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Zusammenfassung: 
Ziel der Kurztestmethode ist es, im Hinblick auf eine Betriebsüberwachung und -optimierung ein 
Diagnoseverfahren für Fehlfunktionen einer Wärmepumpenanlage zu entwickeln. Durch das Er-
fassen möglichst weniger Messgrössen (Temperaturen, ev. Drücke) soll auf Fehlfunktionen ge-
schlossen werden. In früheren Projektphasen wurden Modelle für das Wärmeverteilsystem, die 
Wärmeabgabe und das Gebäude entwickelt. Hier wird die Wärmepumpe als Teilsystem näher 
betrachtet, und es werden zwei Überwachungssysteme sowie ein Simulationsmodell vorgestellt. 
Die Überwachungssysteme dienen dazu, den Zustand der Wärmepumpe bei der Inbetriebnahme 
und während des Betriebes zu erfassen und Fehler frühzeitig zu erkennen. Damit wird eine Opti-
mierung zwischen Abnahme der Wärmepumpe und Schlussprüfung wie auch eine zustandsorien-
tierte Instandhaltung während der ganzen Lebensdauer der Wärmepumpe ermöglicht. Eine zu-
standsorientierte Instandhaltung ist kostengünstiger als feste Service-Intervalle oder ausfallbeding-
te Reparaturen mit Stillstandszeiten. 

Das erste Überwachungssystem HeatWatch liefert physikalische Parameter und Kennzahlen der 
Wärmepumpe, aus denen die Fehler interpretiert werden können. Für die Parameteridentifikation 
im stationären Zustand muss ein lineares Gleichungssystem online gelöst werden. Diese Variante 
eignet sich dank ihrem einfachen Aufbau und einem sehr geringen Aufwand während der Trai-
ningsphase für eine schnelle industrielle Umsetzung. 

Beim zweiten Überwachungssystem FuzzyWatch werden direkt die aktuellen Fehlercodes ange-
zeigt. Dank einem universellen Modellansatz kann dieses Überwachungssystem ohne grossen 
Aufwand auf beliebige Wärmepumpentypen angepasst werden. Die Anzahl der benötigten Senso-
ren kann während der Trainingsphase durch einen automatischen Algorithmus minimiert werden. 
Für die Parameteridentifikation muss ein Least-Squares-Problem online gelöst werden. Für die 
Klassifikation der Fehler aus den Parametern werden statistische Ansätze wie Fuzzy-Logik und 
neuronale Netze verwendet. Der experimentelle Aufwand während der Trainingsphase ist höher, 
da neben den Nominaldaten auch die Daten für verschiedene Fehlerfälle auf einem Prüfstand er-
mittelt werden müssen. Mit geeigneten Methoden kann dieser Aufwand jedoch reduziert werden.  

Die Überwachungssysteme wurden anhand von Messdaten eines Einfamilienhauses, auf zwei 
Prüfständen und anhand von Simulationsdaten getestet. Mit einem detaillierten physikalischen 
Wärmepumpen-Simulationsmodell können Daten für den Nominalfall wie auch für verschiedene 
Fehlerfälle generiert werden. Ein neuer Prüfstand für industrielle Sole/Wasser-Wärmepumpen 
wurde am Institut für Mess- und Regeltechnik der ETH Zürich aufgebaut, mit dem die Test-
Wärmepumpe unter realistischen Bedingungen betrieben werden kann. Die Test-Wärmepumpe 
wurde mit zusätzlichen Aktuatoren und Sensoren  ausgerüstet, um übliche Fehlerfälle simulieren 
zu können. 
Die Ergebnisse sind im Abschnitt 1.4 zusammengefasst. 

Die vorliegenden Überwachungssysteme können nicht nur auf Wärmepumpen, sondern auch auf 
Kälteanlagen, Heiz- oder Klimatisierungssysteme angewandt werden. Bei grossen Anlagen wür-
den die Einsparungen durch einen optimalen Betrieb und durch eine zustandsorientierte Instand-
haltung noch stärker ins Gewicht fallen. 

 

Bemerkung: Der vorliegende Bericht wurde zweisprachig verfasst. Die Kapitel 2 bis 7 wurden  
aus der Dissertation übernommen, welche im Frühling 2002 abgeschlossen und publiziert wird 
[Zogg 02]. Am Anfang der englischen Kapitel befindet sich jeweils eine deutsche Kurzfassung. 

