BFE
OFEN -
UFE

SFOE

Forschungsprogramm
Umgebungs- und Abwéarme,
Warme-Kraft-Kopplung (UAW)

Kurztestmethode fur

Warmepumpenanlagen

(A Short-Term Rating Method for
Heat Pump Heating Systems)

Phase 5: Test der Fehlerdiagnosesysteme
(Test of the Fault Diagnosis Systems)

ausgearbeitet durch

David Zogg, Dr. Esfandiar Shafai
Institut fur Mess- und Regeltechnik
ETH Zentrum

8092 Zirich

zogg@imrt.mavt.ethz.ch

im Auftrag des
Bundesamtes fir Energie

November 2001 Schlussbericht




Impressum:

Auftraggeber:

Beauftragter:

Projektgruppe:

Begleitgruppe:

Autor des Berichts:

Bundesamt fur Energie (BFE):

Hans-Ulrich Scharer

Leiter Sektion erneuerbare Energien

Fabrice Rognon

Leiter Bereich Umgebungswarme, Warme-Kraft-Kopplung
Prof. Dr. Martin Zogg

Programmleiter UAW

Prof. Dr. Hans P. Geering
Dr. Esfandiar Shafai
Institut fir Mess- und Regeltechnik, ETH Zurich

Dr. Esfandiar Shafai (Projektleiter)
David Zogg
Institut fir Mess- und Regeltechnik, ETH Zlrich

Prof. Dr. Martin Zogg

Bundesamt fur Energie (BFE), Programmleiter UAW
Gunther Reiner

Sulzer Friotherm AG, System Engineering
Hans Rudolf Gabathuler, Hans Mayer
Gabathuler AG, Beratende Ingenieure

Dr. Hansueli Bruderer

SATAG Thermotechnik AG

Markus Erb

Dr. Eicher und Pauli AG

Dr. J. Todli

Siemens Building Technologies (Schweiz) AG

David Zogg
Institut fir Mess- und Regeltechnik, ETH Zurich



Zusammenfassung:

Ziel der Kurztestmethode ist es, im Hinblick auf eine Betriebsiiberwachung und -optimierung ein
Diagnoseverfahren fur Fehlfunktionen einer Warmepumpenanlage zu entwickeln. Durch das Er-
fassen moglichst weniger Messgréssen (Temperaturen, ev. Dricke) soll auf Fehlfunktionen ge-
schlossen werden. In friheren Projektphasen wurden Modelle fir das Wéarmeverteilsystem, die
Warmeabgabe und das Gebaude entwickelt. Hier wird die Warmepumpe als Teilsystem naher
betrachtet, und es werden zwei Uberwachungssysteme sowie ein Simulationsmodell vorgestellt.
Die Uberwachungssysteme dienen dazu, den Zustand der Warmepumpe bei der |nbetriebnahme
und wahrend des Betriebes zu erfassen und Fehler frihzeitig zu erkennen. Damit wird eine Opti-
mierung zwischen Abnahme der Warmepumpe und Schlusspriifung wie auch eine zustandsorien-
tierte Instandhaltung wahrend der ganzen Lebensdauer der Wéarmepumpe ermdglicht. Eine zu-
standsorientierte Instandhaltung ist kostengiinstiger als feste Service-Intervalle oder ausfallbeding-
te Reparaturen mit Stillstandszeiten.

Das erste Uberwachungssystem HeatWatch liefert physikalische Parameter und Kennzahlen der
Warmepumpe, aus denen die Fehler interpretiert werden kénnen. FUr die Parameteridentifikation
im stationdren Zustand muss ein lineares Gleichungssystem online gelost werden. Diese Variante
eignet sich dank ihrem einfachen Aufbau und einem sehr geringen Aufwand wahrend der Trai-
ningsphase fur eine schnelle industrielle Umsetzung.

Beim zweiten Uberwachungssystem FuzzyWatch werden direkt die aktuellen Fehlercodes ange-
zeigt. Dank einem universellen Modellansatz kann dieses Uberwachungssystem ohne grossen
Aufwand auf beliebige Warmepumpentypen angepasst werden. Die Anzahl der benttigten Senso-
ren kann wéahrend der Trainingsphase durch einen automatischen Algorithmus minimiert werden.
Fur die Parameteridentifikation muss ein Least-Squares-Problem online geloést werden. Fur die
Klassifikation der Fehler aus den Parametern werden statistische Ansédtze wie Fuzzy-Logik und
neuronale Netze verwendet. Der experimentelle Aufwand wahrend der Trainingsphase ist héher,
da neben den Nominaldaten auch die Daten fur verschiedene Fehlerfélle auf einem Prifstand er-
mittelt werden missen. Mit geeigneten Methoden kann dieser Aufwand jedoch reduziert werden.

Die Uberwachungssysteme wurden anhand von Messdaten eines Einfamilienhauses, auf zwei
Prufsténden und anhand von Simulationsdaten getestet. Mit einem detaillierten physikalischen
Warmepumpen-Simulationsmodell kénnen Daten fir den Nominalfall wie auch fir verschiedene
Fehlerfalle generiert werden. Ein neuer Prifstand fur industrielle Sole/Wasser-Warmepumpen
wurde am Institut fur Mess- und Regeltechnik der ETH Zurich aufgebaut, mit dem die Test-
Warmepumpe unter realistischen Bedingungen betrieben werden kann. Die Test-Warmepumpe
wurde mit zusétzlichen Aktuatoren und Sensoren ausgeristet, um dbliche Fehlerfélle simulieren
zu konnen.

Die Ergebnisse sind im Abschnitt 1.4 zusammengefasst.

Die vorliegenden Uberwachungssysteme konnen nicht nur auf Warmepumpen, sondern auch auf
Kélteanlagen, Heiz- oder Klimatisierungssysteme angewandt werden. Bei grossen Anlagen wir-
den die Einsparungen durch einen optimalen Betrieb und durch eine zustandsorientierte Instand-
haltung noch stérker ins Gewicht fallen.

Bemerkung: Der vorliegende Bericht wurde zweisprachig verfasst. Die Kapitel 2 bis 7 wurden
aus der Dissertation Ubernommen, welche im Frihling 2002 abgeschlossen und publiziert wird
[Zogg 02]. Am Anfang der englischen Kapitel befindet sich jeweils eine deutsche Kurzfassung.

Diese Arbeit ist im Auftrag des Bundesamtes fir Energie entstanden. Fir den Inhalt und die
Schlussfolgerungen ist ausschliesslich der Autor dieses Berichts verantwortlich.




Abstract:

The purpose of the short-term rating method is to develop a fault detection and diagnosis proce-
dure for operational monitoring and optimization of a heat pump heating system. The faults are to
be classified on the basis of the fewest measurements possible which might include temperature
and maybe pressure measurements. As aresult of former project phases, models of the heat distri-
bution system, the heat emission system as well as of the building have been developed. Here, the
heat pump as a subsystem is considered, and two fault diagnosis systems as well as a simulation
model are developed. With these diagnosis systems, the state of a heat pump is known both at
start-up and during the operation, and any faults can be recognized early. As an additionional
benefit to the optimization at start-up, a sate-oriented maintenance helps to minimize costs in the
long run, over those incurred with fixed service intervals or with repairs due to complete failure,
accompanied by downtime.

The first fault diagnosis system, called HeatWatch, yields physical parameters and characteristics
of the heat pump, which are used to interpret the faults manually. For parameter identification
during steady state, alinear equation system has to be solved online. This version is designed for a
fast industrial realization because of a simple structure and a very small effort during the training
phase.

The second fault diagnosis system, called FuzzyWatch, directly displays the actual fault codes.
Thus, no manual interpretation is necessary. Due to an universal model approach, the diagnosis
system can easily be adapted to any heat pump type. During the training phase, an automated algo-
rithm reduces the number of sensors needed. For parameter identification, a least-squares problem
has to be solved online. For the classification of the faults based on the parameters, statistical ap-
proaches are used, such as fuzzy logic or neural networks. The experimental effort during the
training phase is higher than in the case of HeatWatch, since data of the nominal case as well as
data of several fault cases has to be acquired on a test bench. By using advanced methods, this
effort can be reduced.

The fault diagnosis systems have been tested by measured data both from a residential building
and on two test benches, and with simulation data. A detailed, physical heat pump simulation
model is able to generate data for the nominal case as well as for several fault cases. A new test
bench for industrial brine-to-water heat pumps has been installed at the Measurement and Control
Laboratory of the ETH Zurich, which allows the test heat pump to operate under realistic condi-
tions. The test heat pump is equipped with additional actuators and sensors for simulating com-
mon faults.

The fault diagnosis systems presented in this work is not only suitable to heat pumps only, but to
any larger heating, refrigerating, or air-conditioning systems. For large-scale plants, the savings
would even be higher due to an optimal operation and a state-oriented maintenance.

Note: Thisreport iswritten in two languages. Chapters 2 to 7 are adopted from the dissertation (in
a shortened form), which will be completed and published in spring 2002 [Zogg 02]. These Chap-
ters are written in English.

Thiswork is carried out by order of the Swiss Federal Office of Energy.
The author of thiswork is exclusively responsible for its content and the conclusions drawn.
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1 Uberblick

1.1 Ziel der Arbeit

Gesamtprojekt
Das Ziel ist die Entwicklung einer neuen Mess- und Auswertungsmethode fr folgende Zwecke:

* Ermittlung von Abweichungen gegentiber der Planung

» Detektion der haufigsten Fehlerquellen

» Betriebsoptimierung zwischen Abnahme der Wéarmepumpe und Schlussprifung

» Betriebsiiberwachung wéhrend der ganzen Lebensdauer der Warmepumpenanlage

Die Kurztestmethode basiert auf der Methode der Parameteridentifikation und soll damit:
*  madglichst kostengiinstig sein (geringer M essaufwand)
* madglichst friihzeitig (z.B. innert 1 Monat) eine Hochrechnung auf das ganze Jahr erméglichen

Die in einem Pilotversuch gewonnenen Erfahrungen liefern die Software- und Hardwarespezifika-
tionen als Grundlage zur Realisierung eines Einbau- und Diagnosesets.

Projektphase 5
Das Ziel der vorliegenden Projektphase wurde folgendermassen definiert:

* Verfeinerung und Validierung des in den ersten vier Phasen des Projektes entwickelten physi-
kalischen Modells der Warmepumpe. Mit Hilfe dieses Simulationsmodells kénnen kiinstliche
Datensédtze (mit und ohne Fehlersimulation) generiert werden, was den experimentellen Auf-
wand fir das Training des Diagnoseverfahrens massgebend reduzieren wird.

» Das in der Phase 4 entwickelte Diagnoseverfahren zu verfeinern und an einem dynamischen
Sole/Wasser-Warmepumpenprifstand zu erproben. Dieser Prifstand erlaubt dabei einerseits
die Simulation der in den Projektphasen 1 bis 3 definierten Fehler und andererseits die Emula-
tion des dynamischen Verhaltens eines real nicht vorhandenen (fiktiven) Hauses.

* Die an der Testwarmepumpe simulierten Fehler sollen richtig lokalisiert und angezeigt wer-
den.

1.2 Ubersicht der Projektphasen

Projektphasen 1-3: Messung, Modellierung und Erprobung der
Parameteridentifikation [KTM-3 98].

Eine Referenzanlage in Barzheim (Schaffhausen, CH) mit einer Luft/Wasser-Warmepumpe wurde
vollstandig instrumentiert und ausgemessen. Ein Modell fur die Warmevertellung, Warmeabgabe
und das Gebaude wurde erstellt und validiert. Fur die Warmepumpe wurde ein nichtphysikalisches
Modell (basierend auf Hersteller-Kennlinien) sowie eine erste Version des detaillierten physikali-
schen Modelles (mit vollsténdiger Modellierung des Kaltemittelkreislaufes) erstellt.

Das nichtphysikalische Modell dient zur groben Fehlerdetektion, und das physikalische Modell
dient zur genauen Fehlerdiagnose und —lokalisierung innerhalb der Wéarmepumpe. Aus den identi-
fizierten Parametern des Gebaudemodelles kénnen Fehler ausserhalb der Wéarmepumpe festge-
stellt werden. Anhand der Simulationsmodelle wurden Hochrechnungen der Kenngrossen (Jah-
resarbeitszahl, usw.) auf ein Jahr durchgeftihrt. Herkémmliche Diagnoseverfahren wurden eben-
falls getestet.



Projektphase 4: Parameteridentifikation und Fehlerdiagnose fir das Teilsystem
Warmepumpe [KTM-4 99]

Die Warmepumpe als Teilsystem wurde genauer untersucht und es wurden zwei Uberwachungs-
systeme entwickelt. HeatWatch liefert physikalische Parameter, welche manuell interpretierbar
sind, wahrend FuzzyWatch eine Fehlerklassifikation enthalt und direkt Fehlercodes liefert. Erste
Tests anhand der Nominaldaten in Barzheim und anhand der ,Fehler-Daten® des Labor-
Prufstandes an der Zurcher Hochschule Winterthur (ZHW) wurden durchgefiihrt. Eine zweite
Version des physikalischen Warmepumpenmodelles wurde entworfen.

Projektphase 5: Test der Fehlerdiagnosesysteme an Prufstanden und mit
Simulationen

In der vorliegenden Projektphase wurde ein neuer Warmepumpen-Prifstand am Institut fir Mess-
und Regeltechnik der ETH Zurich aufgebaut, eine dritte Version des physikalischen Warmepum-
pen-Simulationsmodelles erstellt und die Uberwachungssysteme HeatWatch und FuzzyWatch
weiterentwickelt. Die Uberwachungssysteme wurden anhand der Daten des ZHW-Priifstandes, des
Simulationsmodelles und des Priifstandes an der ETH ZUrich weiter getestet.

1.3 Losungsweg

Einen zentralen Platz bei dem gewadahlten Ldsungsweg nimmt der dynamische Sole/\Wasser-
Warmepumpenprifstand an der ETH ein. Dieser Prifstand soll folgende Aufgaben erfiillen:

» Emulation des dynamischen Verhaltens der Warmequelle und des Hauses

* Fehlersimulation an einer Sole/Wasser-Warmepumpe: Eine industrielle Sole/Wasser-Warme-
pumpe mit modifiziertem Arbeitsmittelkreislauf wurde mit zusétzlichen Sensoren ausgeriistet.
Die Modifikation des Arbeitsmittelkreislaufs dient der Simulation derjenigen Fehler, die in
den ersten Projektphasen in Form eines Fehlerbaums definiert wurden (auf Sole/Wasser Uber-
tragen). Wichtig ist insbesondere die vollstandige Automatisierung der Testlaufe, wodurch fir
das Erfassen der Datensétze praktisch keine manuelle Eingriffe notig sind.

Die Erprobung der Diagnoseverfahren am Warmepumpenprifstand weist gegentber der Erpro-
bung in einem real existierenden Haus folgende V ortelle auf:

» Die Suche nach einem geeigneten Objekt fallt aus.

» Esexigtieren keine terminliche Restriktionen. Es ist mdglich auch ausserhalb der Heizperiode
Untersuchungen durchzuftihren.

» De Aussentemperaturverlauf und andere Randbedingungen konnen ohne unbekannte
Quereinfliisse der Betreiber beliebig vorgegeben werden. Damit ist die Reproduzierbarkeit der
Untersuchungen gewahrleistet.

* Die gspeziell mit Sensoren und Aktoren ausgertstete Maschine bleibt nach Projektabschluss
nicht im Haus zurtick. Sie kann fir weitere Untersuchungen eingesetzt werden (kein Verlust
der Investitionen).

* Der Prufstand kann auch im Rahmen anderer Projekte (Pulsbreitenmodulation fir Wéarme-
pumpenanlagen, Kostengiinstige Niedertemperaturheizung mit Warmepumpe) fur die Ent-
wicklung und Erprobung neuer Regelstrategien verwendet werden.

Das Konzept eines solchen Warmepumpenprifstandes wurde im Rahmen einer Diplomarbeit am
Institut fir Mess- und Regeltechnik ausgearbeitet [Lackner 00]. Im Rahmen der vorliegenden Pha-
se 5 des Projektes wurde dieses Prifstandskonzept realisiert und fir das Erproben der Diagnose-
verfahren eingesetzt (Fig. 1).



Die Daten fir das Training des Diagnosesystems Fuzzy\Watch werden einerseits experimentell am
Prufstand erfasst und andererseits durch das Warmepumpen-Simulationsmodell generiert. Das
Simulationsmodell wird anhand von Nominaldaten validiert und anschliessend benutzt, um Daten
fur verschiedene Fehlerfélle zu generieren.

Fig. 1. Der Prufstand am Institut fir Mess- und Regeltechnik, ETH Zirich. - The test bench at the Meas-
urement and Control Laboratory, ETH Zirich.

1.4 Hauptergebnisse

Die Ziele der Projektphase 5 wurden erreicht und der Prifstand wurde aufgebaut. Die Emulation
der Warmequelle und des Hauses am Priufstand ist jedoch noch in Bearbeitung. Die Diagnosesy-
steme kdnnen trotzdem unter verschiedenen Bedingungen am Priifstand ausgetestet werden.

Die Software fiir die zwei Uberwachungssysteme FuzzyWatch und HeatWatch wurden weiterent-
wickelt und getestet:

HeatWatch. Das erste Uberwachungssystem erméglicht die Erfassung relevanter Warmepumpen-
Parameter und —Kenngrdssen im stationdaren Zustand (Schema in Kapitel 2, Fig. 2). Aus den Ab-
weichungen der Parameter im Vergleich zum Anfangs- oder Auslegungszustand kénnen die ent-
sprechenden Fehler manuell durch den Benutzer oder Servicefachmann interpretiert werden. Bei-
spielsweise kann aus der Veranderung des Warmelbertragungs-Parameters im Verdampfer oder
Kondensator auf eine Verschmutzung zuriickgeschlossen werden. Die Veranderung des Quellen-
bzw. Wassermassenstromes zeigt V erschmutzungen in den entsprechenden Kreislaufen oder Fehl-
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funktionen der Umwalzpumpen an. Auch Fehlfunktionen des Kompressors, des Expansionsventi-
les oder Leckage kdnnen Uber Parameterveranderungen erkannt werden. Insgesamt werden fir
eine Warmepumpe mit internem Warmelibertrager 10 Sensoren benttigt (Kapitel 5), wovon 4-6
Sensoren standardmassig vorhanden sind. Eine Reduktion der Anzahl Sensoren ist mdglich, dabei
nimmt jedoch auch die Anzahl der identifizierbaren Parameter ab.

Ausser dem Erfassen der Anfangswerte der Parameter ist kein nennenswertes Training notwendig.
Eine mogliche Realisierung als Online-Software ist in Kapitel 4, Abschnitt 4.2 mit zyklischer An-
zeige der Parameter vorgestellt. Die Diagnoseresultate werden in Kapitel 5, Abschnitt 5.1 fir eine
Anwendung (Messdaten aus Barzheim) detailliert beschrieben. Als weitere Variante konnte tber
den Wéarmelbertragungs-Parameter im Verdampfer auch die Vereisung festgestellt werden und
damit der Abtauvorgang gestartet werden.

FuzzyWatch. Bei diesem Uberwachungssystem ist neben der Parameteridentifikation auch die
Fehlerklassifikation integriert (Schema in Kapitel 3, Fig. 8). Mit verschiedenen Klassifikationssy-
stemen konnen einzelne Fehler, Fehler unterschiedlicher Stérke und je nach Klassifikationsmetho-
de und Messdaten auch Kombinationen gleichzeitig auftretender Fehler diagnostiziert werden.
Dazu gehoren Fehler wie die Verschmutzung des Verdampfers oder des Kondensators, Fehlfunk-
tionen der Sole- und Heizwasser-Umwalzpumpen, Fehlfunktionen des Kompressors oder des Ex-
pansionsventils, oder Leckage. Hier ist keine manuelle Interpretation notwendig, sondern es wer-
den direkt die entsprechenden Fehlercodes angezeigt. Die Anzahl der benétigten Sensoren wird
fr eine bestimmte Anwendung automatisch minimiert. Je nach Warmepumpentyp und geforderter
Klassifikationsgite (Zuverlassigkeit der Diagnose) kann die Anzahl der Sensoren variieren. Fur
die bisher untersuchten Anwendungen konnten bereits mit 4-6 Sensoren brauchbare Resultate
erzielt werden. Mit einer hoheren Anzahl Sensoren nimmt die Klassifikationsgute zu.

Prinzipiell muss das Diagnosesystem mit Daten fur alle Fehlerfélle trainiert werden. Mit verschie-
denen Methoden ist es jedoch moglich, den experimentellen Aufwand zu reduzieren, indem nur
eine kleine Auswahl von Fehlerféllen oder sogar nur der Nominalfall trainiert wird. Eine mégliche
Realisierung als Online-Software ist in Kapitel 4, Abschnitt 4.3 mit zyklischer Anzeige der Feh-
lercodes vorgestellt. Die Offline-Software flr das Training ist in Abschnitt 4.5 beschrieben, wobel
ein Bedienfeld schrittweise durch den Trainingsablauf fuhrt. Die Diagnoseresultate werden in
Kapitel 5, Abschnitte 5.2 und 5.3 fir zwei Anwendungen (Daten aus Prufstand ZHW und Simula-
tionsmodell) detailliert beschrieben. Detaillierte Resultate fir den Prifstand ETH werden in [Zogg
02] verfugbar sein.

