials in first
approximation). Nevertheless, the results indicate that it will be possible to achieve
fast enough reduction of the about 10 um particles in a powder cloud. In parallel to
our laboratory work there were permanently and still are also near-application
experiments in powder cloud flow through reactors by Peter Kuhn and coworkers, to
whom I acknowledge these transparencies.

{Folien 8, 9]
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In our experiments, only little dependence from the kind of the atmosphere (argon or
air) was observed, and the product exhibits no segregation into Mn-richer or poorer
phases. An undesired side effect is the oxidation of magnetite to hematite, as observed
by the appearence of its (113) reflection. Evidently, this oxidation is lowered by
shorter time of reduction. Certainly, there is still much work needed on the HT-side.

Now to the low temperature part of the circle. It regards thus the re-oxidation of the
monoxide with water vapour at moderate temperature, i.e. the “"water splitting” under
formation of molecular hydrogen. This topic is contained in very detail in the said
thesis by Mr. K. Ehrensberger. He synthesized manganowustites with varied
manganese content by preparative solid state chemical standard procedures, under
inert atmosphere, followed by adequate quenching, as below 570°C, the pure iron
oxide is metastable and tends to disproportionate into metallic iron and magnetite. In
general, the manganese content stabilizes the rock salt phase.

With these products, kinetic experiments were performed in a fixed bed reactor under
defined water vapour pressure and mass spectrometric detection of the hydrogen
formed.

[Folie 10]

Typical results for the hydrogen production as function of time and the temperature,
here for the pure iron oxide, look as follows:

[Folie 11]

The dependence on the manganese content, at 873 K and for a water partial pressure
near 0.1 bar is shown on the next transparency.

[Folie 12}

Without manganese, the hydrogen evolution is fastest. It remains reasonably fast with
10 % manganese, but gets slower and slower with increasing Mn-content. Printing the
conversion o resp. (1-0¢) versus time, as usual in solid state kinetics, illustrates an
analogous behaviour.

[Folie 13]
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Particularly interesting is to consider the average reaction velocity versus the
manganese content.

[Folie 14]

The black squares represent the experimental results, whereas the green crosses refer
to the diffusion coefficients of iron in iron-manganese-spinel phases which are
fortunately available from recent work in literature. The excellent fit leads to the
conclusion that the diffusion of iron in the (product) spinel represents the reaction
rate determining step.

It is well necessary to say something about the phase analysis. In order to follow the
manganese content in the initial and product phases, eight samples of the same initial
composition were oxidized, but quenched after different time of reaction (slide 1),
and subjected to a phase analysis by X-ray diffractometry. The results are as follows:

[Folie 15]

After 5 min one finds a rock salt phase with slightly lowered manganese content and a
product spinel phase relatively poor in manganese. As the reaction prdceeds, two rock
salt phases are found — the already mentioned one and another with much higher
manganese percentage. This is clearly a segregation effect. After still longer time (25
min oxidation), the manganese percentage of the spinel phase is continuously arising,
and there is again only one, manganese rich rock salt phase. The hydrogen production
slows much down in this period. We end up with a homogeneous manganese-iron-
spinel corresponding to the Fe : Mn ratio of the initial sample. Evidently, there is
taking place a solid-solid reaction among a Mn-rich rocksalt and a Fe-rich spinel
phase, under uptake of oxygen from water. These observations have been
supplemented by X-ray photoelectron spectroscopy and by direct observation using
analytical transmission electron microscopy. The comparison of the Mn-distribution
(left on slide 2) and the Fe-distribution at time zero prove the homogeneity of the rock
salt initial phase. After a reaction time of 15 min, however, manganese-rich islands
(left on slide 3) in the order of 1 um are found, besides iron-rich domains (right). The
percentages are, although at considerable limits of error, in good agreement with the
mentioned results from the lattice constants by X-ray diffractometry. The main result
is that at sufficient temperature, the product spinel is homogeneous at the end of
oxidation. '
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Finally I may mention an interesting side effect of the manganese dotation, namely —
within given limits — an increase of the amount of hydrogen formed. One would
believe at first sight that replacement of Fe by Mn must provoke a decrease of
hydrogen, as manganese remains bivalent till the end of the oxidation process. But:
introduction of Mn also influences the non-stoichiometry coefficient y of the rock salt
phase, which amounts up to 10 % for the pure, manganese-free wustite and falls to 3
% or less upon replacement of only 10 % of the iron by manganese. This effect
overcompensates the effect of the loss of redox-active iron and leads to the calculated
and experimentally proved effect that the amount of hydrogen form reaches a
maximum at the composition (Feg.oMng.1)0.970 of the rock salt phase!

[Folie 16]

Many points could still be mentioned, and even much more remains to be done. But in
favour of some discussion, I shall better stop now with just two statements:

- I'hope having been able to demonstrate to you that there is a lot of interesting
solid state chemistry in the given and other similar systems, and

- The expression of my heartiest thanks to Dr. Paul Kesselring for his continuous
support, to Dr. Peter Kuhn as leader of the Solar Chemistry group, and to Dr.
K&bi Ehrensberger and his successor Peter Nitesch who really did the job.
Finally I have to acknowledge also the Swiss National Foundation for financial
means, and to thank you for your kind attendance.
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Statements:

A solid is not fully characterized by its
chemical composition (formula) and crystal
structure

Solids are reacting as "individuals”

Examples of properties which make up the

- particle size resp. distribution function
- shape of particles (primary / secondary?)