 

Diese Arbeit ist im Auftrag des Bundesamtes für Energie entstanden. Für den Inhalt und die 
Schlussfolgerungen ist ausschliesslich der Autor dieses Berichts verantwortlich. 



Abstract: 
 
The purpose of the short-term rating method is to develop a fault detection and diagnosis proce-
dure for operational monitoring and optimization of a heat pump heating system. The faults are to 
be classified on the basis of the fewest measurements possible which might include temperature 
and maybe pressure measurements. As a result of former project phases, models of the heat distri-
bution system, the heat emission system as well as of the building have been developed. Here, the 
heat pump as a subsystem is considered, and two fault diagnosis systems as well as a simulation 
model are developed. With these diagnosis systems, the state of a heat pump is known both at 
start-up and during the operation, and any faults can be recognized early. As an additionional 
benefit to the optimization at start-up, a state-oriented maintenance helps to minimize costs in the 
long run, over those incurred with fixed service intervals or with repairs due to complete failure, 
accompanied by downtime. 

The first fault diagnosis system, called HeatWatch, yields physical parameters and characteristics 
of the heat pump, which are used to interpret the faults manually. For parameter identification 
during steady state, a linear equation system has to be solved online. This version is designed for a 
fast industrial realization because of a simple structure and a very small effort during the training 
phase. 

The second fault diagnosis system, called FuzzyWatch, directly displays the actual fault codes. 
Thus, no manual interpretation is necessary. Due to an universal model approach, the diagnosis 
system can easily be adapted to any heat pump type. During the training phase, an automated algo-
rithm reduces the number of sensors needed. For parameter identification, a least-squares problem 
has to be solved online. For the classification of the faults based on the parameters, statistical ap-
proaches are used, such as fuzzy logic or neural networks. The experimental effort during the 
training phase is higher than in the case of HeatWatch, since data of the nominal case as well as 
data of several fault cases has to be acquired on a test bench. By using advanced methods, this 
effort can be reduced. 

The fault diagnosis systems have been tested by measured data both from a residential building 
and on two test benches, and with simulation data. A detailed, physical heat pump simulation 
model is able to generate data for the nominal case as well as for several fault cases. A new test 
bench for industrial brine-to-water heat pumps has been installed at the Measurement and Control 
Laboratory of the ETH Zurich, which allows the test heat pump to operate under realistic condi-
tions. The test heat pump is equipped with additional actuators and sensors for simulating com-
mon faults. 

The fault diagnosis systems presented in this work is not only suitable to heat pumps only, but to 
any larger heating, refrigerating, or air-conditioning systems. For large-scale plants, the savings 
would even be higher due to an optimal operation and a state-oriented maintenance. 

 

 

 

Note: This report is written in two languages. Chapters 2 to 7 are adopted from the dissertation (in 
a shortened form), which will be completed and published in spring 2002 [Zogg 02]. These Chap-
ters are written in English. 

 

This work is carried out by order of the Swiss Federal Office of Energy. 
The author of this work is exclusively responsible for its content and the conclusions drawn. 
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1 Überblick  

1.1 Ziel der Arbeit 

Gesamtprojekt 

Das Ziel ist die Entwicklung einer neuen Mess- und Auswertungsmethode für folgende Zwecke: 

• Ermittlung von Abweichungen gegenüber der Planung 
• Detektion der häufigsten Fehlerquellen 
• Betriebsoptimierung zwischen Abnahme der Wärmepumpe und Schlussprüfung 
• Betriebsüberwachung während der ganzen Lebensdauer der Wärmepumpenanlage 

Die Kurztestmethode basiert auf der Methode der Parameteridentifikation und soll damit: 

• möglichst kostengünstig sein (geringer Messaufwand) 
• möglichst frühzeitig (z.B. innert 1 Monat) eine Hochrechnung auf das ganze Jahr ermöglichen 

Die in einem Pilotversuch gewonnenen Erfahrungen liefern die Software- und Hardwarespezifika-
tionen als Grundlage zur Realisierung eines Einbau- und Diagnosesets. 