Simulationsmodell. Die Entwicklung des physikalischen Simulationsmodelles fir eine
L uft/Wasser-Wéarmepumpe wurde abgeschlossen (Kapitel 6). Anhand der Nominaldaten aus dem
Einfamilienhaus in Barzheim wurden die Modellparameter angepasst und das Modell validiert.
Das Modell ist in der Lage, die wesentlichen Eigenschaften der Warmepumpe zu représentieren.
Deshalb kann es als Datenquelle fiir das Training des Diagnosesystems Fuzzy\Watch dienen, indem
die verschiedenen Fehlerfélle simuliert werden. Fur eine realistische Simulation wird das Warme-
pumpenmodell mit dem Gebaudemodell gekoppelt.

Prufstand ETH. Im Labor des Instituts fir Mess- und Regeltechnik an der ETH ZUrich wurde ein
neuer Prifstand fUr industrielle Sole/\Wasser-Warmepumpen aufgebaut (Fig. 1, Kapitel 7). Die
Testumgebung besteht aus einem Solekreislauf und einem Wasserkreislauf, insgesamt 4 Tanks, 5
Warmetauschern, 2 Medienanschliissen und einer HilfsWéarmepumpe. Damit kann die Test-
Warmepumpe unter moglichst realen Bedingungen betrieben werden.

Die Testwarmepumpe von SATAGO Thermotechnik AG wurde mit zusatzlichen Ventilen und
einem externen Kaltemitteltank ausgertstet. Damit konnen Ubliche Fehlerfélle eingestellt werden.
Insgesamt 20 Sensoren erfassen die Temperaturen und Dricke. Der Prifstand wurde vollsténdig
automatisiert und fur die Durchfihrung der Testzyklen wurde ein spezielles Software-Tool ent-
wickelt.



2 HeatWatch

Kurzfassung (Deutsch):

HeatWatch wird geméss Fig. 2 zur Uberwachung einer Warmepumpe eingesetzt. Aus Kosten-
grinden wird auf jegliche Massen- oder Wéarmestrommessungen verzichtet. Die Temperaturen
bzw. Driicke im Arbeitsmittelkreislauf sowie auf der Quellen- und Senkenseite werden mit Senso-
ren laufend gemessen und als Signale ans Uberwachungssystem weitergeleitet. Dieses erfasst die
Daten und wertet sie im stationdren Zustand aus. Dabel werden Parameter und charakteristische
Kennzahlen berechnet.

Stellgréssen
(Ein/Ausl/...)

Eingangsgréssen
(Quellen-/Senken-
temperatur, ...)

Temperatur-/Drucksensoren

Uberwachungssystem HeatWatch

Datenerfassung + Detektion stationdrer Zustand

stationére stationére integrierte
Parameter Kennzahlen Kennzahlen

*Temperaturen <Wéarmedurchgangs- *COP *Arbeitszahl
*Driicke koeffizienten *Gltegrad <Energieverbrauch
*Massenstrome ‘Warme-  sWarmeabgabe
*Charakteristik strome *Betriebsstunden
Kompressor *Abtauzeit

*Charakteristik
Expansionsventil

Fig. 2: Das Schema des Diagnosesystems HeatWatch.

M odéllbildung. Fur eine Warmepumpe mit internem Waremubertrager (Fig. 4) wurde ein Modell
far den stationdren Zustand entwickelt. Dabei wurden die Energiebilanzen fir die Prozesse der
Verdampfung, der Uberhitzung, der Kondensation und der Unterkiihlung sowie fiir die Warme-
guelle und die Warmesenke (Gl. (1) bis (6)) aufgestellt. Als wesentliche Parameter sind darin die
Wérmelibergangsparameter kA; der Warmelibertrager und die Massenstrome m'; des Kaltemittels,
der Quelle (Luft/Sole) und der Senke (Wasser) enthalten. Fur die Berechnung der Stoffgrossen
sind die Kaltemitteldaten in Funktion der Driicke gegeben. Bei der Verdampfung und Kondensati-
on wurde der ,, Temperatur-Glide* berticksichtigt (unterschiedliche Temperaturen Ty(p;) fur ,, bubb-
le point* und Ty(p;) fr ,dew point“).

Der Kaltemittelmassenstrom m'; wird aus der Leistungsaufnahme Pyp des Verdichters bestimmt
(Gl. (15)). Damit koénnen die restlichen Parameter berechnet werden. Dazu gehtren auch der Po-
lytropenexponent c.mp und der Liefergrad Acmp des Kompressors sowie die Ventilkonstante ke, des
Expansionsventils. Die Leistungsziffer COPyp, der Gitegrad gqp und die Arbeitszahl sind damit
ebenfalls bekannt.

Lineare Regression. Fir die Bestimmung der Wéarmelibergangsparameter kA; und der restlichen
Massenstréme m; werden die Bilanzgleichungen in Form einer linearen Regression dargestellt

(Gl. (26), (27), (28)).
Anzahl benttigte Sensoren. Insgesamt werden fur den vorliegenden Warmepumpentyp (Fig. 4) 7

Temperatursignale, 2 Drucksignale und 1 Leistungssignal benétigt (Gl. (29)), wovon 4 Tempera-
tursignale und ev. 2 Drucksignale standardmassig vorhanden sind (GlI. (30)).



Parameteridentifikation. Durch eine Mittelung der Signalwerte Uber den stationéren Bereich und
anschliessende Inversion kénnen die Parameter bestimmt werden (Gl. (31)). Die Detektion des
stationaren Zustandes kann entweder Uber die Ableitung eines charakteristischen Signales erfolgen
(Fig. 5), oder der Zeitpunkt fur das Auftreten des stationdren Zustandes wird als konstant ange-
nommen.

Fehler-Interpretation. Aus den Veranderungen der Parameter konnen die entsprechenden Fehler
manuell interpretiert werden. Die Fehler sind in einer Liste zusammengefasst (Table 1).

Online-Betrieb. Prinzipiell ist der Betrieb des Diagnosesystems ohne vorherige Trainingsphase
maoglich, falls das einzige Ziel die Identifikation der aktuellen Parameter ist. Fir eine Fehler-
Interpretation missen jedoch die Abweichungen der Parameter von ihren Anfangswerten oder
Auslegungswerten berechnet werden. Dazu missen diese Anfangswerte mit demselben Diagnose-
system in einer kurzen , Trainingsphase” fur den Nominalfall identifiziert werden. Es werden je-
doch keine Daten fUr die Fehlerfélle benttigt.

Zyklische statistische Auswertung. Wéahrend dem Betrieb werden die identifizierten Parameter
zyklisch ausgewertet (Fig. 6). Nach mehreren Identifikationsschritten erfolgt eine Mittelwertbil-
dung. Der Verlauf dieser Mittelwerte kann anschliessend in ,Parameter-Trend-Charts® veran-
schaulicht werden (Fig. 7). Da die aktuellen Parameter jederzeit bekannt sind, wird eine zustands-
orientierte Instandhaltung erméglicht [UAW-7 00].

Introduction:

HeatWatch is used for diagnosing heat pump systems (Fig. 3). No mass flow sensors or heat flow
sensors are needed, which helps to minimize costs. Temperature signals and pressure signals are
measured by sensors in the refrigerant cycle as well as at the heat source side and at the heat sink
side. These signals are evaluated in steady state, by calculating the parameters and the characteris-
tics of the heat pump.

input signals

(air/ground temperature,
water temperature)

control signals

heat pump

temperatu re/ pressure sensors l

HeatWatch

data acquisition + steady state detection

steady state steady state integrated
parameters coefficients coefficients
stemperatures sheat transfer *COP *Energetic
epressures parameters eexergetic  efficiency
emass flows efficiency  eenergy
ecompressor *heat flows consumption

characteristics
eexpansion valve
characteristics

11

<heat production
eoperating time
«defrosting time

Fig. 3: The scheme of the fault diagnosis system (called HeatWatch).



2.1 Modeling

The model has been developed for a heat pump with an internal heat exchanger (Fig. 4). On the
heat source side, the mass flow m s is cooled down from the inlet temperature Ts; to the outlet
temperature Tso. The water mass flow m'y, on the heat sink side is heated up from the inlet tem-
perature T, to the outlet temperature T,,o. In steady state, the refrigerant mass flow m’; has the
same value for the entire refrigerant cycle. The low pressure pip, the high pressure pry, the super-
heating temperature Ty, the hot gas temperature Ty, and the subcooling temperature Ty describe
the state of the refrigerant.

T . m* T heat sink

Wil w W,0

— ——» (water cycle)

"> P, — refrigerant cycle

condenser

compressor

internal
heat exchanger+y
T

sc Tov

liquid
valve 4

expansion
valve

evaporator
Py

‘—._‘ ——— heat source
T m T

s,0 s s,i

Fig. 4: Anindustrial heat pump with an internal heat exchanger (type SATAG), temperatures T; and pres-
sures pi.

Steady-State Equations

The model is directly built for steady-state conditions. The energy balances are used for the evapo-
ration process in the evaporator and the internal heat exchanger (eg. (1)), for the superheating
process in the internal heat exchanger (eg. (2)), for condensation (eg. (3)), for the subcooling proc-
ess in the internal heat exchanger (eg. (4)), for the heat source side (eg. (5)), and for the heat sink
side (eg. (6)). All terms represent heat flows.

My (1 (pip) = kAe(Ts = Te) + kg, e(Tez = Te) (1)
My oy {Tov = Ta (Pip)) = KAne v (Tec = To) 2
My 0 (Php) = KAC(Te — Tw) ©)
My Lo ATh(Prp) =~ Tec) = Kreov(Tee = Tov) * KAng,e(Te = Te) 4)
kAe(Ts = Te) = mg [ [T =T o) 5)
KA (Te = Tw) = My [y [T0 = ) (6)

The heat transfer parameters kA; are the product of the heat transfer coefficient ki and the heat tran-
fer area A.. The latent heat of vaporization r(p;), the bubble point temperature Ty(p;), and the dew
point temperatuer Ty(p;) are given by the refrigerant data equations (cf. Chapter 6, Section 6.1,
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“Refrigerant Data’). The specific heat capacities ¢; can also been calculated from refrigerant data,
or they can be regarded as constants. For calculating the heat transfer heat flows, an approach with
the arithmetic mean temperaturesis used (egs. (7) to (10)).

oo Ty (p|p2) +Toy (7)
E:Tb(phpz)"'-rsc ©
T = Tsi ';Tso )
T, = Tuo (10)

The evaporation and condensation mean temperautes are calculated from refrigerant data, using
the mid-point temperatures Ty(pi).

Te = Tm(Pip) (11)
Te = Trm(Prp) (12)

At least one mass flow m’; (or one heat transfer parameter kA;) must be known for calculating the
other parameters. Here the refrigerant mass flow m , is calculated from the power input Pyp of the
compressor (eg. (15)), by using the difference between the superheating enthalpy hoy (€g. (13)) and
the hot gas enthalpy hng (9. (14)). The electro-mechanical efficiency 7.y may be regarded as a
scaling factor for the mass flow m ,, thusiit is sufficient to use a guess value.

hng = h"(Pnp) + Chg WThg =T (Prp)) (13
hoy =h"(Pip) +g[mov = Ta(Pip)) (14)
" B
m = JempTHP (15)
hhg = hyy

Other parameters of the compressor, such as the polytropic exponent e, and the mass flow sup-
ply efficiency Acmp, are determined by egs. (16) and (17), with nenyp as the compressor speed and
bemp as a characteristic parameter.

_109(Thg / Tov)

Comp = —— 92 (16)
M 1og(pnp / Pip)

m*
Acmp = ' Borp (17)
ncrrp |:(php/ plp)

The valve constant Kep (€g. (18)) and the superheating AToy (9. (19)) characterize the expansion
valve.

*

m,
o = — (18)
P v/ Php = Pip
AToy =Toy = Ta (Pip) (19)

All the heat flows in the system (1)..(6) can be calculated, if the parameters kA; and the mass flows
m ; are known. Eq. (20) represents an example for the heat output heat flow Q' yp.

Qitp = Qi = Mivw(Two ~Tui) = KA (Te ~Tor) = T (Pip) (20)

Other heat pump characteristics, such as the coefficient of performance COPyp (eg. (21)) and the
quality grade &4p (eg. (23)), are also calculated. The carnot value COPcarnet IS ither determined by
the source and water temperatures (Ts, Ty), or it is determined by the evaporator and condenser
temperatures (Te, To).
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*

COPyp = ,?,HP (21)

Hp
— TW — TC
COPcarnot,sw =71 COPcamotec =7 —1- (22)
w S (o} e
Eupi = _CORp (23)
! COPCarnot,i

Using the mass flow m ,, from steady state, the time-varying heat output Q 1p(t) can be guessed
for the time interval before steady state (eq. (24)), because during the operation the mass flow m \,
through the circulation pump is almost constant, in contrast to the other signals (temperatures).
Thus, the performance factor PF for the time interval At is given by eq. (25).

Qe (1) = My (T o) Ty (0) (24)
At period
[ Qup(t)dt
PF (At period) = EST (25)
[Pyp(t)dt
t=0

Linear Regression Form

The steady-state equation system (1)..(6) is transformed into the linear regression form (eg. (26))
with the known output vector y, the unknown parameter vector « (eg. (27)), and the known regres-
sion matrix ¢ (eg. (28)). The mass flows m's and m  are also regarded as unknown parameters,
whereas m'; is known from eg. (15).

y=¢Lk (26)
my; E(ppp) [ kA ]
M oy WToy — Ty (Pip)) kAhk::V
et
r —’sc bophp sc m*s
I 0 | L My
om0 0 om0 0]
0 Te-Ty O 0 0 0
0 0o T.-T, O 0 0
- _ _ 28
P 0 To-Tw 0 Te-T. 0 0 (28)
T.-T. O 0 0 colTsi ~Tso) 0
L 0 0 ﬂ_T_c 0 0 QTW,O_TWJ)_

Number of Sensors

For the actual heat pump type (Fig. 4), 10 sensors are needed (eg. (29)). By reducing the number
of sensors, the number of identifiable parametersis also reduced.

Yup :|_Tov Thg T Tsi Tso Twi Two Pip Prp I:)HPJ (29)

In standard industrial heat pumps, 4 temperature sensors are attached to the heat source as well as
the heat sink side (eg. (30)). Often pressure switches for high- or low-pressure alarms are used. If
the pressure signals are continuously measured as well, there are 6 signals, that can be used by
default. The other sensors have to be added.

YHPstandard = |_Ts,i Tso Twi Two (Pip) (plp)J (30)
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2.2 Parameter Identification

Steady-State Detection
A characteristic signal x with aslow transient is chosen for steady-state detection (cf. Fig. 5).

1
x
g
i< <)
(2]
S (quasi)
o steady
3] state
©
0 )

time
Fig. 5: Detection signal and (quasi) steady state interval.

Steady state is determined by the derivative dx/dt of signal x. A noisy signal first hasto be filtered.
The systemis in (quasi) steady state, if the derivative dxi/dt of the filtered signal x: is lower than a
given limit during a minimum time interval.

A much simpler approach works with a fixed time ts for the beginning of steady-state, which first
has to be found for a given data set. In this case, the filtering and the calculation of the derivative
may be omitted.

Estimation by Mean Values

For all variablesin ¢ (eqg. (28)) and y (eq. (27)), the mean values are calculated for the time inter-
val tss...tsst Atss. Afterwards, ¢ isinverted (eg. (31)).

Ry =97y (31)
In general, for each of the two modes (off, on), different parameter sets are identified (eg. (32)).
K :{koﬁ v’eon} (32)

For an air-to-water heat pump with a defrosting cycle, three modes have to be defined (off, on,
defrosting).

2.3 Fault Interpretation

From the deviation of the physical parameters x from the nominal values ko, the corresponding
faults have to be interpreted by the user. Table 1 summarizes possible interpretations.

Table 1: Parameter deviations and corresponding faults.

changed parameters | fault interpretation (air/water heat pump)

kA evaporator fouling (icing)

kA condenser fouling

KAneer KAneov internal heat exchanger fouling

ms source cycle fouling, source pump mafunction
(air channd fouling, air fan malfunction)

My water cycle fouling, water pump malfunction

m, disfunction in refrigerant cycle, e.g. leskage

Cempy Acmp compressor malfunction

Kexpy ATov expansion valve mafunction
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2.4 Online Fault Diagnosis

Online Application without Fault Training

In principle, the diagnosis system can directly be applied online without any previous training, if
the only objective is to identify the actual parameters of the system. For fault interpretation, the
deviations of the parameters from their initial or design values have to be calculated. Therefore the
same diagnosis system is used to identify the initial parameters in a short “training phase” for the
nominal case. No data for any fault case is needed.

Cyclic Statistical Evaluation

Each identification sequence isq yields one parameter set «(isq). All parameter sets of one cycle
ieye, CONtaining | sequences, are stored in the matrix K in eq. (33) (cf. Fig. 6).

Klieye)= k@ ,(2) - «(1)] (33

At the end of each cycle the parameters are statistically evaluated by eg. (34), which calculates the
mean values of the parameters.

Klicye) = %S'zzlx(s) (34)

cycle i

cyc

-~ - Y
off on off on off
\_v_/

sequence i

seq

Fig. 6: Cycles and sequences

Parameter Trends
All parameter mean values of each cycle are stored in the matrix K (eqg. (35)).
KlLngy)= @) ¥(@2) - %(nye) (35)

Trend charts such as the one shown in Fig. 7 are informative for the progression of each parame-
ter. Optionally, the remaining time to an alarm limit is predicted, when the next service is due.
With the knowledge of the actual parameters, a state-oriented maintenance is possible.

Parameter
(e.g0. kKA)

initial value

time to alarm
P

alarm limit
: : >
Cycle, Time

Fig. 7: Trend chart for one parameter over the time, dots = mean values of each cycle.
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3 FuzzyWatch

Kurzfassung (Deutsch):

Im Uberwachungssystem FuzzyWatch ist neben der Parameteridentifikation auch die Fehlerklassi-
fikation integriert (Fig. 8). Die Signale werden von Temperatursensoren oder optional auch von
Drucksensoren geliefert, wobel die Anzahl der bendtigten Sensoren abhangig vom ,,Informations-
gehalt“ der Signale ist. Wahrend der Trainingsphase werden die am besten geeigneten Signale
ausgewahlt.

Eingangsgréssen

(Quellen-/Senken-
temperatur, ...)

Stellgréssen
(Ein/Ausl/...)

Temperatur-/Drucksensoren

FuzzyWatch
Datenerfassung

Parameteridentifikation

Fehlerklassifikation

Fehlercodes:

*\Verschmutzung/Verschlammung Verdampfer
*\Verschmutzung/Verschlammung Kondensator
*Stérungen im Arbeitsmittelkreislauf (Leckage, ...)
*Fehlfunktion Sole-Umwalzpumpe / Ventilator
*Fehlfunktion Wasser-Umwalzpumpe
*Fehlfunktion Kompressor

*Fehlfunktion Expansionsventil

Fig. 8: Das Schema des Diagnosesystems FuzzyWatch.

Ablauf der Diagnose. Fur das Training des Diagnosesystems werden mehrere Testzyklen gefah-
ren fur jeden Fehlerfall (Fig. 10), wobei die Wéarmepumpe wahrend eines Testzyklus mehrmals
ein- und ausgeschaltet wird. Eine Datensequenz ist beispielsweise durch eine Einschaltung defi-
niert (Aus-Ein-Sequenz, Fig. 11). Fir jede Datensequenz wird ein Parametersatz identifiziert (Fig.
12), welcher im Parameterraum ein Datenpunkt darstellt (Fig. 13). Die Parameteridentifikation
wird fur jede Sequenz und fir alle Fehlerfélle wiederholt. Damit existieren fUr jeden Fehlerfall
mehrere Datenpunkte. Diese Datenpunkte (Parametersétze) werden fir das Training des Klassifi-
kationssystems benutzt, welches die Fehler aus den Parametern klassifiziert (Fig. 14).

M odéllbildung. Fur einen allgemeinen Warmepumpentyp (Fig. 15) wird ein ARX-Modell defi-
niert (Gl. (37)). Die gemessenen Temperaturen sind in den Eingangssignalen u(t) und den Aus-
gangssignalen y(t) zusammengefasst (Gl. (36)). Dabei ist eine physikalische Modellstruktur (Gl.
(38)) wie auch eine entkoppelte Modellstruktur (Gl. (40)) moglich. Neben dynamischen ARX-
Ansatzen werden auch statische Modellansétze verwendet.

Parameteridentifikation. Die Parameter der Modelle werden mit der Least-Squares-Methode
identifiziert, wobei fur die zwei Betriebsmodi (Aus, Ein) bzw. Datensequenzen (Aus-Ein, Ein-
Aus) verschiedene Parametersétze entstehen.

Fehlerklassfikation. Die Klassifikation wird realisiert, indem der Parameterraum in ,Cluster”
aufgeteilt wird, wahrend pro Fehlerfall ein , Cluster* entsteht (Fig. 16). Beim Training des Uber-
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wachungssystems werden in einem ersten Schritt die ,, Cluster” gebildet. In einem zweiten Schritt
wird darauf basierend ein Klassifikationssystem generiert. Folgende M ethoden wurden entwickelt:

» HCMZ2Fuzzy. Die Clustermittelpunkte und -standardabweichungen werden ermittelt und ein
Fuzzy-Klassifikationssystem wird generiert. Als Vorteil kdnnen die Fuzzy-Regeln von einem
Experten betrachtet oder verandert werden. Das Fuzzy-System kann auch als neuronales Netz
aufgefasst werden und erbt dessen Lernfahigkeit (Fig. 17).