- crystallographic faces making up the
surface

- type and extent of orientation of crystallites
(texture)

- domain structure (in multiphase systems)

- lattice defects (ordered / statistic)
(—> non stoichiometry)

- optical properties

- .elc.
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Metal Oxide Cycle with Ternary Oxidé§

H2 O
(Fe 1-x M X)] ,_yO

M=Ca, Co, Mg, Mn, Zn, Li, ....

KUHNE DXOC/ 1.08.95/Ehrensberger
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Thermal Reduction

FeyOq4 — 317 Fepogq70 + 04207 .
Mn3O4 — 3MnO + 0502
300
2004 o
j ’..'QXXXX
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starting oxide

dotation

thermal reduction

temperature [K]

fora=0.57)
Fe304 2100
(Mnp.aFeq.7)Fe204 10 % Mn 2050
(Mnp.gFen.1)Fe204 30 % Mn 2030
{Cop.3Fep.7)Fe204 10 % Co 2035

*} o = degree of conversion

Diploma Thesis
P. Niesch (1995)
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SAROCOI

(Sample Rotor for Controlled Irradiation)
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holder | target
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gas outlet ™

ground plate

shutter

electro-
magnet

step motor timer

MS Sarocoi.drw EK51-2/KI82
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Comparison of the Required Hlumination Time

Air: 250 W/cm?
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500 500

40 41 42 43 44 45 46 40 41 42 43 44 45 46
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® (400) Fe; 04

VERGLREE.IXXC/14.08.95/Ehrensberger
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Apparatus to Investigate the Oxidation Kinetics

APPHZOE.DOC/39.08 .95/ hrensberger

10
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Hydrogen Evolution as a Function of Time and T

Initial Oxide = Fey920O:. T = variable, p(H,O) = 4239 Pa

HY TEDOCAG 0R 98/ Ehrensherger



79

H, with Manganowustite-Phases

T = 873 K; p(H,0) = 12330 Pa

MN_GEHRE.DOC/0.08.95/Ehrensberger
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“1 - versus Time

(o0 = Degree of Conversion)
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Average Reaction Velocity

Vin = 0.00042 + 0.00446 e3¢ (6 =47 % 107)
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Total Amount of Hydrogen
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New Opportunities for High-Temperature
Solar Chemistry

Michael Epstein

Weizmann Institute of Science
P.O. Box 26

76100 Rehovot

israel

Most of the R & D efforts at the Weizmann Institute in the area of high
temperature solar chemistry, so far, have been devoted to gaseous cata-
lytic reactions. Recent results of the reforming reactions using WIS’s tubu-
lar receiver and DLR’s volumetric reformer will be presented.

The area of interaction between highly concentrated solar radiation and
reacting solids is even more challenging, but also, potentially, has long list
of applications. The concept of beam down reflective tower opens the
possibility for a variety of high temperature receiver / reactor devices for
chemical applications.

Three general approaches to handling of solids in highly concentrated
solar radiation will be discussed. The first example is gasification of fine
coal particles dispersed in liquid drops while a cloud of such drops is
moving through a focal zone of highly concentrated solar radiation.

The second approach is indirect and direct fluidized bed solar reactors,
illuminated from the top.

The third concept involves solid reacting particles dispersed in a conti-
nous liquid phase at high temperatures.
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New Opportunities For High Temperature

Solar Chemistrv

M. Epstein
Solar Research Facilities Unit
The Weizmann Institute of Science, Rehovot

Presented at the International Workshop on
High Temperature Solar Chemistry

August 17,1995

PSI, Switzerland
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High Temperature Solar Chemistry

1. Introduction
Recent developments of windowed solar receivers and the optical

concept of the tower reflector with its associated concentrating devices open
new avenues for high temperature solar chemistry. One of the most
challenging directions is the interaction between highly concentrated solar
radiation and solid reacting particles. Reactions such as gasification of
carbonaceous materials, thermal décomposition of metal oxides or carbonates
are of high importance. The reacting particles can be dispersed in gaseous or in
liquid phases (i.e. molten salts). Some examples and preliminary test results
for these systems are described.

2. Reforming reactions

Catalytic reforming reaction between methane, CO; and steam using
concentrated solar radiation has been reported by several authors in the last
decadell). 2. However, only recently, a solar reformer on a hundred kilowatt
scale has been coupled with a matching methanator to close the loop in a
continuous mode of operation.

During the first half of 1995 experiments were performed with DLR's SCR
volumetric reformer at WIS, integrated into the existing closed chemical heat
pipe loop.

Summary of some results are shown in Table 1. The system and the
receiver's subsystem are shown in Fig. 1,2. Some typical results from the 6th
and the 13th of April are shown graphically in Figs. 3,4. Power inputs of up to
280 kwatts and 80% methane conversion were obtained. The entire system is
successfully operated. Currently a tubular reformer is under testing.