Projektphase 5 

Das Ziel der vorliegenden Projektphase wurde folgendermassen definiert: 

• Verfeinerung und Validierung des in den ersten vier Phasen des Projektes entwickelten physi-
kalischen Modells der Wärmepumpe. Mit Hilfe dieses Simulationsmodells können künstliche 
Datensätze (mit und ohne Fehlersimulation) generiert werden, was den experimentellen Auf-
wand für das Training des Diagnoseverfahrens massgebend reduzieren wird. 

• Das in der Phase 4 entwickelte Diagnoseverfahren zu verfeinern und an einem dynamischen 
Sole/Wasser-Wärmepumpenprüfstand zu erproben. Dieser Prüfstand erlaubt dabei einerseits 
die Simulation der in den Projektphasen 1 bis 3 definierten Fehler und andererseits die Emula-
tion des dynamischen Verhaltens eines real nicht vorhandenen (fiktiven) Hauses. 

• Die an der Testwärmepumpe simulierten Fehler sollen richtig lokalisiert und angezeigt wer-
den. 

1.2 Übersicht der Projektphasen 
Projektphasen 1-3: Messung, Modellierung und Erprobung der  
Parameteridentifikation [KTM-3 98]. 

Eine Referenzanlage in Barzheim (Schaffhausen, CH) mit einer Luft/Wasser-Wärmepumpe wurde 
vollständig instrumentiert und ausgemessen. Ein Modell für die Wärmeverteilung, Wärmeabgabe 
und das Gebäude wurde erstellt und validiert. Für die Wärmepumpe wurde ein nichtphysikalisches 
Modell (basierend auf Hersteller-Kennlinien) sowie eine erste Version des detaillierten physikali-
schen Modelles (mit vollständiger Modellierung des Kältemittelkreislaufes) erstellt. 

Das nichtphysikalische Modell dient zur groben Fehlerdetektion, und das physikalische Modell 
dient zur genauen Fehlerdiagnose und –lokalisierung innerhalb der Wärmepumpe. Aus den identi-
fizierten Parametern des Gebäudemodelles können Fehler ausserhalb der Wärmepumpe festge-
stellt werden. Anhand der Simulationsmodelle wurden Hochrechnungen der Kenngrössen (Jah-
resarbeitszahl, usw.) auf ein Jahr durchgeführt. Herkömmliche Diagnoseverfahren wurden eben-
falls getestet.  
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Projektphase 4: Parameteridentifikation und Fehlerdiagnose für das Teilsystem  
Wärmepumpe [KTM-4 99] 

Die Wärmepumpe als Teilsystem wurde genauer untersucht und es wurden zwei Überwachungs-
systeme entwickelt. HeatWatch liefert physikalische Parameter, welche manuell interpretierbar 
sind, während FuzzyWatch eine Fehlerklassifikation enthält und direkt Fehlercodes liefert. Erste 
Tests anhand der Nominaldaten in Barzheim und anhand der „Fehler-Daten“ des Labor-
Prüfstandes an der Zürcher Hochschule Winterthur (ZHW) wurden durchgeführt. Eine zweite 
Version des physikalischen Wärmepumpenmodelles wurde entworfen. 

Projektphase 5: Test der Fehlerdiagnosesysteme an Prüfständen und mit  
Simulationen 

In der vorliegenden Projektphase wurde ein neuer Wärmepumpen-Prüfstand am Institut für Mess- 
und Regeltechnik der ETH Zürich aufgebaut, eine dritte Version des physikalischen Wärmepum-
pen-Simulationsmodelles erstellt und die Überwachungssysteme HeatWatch und FuzzyWatch 
weiterentwickelt. Die Überwachungssysteme wurden anhand der Daten des ZHW-Prüfstandes, des 
Simulationsmodelles und des Prüfstandes an der ETH Zürich weiter getestet. 

1.3 Lösungsweg 
Einen zentralen Platz bei dem gewählten Lösungsweg nimmt der dynamische Sole/Wasser-
Wärmepumpenprüfstand an der ETH ein. Dieser Prüfstand soll folgende Aufgaben erfüllen: 

• Emulation des dynamischen Verhaltens der Wärmequelle und des Hauses 
• Fehlersimulation an einer Sole/Wasser-Wärmepumpe: Eine industrielle Sole/Wasser-Wärme-

pumpe mit modifiziertem Arbeitsmittelkreislauf wurde mit zusätzlichen Sensoren ausgerüstet. 
Die Modifikation des Arbeitsmittelkreislaufs dient der Simulation derjenigen Fehler, die in 
den ersten Projektphasen in Form eines Fehlerbaums definiert wurden (auf Sole/Wasser über-
tragen). Wichtig ist insbesondere die vollständige Automatisierung der Testläufe, wodurch für 
das Erfassen der Datensätze praktisch keine manuelle Eingriffe nötig sind. 