« HCMZ2Neuro. Hier werden die obigen Cluster direkt in ein neuronales Netz integriert (Fig.
18) Vorteilhaft ist die einfache Struktur und die schnelle Auswertung.

» FCM2Neuro. Diese Methode verwendet einen iterativen Algorithmus fir die Clusterbildung.
Die Cluster werden direkt in ein neuronales Netz integriert.

Nach der Clusterbildung werden die Cluster auf falsche Klassifikationen gepriift (, Cluster Check-
ing“). Dabei wird die Fehlklassifikationsrate ermittelt, welche als Verhdltnis zwischen der Anzahl
falscher Klassifikationen nuwong zur gesamten Anzahl der Klassifikationstests neheck definiert ist
(Gl. (56)).

Automatische Auswahl der Signale. Die Signale, welche am meisten ,,Informationen” Uber die
Fehler enthalten, werden automatisch ausgewahlt. In einem ersten Schritt werden alle Ausgangs-
signale y(t) des Systems ausgewdahlt, deren Anzahl in weiteren Schritten fortlaufend reduziert
wird. FUr eine bestimmte Auswahl der Ausgangssignale werden die Cluster im entsprechenden
Parameterraum gebildet und auf falsche Klassifikationen gepruft. Am Schluss werden die Klassi-
fikationsresultate fur alle Signalkombinationen verglichen und digjenige Signalkombination mit
der tiefsten Fehlklassifikationsrate wird gewéahlt. Generell kann mit der entkoppelten Modellstruk-
tur die Anzahl der Sensoren stérker reduziert werden als mit der physikalischen Modellstruktur, da
keine Kopplungsterme zwischen den Ausgangssignalen vorhanden sind.

Graduelle und smultane Fehler. Die Sandard-Clustering-Algorithmen (HCM2Fuzzy,
HCM2Neuro, ...) kbnnen auch fur Fehler verschiedener Grosse oder fir Kombinationen gleichzei-
tig auftretender Fehler verwendet werden (Fig. 19). Mit zunehmendem Fehlergrad bewegen sich
die Clustermittelpunkte auf (nichtlinearen) Trajektorien. Die Cluster werden aus Trainingsdaten-
sétzen fur die verschiedenen Fehlergrade und -kombinationen gebildet. Deshalb ist eine grosse
Menge von Datensétzen notwendig, was mit grossem Zeitaufwand auf dem Prifstand verbunden
ist.

Um den Trainingsaufwand reduzieren zu konnen, werden Vektor-Cluster gebildet (Fig. 20). Dazu
sind nur Datensétze fur den Nominalfall sowie fir einen Fehlergrad pro Fehlerfall notwendig. Die
Anzahl der Vektor-Cluster entspricht der Anzahl Fehlerfélle. Jedem Datenpunkt wird ein Fehler-
Zugehorigkeitsgrad (, membership grade®) und ein Fehlergrad (,fault grade®) zugeordnet. Der
Zugehorigkeitsgrad entspricht der Wahrscheinlichkeit, dass der Fehler aufgetreten ist, und der
Fehlergrad entspricht der Grosse des Fehlers. Mit den Vektor-Clustern kann nicht nur der Trai-
ningsaufwand reduziert werden, sondern es entstehen auch weniger komplexe Klassifikationssy-
steme.

Nominal-Training. Falls nur Datensdtze fur den Nominalfall (fehlerfreien Fall) vorhanden sind,
wird die Methode des Nominal-Trainings verwendet. Dabei wird der Parameterraum des Gesamt-
modelles (Fig. 21) in mehrere Parameterrdume fir verschiedene Submodelle aufgeteilt. Jedes
Submodell entspricht einer physikalischen Einheit (z.B. Verdampfer, Fig. 22). In jedem Submo-
dell werden die Nominal-Cluster trainiert. Falls ein Datenpunkt ausserhalb des Nominal-Clusters
ist, wird ein Fehler im entsprechenden Submodell klassifiziert (z.B. Fehler im Verdampfer). Alle
Submodelle und die entsprechenden Nominal-Cluster werden in einem Klassifikationssystem zu-
sammengefasst (Fig. 23).
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Online-Betrieb. Beim Offline-Training werden die Modellstruktur (physikalisch oder entkoppelt),
der Typ der Datensequenzen (aus-ein, ein-aus, ...), die bendtigten Signale und der Typ des Klassi-
fikationssystems (Cluster-Typ) bestimmt. Die entsprechenden Module werden aus dem Offline-
System extrahiert und ins Online-System integriert. Wahrend fir die Trainingsphase zahlreiche
Sensoren am Priufstand montiert werden, bendtigt das Online-System nur die ausgewahlten Senso-
ren. Die Komplexitédt des Uberwachungssystems wird auf ein Minimum reduziert.

Zyklische statistische Auswertung. Wahrend dem Betrieb erfolgt nach mehreren Klassifikations-
schritten eine Mittelwertbildung. Der Verlauf dieser Mittelwerte kann anschliessend in ,, Fehler-
Trend-Charts* veranschaulicht werden (Fig. 24). Da jederzeit die aktuelle Fehlersituation bekannt
ist, wird eine zustandsorientierte | nstandhaltung ermaglicht.

Introduction:

This diagnosis system integrates parameter identification as well as fault classification (Fig. 9).
The signals are measured by temperature sensors, or optionally by pressure sensors, whereas the
number of sensors depends on the ‘information content’ of the signals. During the training phase,
those signals are selected, that are best suited for diagnosis.

input signals
(air/ground temperature,
water temperature)

temperatu re/pressu re sensors

control signals

FuzzyWatch

data acquisition

parameter identification

fault classification

faults:

*no fault

eevaporator fouling

«condenser fouling

erefrigerant cycle malfunctions (leakage,...)
eground cycle pump / ventilator malfunctions
ewater cycle pump failure

ecompressor failure

eexpansion valve malfunctions

Fig. 9: The scheme of the fault diagnosis system (called Fuzzy\Watch).
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3.1 Diagnosis Procedure

For the training of the fault diagnosis system, various test cycles are run for each fault case (cf.
Fig. 10). During one test cycle icyc, the heat pump is switched on and off several times, which re-
sults in several data sequences isy.

cycle i

cyc

-~ - I
fault 1 off | on |oOff | on | Off
fault 2
fault 3

—

sequence i

seq
Fig. 10: Test cyclesfor training

For a brine-to-water heat pump, two modes (on, off) result in two different types of sequences
(off-on, on-off). For an air-to-water heat pump with a defrosting cycle, three modes (off, on, de-
frosting) result in six different types of sequences (off-on, off-defrosting, on-off, on-defrosting,
defrosting-off, defrosting-on). An example signal y; for one off-on sequence is shown in Fig. 11.

signaly, & o on off

~ g
. time
off-on sequence i

seq
Fig. 11: Step response for one signal during the off-on sequence iy

All measured input signals u(isg) and all measured output signals y(isq) of one sequence isyq are
used to identify the parameters &(ise) of aheat pump model (cf. Fig. 12 and Sections 3.2 and 3.3).

mode (off, on)
OUtpEt signals y(iseq)
L

input signals U(i;.q) heat pump

parameter <
identification

l

parameter set 8(ige,)

Fig. 12: Parameter identification for the data of the sequence i«

Each parameter set &is) Of a sequence isq defines one data point X(ise) in the parameter space
(cf. Fig. 13). The parameter identification is repeated for each sequence of all fault cases. Thus,
each fault case contains several data points.
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parameter 6,=X,

A
data points
of fault 2
A
s, A 4
A AAA .t
A A
At N AL
A N -
A N A A
Lo A-A.l »
A 4 L. [ ] ]
u - " - n n
- |} |}
[ ] L] [ ]
. . o "

parameter set 8(ige,)
= data point X(iseq)

Y o data points
" = of fault 1

parameter 6,=x,

Fig. 13: Parameter space with parameter sets (data points) for each sequence sy,

example: two parameter components and two fault cases

Using this data points as training data, a fault classification system is built (cf. Section 3.4), which

classifies the faults from the parameter sets (cf. Fig. 14).

l parameter set B(iseq)=X(iseq)

fault
classification

l fault set (ieq)

Fig. 14: Classification of the faults from the parameters of the sequence iy

3.2 Modeling

For a general heat pump (Fig. 15) an ARX model is defined with the input vector u(t) and output
vector y(t) of eq. (36), containing the measured temperature signals T; and pressure signals p..

TS TG
* —————p
—
(T3P (Topy)
condenser
expansion compressor
valve
X-O —M
evaporator
(T4Py) — (ToP2)
<« | L e
TS T7

Fig. 15: Measured signals of a general refrigerating machine
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For convenience, only the temperature signals T; are considered in these equations, but the pres-
sure signals p; could be added as well.

L1
v =| 2 =7 (36
. 8
Te
A first-order ARX model is given by eg. (37) (AR = auto regressive, X = extrainput) [Ljung 87].
y(t) = Ay(t - 1) + Bu(t) +€(t) (37

Physical Structure (Gray-Box Model)

The structure is called physical if the matrix A of eg. (37) is built on the basis of physical consid-
erations and therefore is arbitrary. For the general heat pump shown in Fig. 15, the model is given
by eq. (38). The additional step input usep(t) is required because the heat pump is switched on and
off. Consider each element ‘«’ of eq. (38) being non-zero parameters a  or by, respectively.

[Ty(t)] [+ 00« « O] [Ty(t-D] [+ O+

To(t)[ |+ = 000O0||T(t-1)| |0 O- )

Ta(t)|_[O ¢ « 00 | Ta(t-1)|, |0 « »

Ti(t) “lo00s-00 []Tj(t—l) oo % T8(t)t] (38)
Tot)| |» 00+ « 0] |Tot-1)| |+ 0| Yse0®

[ Te(t)| |0« ¢ 00 «||Te(t-2)] [0 =

Eq. (38) contains all submodels for each module of the heat pump. For example, the evaporator
submodel has the form of eg. (39), which corresponds to the 5th row of eq. (38).
Ti(t-1)
Ta(t-1)
Ts(t) = [aS,l as4 ass bs7 b5,step] Ts(t-1) (39)
T7(1)
Ugtep (1)

Decoupled Structure (Black-Box Model)

The structure is called decoupled if the matrix A of eq. (37) is diagonal. For the general heat pump
model with an additional step input uge(t), the system is described by eg. (40). Here a full matrix
B is chosen, which means that all output signals depend on the same input signals Tz, Tg and on
the step input Usep.

[Ty®)] [+ 0000 0] [Tyt-2] [+« «
r0| |00+ 00 0| [Ta-p| [+« o|[ 70

D . t- « o
0|00 0« 0o|lr-n|*- - - E%Ts(t)t] (40)
Tst)| (0000« 0f [Tst-)| |o + o] [Ys0®
[ Te(t)] (00000 «] |Te(t=2)] |» o ¢

As eq. (40) shows, there are no links among the output signals T1..Ts. The relation to physics thus
isamost lost. On the other hand, the output signals can be easily eliminated without changing the
system structure. This feature will be important in order to reduce the number of sensors during
the signal selection task (cf. Section 3.5)

Other Polynomial Models

Static models are used as well. Often, static approaches are sufficient for describing fast compo-
nents of the process. Their advantage is that they have the least number of parameters and there-
fore can be identified under most conditions.

y(t) = Ku(t) + e(t) (41)
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If first-order ARX models are not accurate enough, ARX models of order 2 are used instead,
which are given by eq. (42).

y(t) = Ayt -1 + Ay y(t —2) + Byu(t) + e(t) (42)

During the training of the fault diagnosis system, the best approaches are selected for each sub-
model.

3.3 Parameter Identification
The parameters are identified separately for each submodel (for each row of the egs. (38) and

(40)).

Least-Squares Estimation

The ARX model permits the parameter identification task to be performed very simply, using the
Least-Squares estimation method. The linear regression form of an ARX model is given by eq.
(43), with the output y, the regression vector ¢', the parameter vector 6, and the equation error &
[Ljung 87], [Gertler 98].

y()=¢" () B +£(t) (43)
For example, the evaporator submodel (eg. (39)) is transposed to eq. (44).

as1
as4
Ts(t)=[T1(t-1) T4(t-1) Tg(t-1) To(t) ustep(t)] ;15,5 (44)
5,7
bS,step

Thus, the variables of eg. (43) are defined by eq. (45).

as)
a5 4

y(t) =Ts(t) p" =[T1(t‘1) Ta(t-12) Ts(t-1) T7 (1) Ustep(t)] 0=| agg (45)
bs 7

b5,step

For k measurements, the linear regression form (eq. (43)) becomes eq. (46). For the evaporator
submodel, the output vector Y and the regression matrix @' are defined by eq. (47). An estimation
for the parameter vector 8 is calculated by building the pseudo-inverse of @' (eg. (48), [Ljung
g)).

Y=0T B+E (46)
Ts(t) Ti(t-1) Tut-1) Tst-1) T (1) Ugtep (1)
y=| Tst-D of o|Tt=2) Ty(t-2) T5(t-2 To(t-)  Ugep(t-D) 47
Tolt—k+1) Tl(t:— k) T4(t:— k) T5(t:— k) To(t “k +1) Ugep(t —k+ 1)
6 =(@0") o1y (48)

In general, for each of the modes (off, on) or sequences (off-on, on-off), different parameter sets
areidentified (eg. (49)).

6= {éoﬁonvéonoﬁ} (49)
3.4 Fault Classification

The fault classification task is performed by separating the n-dimensional parameter space into n.
clusters for each fault case. During the training phase, the classification system is built in two
steps from measured data. In the first step the clusters are built and, based thereon, the classifica-
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tion system is built in the second step. Several clustering methods have been tested for several sets
of data points.

HCM2Fuzzy Clustering

The clustering method Hard-C-means (HCM) calculates the mean values (centers) and standard
deviations for each cluster on each parameter axis direction (Fig. 16).

Parameter p2
A

Fault Cluster 2
‘A
A

p2range2

Pa@meter pl
>

plrange2 plrangel

p2rangel

Fig. 16: Hard-C-means (HCM) clusters for two parameters and two faults with a projection onto four
Gaussian fuzzy member ship functions

A fuzzy classification system is built by projecting the clusters onto the axis. A Gaussian member-
ship function for the fault i is defined by the mean value (center) ¢ x and the standard deviation g; x
(eg. (50)), X« being the component k of a data point x.

~(%—cix)?
filo)=e 27 (50)
For two fault clusters of Fig. 16 the rules extracted are:
IF (plisplrangel) AND (p2isp2rangel) THEN (faultl isyes)(fault2 is no)
IF (plisplrange2) AND (p2 isp2range2) THEN (faultl is no)(fault2 is yes)

The rules of the fuzzy inference systems (FIS) can be viewed or edited by an expert [Gulley 98].
Alternatively, an FIS may be regarded as a neural network and inherits its learning capabilities
(Fig. 17). An example of aresulting HCM2Fuzzy cluster is visualized in Section 4.5, Fig. 33.

input MFs rules output MFs
(Gauss c;y gy) (yes/no)

O fault 1

O fault2

p2range2

Fig. 17: A fuzzy inference system (FIS) in form of a neural network with two inputs, four Gaussian input
member ship functions, two rules, two output member ship functions (yes/no), and two outputs.
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HCM2Neuro Clustering

The HCM clusters can also be directly included in a neural network classification system. For
each cluster i the corresponding neuron transfer function is defined by eg. (51), with the cluster
center components ¢ 1...Ci n, and the standard deviation components g; ;... g n. Setting the exponen-
tial factor a to 2, we get the extension of the Gaussian function of eg. (50) to n dimensions.

~(X—Cix)?

fi(xq... %) = |E|e a0 (51)
k=1

Fig. 18 shows the resulting neural network for two parameters and two faults. The advantage of

these neural networks is their simple structure, which results in a fast evaluation. An example of a

resulting HCM2Neuro cluster isvisualized in Section 4.5, Fig. 34.

inputs neuron outputs
layer

pl cluster 1 fault 1

p2 fault 2

cluster 2

Fig. 18: A neural network with two inputs, two neurons for each cluster, and two outputs.

FCM2Neuro Clustering

This method is based on an iterative Fuzzy-C-Means (FCM) clustering algorithm [H6ppner 97],
[Chiu 94]. A classification system is then built, in which the resulting clusters are directly repre-
sented. The membership grade of a point x regarding cluster i is a function of the distance d; to the
actual cluster center ¢; and of the distances d; to al other n. centers g, cf. egs. (52) and (53).

fi ()= ——— (52)

n. | g2 m-1

3 dlz(X)

i=1{ d7(x)
di (x) =[x -ai (53)
This means that the shape of an FCM cluster i is influenced by all other clustersj.

Cluster Checking

After the creation of the clusters, they are checked for wrong classifications. A wrong classifica-
tion rate can be defined.

Relative checking. For adata point x; belonging to any fault case i, a wrong classification occurs
when the membership grade f; to another fault cluster jZ exceeds the membership grade f; to the
fault cluster i (eq. (54)).

£506)> fi(x) (54)

Absolute checking. A wrong classification occurs when the membership grade f; to the actual
cluster i is not the maximum.

max(f (% ). f2(xi )+, fn (64))> Fi (%) (55)
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If eq. (54) or eq. (55), respectively, is fulfilled, the number of wrong classifications Nurong is iN-
creased by 1. This checking is repeated for each data point x; of each cluster i=1..n; and the rate of
wrong classifications is yielded by eq. (56), with neheck asthe total number of checkings.

Mwron
M'wong = ncheclf (56)

3.5 Automated Signal Selection

During the training of the fault diagnosis system the number of sensors has to be reduced. There-
fore only the signals with the largest amount of ‘fault information’ are selected, whereas the other
signals are discarded.

Regarding the system of eq. (38), al combinations of the six output signals T;..Ts are checked.
Each output signal T; corresponds to the submodel i, defined by row i. In the first step al output
signals are selected, in the subsequent steps the number of output signals is reduced. In the case of
two output signals, one combination is represented by eqgs. (57) and (58) for the submodels 4 and 6
(for example). All other rows of eq. (38) are eliminated and the dimension of the parameter space
isreduced to n = 8 (eg. (59)). With this parameter combination, the classification systems of Sec-
tion 2.3 are built and checked for the number of wrong classifications. At the end the checking
results for all combinations are compared and the signal combination with the least wrong classifi-
cations is chosen.

T3(t-1)
T4(t):[a4’3 asa b4,step] Ty(t-1) (57)
Ugtep (t)
To(t-1)
T3(t-1)
Ts(t):[as,z 33 366 bDeg b6,step] Te(t-1) (58)
Tg(t)
Ugtep (1)
646 =|a23 44 Dasep 32 363 366 bog Dosep) (59)

For the combination above, the total number of signals needed is reduced from 8 to 5 (T, T3, Ta,
Ts, Tg).

In the case of the decoupled model structure of eq. (40), the submodels of rows 4 and 6 are ex-
tracted to egs. (60) and (61) by eliminating the other rows. The dimension of the parameter space
isreduced to n = 8 aswell (eg. (62)). The total number of signals needed can even be reduced to 4
(T4, T, T7, Tg) because of the missing links between the signals.

T4(t-1)

T4(t):[a4,4 by7 bsg b4,step] %8 (60)
Ugtep (1)
Te(t—1)

Ts(t):[as,s be7 Desg b6,step] %8 (61)
Ugtep (1)

646 =|as4 Da7 Dag baser 366 bo7 Yes bosten] (62)

Generally, the number of sensors can be reduced more using the decoupled structure.
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3.6 Gradual and Simultaneous Faults

Using Standard Clustering Algorithms

The clustering algorithms of Section 3.4 can be applied for several faults of different grades
(‘sizes’) and for combinations of faults, as well. The clusters are built from training data sets for
discrete fault grades and several fault combinations (Fig. 19). With an increasing fault grade, gen-
erally the cluster centers are moving on a nonlinear tragjectory through the parameter space. The
origin of all trgjectories is the center of the nominal cluster.

Parameter 2 A 4
N a P d
A . 2
‘ * Fault 1
Fault 1 . Grade 3
l/ '

Grade 2 .

. Fault 1, Grade 2
Fault 1 PN Tt 8 [} * + Fault 2, Grade 2
Grade 1 7.7 s a
g Fault 2
Grade 3
Nominal ' ‘ .-

Fault 2

Grade 1 Fault 2

Grade 2

» Parameter 1

Fig. 19: Clusters for the nominal case, different fault grades and a fault combination of two faults (two
parameters)

A large number of data sets has to be acquired. On atest bench, this is very time consuming. By
using the simulation model (cf. Chapter 6) for training the fault combinations, the experimental
effort could be reduced.

Using Vectorized Clustering Algorithms

The vector clusters shown in Fig. 20 are created by using the centers of existing standard clusters.
The nominal case as well as one grade for each fault are used, for example grade 2 for faults 1 and
2. As many vector clusters are built as there are different faults, and the cluster center tragjectories
are assumed to be amost linear.
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Parameter 2 = x, Vector 1
A

Fautl '
Grade 2 »
,

L S O U
Nominal

Vector 2
Fault 2
Grade 2

» Parameter 1 = x,

Fig. 20: Vector clusters for two faults, created from the centers of the nominal cluster and the clusters of
fault grade 2 (two parameters)

Each fault vector v; is defined by eq. (63), with the center ¢, of fault cluster i and the center ¢,
of the nominal cluster. For adata point x, the fault grade g;(x) is defined by the projection onto the
fault vector (eg. (64)). The fault grade is scaled by the length v; of the fault vector. The member-
ship grade f;(x) is a function of the distance dj(x) to the fault vector (eq. (65)), whereas the sim-
plest function isjust f;(x)=d; (x).