3. The Reflecting Tower Concept

Although the concept of Reflecting Tower has been mentioned in the
literature in the past(3] it did not succeed to attract much attention due to
"impracticality”. Today there are good chances for the successful
implementation of the concept. Fig. 5 presents the concept schematically. The
"Reflecting Tower" consists of a hyperbolic shaped mirror placed on the tower
at a certain height such that its upper focus coincides with the aim point of the
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heliostats field. This hyperbolic mirror reflects the light down so that its lower
focal plane coincides with the entrance aperture to a CPC, whose exit aperture is
the receiver's opening. Fig. 6 shows the possible theoretical concentration
factors with parabolic dish, regular tower (with heliostats as Fresnel reflectors)
and reflecting tower at various angles of sun declinations. ~ From this figure
one can see that for large solar tower plants {ratio of field radius to tower height
more than 1 or typically 150-200 meters) the theoretical concentrations that can
be achieved with the "Reflecting Tower" are much higher than with the
regular "Solar Tower". For example, at 30 degrees sun declination one can
achieve 22 000 concentration level compared to 10 000 with the classic "Solar
Tower" The superiority of the "Reflecting Tower" is even more convincing as
one extends the size of the plant and the field. The advantages of the reflecting
tower concept are both optical and practical because it enables the placement of
the reactor and the CPC on ground level. The tower becomes simpler and
cheaper. The chemical plant is built on the ground. Its construction and
maintenance becomes much easier.

To illustrate this concept an example design of a commercial scale solar
chemical cracker has been performed. The purpose of the plant is to crack
thermally 62 000 t/y LPG (Liquid Petroleum Gas, a mixture of n-butane, i-
butane and propane) to produce 20 000 t/y ethylene, 9800 t/y propylene and
other fuels. The solar power required is 28 MWth into the process. The layout
of the heliostats field is shown in figure 7a. The field comprises about 700
heliostats 95m2each . The tower height is 125 meters and the shape of the
hyperbolic mirror installed on the tower is shown in figure 7b. The area of this
reflector is 1483 m? and the ratio of the tower reflector area to the heliostats
reflective area is 2.2%. An example of the CPC (Compound Parabolic
Concentrator) arrangement is shown in figure 8. The reflective area of the
CPCs is 1135 m?. The reactor design is shown in figure 9. The reactor is of
hexagonal shape with 13 m on each side. The radiation enters through 7
openings in the ceiling of the reactor. The reactor includes 240 cracking tubes.
The radiative heat transfer inside the cavity, the kinetics and chemistry
calculations have been performed to design and assess the performance of this
reactor.
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4. Solar gasification of organic solid particles dispersed in liquid drops

The main obstacles for using solar energy for industrial processing of solids
are:
¢ Transportation of solids

- dust sedimentation on optical components (reflective surfaces)
reduces reflectivity and increases maintenance cost.

- dust increases the attenuation of the reflected concentrated
radiation in the atmosphere.

* Handling and Feeding Systems of the Solid Particles

- Expensive and complicated mechanisms and moving parts in hot
environment (conveyors, vibrators, etc.)

- Complicated feeding system (i.e. screw feeders) of the solid
particles (i.e.coal, wood, etc.) into the hot reactor (pneurnatic
teeders are forbidden)

* Generating and injection of high temperature steam

- superheated steam at a temperature close to the reaction

temperature (i.e. 900°C) is required.

A new concept for solar gasifier is introduced to overcome most of these
obstacles.

The concept involves the interaction between very high concentrated solar
radiation and coal particles dispersed inside water drops. A slurry of coal in
water is prepared and piped in a well-known technology. (Coal-water mixtures
typically 60-70% by mass, particles sizes of 100-300 microns with stability
dispersants 0.2-0.5% by mass are piped in many projects around the world. The
longest and largest slurry pipeline in operation is the 440 km, Black Mesa coal
pipeline in Arizona USA. It transports 4.5 million t/y in 457mm pipe
diameter.) At the solar site the solid content is adjusted in an agitated tank to
the conditions required by the solar gasifier by adding water. Typical
composition range is 10-30% solids by mass. The slurry is pumped and injected
into the solar reactor through an array of pressure nozzles which create a cloud
of drops at the focal volume. A drop of typical average diameter of 2 mm can
contain about 100 particles of 200 microns in the case of 10% slurry. When a
drop is exposed to a high level of concentrated solar radiation the black
particles are heated rapidly. At a critical radiation intensity above a certain
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threshold level a small vapour film is created around the particle. At this
critical flux the heat absorbed by the particle surmounts the thermal losses by
radiation, convection and conduction into the surrounding water film. Once
the vapour film is formed the heating rate is suddenly increased and reaches
105-106°C/second and the particle temperature is increased dramatically. Also,
when the film of vapour is created the drop explodes and its fragments behave
as new, smaller bodies which absorb the radiation. Nevertheless, from
preliminary experiments, because of the rapid heating rate, the particles reaches
the temperatures required both for devolatilization and gasification processes.
The particles react with the water vapour in their vicinity and are gasified. The
behaviour of a single drop and particle are illustrated in Figure 10. The cloud
of drops behaves similar to a cloud of particles. One of the main problems is to
obtain long residence time, enough for heating the particle and reacting with
the vapour. In preliminary experiments this has been achieved in "impinging
jets reactor”. In this type of reactor two or four jets of drops were sprayed
through pressure nozzles from opposite directions so that the drops were
slowed down in the focal zone of a solar beam. Solid cone and whirl chamber
nozzles were used (see Figure 1114]). Other types of reactor such as cyclone can
be used as well. The experimental setup is shown schematically in Figure 12.
Gasification of charcoal was obtained in this type of reactor. A slurry of 1% in
mass charcoal in water was used. About 50% of the charcoal was gasified in a
once-through mode of operation. The unreacted drops remain mostly cold, are
removed from the reactor and can be recycled.
The advantages and disadvantages of this concept are:
* Advantages
- Easy transportation as a water slurry
- Preparation of the solids can be done far from the solar site. Dust is
prevented.
- Cheap, simple feeding system such as spray pressure nozzles.
- Minimizing the amount of surplus of steam above what needed for the
reaction.
- Very high energy fluxes can be absorbed.
- Catalyst can easily be added or dissolved in the liquid
- The receiver's housing remains cold. It has low thermal inertia and
therefore, shorter start-up time.
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¢ Disadvantages