Die Erprobung der Diagnoseverfahren am Wärmepumpenprüfstand weist gegenüber der Erpro-
bung in einem real existierenden Haus folgende Vorteile auf: 

• Die Suche nach einem geeigneten Objekt fällt aus. 
• Es existieren keine terminliche Restriktionen. Es ist möglich auch ausserhalb der Heizperiode 

Untersuchungen durchzuführen. 
• Der Aussentemperaturverlauf und andere Randbedingungen können ohne unbekannte 

Quereinflüsse der Betreiber beliebig vorgegeben werden. Damit ist die Reproduzierbarkeit der 
Untersuchungen gewährleistet.  

• Die speziell mit Sensoren und Aktoren ausgerüstete Maschine bleibt nach Projektabschluss 
nicht im Haus zurück. Sie kann für weitere Untersuchungen eingesetzt werden (kein Verlust 
der Investitionen). 

• Der Prüfstand kann auch im Rahmen anderer Projekte (Pulsbreitenmodulation für Wärme-
pumpenanlagen, Kostengünstige Niedertemperaturheizung mit Wärmepumpe) für die Ent-
wicklung und Erprobung neuer Regelstrategien verwendet werden. 

Das Konzept eines solchen Wärmepumpenprüfstandes wurde im Rahmen einer Diplomarbeit am 
Institut für Mess- und Regeltechnik ausgearbeitet [Lackner 00]. Im Rahmen der vorliegenden Pha-
se 5 des Projektes wurde dieses Prüfstandskonzept realisiert und für das Erproben der Diagnose-
verfahren eingesetzt (Fig. 1). 
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Die Daten für das Training des Diagnosesystems FuzzyWatch werden einerseits experimentell am 
Prüfstand erfasst und andererseits durch das Wärmepumpen-Simulationsmodell generiert. Das 
Simulationsmodell wird anhand von Nominaldaten validiert und anschliessend benutzt, um Daten 
für verschiedene Fehlerfälle zu generieren. 

 

Fig. 1: Der Prüfstand am Institut für Mess- und Regeltechnik, ETH Zürich. - The test bench at the Meas-
urement and Control Laboratory, ETH Zürich. 

1.4 Hauptergebnisse 
Die Ziele der Projektphase 5 wurden erreicht und der Prüfstand wurde aufgebaut. Die Emulation 
der Wärmequelle und des Hauses am Prüfstand ist jedoch noch in Bearbeitung. Die Diagnosesy-
steme können trotzdem unter verschiedenen Bedingungen am Prüfstand ausgetestet werden. 

Die Software für die zwei Überwachungssysteme FuzzyWatch und HeatWatch wurden weiterent-
wickelt und getestet:  

HeatWatch. Das erste Überwachungssystem ermöglicht die Erfassung relevanter Wärmepumpen-
Parameter und –Kenngrössen im stationären Zustand (Schema in Kapitel 2, Fig. 2). Aus den Ab-
weichungen der Parameter im Vergleich zum Anfangs- oder Auslegungszustand können die ent-
sprechenden Fehler manuell durch den Benutzer oder Servicefachmann interpretiert werden. Bei-
spielsweise kann aus der Veränderung des Wärmeübertragungs-Parameters im Verdampfer oder 
Kondensator auf eine Verschmutzung zurückgeschlossen werden. Die Veränderung des Quellen- 
bzw. Wassermassenstromes zeigt Verschmutzungen in den entsprechenden Kreisläufen oder Fehl-
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funktionen der Umwälzpumpen an. Auch Fehlfunktionen des Kompressors, des Expansionsventi-
les oder Leckage können über Parameterveränderungen erkannt werden. Insgesamt werden für 
eine Wärmepumpe mit internem Wärmeübertrager 10 Sensoren benötigt (Kapitel 5), wovon 4-6 
Sensoren standardmässig vorhanden sind. Eine Reduktion der Anzahl Sensoren ist möglich, dabei 
nimmt jedoch auch die Anzahl der identifizierbaren Parameter ab.  