Vi =G ~ Chom v’ :|\\;_i| vi =[vi| = W/EViz,k 63
i

Gi (x) = p(x)* ¥ = p Eos(¢;) mwziﬁl (64)

Vi

di (x) = P2(x) - G20 fi (x) = F(d; (x)) (65)

Thus, faults of different grades are classified. Under certain conditions (the angles between the
vectors are not too far from 90°), vector clusters are able to classify simultaneaous faults, as well.

With the vector clusters, the training effort is reduced to the nominal case and one grade for each
fault. The complexity of the resulting diagnosis system is minimized.

3.7 Nominal Training

If only data sets of the nominal case are available, the nominal training is applied. By using the
standard clustering algorithms of Section 3.4, nominal clusters are built. The parameter space of
the full model (eg. (38)) contains the nominal cluster as well as all fault clusters. This situation is
shown in Fig. 21 for two parameters and two faults, namely fault 1 (evaporator fault) and fault 2
(condenser fault). By only training the nominal cluster, these faults cannot be separated. It would
only be possible to decide whether a data point (parameter set) belongs to the nominal cluster or
not, which means that there is no fault or any unknown fault.
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Fault 1

»
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parameter 6,

Fig. 21: Nominal cluster and fault clusters for the full model,
example: model parameters 6, and &, two fault cases

In the case of a physical model structure, the

parameter space can be divided into subspaces for

each submodel. Fig. 22 shows the subspace for submodel 1 (evaporator submodel, eqg. (39)). Ide-
aly, the parameters 6, of the submodel 1 are only sensitive to the faults of this submodel. All pos-
sible faults of submodel 1 (evaporator: reduced heat transfer, reduced mass flow, ...) are com-
bined in fault 1 (any fault in the evaporator). The nominal cluster of the evaporator submodel is
built during the training phase. Fault 1 is classified if a data point (parameter set) is outside the
nominal cluster 1. The dimension of the subspace is reduced to the number of submodel parame-

ters.

A
S RER *. o Evaporator
o) ¢« v, e, Fault 1
[ *
% [] * 00 L 4
e > e
o . ¢ *

l. " ’

| ]
* +« " Nominal

>
parameter 6, ;

Fig. 22: Nominal cluster for submodel 1 (evaporator submodel),

example: submodel parameters 6, ; and &,

For each submodel, the parameter subspace is extracted and the nominal cluster istrained. Hence,
a classification system is built containing all submodels and the corresponding nominal clusters
(cf. Fig. 23). With this method, single faults or even multiple simultaneous faults can be classified.

input signals u

y

heat pump

output signals y
>

o| submodel 1
(evaporator)

parameter set 6, Cluster 1

nominal

fault 1

Fig. 23: The submodels, the corresponding nominal

(evaporator fault)
5| submodel2 |
(condenser)
nominal
parameter set 6, cluster 2| ¢, i 2

(condenser fault)

clusters, and the corresponding faults
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3.8 Online Fault Diagnosis

Extracting from the Offline System

As aresult of the offline training, the following selections are made:
» The model structure. A physical structure or a decoupled structure is selected, subject to the
classification quality claimed or the maximal number of sensors allowed.

» The switch mode. From the set of sequences (off-on, on-off, ...) the segence with the most
information about the faults has to be chosen. If necessary, more than one set can be selected,
or optionally different sets for different operational conditions (for instance, depending on the
season).

» The signal selection. The signals with the most fault information are automatically selected
(cf. Section 3.5). The associated submodels and parameters are extracted from the model. Al-
ternatively, different model approaches can be defined for each submodel (static, first-order
ARX, second-order ARX).

» The classification system. Standard fuzzy/neuro clusters or vector clusters are chosen with the
corresponding settings.

Once the modules corresponding to these selections are extracted from the offline system, they are

integrated in the online fault diagnosis system. Whereas for the training phase numerous sensors

are mounted on the test bench for comparison, the online module only needs the selected sensors.

The complexity of the fault diagnosis system is reduced to a minimum.

Cyclic Statistical Evaluation

Each identification sequence yields one data point in the parameter space (Fig. 16), which is clas-
sified as to the membership grade vector f(x). All grades of one cycle i, containing | sequences,
are stored to the matrix F in eq. (66).

Flioe)=[f (x®) £(x@) - £(x)) (66)

At the end of each cycle the grades are statistically evaluated by eg. (67), which calculates the

mean values of the grades.

_ |

Flloe)=] 21 6x9) (67)
S=

Alternatively eq. (68) can be used, which first calculates the median point and then determines the
membership grade of the median point.

_ |
Flicye)= 1 (l—l > x(s)} (68)
s=1
With vector clusters, the same statistical evaluations are made for the fault grades gi(x).

Fault Trends

All mean membership grades of each cycle are stored to the matrix F ineq. (69). For vector clus-
tersthe mean fault grades are stored in a matrix G .

E(1--ncyc):l‘z(1) f2) - ‘E(”cyc)J (69)

Trend charts as the one shown in Fig. 24 are informative for the progression of each fault. Option-
aly, the remaining time to an alarm limit is predicted, when the next service is due. With the
knowledge of the actual fault situation, a state-oriented maintenance is possible.
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Fig. 24: Trend chart for one fault over time, dots = mean values of each cycle.

The trend charts are especially qualified for the fault grades G of the vector clusters, since they
indicate the size of the faults in a direct way.
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4 Software

Kurzfassung (Deutsch):

Fur die Software-Demonstration wurden die Messdaten des kirzlich erbauten Prufstandes am
Institut fir Mess- und Regeltechnik, ETH Zlrich, verwendet. Die Diagnosesysteme wurden an
diesem Prifstand trainiert und die Online-Versionen wurden getestet. Da das Training von Hesat-
Watch sehr einfach ist (Identifikation der Auslegungsparameter), wird hier nur die Online-Version
présentiert. Fur FuzzyWatch wird sowohl die Offline-Trainings-Software als auch die Online-
Software préasentiert. Alle Software-Tools laufen auf MATLABO.

Warmepumpe des ETH-Priifstandes. Die Uberwachungssysteme wurden fiir die Sole/Wasser-
Testwarmepumpe von SATAGO mit einem internen Warmelibertrager implementiert (Fig. 25).
Diese Warmepumpe wurde mit zusétzlichen Ventilen und Sensoren ausgerustet. Abschnitt 7.2
enthdlt eine Liste aller einstellbaren Fehlerfalle.

Online HeatWatch. Vor dem Betrieb von HeatWatch miissen die stationaren Modellgleichungen
(vgl. Abschnitt 2.1) fur den aktuellen Warmepumpentyp definiert werden. Zusétzlich missen die
Auslegungsparameter bekannt sein. Wahrend dem Betrieb werden die Diagnoseresultate (station&
re Parameter) jeweils am Ende eines Zyklus statistisch ausgewertet. Jeder Zyklus enthélt mehrere
| dentifikationsschritte fur die einzelnen Datensequenzen (z.B. aus-ein).

Die Diagnoseresultate sind auf Fig. 26 und Fig. 27 beispielhaft fur die Fehlerfélle 2 und 3 darge-
stellt. Die Balkenhohen entsprechen den Abweichungen der Parameter von den Auslegungswer-
ten. Aus den Zyklus-Mittelwerten konnen die aktuellen Fehler (manuell) interpretiert werden.

Online FuzzyWatch. Wahrend dem Betrieb werden die Diagnoseresultate (Fehler-
Zugehorigkeitsgrade, Fehlergrade) jeweils am Ende eines Zyklus statistisch ausgewertet. Jeder
Zyklus enthalt mehrere Klassifikationssschritte fir die einzelnen Datensequenzen (z.B. aus-ein).

Fur Vektor-Cluster sind die Diagnoseresultate auf Fig. 28 und Fig. 29 beispielhaft mit Daten der
Fehlerfalle 2 und 3 dargestellt. Die Schattierungen entsprechen den Zugehorigkeitsgraden und die
Balkenhthen entsprechen den Fehlergraden. Aus den Zyklus-Mittelwerten konnen die aktuellen
Fehler und deren Gréssen abgelesen werden.

Fur Standard-Cluster entfallen die Fehlergrade, und es werden lediglich die Zugehorigkeitsgrade
dargestellt. So zeigt Fig. 30 die Resultate fir den Fehlerfall 3.

Trend Charts. Fur ale Clustertypen von FuzzyWatch koénnen Fehler-Trend-Charts dargestellt
werden. Damit ist es in spateren Anwendungen maglich, den Verlauf der Fehler zu visualisieren.
Fig. 31 zeigt die Trend-Charts fiir eine Test-Sequenz mit allen Fehlerfallen 1-2-3-4-5-6. Ahnliche
Trend-Charts kdnnen auch fir die Parameter von HeatWatch dargestellt werden.

Training von FuzzyWatch. Als erster Schritt wird die Modellstruktur in einem sehr kurzen Pro-
grammcode definiert. Anschliessend fuhrt ein Bedienfeld (Fig. 32) durch die weiteren Schritte der
Trainingsphase, bestehend aus der Datenanalyse, dem Bilden und Uberpriifen der Cluster mit
Trainingsdaten, dem Bilden von Vektor-Clustern, dem (optionalen) Editieren der Fuzzy-Regeln
und der Visualisierung der resultierenden Cluster. Als Beispiele sind zwei verschiedene Clusterty-
pen graphisch dargestellt (Fuzzy-Cluster in Fig. 33 und Neuro-Cluster in Fig. 34).

Introduction:

For the demonstration of the software, measured data is used from the recently built test bench at
the Measurement and Control Laboratory, ETH Zurich. The diagnosis systems have been trained
for this test bench and the online versions have been tested. Since the training of HeatWatch is
very simple (identification of the design parameters), only the online version is presented here. For
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FuzzyWatch, the offline training software as well as the online software are presented. The soft-
ware tools all runon MATLABO.

4.1 The Heat Pump of the ETH Test Bench

The diagnosis systems have been implemented for the brine-to-water SATAGO heat pump repre-
sented in Fig. 25 with an internal heat exchanger, which is equipped with additional valves and
sensors. For FuzzyWatch, only the temperature sensors are used as the set of initial sensors. For
HeatWatch, some of the temperature sensors and two pressure sensors are needed (for atotal of 10
Sensors).

(D
i T |
M8 Mi7 water cycle
DA< (heat sink)
refrigerant cycle
—» % g y
®

€E)

E1€b

<+«—< M brine cycle
Mi5 ‘ Mi6 é (heat source)
()
T,
Fig. 25: Anindustrial brine-to-water heat pump (SATAG) with additional temperature sensors

(TTO1..TT12) and pressure sensors (pTO1 and pT03).
A list of all fault casesis presented in Section 7.2, whereas here only the fault cases 1..6 are tested.

4.2 Online HeatWatch

Before the operation of HeatWatch, the steady-state model equations (cf. Section 2.1) have to be
defined for the actual heat pump type. Additionally, the design parameters have to be known. Dur-
ing operation, the diagnosis results (steady-state parameters) are statistically evaluated at the end
of each cycle, which contains several diagnosis steps. One step corresponds to one data sequence
(for example off-on).
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Run Online Diagnosis

Fig. 26 shows the diagnosis results of a first data example. The deviations of the actual parameters
from the design values are displayed. The highest deviation is in the parameter KM S, which repre-
sents the mass flow of the heat source (cf. Table 2). The parameter kVV is influenced secondly,
which is the evaporator heat transfer parameter. From the mean parameter deviations (bars in the
columns “Mean”), the actual fault can be (manually) reasoned by the user. Here, fault case 2 is
present, which is a reduction of the heat source mass flow. With an increasing number of steps per
cycle, the quality of this conclusion is increasing as well.

Online HeafWalch

Fig. 26: The results of a cycle with 3 identification steps (data sequences) for fault case 2. Each plot region
corresponds to one parameter. For each identification step one bar is plotted. The heights of the bars indi-
cate the deviations from the design parameters (= 0). All parameters of one cycle are averaged and dis-
played as mean values (columns“ Mean”).

Fig. 27 shows the diagnosis results of a second data example. The highest deviation is in the pa
rameter KVV, which represents the evaporator heat transfer parameter (cf. Table 2). The parameter
epsSW is influenced secondly, which is the quality grade of the heat pump (SW = source-to-
water). Here, fault case 3 is present, which is a reduction of the evaporator heat transfer.
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Online HeafWalch

Fig. 27: The results of a cycle with 3 identification steps (data sequences) for fault case 3.
Table 2: Legend for the parameters of HeatWatch.

software model parameter description

kvVv kAe heat transfer parameter of the evaporator

kzwv kAnee heat transfer parameter of the internal heat exchanger (evaporation part)
kzwuU KAne.ov heat transfer parameter of the internal heat exchanger (superhesting part)
kKK kA heat transfer parameter of the condenser

kMW m*y, water mass flow

kMS m*g source medium mass flow

kM nm, refrigerant mass flow

kexp Cemp polytropic exponent of compressor

klam Acrp mass flow supply efficiency parameter of compressor

kEV Kexp valve constant of expansion valve

deltaTu ATy superhesting temperature difference

COoP COPyp coefficient of performance

epsSW, epsVK Eupsw EHPec quality grade (source-to-water, evaporator-to-condenser)
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4.3 Online FuzzyWatch

The diagnosis results (membership grades, fault grades) are statistically evaluated at the end of
each cycle, which contains several diagnosis steps. One step corresponds to one data sequence (for
example off-on).

Run Online Diagnosis With Vector Clusters

Fig. 28 shows the diagnosis results of a first data example. From the mean values, the actual fault
number and the actual fault size are concluded (column “Mean”). The highest membership grade
is displayed for fault 2 (dark shading of the bar in the column “Mean”). The fault grade for fault 2
iscloseto 1 (height of the bar in the column “Mean”). Thus, with a high probability fault case 2 is
present with a fault size close to 1 (about the same size than the trained fault). As the number of
steps per cycle increase, the reliability of this conclusion increases, as well.

Online Furny'vaich

Fig. 28: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 2, using vector clus-
ters. Each plot region (row) corresponds to one fault. For each diagnosis step one bar is plotted. The shad-
ings of the bars indicate the member ship grades (dark = high membership grades) and the heights of the
bars indicate the fault grades. All grades of one cycle are averaged and displayed as mean val ues (column
“Mean” ). Fault 1 (nominal case) is not used here.
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Fig. 29 shows the diagnosis results of a second data example. The highest membership grade is
displayed for fault 3 (dark shading of the bar in the column “Mean™). The fault grade for fault 3 is
closeto 1 (height of the bar in the column “Mean”).

Online FurmyWaich

Fig. 29: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 3, using vector clus-
ters.
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Run Online Diagnosis With Standard Clusters

Fig. 30 shows the diagnosis results of a data example. From the mean values, the actual fault
number is concluded (column “Mean”). The highest membership grade is displayed for fault 3
(dark shading of the bar in the column “Mean”). Thus, with a high probability fault case 3 is pre-
sent. With standard clusters, there is no information about the size of the faults. The membership
grades of the particular diagnosis steps are much lower (light shadings) than the mean membership
grade (dark shading), which is a consequence of the parameter spread. This shows the importance
of taking the mean values for drawing conclusions.

Online FurmyWaich

Fig. 30: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 3, using standard clus-
ters. Each plot region (row) corresponds to one fault. For each diagnosis step one bar is plotted. The shad-
ings of the bars indicate the member ship grades (dark = high membership grades). All grades of one cycle
are averaged and displayed as mean values (column “ Mean™ ). Fault 1 (nominal case) is also used here.
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4.4 Trend Charts

For all cluster types of FuzzyWatch, fault trend charts may be plotted. Fig. 31 shows an example
for standard clusters. The mean membership grades of all cycles are stored and visualized in the
charts. In future applications, these trend charts will be used to observe the progressions of the
faults. Here, atest sequence of six faults with two cycles each is diagnosed and plotted (two cycles
of fault 1, two cycles of fault 2, etc.). The membership grades (fault probabilities) are scaled to the
interval 0..100%. Thus, all fault cases are classified successfully with a probability of almost
100%.

Online FurnywWaich

Fig. 31: Trend charts for 2 cycles of each fault case; fault sequence 1-2-3-4-5-6.

Similar trend charts may be plotted for the parameters of HeatWatch.
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4.5 Training of FuzzyWatch

The Model Definition

For the heat pump depicted in Fig. 25, the model is defined by a very short MATLAB® code:
St ruclLi st Nane "struc_phys' % PHYSI CAL MODEL STRUCTURE

Strucli st{1} [8 9 11 0]; % evaporator (refrigerant output)
Strucli st{2} [156 0]; % i nternal heat exchanger (superheating output)
Strucli st {3} [2 0]; % conpr essor

Strucli st {4} [3 10 12 0]; % condenser (refrigerant output)

L 1 1 O A A A 1 |
N
2

St rucli st {5} ; % refrigerant collector

St rucli st {6} [1250]; % i nternal heat exchanger (subcooling output)
Struclist{7} [6 0]; % subcooling refrigerant |ine

Strucli st {8} [7 O]; % expansi on val ve

StruclLi st {9} [1 8 11 0]; % evapor ator (brine output)

StruclLi st{10} [3 4 12 0]; % condenser (water output)

A physical model structure is defined here (first line). Each subsequent line represents one sub-
model, which is defined by its output signal and a list of the respective input signals. For example,
the evaporator submodel is defined by StrucLi st {1}, with the output signal 1 (temperature
sensor TT 01) and the input signals 8 (TT 08), 9 (TT 09), 11 (TT 11), aswell as an additional step
input 0, which is needed because the heat pump is switched on and off.

The User Interface Panel
An interface panel leads the user through the consecutive steps of the training phase (Fig. 32):

“Analyze Data’. The logged data files are analyzed by extracting the sequences, identifying the
parameters, and comparing them for different fault cases.

“Create and Check Clusters by Training Data” . For each fault case, a cluster in the parameter
gpace is built on the basis of training data. The clusters are then checked against wrong classifica-
tions by applying the same training data. “ Sngle Check” takes the full model with all output sig-
nals from the model definition and checks the clusters therefore. “ Multi Check” permits to mini-
mize the number of signals (sensors) required. A reduced number of output signals is selected and
the clusters corresponding to all combinations of these output signals are checked for wrong clas-
sifications. A ranking list is provided, which permits the user to select the signal combination with
aminimal number of wrong classifications (cf. Section 3.5)

“Create Vector Clusters’. From the clusters above, specialized vector clusters can be created to
handle gradual faults.

“Edit and Check Clusters by Validation Data”. In the case of fuzzy clusters, the properties of
the fuzzy classification system such as the fuzzy rules can be edited. The trained fuzzy, neuro net,
or vector clusters can be checked by validation data, which differs from the training data.

“Plot Clustersand Data”. The clusters and optionally the corresponding data are visualized.
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f Fagqure Mo, 1

Fig. 32: The panel for training the fault diagnosis system step by step.

Plot Clusters

The clusters of the resulting classification systems can be plotted. Fig. 33 shows one cluster of a
fuzzy classification system as well as the training data points. The high-dimensional parameter
space is projected onto two dimensions and the cluster is cut through its center. With the
HCM2Fuzzy clustering method (and the default settings), the shape of the clustersis rectangular.

Fig. 34 shows one cluster of a neuro net classification system as well as the data points. With the
HCM2Neuro clustering method, the shape of the clustersis ellipsoid.
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Fig. 33: Fuzzy cluster plot (projection onto two dimensions).
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Fig. 34: Neuro cluster plot (projection onto two dimensions).
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5 Anwendungen und Resultate - Applications and Results

Kurzfassung (Deutsch):

Beide Diagnosesysteme werden an verschiedenen Anwendungen getestet.
Anwendungen von HeatWatch:

* Messdaten aus Barzheim, nur Nominaldaten (Abschnitt 5.1)

* Prifstand ETH (Online-Software in Kapitel 4)

Anwendungen von FuzzyWatch:

* Prifstand ZHW (Abschnitt 5.2, [Zogg 01])

» Daten aus dem Simulationsmodell (Abschnitt 5.3, Kapitel 6)

» Prifstand ETH (Trainings- und Online-Software in Kapitel 4)

Detailliertere Resultate fur den Prifstand ETH werden in [Zogg 02] verfligbar sein.

HeatWatch mit Messdaten aus Barzheim. Das Diagnosesystem wurde mit Nominaldaten aus
einer Heizperiode (Jahr 1998) des Einfamilienhauses in Barzheim getestet [KTM-3 98], [UAW-7
00]. Dazu werden Daten aus 7 Temperatursensoren, 2 Drucksensoren und 1 elektrischer Lei-
stungsmessung verwertet. Die relativen Standardabweichungen der identifizierten Parameter in-
nerhalb der einzelnen Tage liegen fur 7 aus 11 Parametern unter oder bei 10% (Fig. 35). Fir die
Leistungsziffer (COP) liegen die Standardabweichungen ebenfalls unter oder bel 10%, wahrend
die Standardabweichungen des Gitegrades sogar unter oder bei 5% liegen (Fig. 36).

