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Abstract
Background: The emergence of drug resistance is a major problem in malaria control. For
mathematical modelling of the transmission and spread of drug resistance the determinant
parameters need to be identified and measured. The underlying hypothesis is that mutations
associated with drug resistance incur fitness costs to the parasite in absence of drug pressure. The
distribution of drug resistance haplotypes in different subsets of the host population was
investigated. In particular newly acquired haplotypes after radical cure were characterized and
compared to haplotypes from persistent infections.

Methods: Mutations associated with antimalarial drug resistance were analysed in parasites from
children, adults, and new infections occurring after treatment. Twenty-five known single nucleotide
polymorphisms from four Plasmodium falciparum genes associated with drug resistance were
genotyped by DNA chip technology.

Results: Haplotypes were found to differ between subsets of the host population. A seven-fold
mutated haplotype was significantly reduced in adults compared to children and new infections,
whereas parasites harbouring fewer mutations were more frequent in adults.

Conclusion: The reduced frequency of highly mutated parasites in chronic infections in adults is
likely a result of fitness costs of drug resistance that increases with number of mutations and is
responsible for reduced survival of mutant parasites.

Background
The emergence of drug resistance poses a major problem
for malaria control. Research has focused mainly on eluci-
dating the mode of action of antimalarial drugs and on
the molecular mechanisms leading to drug resistance. The
development of drug resistance mostly involves single
nucleotide polymorphisms (SNPs) in genes encoding the

drug targets, such as metabolic enzymes or transmem-
brane transporters. Molecular studies have identified a
number of SNPs in the Plasmodium falciparum multi-drug
resistance gene 1 (pfmdr1), the chloroquine resistance
transporter (pfcrt), the dihydrofolate reductase (pfdhfr)
and the dihydropteroate synthase (pfdhps) that were asso-
ciated with drug resistance against the most commonly
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used antimalarials chloroquine (CQ) and the combina-
tion of antifolate sulphadoxine/pyrimethamine (SP).
Allelic exchange experiments did provide direct evidence
for the role of pfdhfr in resistance to pyrimethamine [1],
pfdhps in resistance to sulphadoxine [2] and the role of
pfcrt in resistance to CQ [3]. Reed et al [4] could show that
mutations in pfmdr1 are not essential, but can modulate
the level of drug resistance against CQ. Evidence from
molecular epidemiological field studies confirmed associ-
ations of the mutations K76T [5-7] and N86Y [8-10] with
in vivo drug resistance against CQ, whereas different com-
binations of mutations in dhfr and dhps were associated
with in vivo drug resistance against SP [for example [11-
14]].

A number of mathematical models have been designed to
predict the transmission and spread of drug resistance
[15-20]. Questions addressed include the role of transmis-
sion intensity on the spread of drug resistance or the pos-
sibility of a preferential transmission of resistant versus
sensitive parasites. The effect of transmission intensity on
the spread of drug resistance was discussed controversially
[19,21]. A more recent review by Hastings & Watkins [15]
proposed that transmission intensity does not have a
direct impact on the evolution of drug resistance, but
directly determines the dynamics of resistance via "effec-
tors", such as intra-host competition, level of drug use in
the population, extent of sexual recombination, propor-
tion of malaria infections treated, or number of parasites
in a human host.

Different authors studied the preferential transmission of
resistant versus sensitive parasites. It has been proposed
that moderately mutated parasites that result in high lev-
els of parasitological failures following SP treatment, have
a greater transmission potential than highly mutated par-
asites, because the latter are more likely to cause clinical
failure within a short time after treatment and are there-
fore more often subject to rescue treatment [22]. A
number of field studies have reported increased gameto-
cyte carriage in blood of CQ or SP treated individuals [23-
27] or in individuals carrying drug resistant strains
[23,25]. However, these findings have been questioned by
lacking evidence that parasites post SP-treatment fully
develop to infective stages in the mosquito [28].

The field study presented here was conducted in Papua
New Guinea (PNG) and investigated the distribution of
drug resistance genotypes in subsets of the host popula-
tion. In particular, the actually transmitted genotypes
were characterized. This was possible by following indi-
viduals after radical cure treatment. The first P. falciparum
positive blood samples of these individuals were geno-
typed for all known markers for drug resistance.

The underlying hypothesis of this study was that new
infections following radical cure are not yet subject to
major selective constraints, because these newly arriving
infections do not have to compete against already persist-
ing infections. Here all transmitted genotypes irrespective
of their fitness are expected to be found. In contrast, para-
sites in asymptomatic chronic infections from community
samples have been subject to within-host competition
and differential fitness is likely to affect their long-term
survival in the host. Asymptomatic individuals are there-
fore expected to carry a lower prevalence of mutated gen-
otypes as a result of decreasing fitness with increasing
number of mutations.

By molecular epidemiological studies in Madang, PNG,
detailed information has been provided on the currently
high levels of mutation rates in Pfcrt K76T (97%), Pfmdr1
N86Y (96%) and Pfdhfr S108N (82%) and C59R
(74%)[29]. Another study in PNG observed a significant
increase in the dhfr double mutant C59R + S108N over a
period of two years (83% to 96%). This study was per-
formed in 2002 and 2003, a few years after the introduc-
tion of SP as first line treatment in combination with 4-
aminoquinolines [30]. They also found an increase in the
quadruple mutant dhfr C59R + S108N + dhps A437G +
K540E from 0 % to 8.2% and even though this was not
significant, these results suggest that resistance to SP is
rapidly developing in PNG. The genotype most frequently
found in treatment failures contained a quadruple mutant
in pfcrt (K76T + N326D + I356L + A220S) in combination
with the pfmdr1 mutant N86Y and the double pfdhfr
mutant S108N+C59R.