- Requires windowed type reactor.
- Short residence time.

- Shadowed drops inside the cloud.
- Agglomeration phenomena.

5. Gasification of organic solids in molten salt medium

The beam down concept raises again the possibility of solar gasification of
coal particles dispersed in a molten phase. Past experiments done with
convenional heating show good heat transfer properties and successful resuits
were obtained for the pyrolysis stage in molten carbonate salts {5]. In the case of
direct solar illumination of the salt there is advantage for transparent melt
where the coal particles can absorb the light and reach higher temperature.
First, the coal is pyrolyzed, volatiles and tars are released as bubbles out of the
liquid, then the remaining charcoal is heated up and can reduce the molten salt
to release the pure metal through the gasification process. Fig. 13 shows
schematically a solar coal gasifier using molten salt medium.

6. The Use of Reflecting Tower in few fluidized bed reactors

Fluidized Dbed reactors of various types (moving bed, classical fluidized bed
and circulating bed) can be used for several applications in the high
temperature solar chemistry area. Most of them were using side window
which was problematic for coal gasification and pyrolysis applications. The
"Reflecting Tower” concepts open new options for the design of this kind of
solar reactors. One example is limestone (CaCQO3) calcination to form lime
(CaO). The cyclone type reactor is most suitable. The window is not required.
Different types of commercial cyclones are shown in Figure 14. All of them
work at atmospheric pressure. A cyclone can be placed on the ground,
equipped with CPC on top of the clean-gas outlet. The limestone particles are
exposed to direct illumination of solar radiation(see Fig. 15). This type of
reactor can be used also for thermal decomposition of metal oxides. however,
when pyrolysis and gasification reactions are considered the fluidized bed
reactor should preferably be equipped with a quartz window and means must
be provided to avoid any volatiles or carbon particles to reach the window.
This has been demonstrated for small size windows (20 cm in diameter) with
steam jets flashing the window thoroughly. This can be achieved much easier
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- with horizontal window at the top of the reactor with particles floating
upwards, then with a side window. A way to avoid a window in a solar
fluidized bed gasifier is shown in Figure 16. The reactor is an annular vessel.
A typical module will have internal diameter of 4 meters and 3 meter height.
The top of the reactor is equipped with a CPC. The solar beam entering the
internal volume of the reactor from top through an opening of 3 meters in
diameter. The particles are fluidized in the annulus. The heat for the reaction
is supplied by conduction through the internal wall and by convection and
radiation into the bed. The heat transfer to a fluidized bed from hot and
radiating wall as reported in the literature [7] can reach values of 1000-1300
w/m2°K. With average bed temperature of 850°C, sufficient for steam
gasification of coal, biomass and oil shales, a heat flux of 100 kW/m?2 can be
applied on the internal wall. A reactor module having the size mentioned
above is suitable for 4 MW heat into the reaction equivalent to the processing
of 1.5 t/h of brown coal.

An interesting application for the annular solar gasifier is the gasification of a
mixture of low grade coal and oil shales. Two effects are achieved
simultaneously:

a. Catalytic effect of calcium carbonate

CaCO3 — CaO +COp

CaQ + CO» - Ca0.0 + CO
Ca0.0 + C —Ca0 + C ()
C(O)—CO

where Ca0.0 is a surface peroxide and the rate determining step is the release
of the CO from the carbon structure. Increasing the partial pressure of the COz
decreased the rate of gasification indicating that the oxide is the active species.

b. Reduction of sulfur release to the atmosphere. Limestone is calcined to
form lime (CaQ) , which reacts with sulfur compounds according to:

CaCQO3— CaO + COy
CaQ + 507 +3CO = CaS+3C0O,
CaQ + HpS —CaS + HxO
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After removal of the ashes, in the presence of oxygen Ca$S is oxidized

according to:

CaS + 2 Oy —CaS0y

In conclusion, before a large enough window is developed, a different design

can be conceived and built in relatively short time. An annular fluidized bed

reactor where the internal wall is heated by the solar radiation and the heat is

transferred into the bed through the wall by conduction or by other means such

as heat pipes etc., penetrating through walls into the bed.
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Table1

at the WIS's Solar Chemical Heat Pipe Facility

January - June 1995

Date Time Flow Temp, °C Methane Power
Conversion, %
1995 kg/hr in out Total One- kW
pass
24.1 1414 379 385 654 47 37 131
24.1 1453 360 401 655 50 36 116
26.1 1414 444 421 717 72 54 174
26.1 1431 452 436 708 66 48 162
26.1 1523 445 440 726 70 51 182
27.2 1320 457 417 704 60 43 175
27.2 1524 453 419 731 70 43 163
28.2 1455 406 426 729 62 51 203
28.2 1534 402 431 746 70 24 123
14.3 1237 432 427 720 82 65 167
20.3 1251 435 418 703 62 21 96
20.3 1334 405 435 719 71 57 162
20.3 1354 433 440 697 61 46 159
20.3 1445 408 419 696 64 53 185
21.3 1140 464 440 704 66 56 225
21.3 1310 458 431 681 58 49 217
21.3 1413 444 447 723 70 63 235
28.3 1142 448 407 742 72 34 134
28.3 1321 455 411 710 58 39 164
28.3 1446 452 421 731 63 55 222
6.4 1332 675 409 717 71 65 286
6.4 1434 633 419 730 80 68 252
13.4 1117 536 433 767 86 42 144
25.4 1329 467 416 740 81 39 127
25.4 1431 466 425 727 77 64 196
26.4 1136 477 445 773 77 60 193
26.4 1321 472 451 758 77 69 225
26.4 1406 466 448 749 75 66 218
27.4 1144 418 460 769 83 51 133
27.4 1236 456 433 747 70 28 130
27.4 1406 454 437 720 65 54 216
Design 341 500 800 80 280
conditions
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" The Use of Metal Oxides in High-Temperature Solar
Processing
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The products from the thermal decomposition of either FezO4 or TiO2 can
be used to produce Zn in a two-step high temperature solar thermochemi-
cal process. The first step in the processes is a decomposition reaction:

Fez04(1) = 3FeO(1) + 1202
or
TiO2(1) = TiOx(1) + (1-x/2)O2.

The second step is the reaction of the reduced metal oxides with ZnQ to
produce Zn:

3Fe0(s,1) + ZnO(s) = Fe30a4(s) + Zn(g)
or
TiOx(s,1) + (2-X)ZnO(s) = (2-x)Zn(g) + TiO2(s).

As the iron and titanium oxides decompose above 2100 K, they experi-
ence liquid phase vaporization, O2 desorption, and O2 dissociation. The
relative importance of each of these phenomenon is governed by the gas
phase mass transfer of the molecules from the liquid/gas interface. These
decomposition steps can be modeled numerically by coupling the equa-
tions of chemical equilibrium to those of steady-state mass transfer. Fur-
thermore, the model helps define, in part, the maximum thermal efficien-
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cies of the two-step process: As the extent of decomposition increases,
the amount of Zn that can be produced increases, but at the same time
greater vaporization and Og dissociation occur which tend to decrease
process efficiency. We demonstrate that the model is an important tool for
optimizing process operating variables.
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GAS PHASE: T10, Tz0,, 0,, O

AND AR

PROPERTIES TAKEN FROM
JANAF

LIQUID PHASE: Tz0 Tt 0, Tz, 0

2 47 35
T1:203 AND T10

PROPERTIES TAKEN FROM
JANAF

G, (Lrauip) = IN_ x ( AGHO + R xT x LN (XI) )
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GAS PHASE: Fe, Fe0, 02, 0, AND AR
LIQUID PHASE: FEQ FEJ%
PROPERTIES TAKEN FROM JANAF

OR

THERMOCHEMICAL PROPERTIES OF
INORGANIC SUBSTANCES

BY
KNACKE ET AL.
G_ (Lraurp) = 3N x (4G + R x T x LN (X))
GIBBS PHASE RULE:

F=C+2 -P

C=3

P =2

- F =3 anp WE seLectep P, T, Po,
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GIBBS FUNCTIONS
Liquid and Gas Phase

L /RXT) + Pi XEJi

dx
"'A" —d},— X nbmox + amny — 0

G = Minimum
Created by George Pichelin

TRANSPORT
PROPERTIES

Dj,
5

time
t, X
t; X3

mass loss

— e, S——— Vet
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Governs NATURE OF ProbucTs

() T 1

- NFEO(L) - NZN !

®T- NFeo(e) ANP No (e b= QREO. 1

GOVERNS REFORMER TEMPERATURE AND TREF 1 = NZN {

GovERNS RADIATION LoOSss

T1=20 1

LOSS

RESIDENT TIME IN SOLAR RECEIVER

GoverNs NATURE OF PRODUCTS
NFEO(L) r= NZN !