Im Warmelibergangs-Parameter kA des Verdampfers ist die Auswirkung der Vereisung ersicht-
lich (Wintertage mit tiefen Werten in Fig. 37). Deshalb kénnte dieser Parameter zur Detektion der
Vereisung und zum Starten des Abtauvorganges benutzt werden. Auch die téglichen Verlaufe
anderer Parameter sind dargestellt (Fig. 38 bis Fig. 42). Der Gltegrad &ipaw €ignet sich fur die
Fehlerdetektion (Entscheidung, ob irgend ein Fehler vorhanden ist).

FuzzyWatch auf dem ZHW-Prifstand. Die Sole/Wasser-Laborwérmepumpe enthélt einen zu-
sétzlichen Unterkihler (Fig. 43). Das,, Anfangs-Sensor-Set* fir das Training des Diagnosesystems
besteht aus 13 Sensoren (T11..T14 Mit T11=Ti3). 8 Fehler konnen eingestellt werden (Table 3). Alle
Standard-Clustering-Methoden HCM2Fuzzy, HCM2Neuro und FCM2Neuro werden ausgetestet.
Je nach Verteilung der Datenpunkte eignen sich bestimmte Clusterformen besser als andere.

Die Klassifikationsresultate sind in Table 4 fur die physikalische Modellstruktur und in Table 5
fur die entkoppelte Modellstruktur zusammengefasst, wobei die Anzahl der gewahlten Ausgangs-
signale variiert wird. Da die Ausgangssignale wiederum von anderen Signalen abhangig sind, ist
die Anzahl der benétigten Sensoren hoher als die Anzahl der Ausgangssignale. Je weniger Aus-
gangssignale gewahlt werden, desto hoher ist die Fehlklassifikationsrate. Bel der physikalischen
Modellstruktur ist die Fehlklassifikationsrate tiefer als bei der entkoppelten Modellstruktur, sie
bendtigt aber i.A. wesentlich mehr Sensoren. Mit der entkoppelten Struktur kann die Anzahl der
Sensoren auf 4 reduziert werden. Es wird ebenfalls ersichtlich, dass hier die Methoden
HCM2Fuzzy und HCM2Neuro die besten Resultate liefern.

FuzzyWatch mit Simulationsdaten. Eine mogliche Sensorkonfiguration fir die industrielle
Luft/Wasser-Wéarmepumpe ist in Fig. 44 dargestellt. Hier sind die Signale nicht gemessen, son-
dern mit dem Simulationsmodell aus Kapitel 6 simuliert. Das Diagnosesystem wird mit einem
»Anfangs-Sensor-Set” von 10 Temperatursensoren (T1..T1o) trainiert, wobei 9 Fehlerfélle simuliert
werden durch entsprechende Parametervariationen im Simulationsmodell (vgl. Abschnitt 6.2,
Table 11). Von den drei Betriebsmodi der Warmepumpe (Ein, Aus, Abtauen) wird hier nur die
Umschaltung Abtauen-Ein betrachtet, da diese wéhrend der Winterperiode am haufigsten ist.
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Die Standard-Cluster werden aufgrund eines Trainingsdatensatzes gebildet und anschliessend
anhand eines Validierungsdatensatzes getestet (Klassifikationsresultate in Table 6). Zundchst wird
die physikalische Modellstruktur gewahlt und die Anzahl der Ausgangssignale schrittweise redu-
ziert, anschliessend wird die entkoppelte Modellstruktur gewahlt. Dabei nehmen die Fehlklassifi-
kationsraten zu. Ein verninftiger Kompromiss ist der Fall mit 6 Sensoren unter Verwendung der
physikalischen Modellstruktur (dritte Zeile).

Im néchsten Schritt werden Vektor-Cluster gebildet und anhand von verschiedenen Validierungs-
datensétzen Uberpruft. Die Qualitét der Klassifikation ist fur die einzelnen wie auch fur graduelle
Fehler gut; die Klassifikation der simultanen Fehler ist schwierig (Table 7). Detaillierte Resultate
sind in [Zogg 02] verflgbar.

Auch Nominal-Cluster werden gebildet und validiert. Hier werden die Fehler in verschiedenen
Submodellen zusammengefasst (Table 8). Die Qualitdt der Klassifikation ist fur die einzelnen
Fehler 1..6 gut, fur graduelle und simultane Fehler ausreichend (Table 9). Detaillierte Resultate
sind in [Zogg 02] verfligbar. Die Fehler 7..9 beeinflussen alle Submodelle gleichzeitig und kénnen
nur Uber bekannte , Fehlermuster” identifiziert werden (Table 10). Ohne Training kdnnen nur die
Fehler 1..6 klassifiziert werden.

Introduction:

Both diagnosis systems are tested on several applications.

HeatWatch is applied to:

* Measured data from Barzheim, nominal case only (Section 5.1)

» ETH test bench (online software in Chapter 4)

FuzzyWatch is applied to:

» ZHW test bench (Section 5.2, [Zogg 01])

o Datafrom simulation model (Section 5.3, Chapter 6)

» ETH test bench (training and online software in Chapter 4)

More detailed results for the ETH test bench will be available in [Zogg 02].
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5.1 HeatWatch with Measured Data from Barzheim

The diagnosis system is tested with nominal data of one heating period (1998) from the residential
building at Barzheim. Therefore, the data of seven temperature sensors, two pressure sensors and
one electrical power measurement is evaluated. The relative standard deviations of the parameters
identified within each day are shown in Fig. 35. They are below or around 10% for seven parame-
ters (KAe, M wy, M r, Camps Acmps ATov, Kexp), bElOw 20% for three parameters (KAneov, KAc, M 5), While
only one parameter (kAnee) reaches the 20% mark.

standard deviations for each day

20.0%
17.5% A
15.0%
12.5% A
10.0%

@ 980127
M 980129
0980212
0 980306
M 980311
7.5% 7 980319
5.0% A B 980325
2.5% 1 0 980409
0.0% - . @ 980416

Fig. 35: Relative standard deviations of the identified parameters for each day.

The relative standard deviations of some characteristics calculated within each day are shown in
Fig. 36.

standard deviations for each day

20.0%
17.5%
15.0%
12.5%

@ 980127
W 980129
0980212
10.0% - 0 980306
7 5% W 980311
5 0% @ 980319
259 W 980325
0.0% 1 © 980409
980416

Fig. 36: Relative standard deviations of the coefficient of performance (COP_HP), the Carnot coefficient
(COP_Carnot), and the qualitiy grade (eps HP). aw = calculated fromthe air and water temperatures,
ec = calculated frominternal evaporator and condenser temperatures.

The identified parameters are shown in the following figures. The evaporator heat transfer
parameter kA, clearly shows the icing effect (Fig. 37, scaled to 0..100%). For those days in winter
with a low air temperature and a high air humidity (98-01-27, 98-01-29, ...), the parameter kA is
lower than for those days in spring with a higher air temperature (98-04-09, ...). The parameter
kAe could be used for detecting ice and starting the defrosting cycle. Whereas the variations be-
tween the different days are high, the variations within each day are low (cf. Fig. 35 also).
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scaled evaporator heat transfer param. kA_e ——980127
—=%—080129

m —&— 980212
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40% | —+— 080311
—— 980319
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Fig. 37: Scaled evaporator heat transfer parameter kA, trends for each day.

scaled compressor supply efficiency lambda_cmp | —®— 980127
100% s —%—0980129
P

80% 1 —— 980218
—%— 980226
—®—980306
40% —+—980311
——980319
20% 1 ——— 980325
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—®—080416
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Fig. 38: Scaled compressor supply efficiency Acy, trends for each day.

The variations of the refrigerant mass flow m’; is higher than the variation of the water mass flow
m w through the circulating pump (Fig. 39 and Fig. 40).

water mass flow mdot_w —e— 080127
0.45 —=—080129
0.4 W —— 980212
0.35 1 —%—080218
0.3 1 —%— 0980226
0.25 A —*— 980306
0.2 —+— 980311
0.15 —— 980319
0.1 —— 980325
0.05 —+— 980409
0 ‘ ‘ ‘ —=— 980416

0 5 10 15 20

Fig. 39: Water mass flow m', in kg/s, trends for each day.
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refrigerand mass flow mdot_r ——980127
—=— 080129
0.08 —4— 980212
.07 1 X
007 . —%— 980218
0.9 —— 980306
0.04 1
—+—980311
0.03 1
—— 980319
0.02 1
—— 980325
0.01 1
—4— 980409
0 T T ;
-
0 5 10 15 20 980416

Fig. 40: Refrigerant mass flowm , in kg/s, trends for each day.

Comparing the coefficient of performance COPyp (Fig. 41) with the (air-to-water) quality grades
&paw (Fig. 42), the lower variations of &ypaw are obvious. Thus, the quality grade could be used
for fault detection (decision, if any fault is present or not).

COoP_HP —e—980127
° —=— 980129
57 —A— 080212
NS X —%— 980218
37 —e— 980306
—+— 980311
2] —— 980319
14 ———0980325
—e— 980409
° ‘ | | —=— 980416
0 5 10 15 20
Fig. 41: Coefficient of performance COPyp, trends for each day.
——
quality grade eps_aw 980127
—=— 980129
0.6
—&— 980212
%] W’A —— 980218
0.4 1 —%— 980226
—e— 980306
0.3
—+— 980311
0.2 —~— 980319
0.1 ——— 980325
—e— 980409
° | | ‘ —= 980416
0 5 10 15 20

Fig. 42: Quality grade &.paw (air-to-water): trends for each day.
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5.2 FuzzyWatch on the ZHW Test Bench

FuzzyWatch has been applied on a test bench at the University of Applied Sciences, Winterthur
(ZHW). The test bench contains a laboratory brine-to-water heat pump with an additional sub-

cooler (after the condenser).

The Actuators and Sensors

The existing actuators and sensors of the laboratory heat pump are used to set the faults and meas-
ure the signals (Fig. 43). The manual 2-way and 3-way valves affect the refrigerant cycle, the
brine cycle, and the water cycle. On the water cycle, only the valves at the subcooler are used. The
temperature of the mediais measured by atotal of 13 sensors (T11=T13), which are used as an ini-

tial set of sensorsfor the training of the diagnosis system.

Fig. 43: The fully ingrumented |aboratory brine-to-water ZHW heat pump, with additional valves and
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subcooler storage condenser
T
fault5 tank 4
expansion refrigerant fault 4
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_________________________
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brine
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temperature sensors (T1..T1). Thelocations of the faults 1..8 are indicated.

All faults are introduced by adjusting the corresponding valves, except for fault 4, which is set by

the compressor speed (cf. Table 3).

Table 3: The faults of the ZHW heat pump (in parentheses: faultsin real applications).

fault actuator fault description
fault 1 normal behaviour, no fault
fault 2 | 3-way valve | reduced evaporator heset transfer (evaporator fouling)
fault 3 | valve reduced evaporator mass flow
(fouling, brine pump malfunction)
fault 4 | compr. reduced compressor mass flow
speed (compressor ma function)
fault5 | valve reduced expansion valve mass flow
(refrigerant line restriction, expans on valve malfunction)
fault 6 | valve reduced subcool er mass flow
(refrigerant line restriction)
fault 7 | 3-way valve | reduced subcooler heat transfer (heat exchanger fouling)
fault 8 | valve reduced subcooler mass flow
(fouling, water pump ma function)
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Classification Results

Table 4 shows the classification quality attained during the training phase for the physical model
structure, regarding the clustering method and the number of output signals or submodels, respec-
tively. For each fault case, 15 data sets were measured. Of the eight faults, the separation of seven
faults was possible with good results. Fault 5 affects the system similarly to fault 6. For 7 clusters
with 15 points each, and 7 checks per point, atota of 735 classification tests are run. The relative
checking algorithm is used.

Table 4: Results for the physical model structure with different clustering methods and output signal selec-
tions. Table field contents. number (rate) of wrong classifications for 735 tests (=100%), selected output

signals, number of required sensors.

method | 9 output 3of Qoutput | 2 of 9 output

signals signals signals
HCM- | 4(0.54%) 7 (0.95%) 11 (1.50%)
2Fuzzy | Tp T4 Tu To, Tio, Tna To, Tia

13 sensors 11 sensors 8 sensors
HCM- 7 (0.95%) 7 (0.95%) 11 (1.50%)
2N6Jr0 Tz, T4..T11 T61 Tg, T11 T91 Tll

13 sensors 11 sensors 8 sensors
FCM- 30 (4.08%) 20 (2.72%) 26 (3.54%)
2N6Jr0 Tz, T4..T11 T5, Tg, T11 T91 Tll

13 sensors 10 sensors 8 sensors

In the first column the results are presented for all nine output signals T», T4..T11. The second and
third columns present the results for the selection of three and two output signals out of nine. Gen-
erally, the output signal combinations with the best ranking (fewest wrong classifications) vary
according to the clustering method. In the case of two output signals (last column), the signals Tg
and T1; always have best ranking.

Table 4 shows that HCM2Fuzzy and HCM2Neuro yield the best results with a rate of wrong clas-
sifications at or below 1.5%. FCM2Neuro has more wrong classifications because its shape is less
flexible. Comparing HCM 2Fuzzy with HCM2Neuro, the fuzzy system is slightly better.

The number of sensors required is quite high for the physical model structure because the selected
output signals depend on a number of different signals. In the case of two output signals (last col-
umn), the output signal Tg also needs the signals Ty, T2, T12, and the output signal T11 needs T, Ts,
T4, Which adds up to atotal of eight measured signals.

In order to reduce the number of measured signals, the decoupled model structure is chosen. Here
the number of sensors is ny+ny, ny representing the number of selected output signals and ny = 2
representing the number of input signals. For all output signals the same two input signals T1» and
Ty4 are needed. As shown in Table 5, in the case of HCM2Fuzzy the rate of wrong classifications
is below 4% with five sensors and below 6% with four sensors.
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Table 5: Results for the decoupled model structure with different clustering methods and output signal
selections. Tablefield contents:. cf. Table 4.

method | 9 output 3of Qoutput | 2 of 9 output

signals signals signals
HCM- | 29 (3.95%) 29 (3.95%) 41 (5.58%)
2Fuzzy | Ty, Ta Ty Te To, Tna To, Ty

11 sensors 5 sensors 4 sensors
HCM- | 27 (3.67%) 32 (4.35%) 53 (7.21%)
2N6Jr0 T]_, T4..T1]_ T61 Tg, T]_]_ T91 Tll

11 sensors 5 sensors 4 sensors
FCM- 52 (7.07%) 47 (6.39%) 88 (11.97%)
2N6Jr0 T]_, T4..T1]_ T5, Tg, T]_]_ T81 T9

11 sensors 5 sensors 4 sensors

5.3 FuzzyWatch with Simulation Data

Simulated Faults and Signals

Fig. 44 shows a possible sensor configuration for the industrial air-to-water heat pump. The sig-
nals are not measured at the real heat pump, but simulated by the simulation model described in
Chapter 6, which was designed for this special type of heat pump.

Tio fault 5 Tg water cycle
> (heat sink)
> refrigerant cycle
fault 4 9 y
Ts T,

condenser

compressor

1
1
1
1
|
1
1 internal
' heat exchanger
1
! fault 6,
. Ts t T,
hot : liquid
gas X valve
valve )
' expansion
] valve
' fault 8 fault 1 = nominal case
! fault 9 = refrigerant leakage
i evaporator
1
| IS T2
T fault 3 |
44— ° outside air
T, fault 2 Ty (heat source)

Fig. 44: The air-to-water SATAG heat pump, with the simulated faults 1..9 and the temperature signals

T1--T10-
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From the simulation model, any “measurable’ temperature or pressure signal can be chosen as a
sensor signal, whereas here ten temperature signals (T..T1o) have been selected as the initial sen-
sor configuration for the training of the fault diagnosis system. No mass flows, heat flows, or other
internal signals of the simulation model are used for the fault diagnosis system, because in real
applications the sensors for measuring those signals would be too expensive. The power input of
the heat pump is not used, either.

Nine faults were simulated by changing the corresponding parameters of the simulation model (cf.
Section 6.2, Table 11). Fault 1 defines the nominal case, faults 2 and 3 affect the evaporator and
air side, faults 4 and 5 the condenser and water side, fault 6 affects the internal heat exchanger,
fault 7 the compressor, fault 8 the expansion valve, and fault 9 represents refrigerant leakage (cf.
Fig. 44).

The industrial heat pump has three modes (off, on, defrosting). Either the off-on or the defrosting-
on sequences would be the most interesting for diagnosing faults of the normal operation. Since
during the winter period, the defrosting-on sequences are more numerous, only those sequences
are used for identifying the parameters.

Classification Results for Standard Clusters

Several clustering methods (cf. Section 3.4) have been tested with simulation data. The simula-
tions are run for one heating period (1998) of the residential building at Barzheim. The resulting
simulation data was divided into two different data sets, one data set for the training of the diagno-
sis system (cluster building), and the other data set for its validation (cluster checking). The classi-
fication of all nine faults is tested by relative checking as well as the absolute checking algorithms.

For the HCM 2Neuro method, the results are summarized in Table 6. The physical and the decoup-
led model structure, as well as different signal selections are investigated (rows of Table 6). The
rate of wrong classification is higher for absolute checking, since it is more restrictive (second
lines in the cells of the last two columns). Moreover, the wrong classification rate for validation
data (last column) is higher than for training data (column before). In the first row, the results for
the full physical model with 8 output signals are displayed. For this case, 10 sensors are needed,
including 8 output signals (T1..Tg) and 2 input signals (Tg, T10). In the next row, the 3 best of 8
output signals are selected (T, T3, Ts), where the criterion is a minimum number of wrong classi-
fications using the absolute checking algorithm. Because of the couplings in the physical model,
the output signals T,, T3, Ts depend on the input signals T4 and Ts..10, Which adds up to 9 sensors.
With 2 of 8 output signals (T, Ts), the number of sensors is reduced to 6. For a further sensor
reduction, the model has to be switched to the decoupled structure, where atotal of 7 output sig-
nals are preselected (without signal Te). Here the number of sensors could be reduced to 5 or even
4. But the rate of wrong classifications is too high for the decoupled model structure (last two col-
umns). Therefore, as a compromise between a minimal number of sensors and a minimal wrong
classification rate, the physical model with 6 sensors (third row) is chosen.
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Table 6: Results for the physical and decoupled mode structures with HCM2Neuro clustering method,
different sets of selected signals (bold = output signals). Table cell contents for last two columns:
(number of wrong classifications) / (number of checks) = rate of wrong classifications,

first line = relative checking, second line = absolute checking.

Model, number of output signals required, training data set validation data set
signals number of sensors wrong class. rate | wrong class. rate
physical T1.Ts To Too 11/720=1.5% 24/792=3.0%

8 output signals 10 sensors 7/90=7.8% 13/99=13.1%
physical Ty, T3, Ts, Tg, Te.. Ty | 23/720=3.2% 72/792=9.1%

3 of 8 output signals

9 sensors

13/90=14.4%

31/99=31.3%

physical T2, Ta Ts, Te T2 To | 43/720=6.0% 70/792=8.8%
2 of 8 output signals 6 sensors 20/90=22.2% 33/99=33.3%
Decoupled T, Ta, T2, T, Tro 45/720=6.3% 164/792=20.7%
3 of 7 output signals 5 sensors 23/90=25.6% 48/99=48.5%
Decoupled T, T2, To, Too 68/720=9.4% 66/792=8.3%
2 of 7 output signals 4 sensors 31/90=34.4% 44/99=44.4%

For the validation data set, the wrong classification rates are quite high (also for the selected third
row). Table 6 contains the results if each data point is evaluated without any averaging (“worst
case”). For online fault diagnosis it is necessary to average the data points by a cyclic statistical
evaluation (cf. Section 3.8), which results in lower wrong classification rates.

Classification Results for Vector Clusters

Investigations with simulation data for single, gradual and simultaneous faults have shown the
results in Table 7. The vector clusters are able to classify single as well as gradual faults with a
good quality.

Table 7: Classification quality for the vector clustering method.

fault set classfication quality
singlefaults 1..9 good

gradud faults 1..9 good

simultaneous faults 1..9 low

Detailed results are available in [Zogg 02].
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Nominal Clusters

For each submodel of the physical structure (rows of the system matrix, cf. Section 3.2 eg. (38)),
its corresponding faults are listed in Table 8 (with fault definitions of Table 11, Section 6.2,). Dur-
ing the training phase, the nominal clusters have been built for each submodel (cf. Section 3.7).
During the operational phase, a fault in a submodel is present, when a data point is outside of the
nominal cluster of the corresponding submodel. Faults 1..6 only affect the corresponding submod-
els, but the faults 7..9 additionally affect all the other submodels.