Ausser dem Erfassen der Anfangswerte der Parameter ist kein nennenswertes Training notwendig. 
Eine mögliche Realisierung als Online-Software ist in Kapitel 4, Abschnitt 4.2 mit zyklischer An-
zeige der Parameter vorgestellt. Die Diagnoseresultate werden in Kapitel 5, Abschnitt 5.1 für eine 
Anwendung (Messdaten aus Barzheim) detailliert beschrieben. Als weitere Variante könnte über 
den Wärmeübertragungs-Parameter im Verdampfer auch die Vereisung festgestellt werden und 
damit der Abtauvorgang gestartet werden. 

FuzzyWatch. Bei diesem Überwachungssystem ist neben der Parameteridentifikation auch die 
Fehlerklassifikation integriert (Schema in Kapitel 3, Fig. 8). Mit verschiedenen Klassifikationssy-
stemen können einzelne Fehler, Fehler unterschiedlicher Stärke und je nach Klassifikationsmetho-
de und Messdaten auch Kombinationen gleichzeitig auftretender Fehler diagnostiziert werden. 
Dazu gehören Fehler wie die Verschmutzung des Verdampfers oder des Kondensators, Fehlfunk-
tionen der Sole- und Heizwasser-Umwälzpumpen, Fehlfunktionen des Kompressors oder des Ex-
pansionsventils, oder Leckage. Hier ist keine manuelle Interpretation notwendig, sondern es wer-
den direkt die entsprechenden Fehlercodes angezeigt. Die Anzahl der benötigten Sensoren wird 
für eine bestimmte Anwendung automatisch minimiert. Je nach Wärmepumpentyp und geforderter 
Klassifikationsgüte (Zuverlässigkeit der Diagnose) kann die Anzahl der Sensoren variieren. Für 
die bisher untersuchten Anwendungen konnten bereits mit 4-6 Sensoren brauchbare Resultate 
erzielt werden. Mit einer höheren Anzahl Sensoren nimmt die Klassifikationsgüte zu.  

Prinzipiell muss das Diagnosesystem mit Daten für alle Fehlerfälle trainiert werden. Mit verschie-
denen Methoden ist es jedoch möglich, den experimentellen Aufwand zu reduzieren, indem nur 
eine kleine Auswahl von Fehlerfällen oder sogar nur der Nominalfall trainiert wird. Eine mögliche 
Realisierung als Online-Software ist in Kapitel 4, Abschnitt 4.3 mit zyklischer Anzeige der Feh-
lercodes vorgestellt. Die Offline-Software für das Training ist in Abschnitt 4.5 beschrieben, wobei 
ein Bedienfeld schrittweise durch den Trainingsablauf führt. Die Diagnoseresultate werden in 
Kapitel 5, Abschnitte 5.2 und 5.3 für zwei Anwendungen (Daten aus Prüfstand ZHW und Simula-
tionsmodell) detailliert beschrieben. Detaillierte Resultate für den Prüfstand ETH werden in [Zogg 
02] verfügbar sein. 

Simulationsmodell. Die Entwicklung des physikalischen Simulationsmodelles für eine 
Luft/Wasser-Wärmepumpe wurde abgeschlossen (Kapitel 6). Anhand der Nominaldaten aus dem 
Einfamilienhaus in Barzheim wurden die Modellparameter angepasst und das Modell validiert. 
Das Modell ist in der Lage, die wesentlichen Eigenschaften der Wärmepumpe zu repräsentieren. 
Deshalb kann es als Datenquelle für das Training des Diagnosesystems FuzzyWatch dienen, indem 
die verschiedenen Fehlerfälle simuliert werden. Für eine realistische Simulation wird das Wärme-
pumpenmodell mit dem Gebäudemodell gekoppelt. 

Prüfstand ETH. Im Labor des Instituts für Mess- und Regeltechnik an der ETH Zürich wurde ein 
neuer Prüfstand für industrielle Sole/Wasser-Wärmepumpen aufgebaut (Fig. 1, Kapitel 7). Die 
Testumgebung besteht aus einem Solekreislauf und einem Wasserkreislauf, insgesamt 4 Tanks, 5 
Wärmetauschern, 2 Medienanschlüssen und einer Hilfs-Wärmepumpe. Damit kann die Test-
Wärmepumpe unter möglichst realen Bedingungen betrieben werden. 