For the present investigation, which aims primarily at
multi-loci haplotypes, the PNG field site provides optimal
conditions. A haplotype, which is here defined as the
genetic make up of an individual parasite clone at 25 loci
from four marker genes of drug resistance, can be directly
deduced after genotyping a single clone infection. As mul-
ticlonal infections are rare in PNG, with a mean multiplic-
ity of infection (MOI) between 1.3 and 1.8 [31-33], the
high prevalence of single-clone infections greatly facili-
tated the study of drug resistance haplotypes.

Materials and methods
The present study made use of two sets of blood samples:
(i) cross-sectional surveys including Papua New Guinean
individuals of all ages, and (ii) first P. falciparum positive
samples from a follow up after radical cure with artesu-
nate in five to 14 year-old children. Both sets of samples
were collected in the same villages in PNG, in the years
2003 – 2005.

In the treatment to reinfection study (TRS) in 2004/2005
[for details see [34]] a total of 206 children from five to 14
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years of age were enrolled at the Mugil and Megiar ele-
mentary schools which are situated about 50 km north of
Madang town, PNG. After obtaining written informed
consent from the parents or guardians each child was clin-
ically examined, two blood slides (thick and thin films)
were prepared for microscopical determination of malaria
infections and a venous blood sample was collected at
baseline. Subsequently, all children were treated with a
seven-day course of artesunate monotherapy according to
PNG national treatment guidelines (i.e. 4 mg/kg at day 1,
2 mg at days 2–7). After treatment, two-weekly active fol-
low ups were conducted at the schools to check for new
malaria infections and presence of febrile illness. There-
fore, each child was clinically assessed, a rapid diagnostic
test (RDT) (ICT Diagnostics, South Africa) was performed,
blood slides were prepared and 250 μl of blood were col-
lected by finger prick every two weeks.

Positive samples were identified by microscopy and LDR-
FMA [35] as described in more detail in Michon et al [34].
All baseline and first PCR positive samples after treatment
were genotyped for the highly polymorphic marker gene
merozoite surface protein 2 (msp2) and compared by
PCR-RFLP [36,37] in order to distinguish new from recru-
descent infections. Samples that were typed as recrudes-
cent infection, but were collected as late as 10 weeks or
more after the baseline survey, were additionally geno-
typed for a second marker gene (msp1) [38], because
recrudescence seemed to be unlikely after an interval of
this length.

In the same villages two household-based cross sectional
surveys were conducted in 2003 and 2004 which included
participants of all age groups. Upon receiving informed
consent a questionnaire was completed for each partici-
pant, blood slides prepared for microscopical examina-
tion and a venous blood samples was collected for further
laboratory analysis. All samples were msp2-genotyped
using PCR-RFLP as described above to determine the mul-
tiplicity of infection (MOI).

All samples that were determined to be single or double
infections by msp2 genotyping were further analysed for
mutations in drug resistance genes by DNA chip technol-
ogy [39]. This method allows parallel identification of 25
single nucleotide polymorphisms (SNPs) that were found
to be associated with drug resistance against a number of
different antimalarial drugs. It is based on PCR amplifica-
tion of target sequences within the genes Pfmdr1, Pfcrt,
Pfdhfr and Pfdhps. A primer extension reaction with fluo-
rescent labelled ddNTPs follows this PCR step. The
extended primers are subsequently hybridized on a micro-
array carrying the antisense DNA of the extension primers
and scanned at different wavelength using an Axon 4100A
fluorescent scanner to determine the incorporated

ddNTP. Pictures were acquired and analysed using the
Axon GenePix® Pro (version 6.0) software. The codons
investigated with this method include N86Y, Y184F,
S1034C, N1042D and D1246Y in Pfmdr1, the codons
K76T, H97Q, T152A, S163R, A220S, Q271E, N326D/S,
I356L/T and R371I in Pfcrt, the codons A16V, N51I, C59R,
S108N/T and I164L in Pfdhfr and the codons S436A,
A437G, K540E, A581G, I640F and H645P in Pfdhps.

The dataset for statistical analysis consisted of all cross-
sectional samples that had been genotyped as single-clone
infections and all new infections (irrespective of malaria
symptoms) plus baseline samples with MOI = 1 from TRS
study. Samples with MOI = 2 were taken into considera-
tion, if it was possible to unequivocally determine the
haplotype of these samples, i.e. samples showing a mixed
infection for more than two loci were not included. Sam-
ples from the cross sectional surveys were grouped into
adults (> 14 years of age) and children five -14 years of
age. All individuals from the household surveys who had
received any antimalarial treatment during the last two
months prior to the survey were excluded.

For simplified presentation of haplotypes, only SNPs of
which the mutated alleles were actually detected in this
study area are itemized in the haplotype descriptions,
whereas SNPs found only in the wild type form are not
listed. Thus, the presented haplotype provides molecular
typing information on alleles at the following 11 posi-
tions: dhfr59, dhfr108, dhps437, dhps540, mdr86, mdr184,
mdr1042, crt76, crt220, crt326 and crt356. Only samples
with a complete set of these 11 polymorphic SNPs were
taken into consideration.

To compare the haplotype frequencies between datasets
logistic regression statistics was applied.