(B) TIME 1 = NFE{)(G) AND N o T = (lREQ

(A) TIME 1 =
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SOLAR
RECEIVER
2.12 FeO (Q) .05 Ar
0.288 Fe;0,(Q) 0.00795 FeO(g)
T = 2100 K 0.00369 Fe(g)
v > 0.353 O,(g)
g 0.00964 O(g)
To Reformer Vel % T = 2100 K
Q,; = 35.86 kJ %c
H | 0.353 O,(g)
To  0.00582 Fe,0,(s) O5Ar
Oxidizer < P To Fuel Cell
‘ T = 298K T = 298K
S
2.12 FeO (Q)

0.288 Fe,0, (Q)

/‘

Qion: = 479.76 kJ

Qrerad = 73.48 kJ

0.05 Ar

0.0153 O,(g)
0.0918 FeO(s)
0.9694 Fe,0,(s)
T = 1588 K

HWNT MO

0.00582 Fe,O,(s)

P R
T =208K

T = 2100 K 0.516 FeO(s)
0.824 Fe,0,(s)
N T = 1417 X
0.708 ZnO(s) | REFORMER To Oxidizer
T = 298 K
4+ 1.5 Ar
1.5 Ar 9.536 Zn(g)
T =298K 0.172 ZnO(g)
Y 0.536 Zn(cr)
Lost Work =
127.51 kJ mrexcH | |- K oo can
7T ——
P 0.172 ZnQ(s)
Qrej = 182.7 kI 7 1% 00
0.05 Ar To Oxidizer >
0.353 O,(g) 05 Ar
T = 298 K 0.0851 Oy(g)
T = 298K
0.536 Zn(cr) FUEL :Q.;:O —
CELL W = 171.59 kJ
.___._............* )
0.172 ZnO(s) Ny
Q,; = 16.10 kJ
To 4

Reformer 0.708 ZnO(s)
T =208 K

0.516 FeO(s)
0.824 Fe,0,(s)
T = 1417 X
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Cycle Efficiency vs Quantity of Ar
Heated to Receiver Temperature

_ | I |
(A) 150 sec, 2200 K
z\(D\)E (B) 2621 sec, 2200 K
: (C) 159 sec, 2100 K
%%EQ (D) 3071 sec, 2100 K
N\
A
EQE e
A\Q\C“
\
C P
OT T
\'\‘._\______ T
“_'\'"*“:ﬁ—__h‘___
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Amount of Argon (moles)
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" Solar-Assisted Chemical Processes -
A Way Out of the Fossil Energy Systems?

Armin Reller®)

Inorganic and Applied Chemistry Institute
University of Hamburg
Martin-Luther-King-Platz 6

D-20146 Hamburg

Germany

At present 90% of the world energy consumption is covered by fossil
fuels. The consumers and the spectrum of what the energy is used for re-
veal to be extremely polarized into regionally different scenarios [1]. There
is no doubt that the substitution of fossil energy systems by regenerative
energy systems, i.e. by using "direct" or “indirect® solar energy in indus-
trial processes, will be a stepwise development. Therefore, optimal im-
plementation strategies for a timely and sustainable substitution are deci-
sive. Boundary conditions with respect to the required resources, proc-
esses as well as regional necessaries of life have to be chosen such that
first steps of solar or regenerative energy substitution can be realized.
Examples of succesful activities are photovoltaic power plants as example
of converting "direct”, i.e. solar radiation energy, or wind farms as exam-
ple of converting "indirect" solar energy. Here projects are presented
where high temperature solar processes are used for different purposes:

« High temperature process heat is obtained in advanced volumetric ab-
sorber systems (temperature of heat transport medium: > 750°C). Re-
garding actual developments of ever growing large agglomerations, i.e.
so-called megatowns, potential applications in the urgently needed ce-
ment production are discussed.

*Y In collaboration with P. Kuhn, A. Steinfeld, K. Ehrensberger, O. Becker,
U. Sazama, M. Pylkdnen, M. Posnansky, A. Imhof and H. Fricker.
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Solar-driven production of hydrogen peroxide and hydrogen by splitting
water using reversible processes in metal oxides as process mediators.
Hydrogen peroxide is a very important basic compound for the purifica-
tion and detoxification of fresh water, hydrogen most probably one of
the most important energy carriers and certainly one of the most impor-
tant future reducing agents in industrial processes [2].

Solar assisted production of metals from metal ores such as oxides,
carbonates, silicates and sulfides. This option is demonstrated by
studies on e.g. the production of iron from iron oxide ores, nickel from
nickel silicates, zinc from zinc silicates as well as copper and iron from
chalcopyrite. As reducing agents hydrogen, methane or natural gas are
used. In case of reducing agents containing carbon the simultaneous
formation of syntheses gas is emphasized.

The integration of this processes and its products in energy and process

networks and the implementation into appropriate regions is shortly dis-

cussed.

[1] Energie und Umwelt, K. Heinloth, Verlag der Fachvereine, Zlrich
(1993).

[2] See also: H.R. Oswald, lecture on this IEA-Solar PACES
International Workshop (1995).
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~ s t=1 5 PAUL SCHERRER INSTITUT

Solar Thermochemical Cycle for
Hydrogen Production

Reduced S
Iron oxide
3FeD

Step 1: Solar Thermal Dissociation
2 Fe304 - 6 FeO + 02

Step 2: Water Splitting
6 FeO +2 H,O —» 2Fe;0O,+2H,
Net Reaction:

SISI/KREISP_E.DOC/26.04.95
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" Solar Thermal Processes Using Metal Carbides and
Nitrides