Table 8: Submodels and their corresponding faults for nominal training. Faults 7, 8, and 9 affect all sub-
models.

submodel | output signal submodel output signal list of corresponding faults

number | of submodel name (input signals) (affect dl submodels)

1 T1 evaporator inlet | expansion valve T1 (Te, Ustep) fault 8, (fault 7, fault 9)
temperature

2 T2 evaporator outlet | evaporator T2 (Te, T7, To, Usep) fault 2, fault 3, fault 8
temperature and expansion valve (fault 7, fault 9)

3 T3 superhesating internal heat T3 (T2, Ts, Te, Usep) fault 6,
temperature exchanger (fault 7, fault 8, fault 9)

4 T4 hot gas compressor Ta (T3, Ugep) fault 7, (fault 8, fault 9)
temperature

5 T5 condenser outlet | condenser Ts (T4, T, T1o, Usep) fault 4, fault 5,
temperature (fault 7, fault 8, fault 9)

6 T6 internal heat exch. | internal heat Te (T2, T, Ts, Usep) cf. submodel 3
outlet temperature exchanger

7 T7 air outlet evaporator T7 (T2, Te, To, Usep) cf. submodel 2
temperature and expansion valve

8 T8 water outlet condenser Tg (T4, Ts, T1o, Usep) cf. submodel 5
temperature

Classification Results for Nominal Clusters

Investigations with simulation data for single, gradual and simultaneous faults have shown the
results in Table 9. The nominal clusters are able to classify the single faults 1..6 with a good qual-
ity, whereas in the case of the gradual and simultaneous faults, the classification quality is still
sufficient. For the faults 7..9 (second row), the “fault patterns’ can only be observed from data (cf.
Table 10 and explanation below).

Table 9: Classification quality for the nominal clustering method.

fault set classfication quality
singlefaults 1..6 good

singlefaults 7..9 “fault patterns’
gradud faults 1..6 ok

simultaneous faults 1..6 ok

Detailed results are available in [Zogg 02].
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Table 10 shows the submodels, which are activated for each fault case. A submodel is activated, if
the data points are outside its nominal cluster. Each column represents one submodel with the
corresponding output signal (T1..T8, cf. Table 8) and the selected model approach (arx1 = first
order ARX model, static = static model). For each submodel, the corresponding faults from Table
8 are displayed as gray cells. Thus, the locations of the gray cells is defined by a priori (physical)
knowledge. For the faults 1..6 the locations of the activated submodels (framed cells) are equal to
the known locations, which means that there are no wrong classifications.

Table 10: Fault cases and activated submodels (fault 1 = nominal case),
columns = submodels (with output signals and model approaches), rows = faults,
gray cells = faults corresponding to the submodels (a priori knowledge)

framed cells = activated submodels (observed “ fault patterns’)

T1 T2 T3 T4 T5 T6 T7 T8

arxl static static arxl static arxl arxl static

fault 1
fault 2
fault 3
fault 4
fault 5
fault 6
fault 7 |
fault 8

fault 9

1

The faults 7..9 affect all submodels in some way (all cells are gray). By using this a priori (physi-
cal) knowledge only, it would be impossible to classify those faults. But the “fault patterns’ can be
observed and stored during a training phase (framed cells). Thus, in future applications these faults
can also be classified by comparing to the trained “fault patterns’.

Without any training, only the faults 1..6 can be classified.
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6 Simulationsmodell — Simulation Model

Kurzfassung (Deutsch):

Ein detailliertes Modell fur die Simulation einer industriellen Luft/Wasser-Warmepumpe wurde
entwickelt. Es wurde anhand der Messdaten eines Einfamilienhauses fir den Nominalfall validiert.
Anschliessend wurden mit dem Modell mehrere Fehlerfalle simuliert, indem die Parameter veran-
dert wurden. Das Modell wurde in C/C++ unter Verwendung der MATLAB C++ Math Library©
programmiert und als EXE-File compiliert. MATLAB® dient als Simulationsumgebung fir die
Definition der Parameter, das Aufrufen des EXE-Files und das Plotten der Resultate.

Modellierung des Kéaltemittelkreislaufes. Das Modell stellt die Warmepumpe in Fig. 45 dar,
welche zusétzlich mit einem internen Warmelbertrager und einer Heissgas-Abtauvorrichtung
ausgestattet ist. Alle drei Betriebsmodi (Ein, Aus, Abtauen) wurden im Modell berlicksichtigt. Die
Kaltemittelmigration von der Hochdruckseite auf die Niederdruckseite wahrend des ausgeschalte-
ten Zustandes wie auch die Aktivierung des Heissgasbypasses wahrend des Abtaubetriebes sind
modelliert [Zogg 02]. In diesem Kapitel werden nur die Gleichungen fir den Normalbetrieb dar-
gestellt. Die Differentialgleichungen der Energie- und Massenbilanzen werden fur jeden einzelnen
Prozessschritt definiert. Dazu gehoren die Prozesse der Verdampfung, Uberhitzung, Kompression,
Heissgasabkiihlung, Kondensation, Unterkihlung und Expansion. Beim Verdampfungsprozess
wird die variable Verdampfungslange L. berticksichtigt, bei welcher alle Fllssigkeit verdampft ist.
Analog wird beim Kondensator ein variables Flissigkeitsniveau L. definiert. Die Druckdifferenz
(p-pv) zwischen Flissig- und Dampfphase wird als treibende Kraft fur den Verdampfungsmassen-
strom bzw. den Kondensationsmassenstrom angenommen. Der Kompressor und das Expansions-
ventil sind durch ihre Kennlinien gegeben.

Vereisung des Verdampfers. Bei tiefen Temperaturen und hoher Luftfeuchtigkeit der Aussenluft
vereist der Verdampfer. Die Eisbildung, Selbstabtauung und erzwungene Abtauung (wahrend des
Abtauzyklus) ist ebenfalls modelliert [Ginsburg 99].

Kéatemitteldaten. Die Daten fur das verwendete Kaltemittel R407C sind in Form von Polynom-
ansatzen gegeben, wobei die Stoffdaten fUr die Verdampfungs- und Kondensationsprozesse als
Funktion des Druckes p angegeben werden.

Validierung fur den Nominalfall. Die Daten einer Heizperiode im Jahr 1998 wurden verwendet,
um das Modell zu validieren. Dabei wurden die Parameter angepasst und ein Parametersatz abge-
speichert. Am Beispiel der Daten eines Tages (29. Januar 1998) werden die Simulationsresultate
geplottet und mit den Messdaten verglichen. Die Messdaten wurden von den Sensoren in Fig. 45
aufgezeichnet. Die Positionen der Sensoren entsprechen nicht genau den Positionen der Signale
im Modell. Deshalb kénnen die Messdaten von den Simulationsdaten abweichen. Fig. 46 zeigt den
Betriebsmodus, Fig. 47 bis Fig. 52 vergleichen einige simulierte Signale mit den gemessenen Si-
gnalen und Fig. 53 bis Fig. 55 zeigen einige interne Modellsignale. Das Modell ist in der Lage, die
wesentlichen Eigenschaften der Warmepumpe darzustellen und kann als Datenquelle fur das Trai-
ning der Diagnosesysteme benutzt werden.

Kopplung mit dem Gebaudemodell. Fir eine realistische Simulation wird das Gebaudemodell
aus [KTM-3 98] Uber den Heiz-Warmestrom Q* yp und die Wasser-Eintrittstemperatur T,,; mit
dem Warmepumpenmodell gekoppelt (Fig. 56).

Simulation fur verschiedene Fehlerfalle. Fir die Simulation der Fehlerfélle ist das Warmepum-
penmodell mit dem Gebaudemodell gekoppelt. 9 Fehlerfalle werden simuliert, indem die entspre-
chenden Parameter verandert werden (Table 11). Drei simulierte Signale fur Fehler 2 sind auf Fig.
57 bis Fig. 59 im Vergleich zum Nominalfall dargestellt (Tagesdaten vom 29. Januar 1998). Alle
Fehlerfalle und verschiedene Fehlergrade wurden simuliert.
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Introduction:

A detailled model has been developed for simulating an industrial air-to-water heat pump. It is
validated for the nominal case by using measured data from a residential building. The model is
then used to simulate several fault cases by changing the model parameters. The model was pro-
grammed in C/C++, including the MATLAB C++ Math Library©, and was compiled to an EXE
filee. MATLABO® is used as a simulation environment for the definition of the parameters, for call-
ing the EXE file, and for plotting the results.

6.1 Modeling the Heat Pump Refrigerant Cycle

The simulation model represents the air-to-water heat pump shown in Fig. 45 with an internal heat
exchanger and a hot gas defrosting cycle. At low air temperature and high air humidity, the icing
decreases the heat transfer rate of the evaporator. Therefore the defrosting cycle must be activated
periodically by feeding the evaporator with hot gas.

The refrigerant cycle process has been divided into several sub-processes, for which the models
are developed in the next sections. The model is designed for all three modes of the heat pump
(on, off, defrosting). The refrigerant migration from the high pressure side to the low pressure side
during the off-mode as well as the activation of the hot gas bypass during the defrosting-mode are
modelled [Zogg 02]. The migration process is also described in [DWPT 99]. The following sec-
tions only contain the equations for the on-mode.

Evaporation

The liquid refrigerant evaporates, while it is flowing through the evaporator tubes. At the inlet the
vapour mass ratio is x=xp defined by (70).

X0 ~ (70)
At the position Le there is no liquid left (x=1), thus L. is called the “evaporation length” (see Fig.
45). Generally, Le is time-varying, which must be considered by the model. As a first approach,
the evaporation process could be divided into several finite elements of equal size, each having a
vapour mass ratio x;. Here one element with a varying size has been chosen [Gruhle 87] which
reduces the order of the model.

The balance for the liquid mass mg; is given by eq. (71), with m*eXID being the input mass flow from
the expansion valve, and m e representing the evaporating mass flow.

dm * *
dte,I = Moy ~ Mo (72)

From eq. (71), the differential equation (72) for L. is yielded by considering the liquid density

O (Pe)), the evaporator cross-sectional area Ae, and the mean liquid cross-sectional area ratio [e.

Regarding an evaporator with bundles of pipes, Ae is the sum of the areas over al the parallel

pipes.

de My 1 (72)
dt dt  0'(Pe) Pe LBe
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Fig. 45: Refrigerant cycle of the air-to-water heat pump with an internal heat exchanger from SATAG
Thermotechnik AG, Swnitzerland.

Usually the evaporation process is not finished at the outlet of the evaporator, but extends to the
internal heat exchanger. Thus, Le has to be divided into two parts, Lee for the evaporator and Lyee
for the internal heat exchanger. After the evaporation process, there is the superheating process,
which usually takes place in the internal heat exchanger (Le > total length of the evaporator Leor).
During some transients it is possible that the evaporator is almost empty. Then the superheating
process takes place in the evaporator aready (Le < Letot) and the “superheating length” Lo, has to
be divided into two parts, Leow aswell as Lyeov. The cases above are represented by the second and
third cases of eq. (73). Thefirst case in eg. (73) stands for an “overfilled” evaporator as well as an
“overfilled” internal heat exchanger (Le > Letort Lhetor). 1N this case Le is defined virtually as being
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outside of the real modules. If the volume of the liquid phase Vg, (c.f. eq. (81)) is as large as the
volume of the modules, then the model will reach a limit and L. will not increase anymore.

Le tot
0
L (Le,tot + Lhe,tot = Le = Le,lim’t)
he,tot
0
Lee Le tot
Leov | _ 0 Lo € Lo < Laeee +L 73
L - L.-L ( etot = Le e,tot he,tot) ( )
he,e e e,tot
Lhe,ov Le,tot + Lhe,tot —Le
Le
L -L
e,toto ¢ (0= Le <Lgtor)
Lhe,tot

The balance for the vapour mass mey is given by eg. (74) with m ¢ representing the evaporating
mass flow, and m*Cm|o representing the output mass flow to the compressor.
dm x x

= Me ™ Memp (74)

The energy balance for the liquid phase is expressed by eq. (75), with the time derivative of the
pressure dpe / dt and the partial derivative of the energy du’e / dpe,.

dpe, dug
dt dpe’|

d * * *
mg + Ué% = Qe +*Qee +Qhee (75)

The convective heat flow Q*¢ contains several parts, depending on the operation mode of the heat
pump. When the heat pump is switched on during the normal operating mode, eq. (76) is valid,
with the liquid enthalpy h; as a function of the subcooling temperature T at the input and the satu-
rated vapour enthalpy h’’ (pe;) a the output. For a given pressure pe, the saturated vapour enthalpy
h'’ isthe sum of the saturated liquid enthalpy h’ and the latent heat of vaporizationr, h'’'=h'+r.

Qo) = Mexp thy (Tee) — Mg [h"(pey ) (76)

The heat transfer heat flow Q*¢e in eg. (75) is driven by the difference between the mean air tem-
perature T, and the mean liquid refrigerant temperature T, (eq. (77)).

Q:;,e =kbe e [Lee EqT—a _T_e,l ) (77)

The heat transfer parameters kb; in this model are defined by eq. (78) with k; for the heat transfer
coefficient in [WI/nPK], b; for the width of the considered heat transfer element, L; for its length,
and A for the heat transfer area. In the case of a heat exchanger with bundles of tubes, b is equal
to the circumference of one tube, multiplied by the number of parallel tubes. In the case of a heat
exchanger consisting of plates, b; is equal to the width of one plate, multiplied by the number of
parallel plates.

ko =k [ KA =ki LA =k Oy [0 (78)
The heat flow Q e between the subcooled refrigerant and the evaporated refrigerant in the inter-
nal heat exchanger is defined by eq. (79).

Qr]e,e =kKbnee tlhee EQT_SC - T_e,l ) (79)

Whereas the pressure of the liquid phase pe; is a state variable (eg. (75)), the pressure of the va-

pour phase pey is calculated from the gas equation (80) with the temperature T,, and the specific

volume vey as inputs. Here a simplified version of the real gas equation for the refrigerant is used.
_ Ve,v

Pev = Pev(Tov,Vey) Vev = Moy (80)
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Vev =Vetot tVhetot Vel Vel = LePeBe (81)

The vapour volume Ve, and the liquid volume Vg, are given by eq. (81), with Ve for the total
evaporator volume and Ve o for the total volume of the internal heat exchanger.

The evaporation mass flow m'¢ is directly proportional to the difference of the (vapour) pressure
Pe, in the liquid phase and the (partial) pressure pe, in the vapour phase (eg. (82)). The masstrans-
fer rate ky ¢ isregarded as a parameter.

m; =kir e [{Pe,l — Peyv) (82)

Superheating

The superheating process takes place mainly after the evaporation region (=Le) where there is no
liquid left, but also partly in the gaseous phase of the evaporating region (<L¢). Thus, the super-
heating region may overlap with the evaporating region. The change of the superheating tempera-
ture T,y is given by the energy balance (eq. (83)) with the convective heat flow Q o, and the trans-
fer heat flows Q oy in the evaporator as well as Q heov in the internal heat exchanger.

dT * * *
TOV [MovCov = [Qov * Qheov * Qeov (83)

Eqg. (84) isvalid for the normal operating mode, with the saturated vapour enthalpy h’’ (pe;) from
the evaporation process at the input and the enthal py hy(Tov,Ppeyv) Of the overheated refrigerant at the
output.

Q;v = m:; h"(pe) = m::mp thy (Tov, Pev) (84)

The heat transfer heat flow Q*neov between the subcooling process and the superheating processis
given by eqg. (85), with the mean subcooling temperature T, and the mean superheating tempera-
ture T,,. The heat transfer parameter kbneoy is defined for the region without any liquid left (=Le),
whereas the parameter kbneey, IS defined for the region with liquid (<Lg). For neglecting the super-
heating in the region with liquid, the parameter kbyee, Mmay be set to zero.

Q;e,ov = (kbhe,ov (Lhe,ov + Kbheev tlhee) |:Q-Fsc _-Fov) (85)

Eq. (86) describes the heat flow Q ¢ transferred from the air. The parameter kpeov is defined for
the case of full evaporation in the evaporator (Le<Legor). If the parameter kpee, iS NONzero, there is
always a heat flow from the air to the superheating region.

Q:;,ov = (kbg,ov [Le,ov * kbe ey [Lee) qua - fov) (86)

Compression

The mass flow for the normal operating mode is calculated by the characteristics of the compres-
sor (eq. (87)) for the actual pressure ratio pnp/pip. Whereas the parameters acmp, bemp and demp de-
scribe the characteristics themselves, the parameter Acnyp is defined as the mass flow supply effi-
ciency of the compressor.

Ph Per
Mermp = Aemp D acnp [E?;’J ~dermp (87)

The temperature Temppp &t the high-pressure side is calculated from the temperature To, @t the suc-
tion line by the polytropic law (eg. (88)) with the polytropic exponent Cemp.

Prp | "
h
Temp,hp = Tov EE pl:j (88)
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The low pressure pyp IS set to the corresponding evaporation pressure pey and the high pressure pryp
IS set to the condensation pressure pev (€g. (89)).

Pip = Pe,v Php = Pe,v (89)

From the enthalpy difference between the input and the output of the compressor, the electrical
power input can be calculated by eq. (90) with the electro-mechanical efficiency 7cmp.

m
Prup = v Eﬁhv (Temp,hps Pe,v) =y (Toys Pey )] (90)
cmp
Eqg. (91) considers the dynamics of the compressor as they influence the compressor temperature
Tcnfp.
dTemp

ot ET]crrpccrrp = Q;np (91)

For the normal operating mode, eg. (92) defines the convective heat flow Q*cmp, which relies on
the enthalpy difference between the output temperature Tempne SUpplied and the current tempera-
ture Temp.

Qi = Mermp [y (Tempp» Pev) = Py (Tenmp: Poy) (92)

Hot Gas Cooling

The hot gas cooling process takes place in the upper region of the condenser (=L¢). The change of
the gas temperature T, is given by the energy balance (eq. (93)), with the convective heat flow
Q ngc and the transfer heat flow Q ¢

dT * *
d(;,g Ijmc,gcc,g = [thc _Qc,g] (93)

The convective heat flow Q hge 1S defined by eq. (94). The enthalpy hy(Tcmp,Pey) from the compres-
sor is an input and the enthalpy hy(Tcg,pcv) Of the cooled gas is an output. The input compressor
mass flow is represented by m*Cm|o and the output mass flow m ¢ will condensate later.

Q;gc = m;mp thy (Tcmp' Pey) ~ m; thy (Tc,g' Pcyv) (94)

The heat transfer heat flow Q* .4 between the hot gas side and the water side is given by eq. (95),
with the mean gas temperature T, , and the mean water temperature T,,. The heat transfer parame-
ter kb g is defined for the entire hot gas region with the length L .

Qz,g = kbc,g e g |:Q-IT(:g _-Fw) (95)

Condensation

The gaseous refrigerant condensates between the plates of the condenser. Because of gravity, the
liquid phase fills up the condenser from below to the level L. (cf. Fig. 45). With a changing filling
grade of the condenser, L. is time-varying. In analogy to the evaporator, here one element with a
varying size has been chosen for the liquid phase.

The balance for the liquid mass m, is given by eq. (96), with m ¢ representing the condensating
input mass flow and m*eXIO representing the output mass flow.
dmC’| _ *

ol 96
at e Me (96)

From eq. (96) the differential equation (97) for L. is built by considering the liquid density p’(pc,)
and the condenser cross-sectional area A.. Regarding a condenser with plates, Ac is the summa
rized cross-sectional area between all parallel plates, defined by the distance between the plates
and the width of the plates.
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de M 1 (97)
@t P (pen) A

The liquid level L. defines the height of the liquid phase L. and the height of the gaseous phase
Lcg (€0. (98)). When L. reaches the limit Lc,imit, the condenser is full.

LCC C
(L ’ J = (Lctot ~ Lcj (0= L < Lejimit) (98)

C,g

The region of hot gas and the region of the vapour phase are combined in the model. Eq. (99) de-
scribes the balance for the vapour mass m., with the input mass flow m*Cm|o and the condensating
mass flow m c.

dmey . «

e Memp ~ Mg (99)

The energy balance for the liquid phase is expressed by eq. (100), with the time derivative of the
pressure dpc / dt and the partial derivative of the energy du’ ¢ / dpg,.

dpc, du Jdmey [
Tﬁmc,l + UCT = [Qc,l - Qc,c] (100)

During the normal operating mode, eg. (101) is valid for the convective heat flow Q*,. The con-
densating mass flow m . with the vapour enthalpy hv(Tcg,Pcy) is an input, whereas the mass flow
m*eXIO with the saturated liquid enthalpy h'(pc,) is an outpuit.

Q::,I = m:: thy (Te,gs Pev) — m;<p h'(pe;) (101)

The heat transfer heat flow Q*.c in eg. (100) is driven by the difference between the mean liquid
refrigerant temperature T, and the mean water temperature T,, (eq. (102)), with the heat transfer
parameter kpcc and the liquid level L.

Q::,c =kbe,c e c |:(fcl _T_w) (102)

In the vapour phase, the pressure pc, is calculated from the gas equation (103), with the tempera-
ture T¢y and the specific volume v, as inputs. Here the same approach is used as in the evapora-
tor.

(103)

Pev = Pev(Te,grVe,v) Vev = Ve
Me,v

Ve =Veitot =Vell Ve =LA (104)

The vapour volume V., and the liquid volume V., are given by eg. (104), with V. for the total
volume of the refrigerant side in the condenser.

The condensation mass flow m ¢ is directly proportional to the difference between the pressure pcy
in the vapour phase and the pressure pc, in the liquid phase (eg. (105)), with the mass transfer rate

Kir c-
mz =kKir,c P,y = Pe,1) (105)

Subcooling

The subcooling process takes place in the internal heat echanger. The energy balance is given by
eg. (106), with the subcooling temperature T, the convective heat flow Q «, and the transfer heat
flows Q heer Q heov t0 the evaporation and the superheating sides (cf. egs. (79), (85)).

dT * * *
d_tsc [MgCsc = [Qsc ~ Qhee ~Qheov (106)

Eq. (107) is valid for the normal operating mode, with the saturated liquid enthalpy h'(pc;) from
the condenser at the input and the enthalpy hi(Ts;) of the subcooled refrigerant at the output.
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Qi = Mo ON'(p) ) =y (Tec)] (107)

Expansion

A thermostatic expansion valve works like a P controller, which feeds back the superheating AT,y
and adjusts the mass flow m*exlo to the evaporator. In eg. (108), the variable T4(pe;) is the dew point
temperature of the evaporation process.