Results
Blood samples from radically cured individuals were gen-
otyped for msp2 in order to distinguish new infections
from recrudescent ones and to determine multiplicity of
infection (MOI). All new infections with MOI = 1 or 2
were analysed by DNA Chip to identify SNPs in genes
associated with drug resistance. In addition, genotyping
on Chip was performed for all single and double infec-
tions found in baseline samples of these individuals prior
to treatment. Complete haplotype data were obtained for
144 new infections and 109 baseline samples.

From cross sectional surveys, 61 samples with a complete
haplotype were grouped as adults > 14 years and 63 sam-
ples derived from children aged five-14 years. Individuals
that were treated with antimalarial drugs in the two
months prior to the survey were excluded.
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Genotyping was performed using DNA Chip technology
[39]. Among the 25 analysed SNPs in the four different
genes Pfmdr, Pfcrt, Pfdhfr and Pfdhps some occurred only
as the wild type allele, whereas some mutant alleles had
already reached fixation at this field site. For 8 SNPs both
the wild type and mutant allele was detected in the sam-
ples set.

At this study site a total of 13 different haplotypes were
found, all listed in table 1. The most frequent haplotype
in all subsets of the host population was the 7-fold
mutated haplotype 'crt76T-crt356L-crt326D-crt220S-
dhfr59R-dhfr108N-mdr86Y'. The wild type allele was fixed
at the remaining 4 polymorphic codons.

In the samples set, a number of haplotypes occurred at
very low frequency (one or two observations). The detec-
tion of rare haplotypes depends on sample size and pres-
ence or absence of these haplotypes in a population
comparison is likely due to chance.

Effect of host age on haplotype frequency
Haplotype frequencies in children and adults of the cross
sectional surveys were compared in order to test for age-
specific effects. The 7-fold mutated haplotype 'crt76T-
crt356L-crt326D-crt220S-dhfr59R-dhfr108N-mdr86Y' was
the most frequent haplotype in adults and children with a
prevalence of 65.57 % and 84.13 %, respectively (Table
1). The frequency of this haplotype was significantly lower
in adults compared to children by more than 20% (OR =

2.78, p = 0.02) (Figure 1). In addition to the seven-fold
mutated haplotype, seven additional haplotypes were
found in adults, most of them occurring at very low fre-
quency with the exception of the 6-fold mutant 'crt76T-
crt356L-crt326D-dhfr59R-dhfr108N-mdr86Y' which
showed an increased frequency in adults compared to
children (13.11% vs. 6.35%). This difference was not sta-
tistically significant due to the very few observations.

Haplotypes in new infections
Since new infections best reflect the haplotype frequencies
that are actually transmitted, first infections after radical
cure with artesunate monotherapy were genotyped. By
genotyping the highly polymorphic msp1 and msp2 locus
all recrudescent parasites due to treatment failure were
excluded. Baseline samples prior to radical cure which
had a single or double-clone infection were also geno-
typed. Figure 2 shows that haplotype frequencies agreed
well in baseline samples and new infections, with the
exception of some rare types which are probably fluctuat-
ing randomly. In addition, haplotype frequencies from
age-matched cross sectional samples are indicated and
also show good agreement with frequencies found in new
infections. The fact that haplotypes in new infections
appearing after radical cure, which likely reflect the trans-
mitted parasite population, do not differ from haplotype
frequencies in age matched children, suggests a high rate
of clone acquisition in children. The concordance
between baseline samples and samples from age-matched
children proves that the data sets from the cross sectional

Table 1: Frequency of haplotypes in different subsets of the host population

adults vs. children adults vs. new infections

Haplotype1 Adults cross 
section2

(n = 61)

Children 
cross section2

(n = 63)

TRS3baseline 
samples 
(n = 109)

TRS3new 
infections 
(n = 144)

OR p4 95% CI OR p4 95% CI

n % n % n % n %

crt76 crt326 crt356 0 0 0 0 0 0 1 0.69 - - - - - -
crt76 crt326 crt356 crt220 1 1.64 1 1.59 0 0 0 0 0.97 0.98 0.06 – 15.83 - - -
crt76 crt326 crt356 dhfr108 dhfr59 0 0 0 0 3 2.75 0 0 - - - - - -
crt76 crt326 crt356 crt220 dhps540 0 0 1 1.59 0 0 - - - - - -
crt76 crt326 crt356 crt220 mdr86 4 6.56 2 3.17 0 0 1 0.69 0.47 0.39 0.08 – 2.65 0.1 0.04 0.01 – 0.91
crt76 crt326 crt356 crt220 dhfr108 dhfr59 3 4.92 0 0 4 3.67 1 0.69 - - - 0.14 0.09 0.01 – 1.33
crt76 crt326 crt356 dhfr108 dhfr59 mdr86 8 13.11 4 6.35 15 13.76 8 5.56 0.45 0.21 0.13 – 1.58 0.39 0.07 0.14 – 1.09
crt76 crt326 crt356 crt220 dhfr108 mdr86 1 1.64 2 3.17 2 1.83 2 1.39 1.97 0.59 0.17 – 22.27 0.85 0.89 0.75 – 9.5
crt76 crt326 crt356 dhfr108 dhfr59 mdr86 
dhps540