Jean P. Murray

Department of Mechanical Engineering
Portland State University,

P.O. Box 751

Portland, OR 97207-0751

USA

It is hoped that we will begin a transition to an energy economy that is not
based on carbon combustion, releasing CO2 to the atmosphere, but is
instead based on hydrogen and hydrogen cycles. Yet there may always
be a place for hydrocarbons if their CO2 emissions can be reduced, es-
pecially in the transportation sector. Metals and their oxides have been
studied for use in cycles that use high-temperature solar energy to pro-
duce hydrogen, or other energy carriers. The feasibility, based on a study
of the equilibrium thermodynamics and a literature survey to find the kinet-
ics of the candidate reactions and overall system operation for a similar
system based on metallic nitrides or carbides has been investigated. In
many cases, it is far easier to form the carbide or nitride than to com-
pletely reduce the oxide as required to split water: the temperatures re-
quired are lower, and all reactants appear in the solid phase. Further-
more, valuable products such as methane, acetylene, and other hydro-
carbons, and ammonia may be formed by hydrolysis reactions with the
carbides or nitrides.

The light-metal carbides lithium carbide, Li2C2, aluminum carbide, Al4C3,
cementite FesC, and silicon carbide, SiC, can be used in a cycle based
on the carbides to produce Hz and CO at the solar reactor, and store so-
lar energy that can be recovered as CHg4, CoH2 or other hydrocarbons
when the carbide is hydrolyzed. At the high-temperature solar reactor, the
carbides Li2Co, Al4C3, FesC or SiC would be made from a reaction be-
tween the metallic oxides and either C-a proven technology, or CHa-still
to be fully tested. Each of these carbides reacts with water under various
conditions to yield either methane, or higher hydrocarbons like acetylene.
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Consider a cycle based on SiC, which illustrates the general scheme but
is not the best choice in terms of conditions required for the hydrolysis re-
actions:

In the Solar Reactor :
SiO2 + 3 CHgy yields SiC + 2C0O + 6 Ho.

The CO can be further shifted to Ho if desired, or the mixture used in the
manufacture of methanol or other chemicals.

Later, at a remote site, in a vehicle, or at the solar facility for greater car-
bon recycle, the SiC can be hydrolyzed to yield CH4 and SiO2:

SiC + H20 vyields SiO2 + CHa,
with complete conversion at 100MPa; 700°C, 12 hours.

A similar reactor could be used to manufacture NH3 from aluminum ni-
tride. For example, AIN can be made by reaction of alumina (Al2O3) and
carbon (C) or methane (CH4) in nitrogen (N2) at temperatures no higher
than 1850K. When hydrolyzed, even at ambient temperatures, the nitride
forms NH3, and the oxide can be recycled. Carbon monoxide released
during the nitridation process can be shifted to hydrogen; and even the
NH3 can be split if H2 is the preferred product.

LioC2 and Al4C3 have been proposed as a means of producing fuel for
vehicles using coal combustion as both process heat and carbon source;
a reaction conducted with solar process heat would release far less CO2
to the atmosphere.
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, Approaches to High-Temperature Solar Destruction of
Hazardous Wastes

Karl-Heinz Funken

German Aerospace Research Establishment (DLR)
Energy Technology Division

D-51140 Kéln

Germany

Research and development in Solar Chemistry intends to establish useful
applications of concentrated solar radiation for industrial chemical proc-
esses. The long term goal is the chemical storage of solar energy. For the
short to mid term future some market niches can already be identified to-
day. Examples of solar detoxification of hazardous wastes are discussed.

1. Direct absorption of concentrated solar radiation for the recovery of
waste sulfuric acid.

Sulfuric acid is one of the most important basic chemicals being used in
numerous chemical and metallurgical processes. in many cases the
acid ends up as a waste by-product highly loaded with organic impuri-
ties. Often dumping of the waste acid cannot be accepted due to envi-
ronmental reasons, thus it has to be recycled. In the conventional fossil
fired reprocessing plants the impurities are oxidized at high tempera-
tures or by the addition of an oxidizer. The recovery techniques require
a high specific energy input being appr. 6.36 MJ per kg sulfuric acid
(70 %) or appr. 2.5 MWh per ton. We investigated how concentrated
solar radiation could beneficially be used for the recovery of waste
sulfuric acid. in a direct absorbing aerosol receiver-reactor the waste
acid is irradiated with concentrated radiation applying oxidizing
conditions. The results show a higher oxidation rate as compared to
pure thermal heating. In solar planis employed for the recovery of
waste sulfuric acid the use of a direct absorption receiver-reactor is
advantageous because a higher oxidation rate can be achieved than in
an indirectly heated receiver-reactor.
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2. Radiatively heated rotary kiln for the high temperature treatment and
detoxification of wastes.

In the flue gas cleaning units of waste incineration plants filter dusts
remain as a toxic residue; e.g. in Germany appr. 350.000 t/y and in
Switzerland appr. 40.000 t/y. The vitrification of the dusts is an alterna-
tive for dumping. However, it is a highly energy consuming process re-
quiring appr. 1-2 MWh electric current per ton material. Thus we inves-
tigated whether there is a chance to substitute the energy supply to a
vitrification plant by solar radiation and a conceptual design of a pilot
solar central receiver plant was created. A heliostat field focuses the
solar radiation onto the aperture area of an open direct absorbing rotary
kiln receiver-reactor which is placed on a tower in front of the heliostat
field. The concentrated radiation illuminates the upper wall of the melt-
ing drum directly. A thin film of melted filter dust adhering to the wall re-
ceives the energy and transportes it to the buik melt by rotation of the
drum. At the high temperatures organic compounds are destroyed and
volatile heavy metal compounds evaporize. To prevent the escape of
dust and evaporized heavy metal salts through the open receiver-reac-
tor to the environment a radiation duct is placed in front of the drum. An
air stream is sucked through the radiation duct and the receiver-reactor.
It is transporting the evaporized compounds to an off gas purification
unit. The maximum amount of filter dusts which could be treated in the
suggested pilot plant is about 300 kg/h and 550 t/y, respectively.
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Deutsche Forschungsanstalt fiir Luft- und Raumfahrt e.V.