AToy =Tov = Ta(Pey) (108)

In reality, the valve opening is defined by the difference between the pressure po(Tov) and the
pressure pe at the input of the evaporator. In the model, the temperature difference AT,y is used
directly to calculate the valve opening (109). The range for the valve opening Uey, is between O for
aclosed valve and 1 for an open valve.

Uexp = Bexp AToy = AToy0) + begp 0< Ugp <1 (109)

With an superheating setpoint AToy,0, the parameter ae, corresponds to the P value of the control-
ler, whereas the parameter bey, defines the opening offset for the operating point. From the valve
opening Ueq and the pressure drop over the valve, the mass flow m*exp through the valve is calcu-
lated. Here the characteristics correspond to an incompressible flow, but they could be extended to

a compressible flow as well. Eq. (110) calculates the mass flow m*exp from the condensation pres-
sure p; and the evaporation pressure pe;.

mt*yp = Uexp KKexp,1 y/ Pcl — Pel (110)

During the expansion, the entropy s is increasing, but the enthalpy h is constant. Thus in the
evaporator equation (76), the enthalpy h|(Ts) from the subcooler is directly introduced.

Air Side
The energy balance for the heat source is defined by eg. (111), with the output air temperature Tap.
The heat transfer heat flows Q ¢c and Q ey to the evaporator are taken from eq. (77) and eq. (86).

dTa0
dt

The convective heat flow Q 5, depends on the air mass flow m , and on the difference between the
input and output temperatures T, Tao (€0. (112)).

Q;,o = m*a (pa UTai —Tao) (112)

lMyC, = Q; - Q(*e,e - Q;ov] (111)

Water Side
Eqg. (113) defines the energy balance for the heat sink, with the output water temperature Ty,. The
heat transfer heat flows Q ¢ and Q ¢4 to the condenser are defined by eqg. (102) and eg. (95).

dTwo
dt

The convective heat flow Q '\, depends on the water mass flow m \, the input temperature Ty,
and the output temperature Ty, (eg. (114))

Q\jv,o = m;v Lpw UTwi —Two) (114)

[N, Gy = [Q$v +Quc +Q§,g] (113)

Icing of the Evaporator

At low temperatures and high humidity of the outside air, some icing effects take place on the
evaporator of air-to-water heat pumps. These effects are modelled in [Ginsburg 99], which has
been dlightly simplified and modified for the present model. As a measured input, the relative
humidity ¢ of the air is known. Eq. (115) shows how the vapour mass ratio x can be calculated
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from @. The vapour mass m, as well as the whole air mass m, are substituted by the corresponding
gas equations. Whereas the ratio of the air gas constant R, and the vapour gas constant R, is de-
fined by the parameter kg, the partial pressure of the air p, is expressed by the overall pressure po
and the partial pressure p, of the vapour. The relative humidity ¢ is given asthe ratio of p, and the
saturation pressure ps.

Py Vo
-m_RO _Rap_, g P - 115
T PN R P2 R Po-py Ay (115)
R, T
Substituting py by ¢ ps, yields eq. (116).
X(9) =—R (116)
pO -1
¢ [ps

Eg. (116) is evaluated for the evaporator air input, with the humidity ¢,; and the temperature Ta;
(eq. (117)).

Xai = X(@aj) = p(')‘R

— -1
¢a,i |:ps(Ta,i)
The saturated vapour mass ratio X« a the output is given by eq. (118) for ¢=1.
Kr
Po
Ps(Ta,0)

Using these equations, the preconditions for icing and the rate of icing can be determined (case I).
The mass flow M icepuiig, Which is proportional to the air mass flow m ,, increases the ice layer,
whereas the heat flow Q icepuilg arises from the enthalpy change rice of the icing process. Icing is
only possible for temperatures below Ticepiilg (here 1 °C is chosen).

(117)

X0 = X(¢ =1) = (118)

Casel: (Xaj > Xsa0) @nd (Tao < Ticepuild) = ice building, eg. (119),(120)
Micebuild = Kicebuild [Ma {Xai ~ Xsa.0) (119)
Qicebuild = Meebuild Jice (120)

For temperatures above Ticesifaerr (here 0 °C is chosen), some self-defrosting process is initiated
(case I1), which decreases the ice layer by the mass flow M ice sataeir- The factor Kicemass considers
the actual ice mass mc. and stops the self-defrosting process for small values of mice.

Casell: (Tao > Tiesardeir) = Self-defrosting, eg. (121), (122), (123)

Mice, seifdefr = Kice.mass Kice,seifdetr {Ta.0 ~ Tice, selfdefr ) (121)
Qice,selfdefr = Mce,setfder Mice (122)
mce

k _ Mie < I'T\ce,min
ice,mass — ITﬁce,min

1 Mice = ITﬁce,min

During the defrosting mode the hot gas valve is opened, the evaporator is warming up, and the ice
ismelting (case I11). The model functions on the assumption that the temperature of the refrigerant
side of the evaporator rises above the outside air temperature and that the total heat flow
(Q ectQ eov) to the air side is directly used to melt the ice (eq. (124)).The enforced defrosting
mass flow M iceenaer 1S thus calculated from the heat flow Q iceeniger @nd the enthalpy change rice
for liquefaction.

(123)
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Case l1I: {mode=defrosting} = Enforced defrosting, eg. (124), (125), (123)

Qi*ce,enfdefr = _kice,mass |:Ikice,enfdefr E(Q;e + Q:;,ov) (124)
* Qi enfdef
Mice, enfdefr = e (125)
fice

With the ice mass flows, the ice mass balance is defined by eq. (126).

dmce
dt

Anexisting ice layer causes several effects, the first of which is a pressure drop 4p, on the air side
of the evaporator (eg. (127)).

Apy = Apg o *+ Kap MMice (127)
Secondly, the heat transfer rate of the evaporator is reduced. The reduction factor kice is introduced
by eq. (128).

Kice =1~ 8jce {Mice ~ Mice,min) (128)

The evaporation heat transfer heat flow Q e of eq. (77) is replaced by eq. (129) and the superheat-
ing heat transfer heat flow Q oy Of €q. (86) is replaced by eg. (130).

= Mice,build ~ Moe, salfdefr ~ Mce, enfdefr (126)

Q;e = kbg e Kkice [Le,e [T - T_e,l ) (129)
Q;ov = (Kbg,oy tLe oy * Kbg ey (L) Kice qQr. -Tu) (130)
Finally, the additional icing heat flows have to be added to eg. (111), which resultsin eg. (131).
dT * * * * * *

dTO [MaCq =|Qa Qe,e - Qe,ov + Qice,build - Qlce,seh‘defr - Qice,enfdefr] (131)

Refrigerant Data

The physical property data of the refrigerant R407C is given by polynomials with validated pa-
rameters from the refrigerant manufacturer [Klea 95]. For the equation of state, the Martin-Hou
approach is used, which can be simplified to eq. (132). The critical point is defined by (T¢, pc, Vo).
Thisequation isused in egs. (80) and (103).

XT/To , A+ By T/To +Cie T
V/Ve (v/ve)?

p(T,v) = Cpe (132)
Because of the azeotropic properties of R407C, there is a temperature glide during the evapora-
tion. For a given evaporation pressure p, a bubble-point temperature Ty, a mid-point temperature
Tm, and a dew-point temperature Ty can be defined (egs. (133), (134) and (135)).

To(P) = A, +BpInp+Cy(Inp)® + Dy(Inp)° (133)
Ti(P) = Ap + BpInp+Cpr(Inp)? + Dpp(Inp)® (134)
Ta(p) = Ay + By Inp+Cqy(Inp)? + Dy (In p)° (135)

The saturated liquid enthalpy h'(p) is defined by eq. (136) and eq. (137), with Ty(p) from eg. (133)
and the critical temperature T..

h(p) = A +B'%,(p) +C%5(p) + DX3(p) + EX5 (P) (136)
Xp(P) = (L= Tp(p)/ T3 (137)

In a similar way the latent heat of vaporization r(p) is defined by eq. (138) and eg. (139), with
Tm(p) from eq. (134).

r(p) = A + By Xin(P) + C Xm(P) + Dy xy(p) + E; Xm(p) (138)
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Xn(P) = (L= Tr(p)/ T (139)
The saturated vapour enthalpy h'’ (p) (eg. (140)) isthe sum of eq. (136) and eq. (138).

h"(p) =h'(p) +r(p) (140)
Inasimilar way, the other variables of the refrigerant data are calculated.

6.2 Simulations

After the validation for the nominal case, the model is used to simulate the fault cases.

Validation for Nominal Case

The heat pump simulation model has been validated by comparing it with the measured data from
the residential building at Barzheim (Switzerland). By hand-tuning, one parameter set is obtained
for all data files of one heating period in the year 1998. For the following plots, this parameter set
is used to simulate one day of the heating period (January 29, 1998). The operation mode Umoge iN
Fig. 46 is an input from the power and defrosting controller, which specifies the three states of the
heat pump (off, on, defrosting). During the day selected, the heat pump was switched on three
times, whereas the defrosting cycles were started at constant time intervals the heat pump was
running. The power and defrosting controller itself is not implemented in the simulation model.

defrosting 2

on 1

off 0 .
2 4 6 8 10 12 14 16 18 20 time [h]

Fig. 46: Operation mode Unpee, 0 = off, 1 = on, 2 = defrosting.

Measured data is acquired by the sensors shown in Fig. 45. The locations of the sensorsin the real
heat pump are not exactly the same as the locations of the signals in the simulation model. Thus,
the measured signals are not necessarily equal to the simulated signals.

Fig. 47 and Fig. 48 show the simulated evaporation pressure pey and condensation pressure pe.y,
compared to the measured low pressure pip,m and high pressure pnp.m. Especially in the high pres-
sure signal pcy, a superposition of the slow daily transient and the fast switching transients can be
observed. Generally, the pressures react very fast, when the heat pump is switched on. After a fast
response immediately at shut-down, the high pressure signal p., and the low pressure signal pey
equalize slowly. During the defrosting cycles, alevel change as aresult of the valve switching can
be observed.

5 { | :
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2 4 6 8 10 12 14 16 18 20 time [h]

Fig. 47: Smulated evaporation vapour pressure pe, (solid line) and measured low pressure py,m (dashed)
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Fig. 48: Smulated condensation vapour pressure p., (solid line) and measured high pressure pnym
(dashed)

In the measured superheating temperature To, (Fig. 49), some oscillations are present due to the
hunting effect of the expansion valve. These effects are not modelled. Regarding Fig. 50, the slow
reaction of the hot gas temperature Tng can be observed.

20 /s N 7~ SN
temperature i
[OC] = v
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Fig. 49: Smulated superheating temperature T, (solid line) and measured superheating temperature Toym
(dashed)
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Fig. 50: Smulated hot gas temperature Tyg (S0lid line) and measured hot gas temperature Ty m (dashed)

30

25

[°c
15  — < \
10 |-
5 ™
2 4 6 8 10 12 14 16 18 20 time[h]

Fig. 51: Smulated subcooling temperature T (solid line) and measured subcooling temperature Tgm
(dashed)

In the water outlet temperature Fig. 52, the superposition of the slow and fast transients can again
be observed. The slow transients are aresult of the large time constant of the building.

tem pe rature z: /k’q‘[‘. ‘I: L=y : /k:{/ \‘:f
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Fig. 52: Smulated water output temperature T, (solid line) and measured water output temperature Ty,om
(dashed)
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From the internal model signals, only the filling levels of the evaporator and the condensator are
plotted here. The evaporation length L. is plotted in Fig. 53. During the shut-down periods, the
evaporation length increases because of the migration process.
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Fig. 53: Smulated evaporation length L,

During the shut-down periods, the liquid level L. in the condensator decreases and may become
zero when the condensator is “empty” (cf. Fig. 54).
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Fig. 54: Smulated condensation liquid level L.

Due to the icing effect on the evaporator, which is also included in the model, the pressure drop
Ap, on the air side increases (cf. Fig. 55).
simwp980129cutnom joferes: 073zdpL [mbar]
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Fig. 55: Smulated (solid line) and measured (dashed) icing pressure drop 4p,

Clearly, the model is able to represent the significant characteristics and dynamics of a heat pump
and can be used as a data source for training fault diagnosis systems.

Coupling with Building Model

For arealistic simulation, the model of the building has to be taken into account, as well. A linear
one-zone building model of order 3 as described in [KTM-3 98] is used (eq. (141)), with the heat-
ing water return flow temperature T, the heated floor temperature T;, and the room temperature
T, as state variables. The parameters are identified and averaged for the heating period 1997/98.
They include the heat transfer parameters kA, s from the heating water to the floor, kA;, from the
floor to the room, kA amp from the room to the environment, the total volume V,, of the heating
water, the mass mx of the floor heating system, and the time constant 7; of the building. Inputs to
the building model are the ambient temperature Tan, and the supplied heat flow Q* s to the heat-
ing water.
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The coupling of the heat pump model and the building model is realized by setting the supply heat
flow Q* s to the heat output Q*yp of the heat pump, and by setting the input temperature T,,; of
the heat pump to the return flow temperature Ty, which isillustrated in Fig. 56.

building
model

ol
)l

Q*w,s:Q*HP

Tw,i:Tw,r
#umode
heat pump
Ty, — ™ model —> ...

Fig. 56: Coupling of the heat pump model and the building model.

Simulations for Fault Cases

For the fault simulations, the heat pump model is coupled with the building model. Nine faults
have been simulated by changing the appropiate parameters of the heat pump model (cf. Table

11).

Table 11: The simulated faults of the air-to-water SATAG heat pump.

fault simulation model fault description
parameters (faultsin real applications)
fault 1 normal behaviour, no fault
fault 2 | Kbee, Kbgoy, kbeey reduced evaporator heat transfer
(evaporator fouling)
fault 3 m*a,o reduced evaporator air mass flow
(evaporator/air channel fouling, air fan malfunction)
fault 4 | Kb, kbeg reduced condenser heat transfer
(condenser fouling)
fault5 | m'yo reduced condenser water mass flow
(fouling, water pump ma function)
fault 6 | Kbnee, Kbheow Kbneey | reduced internal hest exchanger hest transfer
(interna heat exchanger fouling)
fault 7 | Acmp reduced compressor efficiency
(compressor ma function)
fault 8 | Keg reduced expansion valve flow rate
(expansion valve malfunction)
fault9 | Leeo, Mevos reduced refrigerant charge
Leco, Mevo (refrigerant leakage)

68



For simulating the evaporator fault 2, the heat transfer parameters kbe e, Kbeov and kbe e, have been
reduced by a factor f; /7[0..1] (eg. (142)). In the real heat pump, this fault would correspond to
evaporator fouling. In asimilar way, all other faults are listed in Table 11 with their corresponding
simulation parameters.

6,1 =6 o (142)

The air mass flow m 4 (fault 3) and the water mass flow m o (fault 5) are defined as constant
during the simulation and therefore are regarded as parameters. For ssimulating refrigerant leakage
(fault 9), the initial conditions of the state variables Lego, Lcco, (evaporation length and condensa
tion level) aswell as mey 0, Mcv0 (Vapour mass of evaporator and condenser) are changed. They are
linked to the filling of the refrigerant cycle.

Fig. 57 through Fig. 59 show the simulation results for fault 2 of the size f, = 0.8 (eq. (142)),
compared to the nominal case (data of January 29, 1998). Only the signals with the largest devia-
tions from the nominal case are plotted. By reducing the heat transfer rate in the evaporator, the
evaporation pressure (Pe), Pev) and the corresponding bubblepoint, meanpoint, and dewpoint tem-
peratures (Tp md(Pe;)) decrease. Thus, the superheating temperature Toy is also at alower level.
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Fig. 57: Evaporation vapour pressure pey, Simulation for fault 2 (dashed) and nominal case (solid).
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Fig. 58: Evaporation dew point temperature Tqy(pe)), Simulation for fault 2 (dashed) and nominal case
(solid).
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Fig. 59: Superheating temperature T,,, Simulation for fault 2 (dashed) and nominal case (solid).

The simulations have been repeated for all faults of Table 11 and for the fault sizes fi=0.8, fi=0.7,
fi=0.6, fi=0.5 (faultsi=2..8) and fy=0.9, fg=0.8, fy=0.7 (fault 9).
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7 ETH-Prifstand — ETH Test Bench

Kurzfassung (Deutsch):

Im Labor des Ingtituts fur Mess- und Regeltechnik, ETH Zurich, wurde ein neuer Prufstand fur
industrielle Sole/Wasser-Warmepumpen aufgebaut (Fig. 1 auf Seite 8 und Fig. 60). Mit diesem
Prufstand ist es moglich, realistische Temperaturtransienten (und Durchflusstransienten) an den
Eingéngen der Test-Warmepumpe zu generieren.

=i

Fig. 60: The test bench at the Measurement and Control Laboratory, ETH Zirich (seen from above).

Die Testumgebung. Der Solekreislauf enthalt einen warmen und einen kalten Tank. Die Ausgan-
ge der beiden Tanks werden gemischt, um die gewlnschte Warmepumpen-Eintrittstemperatur zu
erreichen (Fig. 62). Mit den Mischventilen zwischen den beiden Tanks ist es moglich, die
Mischtemperatur schnell zu regeln, um schnelle Stérungen zu unterdriicken oder schnellen Soll-
wertanderungen folgen zu kénnen. Andererseits reagieren die Tanktemperaturen langsamer. Sie
werden Uber die Aktivierung der zwei Wéarmetauscher geregelt (linke Seite), welche dem warmen
Medium Warme entziehen. Die Sollwerte der oberen und unteren Tanktemperaturen werden aus
dem Sollwert der Mischtemperatur berechnet, indem ein Offset AT addiert bzw. subtrahiert wird
(Fig. 61). Analog funktioniert die Regelung des Wasserkreislaufes.

Ein zusatzlicher Wérmetauscher zwischen dem Wasserkreislauf und dem Solekreislauf ermoglicht
eine Warmeruckfihrung von der warmen auf die kalte Seite. Eine Hilfs-Warmepumpe sorgt dafir,
dass die Temperaturen auch noch bei abgeschalteter Test-Warmepumpe geregelt werden kénnen.
Die Tankgrosse wurde optimiert in Bezug auf einen minimalen Regelfehler und einen minimalen
Energieverbrauch [Lackner 00], wobei das optimale Volumen bel 50 | liegt. Zahlreiche Sensoren
messen Temperaturen, Differenztemperaturen, Druckdifferenzen und Durchflisse.

70



Testwarmepumpe. Die industrielle Sole/Wasser-Warmepumpe von SATAGO wurde mit zusétz-
lichen Ventilen (V1..V8) und total 20 Temperatur- bzw. Drucksensoren ausgeristet. Damit kon-
nen die Ublichsten Fehlerfédlle eingestellt werden und die Auswirkungen auf die Signale erfasst
werden (Fig. 63, Liste der Fehlerfélle in Table 12). Ein externer Kaltemitteltank mit einer Waage
ermoglicht es, den Fillzustand zu variieren oder eine Leckage zu simulieren.

Datenerfassung und Automatisierung. Die Steuerung und Datenerfassung ist realisiert durch ein
digitales CAN-Bus-System von WAGO® mit 5 Feldknoten, zwei Target-PCs, einem Host-PC und
einem LabView©-PC. Als Software wird MATLAB xPC Target© verwendet. Die PCs sind unter-
einander und mit dem Intranet durch TCP/IP verbunden. Fur den Betrieb des Prifstandes konnen
die Tasks nach Bedarf auf die einzelnen PCs verteilt werden. Beispielsweise kann die Regelung
der Testumgebung und die Durchfiihrung der Testzyklen von den Online-Uberwachungssystemen
oder zu testenden Reglern getrennt werden. LabView®© dient zur Datenerfassung und Visualisie-
rung, ermaglicht aber auch den manuellen Betrieb der Anlage.

Testzyklen durchfuhren. Fur alle Fehlerfélle der Test-Warmepumpe werden zahlreiche Testzy-
klen mit Ein-/Ausschaltungen unter verschiedenen Bedingungen durchgefuihrt. Dazu wurde eine
spezielle Software entwickelt [Bianchi 01]. Ein Beispiel eines Testzyklusist in Fig. 65 dargestellt,
wobel der Testzyklus fur jeden Fehlerfall wiederholt wird. Die Zeitdauer der eingeschalteten Pha-
sen kann kurzer gewdhlt werden als in der spateren Anwendung, da fir das Training nur die Daten
der ersten 10-15 Minuten massgebend sind.

Die Ventilpositionen der Testumgebung sind konstant wahrend eines Testzyklus. Zwischen den
Zyklen kdnnen sie jedoch verandert werden, um verschiedene Betriebszustande zu simulieren. Mit
den entsprechenden Ventilen kann die Warmeaufnahme auf der Warmeguellenseite, die Wér-
meabgabe auf der Warmesenkenseite, die Warme-Ruckgewinnung und die Trégheit der Wéarme-
guelle sowie der Warmesenke beeinflusst werden.