0 0 0 0 0 0 1 0.69 - - - - - -

crt76 crt326 crt356 crt220 dhfr108 
dhfr59 mdr86

40 65.57 53 84.13 85 77.98 126 87.5 2.78 0.02 1.18 – 6.56 3.68 0.001 1.78 – 7.57

crt76 crt326 crt356 crt220 dhfr108 dhfr59 
mdr86 dhps540

2 3.28 0 0 0 0 4 2.78 - - - 0.84 0.85 0.15 – 4.73

crt76 crt326 crt356 crt220 dhfr108 dhfr59 
mdr1042 mdr184

1 1.64 0 0 0 0 0 0 - - - - - -

crt76 crt326 crt356 crt220 dhfr108 dhfr59 
mdr86 dhps437

1 1.64 0 0 0 0 0 0 - - - - - -

1) Haplotypes represent 11 single nucleotide polymorphisms (SNPs) in 4 different genes. The remaining 14 SNPs tested but not listed equal to wildtype.
2) Cross-sectional samples include only individuals that have not been treated with antimalarial drugs in the 2 months prior to the survey.
3) TRS, treatment to reinfection study
4) Bold indicates p < 0.05
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survey and from the radical cure are comparable and
unbiased. In all three subsets of the host population from
Figure 2, the frequency of the dominant haplotype agreed
well and showed no statistically significant difference.

New infections versus persisting infections in adults
In order to determine whether all haplotypes persist in the
host equally well, the haplotype distribution in newly
arriving infections in relation to persistent parasites from
long term infections were compared. Previously, it was

Comparison of haplotypes between children of the cross sectional surveys and baseline samples and new infections from the treatment to reinfection study (TRS)Figure 2
Comparison of haplotypes between children of the cross sectional surveys and baseline samples and new infections from the treatment to reinfection 
study (TRS). There are no significant differences in haplotype frequencies between groups.

Comparison of haplotypes between adults and children of the cross-sectional surveysFigure 1
Comparison of haplotypes between adults and children of the cross-sectional surveys. * indicates significant difference of haplotype frequency between the 
two compared groups.
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shown by genotyping P. falciparum clones from a longitu-
dinal study that individual parasite clones can persist over
very long time in a semi immune host at very low densi-
ties fluctuating around the detection level [40,41]. To
select long term persistent infections from this data set,
infections from adults > 14 years were chosen (mean age
= 31 years; SD = 13.67). To avoid any influence of previ-
ous drug intake on the prevalence of certain haplotypes,
all patients treated with antimalarials two months prior to
sampling were omitted from the analysis.

Figure 3 compares new infections and persisting infec-
tions in adults. A significantly higher number of seven-
fold mutated haplotype was found in new infections com-
pared to frequencies in adults with a difference between
the groups of 21.92% (OR = 3.68, p < 0.001; Table 1). In
contrast, the frequency of the five-fold mutated haplotype
'crt76T-crt356L-crt326D-crt220S-mdr86Y' was signifi-
cantly lower in new infections (OR = 0.1, p = 0.04; Table
1). The frequency of 6-fold mutant 'crt76T-crt356L-
crt326D-dhfr59R-dhfr108N-mdr86Y' was also reduced in
new infections, although this difference did not reach sta-
tistical significance. This suggests for adults a higher clear-
ance rate for clones carrying seven-fold mutations and as
a consequence, accumulation of five- and six-fold muta-
tions.

Discussion
The most frequent haplotype in the study area showed the
following seven point mutations: crt76T crt326D crt356L
crt220S dhfr59R dhfr108N mdr86Y. The high frequencies
of these mutations were concordant with findings from
previous studies in PNG [29,30]. Frequent mutations in
mdr1 and crt reflect the long history of 4-aminoquinoline
usage in the country and the high levels of resistance
against these drugs [42]. High frequencies of dhfr muta-
tions suggest that resistance to pyrimethamine is common
and sulfadoxine, as indicated by the low level of muta-
tions in dhps, is probably the only effective component in
the locally used first line treatment combination of CQ or
Amodiaquine with SP.

The study presented here demonstrated different haplo-
type frequencies in subsets of the host population. Chil-
dren five to 14 years of age harboured more seven-fold
mutated haplotypes compared to adults. The same fre-
quency of this haplotype was observed in new infections
as in children. Assuming that new infections, as they were
observed after radical cure, reflect the actually transmitted
haplotypes via the Anopheline vector, these findings sug-
gest three interpretations: (i) transmission of highly
mutated and therefore probably more resistant haplo-
types is modulated by drug pressure or other environmen-
tal factors so far undetected in this study; (ii) transmission
of drug resistance markers occurs in an age-dependent
mode by which mutant parasites accumulate in children;

Comparison of haplotypes between adults (cross section) and new infections of the treatment to reinfection studyFigure 3
Comparison of haplotypes between adults (cross section) and new infections of the treatment to reinfection study. * indicates significant difference of hap-
lotype frequency between the two compared groups.
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or (iii), the parasite population found in children differs
intrinsically from that in adults.

The first possible interpretation of the present findings
implies that previous treatment effects the transmission of
particular haplotypes. This is supported by the finding of
higher prevalence and density of gametocytes following
treatment with SP or CQ which was reported by a number
of different authors [24-27], but is contradicted by a
report from Dunyo et al [43] who could not find such an
effect of SP treatment on subsequent transmission game-
tocyte carriage or density. In this study an altered trans-
mission potential as a consequence to antimalarial
treatment [44] was ruled out by excluding all individuals
that had received antimalarial treatment two months
prior to blood collection. Thus, effects of SP which is
known to have a long elimination half life (4–9 days for
Sulfadoxine and ca. 4 days for pyrimethamine) [45]
should have waned. However, long lasting effects of SP
treatment on transmission need to be further investigated.