Schematic types of waste acid receiver-reactors

concentrated
it

concentrated

Fig.2: volumetric receiver-reactor

>

direct absorption receiver

light intensity

fixed volumetric absorber structure

_ axial distance from entrance
Fig.3: light intensity decrease as a function of axial distance

2 voiumetric absorber structure —)

DLR
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Spektren von S02 und S03 bei p = 1 bar
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Bild 2: Spektren von SO, und 8O3, gemessen im Versuchsreaktor bei Umgebungs-
druck. '
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Bild 3: Temperaturabhangigkeit des SO3-Spektrums bet Umgebungsdruck
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liquid waste sulfuric acid and reaction temperatures:
A:F=500°C, V:3=600°C, [3:8=700°C, O:9=800°C.
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cTOC = 1 [mwa, exp(at/Teff)]

Mg volume flow waste acid

Teff: effective reaction temperature

al = E/R 1o describe an activation energy

a1 =11.3103K
E = 91.7 kI/mol

Teff = TR + AT]

ATy = £2(1, TR, mma); AT(I=0) = 0

TR: reaction temperature

ATY: radiation-induced temperature increase

I: Irradiance
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Deutsche Forschungsanstalt fiir Luft- und Raumfahrt e V.

Expected Advantages

of Solar High Temperature Destruction

of Hazardous Wastes

as Compared to "Conventional" Treatment

- no fossil fuel required

- less excess air required

- less gas volume to be heated

- less gas volume to be treated after high temperature treatment
- less emissions of off-gases -

- lower temperatures

- higher concentrations of toxic materials

- direct irradiation of toxic materials: higher heat flux densities

i DLR
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Deutsche Forschungsanstalt flir Luft- und Raumfahri e.V.
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" High-Pressure Solar Ammonia Dissociation

Andreas Luzzi & Keith Lovergrove
Australian National University (ANU)
Department of Engineering
Canberra, ACT 0200

Australia

Though the reversible ammonia reaction NH3z + AH — 1/2N2 + 3/2H2
might be termed Cindereila of solar thermochemistry due to its compara-
bly small enthalpy of reaction of AH(30MPa) = 66.8 kd/mol, it has the im-
portant advantages of:

» Total absence of side reactions,
e Spontaneous separation of components at ambient temperature, and

¢ Industrial expertise (NH3,CHg4) with equipment that can be direcily in-
corporated.

These factors contribute significantly to the prospect of design, operation
as well as control simplicity of potential solar thermochemical power
plants using ammonia.

ANU's ammonia research over two decades toward solar thermochemical
power plants in a "distributed receiver/central power station" configuration
include theoretical and experimental investigations of the important reac-
tion kinetic and thermodynamic issues. Energy storage efficiency, exer-
getic optimisation and systems design as well as cost criteria have been
studied theoretically. The existing experimental research facility com-
prises an ammonia laboratory for 1 kWchem open and {soon completed)
closed loop operation at up to 30 MPa and two paraboloidal solar concen-
trators with apertures of 20 m2 and 400 m2 respectively.

Both, electric-heater and solar-driven ammonia open loop dissociation
experiments have been performed at pressures up to 15 MPa and power
levels up to 2.5 kWchem. The tubular reactors used feature annular cata-



181

lyst beds applying standard industrial catalysts (Ni-on-Al2O3 & promoted
Fe/Co) and construction materials (Inconel 625 & 601).

The design and performance of such reactors have been simulated suc-
cessfully with a combination of a two-dimensional pseudo-homogeneous
numerical reactor mode! (NEWRES), a 3D ray tracing code (COMPREC)
and finite element stress / strain analyses (STRANDSG). This led to the
feasibility examination of possible full sized receiver / reactor concepts for
the 20 m2 dish and the 400 m2 dish respectively.

The thermal time constant (50s) of the current directly-irradiated thick-
walled tubular solar reactor opens the opportunity to test a convenient
mass fiow control strategy to run through solar transient conditions. The
development of an adaptive flow rate control algorithm is on-going, aiming
for energetic and exergetic optimisation of the endothermic ammonia dis-
sociation reaction.

The recent completion of a detailed industry study on the feasibility of a
4 MWe solar assisted (distributed solar collector array of ANU's 400 m2
dishes) natural gas base-load power plant for Tennant Creek, Northern
Australia, encouraged a preliminary techno-economic investigation of
replacing the direct-steam-generating solar facility (solar boiler & steam
network) with a thermochemical ammonia system (reactor, network &
ammonia boiler).

The presentation at PS! will summarise key-results of ANU's solar am-
monia research.
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