Emulation. Um die Warmepumpe unter realistischeren Bedingungen testen zu kdnnen, wird in
Zukunft die Emulation der Warmequelle und der Warmesenke implementiert. Dabel laufen ein
Modell fur den Sondenkreislauf und ein Modell des Gebaudes parallel zur realen Warmepumpe
(Fig. 66). In Echtzeit berechnen diese Modelle die Sollwerte fir die Wéarmepumpen-
Eintrittssemperaturen und die Volumenstrome durch die Warmepumpe. Eine hierarchische Reg-
lerarchitektur berechnet die entsprechenden Stellgréssen fr alle Ventile.

Introduction:

At the Measurement and Control Laboratory of ETH Zurich, a new test bench for industrial brine-
to-water heat pumps has been installed (Fig. 1 on page 8 and Fig. 60). This test bench allows to
generate any realistic temperature (and flow) transients at the inputs of the test heat pump.

7.1 Test Environment

A brine cycle is realized on the heat source side and a water cycle is realized at the heat sink side
(Fig. 62). The brine cycle contains a warm storage tank and a cold storage tank, whereas the out-
puts of both tanks are mixed in order to get the desired temperature (TT 206). This temperature is
egual to the input temperature of the test heat pump (TT 210). With the mixing valve between the
tanks, it is possible to control the mixing temperature quickly for suppressing fast disturbances
(for example the switching of the test heat pump) or handling fast setpoint changes. Otherwise, the
upper and lower tank temperatures (TT 108, TT 310) react more slowly. They are controlled by
activating the two heat exchangers (left side). Therefore, the openings of the valves 421/422 and
429/430 are controlled. The heat exchangers withdraw the heat from the warm laboratory medium
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(which operates at about 30°C). The setpoints of the upper and lower tank temperatures are calcu-
lated from the setpoint of the mixing temperature, by adding or subtracting a constant temperature
offset AT (Fig. 61).

temperature
\
~ upper level

\ " setpoint
* lower level

t

Fig. 61: Two tanks with an upper and a lower temperature level, and the mean setpoint between.

The water cycle works in the same way as the brine cycle, where two heat exchangers dispense the
heat to the cold laboratory medium (which operates a about 14°C, on the right-hand side). An
additional heat exchanger between the water cycle and the brine cycle allows the recycling of the
heat from the warm side to the cold side (on the top, between the warm brine tank and the cold
water tank). Thus, a part of the heating energy can be saved. It is also desirable to control the tem-
peratures when the test heat pump is switched off. Therefore, an auxiliary heat pump is installed,
which permits to increase the difference between the brine and the water temperature levels addi-
tionally (between the cold brine tank and the warm water tank).

&
4@7
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?@ P 416

auxiliary
heat pump
e @
4 Y Y A
medium 30°C < % medium 14°C
436 test 434
heat pump

Fig. 62: The test environment with two brine tanks, two water tanks, five heat exchangers, an auxiliary heat
pump and the test heat pump. TT = temperature sensors, dTT = temperature difference sensors, dpT =
pressure difference sensors, FT = flow sensors.
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The volume of the tanks has been optimized by simulations, subject to a minimal control error and
minimal energy consumption [Lackner 00]. An optimum was found at a volume of 50 Liter. Lar-
ger volumes would increase the energy consumption to follow the setpoint temperatures, and
smaller volumes would result in higher control errors because of fast disturbances due to the
switching of the heat pump.

For controlling the flows, 3-way valves and 2-way valves are used, whereas numerous pumps
induce circulation. The signals are measured by four types of sensors, such as absolute tempera-
ture sensors (Pt100), temperature difference sensors at the heat exchangers (combinations of 2
thermocouples), pressure difference sensors at the circulation pumps (membrane transmitters), and
flow meters (magnetic-inductive) at the outputs of the test heat pump. From the pressure differ-
ences, the volumetric flows are estimated by the characteristics of the pumps, and from the tem-
perature differences, the heat flows are calculated.

7.2 Test Heat Pump

The industrial brine-to-water heat pump from SATAGO is modified by adding actuators and sen-
sors for inducing the most common faults and measuring their effects on the signals (Fig. 63). The
continuous control valves V1..V4 affect the refrigerant cycle, V5/V6 affect the brine cycle and
V7/V 8 affect the water cycle.

b

water cycle
(heat sink)

refrigerant cycle

)
B1€b

SR

<—D<}% 5% é brine cycle

(heat source)

Fig. 63: The modified brine-to-water SATAG heat pump, with additional valves (V1..V8), pressure sensors
(pTO1..pTO6), pressure difference sensors (dpTO1, dpT02), temperature sensors (TT0L1..TT12), energy
counter (PWT01) and an external refrigerant tank with a scale (WTO01).

A tota of 20 sensors measure the pressures (pT 01..06), the pressure differences (dpT 01-02) and
the temperatures (TT 01..12) of the media, whereas the Pt100 temperature sensors are plunged into
the media for a fast response. The electrical power consumption of the compressor is measured by

73



a standard energy counter (PwT 01). For varying the refrigerant filling grade and simulating a
refrigerant leakage, an external tank with a scale is added (WT 01). The filling grade is controlled
by the valves V2 and V3. The manual valves (MV1..MV 3) are not used here. Optionally a refrig-
erant mass flow sensor could be installed (FT 01).The faults induced by the additional valves
V1..V8, are summarized in Table 12. They correspond to the faults in real applications. Fault 8 is
not implemented.

Table 12: Faults of a brine-to-water heat pump.

fault actuator fault description faultsin red applications

fault 1 - normal behaviour, no fault normal behaviour, no fault

fault2 | valveV5 reduced evaporator mass flow fouling, brine pump malfunction

fault 3 3-way valve V6 reduced evaporator heat transfer evaporator fouling

fault4 | valveV7 reduced condenser mass flow fouling, water pump malfunction

fault 5 3-way valve V8 reduced condenser heat transfer condenser fouling

fault6 | valveV1l compressor backward flow compressor ma function

fault 7 | valvesV2and V3 refrigerant tank inlet and outlet refrigerant leakage, wrong filling

fault8 | valveV4 reduced expansion valve mass flow | expansion valve mafunction, refrigerant line restriction

7.3 Data Acquisition and Automation

A digital bus system by WAGO® isimplemented (Fig. 64). Its five field nodes contain input mod-
ules with integrated A/D converters and signal conditioning as well as output modules with inte-
grated D/A converters or relais. These nodes are connected to three PCs by a CAN bus. Two PCs
are used as realtime target systems for MATLAB xPC Target©, while one PC is dedicated to run
LabView®©. The CAN master card is also plugged into one of the target PCs. Both of the target
PCs are connected to one host PC by TCP/IP, which is controlling the targets. The host PC as well
asthe LabView© PC are connected to the intranet.

T —P —_
—P —>
. AT —__»| Node —> Node —»Pumps —[ilage —»
Fieldbus —> . ——pvalves — % 5 |—»
> > ! —®relais —» test —»
Ap —P —> —> —>
” 4’ 4’ es 4’ HP
A — —> —>
CAN-Bus l [ [ [
Pl =
g | & || &
2 2] 3
é S o ~ 100 channels:
x 56 analog inputs

TCP/IP 38 digital outputs
6 analog outputs

XPC Host

TCP/IP

I LAN (Intranet) |

Fig. 64: The bus system of the test bench, connecting five field nodes, four PCs, and the intranet. The 100
channels of the 1 Mbit/s CAN bus contain 56 analog inputs, 6 analog outputs, and 38 digital outputs.
TCP/IP isworking at 10 Mbit/s.
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The tasks for the operation of the test bench can be assigned to the various PCs, for example:

XPC Target | and xPC Host. The first target PC controls the test environment, runs test cycles on
the test heat pump and optionally runs the emulation (cf. Section 7.5). On the host PC, a graphical
user interface allows the handling of the test cycles.

XPC Target Il and xPC Host. Using this combination, the reatime fault diagnosis systems are
tested. The graphical user interfaces of the fault diagnosys systems run on the host PC. For other
projects, new heat pump controllers could be tested.

LabView. LabView® is used for data vizualisation and acquisition. Additionally, the manual con-
trol of the test bench is facilitated by a graphical user interface.

7.4 Running Test Cycles

Definition of the Test Cycles

For all fault cases of the test heat pump, numerous test cycles with on-off switching are run under
different conditions. For this purpose, a special software tool has been developed [Bianchi 01]. An
example of atest cycle is illustrated in Fig. 65, where the same cycle is repeated for each fault
case.

15 15 20’ 10°

10° 20" 30°' 40

< fault 1 ple-fault2 ----

Fig. 65: An example test cycle.

The duration of the on-sequences (normal operation) can be selected to be shorter than it will be in
future real applications, since for the training of the fault diagnosis systems, only the first 10-15
minutes of each off-on sequence is relevant, until a (quasi) steady state is reached. On the other
hand, the off-sequences must have different time durations in order to change the initial conditions
for the subsequent off-on sequences.

Constant Valve Positions

The valve positions of the test environment (Fig. 62) are constant during one test cycle. However,
between the test cycles, they can be changed for simulating different operating conditions:

Heat transfer at the heat source side. The valve 421/422 controls the flow through the heat ex-
changer at the warm brine tank, whereas the valve 429/430 controls the flow through the heat ex-
changer at the cold brine tank. With these valves the heat transfer from the warm medium to the
brine cycle can be influenced, which in reality refers to the heat transfer from the ground to the
brine fluid in the ground pipes.

Heat transfer at the heat sink side. The valve 417/418 controls the flow through the heat ex-
changer at the cold water tank, whereas the valve 427/428 controls the flow through the heat ex-
changer at the warm water tank. With these valves the heat transfer from the water cycle to the
cold medium can be influenced, which in reality refers to the heat transfer from the water in the
floor heating system to the room, the house and, finally, to the surroundings.

Heat recycling between the heat sink and the heat source. With the valve 419/420 the brine
flow through the heat exchanger between the warm brine tank and the cold water tank is con-
trolled. Thus, the heat recycling rate is influenced.

Inertia of the heat source side. If the mixing valve 425/426 between the warm brine tank and the
cold brine tank is in the mid-position, then both tanks are active and the ‘inertia’ of the brine cycle

75



is high. If the mixing valve 425/426 is in the upper or lower position, then only one tank is active
and the ‘inertia’ of the brine cycle is low. In reality, the heat source ‘inertia’ refers to the type of
the ground cycle or its operating conditions.

Inertia of the heat sink side. In the same way the ‘inertia’ of the water cycle is influenced by the
valve 423/424 between the cold water tank and the warm water tank. In redlity, the heat sink ‘iner-
tia refersto the type of the house or its operating conditions.

Using the Emulation

Here the valve positions are controlled by using the emulation models described in Section 7.5.
For each test cycle, different input data files for the models have to be selected, such as different
weather data, different user behaviour, or different heat pump controller settings.

7.5 Emulation

In order to test the heat pump under more realistic conditions, an emulation of the heat source side
as well as the heat sink side will be implemented in the near future. Therefore, a model of the
ground cycle and a model of the building run parallel to the real heat pump (Fig. 66). In realtime,
these models calculate the setpoints for the heat pump input temperatures (Tor returnsps Twyreturn,sp) @S
well as the setpoints for the volumetric flows through the heat pump (V*brsp, V*wsp) from the
measured heat pump output temperatures (Tor supplys Tw,supply) @nd from stored wesather data (Tground,
Tamb, Q* radation, €€C.). Four controllers are fed by the setpoints. The outputs of these four controllers
are the inputs for a hierarchical control system of the test bench. Primarily they influence the posi-
tions of the mixing valves 425/426 and 423/424 for the temperature control as well as the valves
437/438 and 431/432 for the flow control. However, all the other valves have to be controlled, as

well.
T Ta*m bient
ground Q radiation
etc.

model of model of
ground cycle building

V* T, T, Vv’

br,return,sp w,return,sp w,sp

br,sp

Tbr,supp ly

Tw,supply
%

test heat pump

Fig. 66: Emulation of the ground cycle and the building.

Tgrouna = ground temperature, Tamp = ambient temperature, Q* ragaion = Solar radiation heat flow,
Torsupply = brine supply flow temperature, Ty retun,sp = SEtpoint for brine return flow temperature,
Ve = Setpoint for brine volumetric flow,

Twsupply = Water supply flow temperature, Ty, reun.s = Setpoint for water return flow temperature,
V* e = Setpoint for water volumetric flow

76



8 Ausblick

Emulation am ETH-Prifstand. Als néchster Schritt soll die Emulation der Warmequelle (Erd-
sonde) und der Warmesenke (Haus) am Prifstand realisiert werden:

» Emulation des dynamischen Verhalten des Hauses (Warmeverteilsystem und Gebaude): Dabei
werden die Differentialgleichungen des Warmeverteilsystems und des Gebaudes (vgl. [KTM-3
98] und Abschnitt 6.2) on-line gelost, um die Transienten der Rucklauftemperatur und des
Kondensatorvolumenstroms zu bestimmen. Diese Grossen werden als Sollwertverlaufe fur die
Regelung der entsprechenden Grdssen am Prifstand verwendet. Als Aussentemperaturverlauf
kann der Datensatz eines beliebigen Referenzjahres verwendet werden.

« Emulation der Warmequelle: Ahnlich wie oben kann auch die Quellentemperatur und der
Quellenvolumenstrom am Prifstand emuliert werden. Vorerss werden entweder konstante
Sollwerte oder Sollwertverlaufe basierend auf einfachen Modellen der Quelle verwendet.

Resultate ETH-Priifstand. Die Uberwachungssysteme werden momentan am ETH-Priifstand
getestet (mit der Software im Kapitel 4). Die detaillierten Testresultate werden in [Zogg 02] publi-
Ziert.

Umsetzung. Nach Abschluss der Tests am ETH-Prifstand ist eine Felderprobung méglich. Da-
nach muss entschieden werden, in welcher Form die Uberwachungssysteme industriell umgesetzt
werden. Fir die Implementierung der Uberwachungssysteme muss eine genaue Analyse der
Hardware- und Softwareanforderungen durchgeftihrt werden. Die Systeme sind gegebenenfalls zu
vereinfachen:

* Bei HeatWatch kann das lineare Gleichungssystem fir die Parameter schrittweise gelost wer-
den, falls die Matrixinversion fir eine Online-Realisierung zu aufwendig ist (Abschnitt 2.2).
Durch Einsetzen und Auflésen nach den einzelnen Parametern konnen fUr jeden Parameter
einzelne Gleichungen formuliert werden. Eine Reduktion der Parameterzahl bzw. der Anzahl
bendtigten Signale ist ebenfalls moglich.

» Da bei FuzzyWatch wahrend dem Training die Anzahl der bendtigten Signale automatisch
reduziert wird, wird auch die Anzahl der bendtigten Parameter automatisch reduziert. Damit
sinkt der Rechenaufwand fur die Parameteridentifikation. Trotzdem kann die Berechnung der
Pseudo-Inversion zur Lésung des Least-Square-Problems zu aufwendig sein fur eine Online-
Realisierung (Abschnitt 3.3). In diesem Fall kann auch ein rekursiver Algorithmus mit schritt-
weisem Parameter-Update benutzt werden [Shafai 97], [Gertler 98]. Andererseits ist die Feh-
lerklassifikation mit der Berechnung der Zugehtrigkeitsgrade nicht aufwendig.

Erweiterung zum Gesamt-Uberwachungssystem. Die entwickelten Uberwachungssysteme sind
fur das Teilsystem der Warmepumpe zusténdig, wahrend der Rest der Warmepumpenanlage
(Haus) durch Modelle der friiheren Projektphasen abgedeckt ist [KTM-3 98]. Damit kdnnen so-
wohl die Parameter auf der Warmepumpenseite (aus dem Uberwachungssystem HeatWatch) wie
auch die Parameter auf der Hausseite identifiziert werden. Prinzipiell konnte die Fehlerklassifika
tion des Uberwachungssystems FuzzyWatch auch auf das Hausmodell angewandt werden.

Abtau-Steuerung. Mit HeatWatch kann Uber den Warmelibertragungs-Parameter im Verdampfer
die Vereisung festgestellt werden und damit der Abtauvorgang gestartet werden. FuzzyWatch kann
speziell auf Vereisung trainiert werden. Diese Mdglichkeiten missten néher untersucht werden.



9 Symbolverzeichnis — Symbols

Symbole und Einheiten— symbols and units

A m
A, B, G, ...
i, bik

b m

Cik

c, ¢ JkgK
cm  JkgK
d, di(x)

e &)

f, f(X)

fi

g, 9(¥)

h Jkg
K

k  W/m*K
kA WI/K
kb W/mK
Kir kg/secPa
L m

m kg

m*  kg/s
n 1/sec
n.

p Pa, bar
P W
PF -

Q* W

R Jkg

r Jkg
T °C

t Sec

u Jkg
u, u(t)

vV m

v mikg
VE mis
w m/sec
X

X, Xo

X X(K)

Y

0

(Wéarmellbergangs-) Flache
Parameter (Arbeitsmittel daten)
Modellparameter (,, black box*)
(Wéarmellbergangs-) Breite
“Cluster”-Zentrum

spezifische Warmekapazitéat

konvektiver Warmelibertragungs-Par. cxm’

Distanz

Modéellfehler, Pradiktionsfehler
(Zugehdrigkeits-) Funktion
Fehler

(Fehlergrad-) Funktion
spezifische Enthalpie

Parameter (Arbeitsmittel daten)
Warmelibergangs-K oeffizient
Warmellbergangs-Parameter k* A
Warmelibergangs-Parameter k*b
Massentbergangs-K oeffizient (Verd.)
(Verdampfungs-) Lange

Masse

Massenstrom

Drehzahl

Anzahl ...

Druck

Leistung / Leistungsaufnahme
Arbetszahl (AZ)

Warmestrom

spezielle Gaskonstante
spezifische V erdampfungsenthalpie
Temperatur

Zeit

spezifische innere Energie
Eingangssignale (Vektor)
Volumen

spezifisches Volumen
Volumenstrom

Geschwindigkeit

Parameter (Arbeitsmittel daten)
Dampfmassenanteil

Datenpunkt

Signalvektor

Ausgangssignale (Vektor)
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(heat transfer) area
parameters (refrigerant data)
model parameters (black box)
(heat transfer) width
cluster center

specific heat capacity
convective heat transfer parameter c*m’
distance

model error, prediction error
(membership) function

fault

(fault grade) function
specific enthalpy

parameter (refrigerant data)
(heat transfer) coefficient
heat transfer parameter k*A
heat transfer parameter k*b
mass transfer rate (evap.)
(evaporation) length

mass

mass flow

rotation speed

number of ...

pressure

power / power input
performance factor

heat flow

special gas constant

specific latent heat of vaporization
temperature

time

specific energy

input signals (vector)
volume

specific volume

volumetric flow

velocity

parameter (refrigerant data)
vapour mass ratio

data point

signal vector

output signals (vector)



Griechische Symbole und Einheiten — greek symbols and units

kg/m®

§

Eﬂ_qcok S "MRND >3
;

°C

Ap  Pa, bar

Indices

cmp
cyc
d
defrost(ing)
e
€c
ev
exp
f

g
he
hg
HP
hp
i

I

Ip
m
0
off
on
ov
r

Wirkungsgrad

Liefergrad

Dichte
Flissigkeits-Flachenverhaltnis (Verd.)
Gitegrad

Regressionsvektor
Regressionsmatrix
(stationérer) Parametervektor
Parametervektor
Standardabweichung
Zeitkonstante
Temperaturdifferenz
Druckdifferenz

Séttigungspunkt Flissigphase
Séttigungspunkt Dampfphase
Startwert, Betriebspunkt

Luft

Umgebung

Luft zu Wasser
Verdampfung: ,, bubble point*
Sole

K ondensator/K ondensation
kritischer Punkt (Arbeitsmittel daten)
Kompressor

Zyklus

Verdampfung: ,, dew point®
im Abtau-Zustand

V erdampfer/V erdampfung
Verdampfer zu Kondensator
Uberhitzung im Verdampfungsbereich
Expansionsventil

Fussboden (Gebaudemodell)
Gasphase

interner Warmelibertrager
Heissgas
Gesamt-Warmepumpe
Hochdruck

am Eingang/Eintritt
Flissigphase

Niederdruck

Mittedwert / Verdampfung: “mid point”
am Ausgang/Austritt

im ausgeschalteten Zustand
im eingeschalteten Zustand
Uberhitzung

Kéaltemittel
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efficiency

supply efficiency
density

liquid arearatio (evap.)
quality index
regression vector
regression matrix
(steady state) parameter vector
parameter vector
standard deviation
time constant
temperature difference
pressure difference

saturated liquid point
saturated vapour point
initial value, operating point
air

ambient

air-to-water

evaporation: bubble point
brine
condenser/condensation
critical point (refrigerant data)
compressor

cycle

evaporation: dew point

in defrosting mode
evaporator/evaporation
evaporator-to-condenser
superheating in the region of evaporation
expansion valve

floor (building model)

gas phase

internal heat exchanger

hot gas

overall heat pump

high pressure

at theinput/inlet

liquid phase

low pressure

mean value/ evaporation: mid point
at the output/outlet

in shut-down mode

in operational mode
superheating

refrigerant



s<ggppEB Y-

Raum (Gebaudemodell)
Warmeguelle

Unterkthlung

Sollwert

im stationéren Zustand
Sprung (am Systemeingang)
Quéle zu Wasser
Dampfphase
Wasser-/Warmesenke
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room (building mode!)

heat source

subcooling

setpoint

in steady state

step (at the input of the system)
source-to-water

vapour phase

water / heat sink
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