An alternative explanation of the present findings implies
that children and adults differ in their infectivity to mos-
quitoes. The age effect on transmission has been investi-
gated by Graves and colleagues [46] in Madang, PNG,
who performed direct mosquito feeding experiments on
human blood. They found that the 1–20 year old individ-
uals are more infectious to the mosquitoes than older age
groups. However, a mathematical model developed by
Ross et al [47] proposed that also infected adults are likely
to make a substantial contribution to the infectious reser-
voir. The concordance of haplotype frequencies between
new infections and children but not adults could suggest
that children contribute more to transmission than adults
in our study area. But such differential infectivity to mos-
quitoes is not the only explanation for the fact that fre-
quencies in new infections do not differ from frequencies
in age matched children. This could also be due to high
turnover of infecting parasite clones in children. If in a
particular age group clone acquisition rate is high, radi-
cally cured as well as non-cured individuals will all have
predominantly recent infection and as a consequence will
share the same haplotype frequencies of drug resistance
markers.

As third possible explanation for heterogeneity in haplo-
type distribution other malariological parameters or host
factors that have the potential to determine survival of the
haplotypes in the host have to be considered. For exam-
ple, P. falciparum infections in children differ from those
in adults by a higher mean number of multiple infections
[40,48,49] and higher parasite densities [49,50]. A signif-
icantly reduced parasite density has been associated with
resistance patterns [51]. In the data presented here, a
reduced parasite density in mutant samples compared to

wild type could not be confirmed. Also the densities of the
two most common haplotypes did not differ between
adults and children (data not shown). As further determi-
nant of parasite survival in the host, some authors have
proposed that mutations associated with drug resistance
will incur fitness costs to the parasite in absence of drug
pressure [51-55]. Since parasite fitness cannot be meas-
ured directly, a surrogate marker for fitness is required.
The parameter "persistence of a clonal infection", meas-
ured as duration of an infection in a given host, would
serve this purpose and can be measured experimentally in
a longitudinal set of samples. This leads to the speculation
that long-term persistence of a clonal infection in a host
indicates better survival and thus could be used as a surro-
gate marker for parasite fitness.

Such fitness costs of drug resistance mutations can obvi-
ously only be studied in the absence of treatment. The
effect of previous treatment on infections of particular
haplotypes was ruled out in this dataset by excluding all
individuals that had received antimalarial treatment 2
months prior to blood collection.

A recent paper of Ord and colleagues [56] reported that
the prevalence of two mutations associated with chloro-
quine resistance declined during the dry season. The
authors suggest fitness costs of drug resistance to be
responsible for reduced survival of mutant parasites. A
similar seasonal fluctuation has been suggested for Sudan
[57]. These findings from a longitudinal study in a sea-
sonal setting are perfectly in line with our findings from
an area of perennial transmission where a higher fre-
quency of mutated haplotypes was detected in new infec-
tions as compared to long lasting chronic infections.

In malaria endemic areas where transmission is perennial,
most adults carry asymptomatic infections. These infec-
tions largely remain untreated and reflect chronic infec-
tions that persist over long periods of time (about 150
days) [40]. In case of long-term survival within a host, less
mutated parasites would be expected to be more frequent
due to their higher fitness. The present observation of a
reduced frequency of the seven-fold mutant in adults
compared to new infections is in support of reduced fit-
ness of this particular haplotype. The opposite is true for
less mutated haplotypes with increased prevalence in
adults who frequently carry chronic subpatent parasitae-
mia.

When looking at each SNP separately, it was found that
the frequency of the four most prevalent mutant and non-
fixed SNPs (crt220S, dhfr59R, dhfr108N and mdr86Y) was
lower in chronic infections than in children or new infec-
tions. This also supports the hypothesis that infections
harbouring fewer point mutations are fitter and can there-
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fore persist in the absence of drug pressure. The frequency
of other SNPs was very low and does not allow for any
interpretation.

The host's acquired immunity is an important parameter
that needs to be considered when using the persistence of
infection as a measure of parasite fitness. Immunity is a
major determinant of duration of infection. However, the
hosts acquired immunity is unlikely linked with a specific
drug resistance haplotype as lack of linkage disequilib-
rium and sufficient outbreeding has been shown previ-
ously for the parasite population in the study area [33].
Therefore the immune response is expected to act on par-
asites irrespective of their number of drug resistance muta-
tions.

Fitness costs of drug resistance is one important parameter
for mathematical models that remains to be quantified in
order to make more precise predictions on the spread of
drug resistance. If point mutations incur fitness costs to
the parasite in the absence of drug pressure, natural selec-
tion might lead to a decline in the prevalence of these
mutations once the use of a specific drug is abolished.
This might then result in the drug becoming efficacious
again as has been observed in Malawi in the 12 years since
CQ was removed from standard treatment [58]. Longitu-
dinal studies are needed in order to estimate and quantify
the reduction in survival of mutated versus wildtype gen-
otypes in the host. This could provide more precise fitness
measurements for parasites harbouring point mutations
that are associated with drug resistance.

Authors' contributions
SS carried out the molecular genetic work and the statisti-
cal analysis. JM carried out the field survey and partici-
pated in the molecular genetic work. MG and MB carried
out field work. IM was responsible for the treatment to
reinfection study and participated in data analysis. IF was
responsible for the study design and contributed to data
analysis. All authors contributed to writing the manu-
script.

Acknowledgements
We thank all the study participants, the IMR field team and microscopists. 
This study was supported by the Swiss National Research Foundation 
(SNF) (grant no:3100A0-112196). S.S. was supported by the Forlen Foun-
dation. The authors also thank AusAID for financial support.

References
1. Wu Y, Kirkman LA, Wellems TE: Transformation of Plasmo-

dium falciparum malaria parasites by homologous integra-
tion of plasmids that confer resistance to pyrimethamine.
Proc Natl Acad Sci U S A 1996, 93:1130-1134.

2. Triglia T, Wang P, Sims PF, Hyde JE, Cowman AF: Allelic exchange
at the endogenous genomic locus in Plasmodium falciparum
proves the role of dihydropteroate synthase in sulfadoxine-
resistant malaria.  EMBO J 1998, 17:3807-3815.

3. Sidhu AB, Verdier-Pinard D, Fidock DA: Chloroquine resistance
in Plasmodium falciparum malaria parasites conferred by
pfcrt mutations.  Science 2002, 298:210-213.

4. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modu-
lates sensitivity and resistance to multiple antimalarials in
Plasmodium falciparum.  Nature 2000, 403:906-909.

5. Babiker HA, Pringle SJ, bdel-Muhsin A, Mackinnon M, Hunt P, Wal-
liker D: High-level chloroquine resistance in Sudanese iso-
lates of Plasmodium falciparum is associated with mutations
in the chloroquine resistance transporter gene pfcrt and the
multidrug resistance Gene pfmdr1.  J Infect Dis 2001,
183:1535-1538.

6. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte
Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV,
Coulibaly D: A molecular marker for chloroquine-resistant
falciparum malaria.  N Engl J Med 2001, 344:257-263.

7. Wellems TE, Plowe CV: Chloroquine-resistant malaria.  J Infect
Dis 2001, 184:770-776.

8. Basco LK, Le BJ, Rhoades Z, Wilson CM: Analysis of pfmdr1 and
drug susceptibility in fresh isolates of Plasmodium falci-
parum from subsaharan Africa.  Mol Biochem Parasitol 1995,
74:157-166.

9. Nagesha HS, Din S, Casey GJ, Susanti AI, Fryauff DJ, Reeder JC, Cow-
man AF: Mutations in the pfmdr1, dhfr and dhps genes of Plas-
modium falciparum are associated with in-vivo drug
resistance in West Papua, Indonesia.  Trans R Soc Trop Med Hyg
2001, 95:43-49.

10. L. S, Duraisingh MT, Drakeley CJ, Bailey R, Greenwood BM, Pinder M:
Polymorphism of the Pfmdr1 gene and chloroquine resist-
ance in Plasmodium falciparum in The Gambia.  Trans R Soc
Trop Med Hyg 1997, 91:450-453.

11. Basco LK, Tahar R, Keundjian A, Ringwald P: Sequence variations
in the genes encoding dihydropteroate synthase and dihy-
drofolate reductase and clinical response to sulfadoxine-
pyrimethamine in patients with acute uncomplicated falci-
parum malaria.  J Infect Dis 2000, 182:624-628.

12. Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF,
Martino LM, Mukadam RA, Rogerson SJ, Lescano AG, Molyneux ME,
Winstanley PA, Chimpeni P, Taylor TE, Plowe CV: Molecular mark-
ers for failure of sulfadoxine-pyrimethamine and chlorpro-
guanil-dapsone treatment of Plasmodium falciparum
malaria.  J Infect Dis 2002, 185:380-388.

13. Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Wat-
kins WM: Towards an understanding of the mechanism of
pyrimethamine-sulfadoxine resistance in Plasmodium falci-
parum: genotyping of dihydrofolate reductase and dihydrop-
teroate synthase of Kenyan parasites.  Antimicrob Agents
Chemother 2000, 44:991-996.

14. Talisuna AO, Nalunkuma-Kazibwe A, Langi P, Mutabingwa TK, Wat-
kins WW, Van ME, Egwang TG, D'Alessandro U: Two mutations in
dihydrofolate reductase combined with one in the dihydrop-
teroate synthase gene predict sulphadoxine-pyrimethamine
parasitological failure in Ugandan children with uncompli-
cated falciparum malaria.  Infect Genet Evol 2004, 4:321-327.

15. Hastings IM, Watkins WM: Intensity of malaria transmission and
the evolution of drug resistance.  Acta Trop 2005, 94:218-229.

16. Hastings IM: Gametocytocidal activity in antimalarial drugs
speeds the spread of drug resistance.  Trop Med Int Health 2006,
11:1206-1217.

17. Koella JC, Antia R: Epidemiological models for the spread of
anti-malarial resistance.  Malar J 2003, 2:3.

18. Laxminarayan R: Act now or later? Economics of malaria resist-
ance.  Am J Trop Med Hyg 2004, 71:187-195.

19. Mackinnon MJ: Survival probability of drug resistant mutants
in malaria parasites.  Proc Biol Sci 1997, 264:53-59.

20. Mackinnon MJ, Hastings IM: The evolution of multiple drug
resistance in malaria parasites.  Trans R Soc Trop Med Hyg 1998,
92:188-195.

21. Dye C, Williams BG: Multigenic drug resistance among inbred
malaria parasites.  Proc Biol Sci 1997, 264:61-67.

22. Gatton ML, Cheng Q: Plasmodium falciparum infection dynam-
ics and transmission potential following treatment with sulf-
adoxine-pyrimethamine.  J Antimicrob Chemother 2006, 58:47-51.

23. Robert V, wono-Ambene HP, Le Hesran JY, Trape JF: Gameto-
cytemia and infectivity to mosquitoes of patients with
uncomplicated Plasmodium falciparum malaria attacks
Page 8 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9669998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9669998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9669998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11172152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11172152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11517439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8719157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8719157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8719157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11280065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11280065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11280065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9373652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9373652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9373652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10915101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10915101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10915101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10722502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10722502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10722502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15847846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15847846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16903884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16903884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12643812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12643812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9061960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9061960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9764331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9764331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9061961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9061961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16641113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16641113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16641113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813475


Malaria Journal 2008, 7:78 http://www.malariajournal.com/content/7/1/78
treated with chloroquine or sulfadoxine plus pyrimeth-
amine.  Am J Trop Med Hyg 2000, 62:210-216.

24. Schneider P, Bousema T, Omar S, Gouagna L, Sawa P, Schallig H, Sau-
erwein R: (Sub)microscopic Plasmodium falciparum gameto-
cytaemia in Kenyan children after treatment with
sulphadoxine-pyrimethamine monotherapy or in combina-
tion with artesunate.  Int J Parasitol 2006, 36:403-408.

25. Sowunmi A, Fateye BA: Plasmodium falciparum gametocytae-
mia in Nigerian children: before, during and after treatment
with antimalarial drugs.  Trop Med Int Health 2003, 8:783-792.

26. Targett G, Drakeley C, Jawara M, von SL, Coleman R, Deen J, Pinder
M, Doherty T, Sutherland C, Walraven G, Milligan P: Artesunate
reduces but does not prevent posttreatment transmission of
Plasmodium falciparum to Anopheles gambiae.  J Infect Dis
2001, 183:1254-1259.

27. L. S, Jawara M, Coleman R, Doherty T, Walraven G, Targett G: Par-
asitaemia and gametocytaemia after treatment with chloro-
quine, pyrimethamine/sulfadoxine, and pyrimethamine/
sulfadoxine combined with artesunate in young Gambians
with uncomplicated malaria.  Trop Med Int Health 2001, 6:92-98.

28. Govere JM, Durrheim DN, Mngomezulu NM, Barnes K, Sharp B:
Infectivity of Plasmodium falciparum gametocytes to
Anopheles arabiensis after treatment with sulfadoxine-
pyrimethamine.  Trans R Soc Trop Med Hyg 2003, 97:707-708.

29. Casey GJ, Ginny M, Uranoli M, Mueller I, Reeder JC, Genton B, Cow-
man AF: Molecular analysis of Plasmodium falciparum from
drug treatment failure patients in Papua New Guinea.  Am J
Trop Med Hyg 2004, 70:251-255.

30. Mita T, Kaneko A, Hwaihwanje I, Tsukahara T, Takahashi N, Osawa
H, Tanabe K, Kobayakawa T, Bjorkman A: Rapid selection of dhfr
mutant allele in Plasmodium falciparum isolates after the
introduction of sulfadoxine/pyrimethamine in combination
with 4-aminoquinolines in Papua New Guinea.  Infect Genet Evol
2006, 6:447-452.

31. Cortes A, Mellombo M, Benet A, Lorry K, Rare L, Reeder JC: Plas-
modium falciparum: distribution of msp2 genotypes among
symptomatic and asymptomatic individuals from the Wos-
era region of Papua New Guinea.  Exp Parasitol 2004, 106:22-29.

32. Felger I, Tavul L, Kabintik S, Marshall V, Genton B, Alpers M, Beck HP:
Plasmodium falciparum: extensive polymorphism in mero-
zoite surface antigen 2 alleles in an area with endemic
malaria in Papua New Guinea.  Exp Parasitol 1994, 79:106-116.

33. Paul RE, Packer MJ, Walmsley M, Lagog M, Ranford-Cartwright LC,
Paru R, Day KP: Mating patterns in malaria parasite popula-
tions of Papua New Guinea.  Science 1995, 269:1709-1711.

34. Michon P, Cole-Tobian JL, Dabod E, Schoepflin S, Igu J, Susapu M, Tar-
ongka N, Zimmerman PA, Reeder JC, Beeson JG, Schofield L, King
CL, Mueller I: The risk of malarial infections and disease in
Papua New Guinean children.  Am J Trop Med Hyg 2007,
76:997-1008.

35. McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins
WE, Zimmerman PA: Diagnosing infection levels of four human
malaria parasite species by a polymerase chain reaction/
ligase detection reaction fluorescent microsphere-based
assay.  Am J Trop Med Hyg 2006, 74:413-421.

36. Felger I, Beck HP: Genotyping of Plasmodium falciparum. PCR-
RFLP analysis.  Methods Mol Med 2002, 72:117-129.

37. Irion A, Felger I, Abdulla S, Smith T, Mull R, Tanner M, Hatz C, Beck
HP: Distinction of recrudescences from new infections by
PCR-RFLP analysis in a comparative trial of CGP 56 697 and
chloroquine in Tanzanian children.  Trop Med Int Health 1998,
3:490-497.

38. Snounou G: Genotyping of Plasmodium spp. Nested PCR.
Methods Mol Med 2002, 72:103-116.

39. Crameri A, Marfurt J, Mugittu K, Maire N, Regos A, Coppee JY, Sis-
meiro O, Burki R, Huber E, Laubscher D, Puijalon O, Genton B,
Felger I, Beck HP: Rapid microarray-based method for moni-
toring of all currently known single-nucleotide polymor-
phisms associated with parasite resistance to antimalaria
drugs.  J Clin Microbiol 2007, 45:3685-3691.

40. Falk N, Maire N, Sama W, Owusu-Agyei S, Smith T, Beck HP, Felger
I: Comparison of PCR-RFLP and Genescan-based genotyping
for analyzing infection dynamics of Plasmodium falciparum.
Am J Trop Med Hyg 2006, 74:944-950.

41. Sama W, Dietz K, Smith T: Distribution of survival times of
deliberate Plasmodium falciparum infections in tertiary
syphilis patients.  Trans R Soc Trop Med Hyg 2006, 100:811-816.

42. Muller I, Bockarie M, Alpers M, Smith T: The epidemiology of
malaria in Papua New Guinea.  Trends Parasitol 2003, 19:253-259.

43. Dunyo S, Milligan P, Edwards T, Sutherland C, Targett G, Pinder M:
Gametocytaemia after drug treatment of asymptomatic
Plasmodium falciparum.  PLoS Clin Trials 2006, 1:e20.

44. Barnes KI, White NJ: Population biology and antimalarial
resistance: The transmission of antimalarial drug resistance
in Plasmodium falciparum.  Acta Trop 2005, 94:230-240.

45. WHO: Guidelines for the treatment of malaria.  2006.
46. Graves PM, Burkot TR, Carter R, Cattani JA, Lagog M, Parker J, Brabin

BJ, Gibson FD, Bradley DJ, Alpers MP: Measurement of malarial
infectivity of human populations to mosquitoes in the
Madang area, Papua, New Guinea.  Parasitology 1988, 96 ( Pt
2):251-263.

47. Ross A, Killeen G, Smith T: Relationships between host infectiv-
ity to mosquitoes and asexual parasite density in Plasmo-
dium falciparum.  Am J Trop Med Hyg 2006, 75:32-37.

48. Ntoumi F, Contamin H, Rogier C, Bonnefoy S, Trape JF, Mercereau-
Puijalon O: Age-dependent carriage of multiple Plasmodium
falciparum merozoite surface antigen-2 alleles in asympto-
matic malaria infections.  Am J Trop Med Hyg 1995, 52:81-88.

49. Smith T, Beck HP, Kitua A, Mwankusye S, Felger I, Fraser-Hurt N,
Irion A, Alonso P, Teuscher T, Tanner M: Age dependence of the
multiplicity of Plasmodium falciparum infections and of
other malariological indices in an area of high endemicity.
Trans R Soc Trop Med Hyg 1999, 93 Suppl 1:15-20.

50. Owusu-Agyei S, Smith T, Beck HP, menga-Etego L, Felger I: Molecu-
lar epidemiology of Plasmodium falciparum infections
among asymptomatic inhabitants of a holoendemic malari-
ous area in northern Ghana.  Trop Med Int Health 2002,
7:421-428.

51. Osman ME, Mockenhaupt FP, Bienzle U, Elbashir MI, Giha HA: Field-
based evidence for linkage of mutations associated with
chloroquine (pfcrt/pfmdr1) and sulfadoxine-pyrimethamine
(pfdhfr/pfdhps) resistance and for the fitness cost of multiple
mutations in P. falciparum.  Infect Genet Evol 2007, 7:52-59.

52. Hastings IM, Donnelly MJ: The impact of antimalarial drug
resistance mutations on parasite fitness, and its implications
for the evolution of resistance.  Drug Resist Updat 2005, 8:43-50.

53. Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe
PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV: Reemergence of
chloroquine-sensitive Plasmodium falciparum malaria after
cessation of chloroquine use in Malawi.  J Infect Dis 2003,
187:1870-1875.

54. Walliker D, Hunt P, Babiker H: Fitness of drug-resistant malaria
parasites.  Acta Trop 2005, 94:251-259.

55. Wang X, Mu J, Li G, Chen P, Guo X, Fu L, Chen L, Su X, Wellems TE:
Decreased prevalence of the Plasmodium falciparum chloro-
quine resistance transporter 76T marker associated with
cessation of chloroquine use against P. falciparum malaria in
Hainan, People's Republic of China.  Am J Trop Med Hyg 2005,
72:410-414.

56. Ord R, Alexander N, Dunyo S, Hallett R, Jawara M, Targett G, Drake-
ley CJ, Sutherland CJ: Seasonal carriage of pfcrt and pfmdr1
alleles in Gambian Plasmodium falciparum imply reduced
fitness of chloroquine-resistant parasites.  J Infect Dis 2007,
196:1613-1619.

57. Babiker HA, Satti G, Ferguson H, Bayoumi R, Walliker D: Drug
resistant Plasmodium falciparum in an area of seasonal
transmission.  Acta Trop 2005, 94:260-268.

58. Laufer MK, Thesing PC, Eddington ND, Masonga R, Dzinjalamala FK,
Takala SL, Taylor TE, Plowe CV: Return of chloroquine antima-
larial efficacy in Malawi.  N Engl J Med 2006, 355:1959-1966.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16500657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16500657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16500657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12950664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12950664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12950664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11251903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16117968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16117968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16117968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15031512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15031512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15013785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15013785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15013785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7914494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7914494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7914494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17556601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17556601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16525099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16525099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16525099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12125107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12125107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12125106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17804664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17804664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17804664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16451806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17013431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17013431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17013431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15878154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15878154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15878154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3374964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3374964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3374964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16931813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16931813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16931813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7856831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7856831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7856831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10450421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10450421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12792863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12792863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12792863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15845348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15845348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15827277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15827277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15827277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18008244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18008244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18008244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17093247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17093247

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Results
	Effect of host age on haplotype frequency
	Haplotypes in new infections
	New infections versus persisting infections in adults

	Discussion
	Authors' contributions
	Acknowledgements
	References