Die Testwärmepumpe von SATAG© Thermotechnik AG wurde mit zusätzlichen Ventilen und 
einem externen Kältemitteltank ausgerüstet. Damit können übliche Fehlerfälle eingestellt werden. 
Insgesamt 20 Sensoren erfassen die Temperaturen und Drücke. Der Prüfstand wurde vollständig 
automatisiert und für die Durchführung der Testzyklen wurde ein spezielles Software-Tool ent-
wickelt. 



2 HeatWatch 
Kurzfassung (Deutsch): 

HeatWatch wird gemäss Fig. 2 zur Überwachung einer Wärmepumpe eingesetzt. Aus Kosten-
gründen wird auf jegliche Massen- oder Wärmestrommessungen verzichtet. Die Temperaturen 
bzw. Drücke im Arbeitsmittelkreislauf sowie auf der Quellen- und Senkenseite werden mit Senso-
ren laufend gemessen und als Signale ans Überwachungssystem weitergeleitet. Dieses erfasst die 
Daten und wertet sie im stationären Zustand aus. Dabei werden Parameter und charakteristische 
Kennzahlen berechnet. 

Überwachungssystem HeatWatch

stationäre
Parameter

stationäre
Kennzahlen

integrierte
Kennzahlen

Datenerfassung + Detektion stationärer Zustand

Temperatur-/Drucksensoren

Stellgrössen
(Ein/Aus/...)

Eingangsgrössen
(Quellen-/Senken-
temperatur, ...)

WärmepumpeWärmepumpe

•Temperaturen
•Drücke

•Wärmedurchgangs-
koeffizienten
•Massenströme
•Charakteristik
Kompressor
•Charakteristik
Expansionsventil

•COP
•Gütegrad
•Wärme-
ströme

•Arbeitszahl
•Energieverbrauch
•Wärmeabgabe
•Betriebsstunden
•Abtauzeit

Überwachungssystem HeatWatch

stationäre
Parameter

stationäre
Kennzahlen

integrierte
Kennzahlen

Datenerfassung + Detektion stationärer Zustand

Temperatur-/Drucksensoren

Stellgrössen
(Ein/Aus/...)

Eingangsgrössen
(Quellen-/Senken-
temperatur, ...)

WärmepumpeWärmepumpe

•Temperaturen
•Drücke

•Wärmedurchgangs-
koeffizienten
•Massenströme
•Charakteristik
Kompressor
•Charakteristik
Expansionsventil
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•Gütegrad
•Wärme-
ströme
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•Wärmeabgabe
•Betriebsstunden
•Abtauzeit

 

Fig. 2: Das Schema des Diagnosesystems HeatWatch. 

Modellbildung. Für eine Wärmepumpe mit internem Wäremübertrager (Fig. 4) wurde ein Modell 
für den stationären Zustand entwickelt. Dabei wurden die Energiebilanzen für die Prozesse der 
Verdampfung, der Überhitzung, der Kondensation und der Unterkühlung sowie für die Wärme-
quelle und die Wärmesenke (Gl. (1) bis (6)) aufgestellt. Als wesentliche Parameter sind darin die 
Wärmeübergangsparameter kAi der Wärmeübertrager und die Massenströme m*

i des Kältemittels, 
der Quelle (Luft/Sole) und der Senke (Wasser) enthalten. Für die Berechnung der Stoffgrössen 
sind die Kältemitteldaten in Funktion der Drücke gegeben. Bei der Verdampfung und Kondensati-
on wurde der „Temperatur-Glide“ berücksichtigt (unterschiedliche Temperaturen Tb(pi) für „bubb-
le point“ und Td(pi) für „dew point“). 

Der Kältemittelmassenstrom m*
r wird aus der Leistungsaufnahme PHP des Verdichters bestimmt 

(Gl. (15)). Damit können die restlichen Parameter berechnet werden. Dazu gehören auch der Po-
lytropenexponent ccmp und der Liefergrad λcmp des Kompressors sowie die Ventilkonstante kexp des 
Expansionsventils. Die Leistungsziffer COPHP, der Gütegrad εHP und die Arbeitszahl sind damit 
ebenfalls bekannt.  

Lineare Regression. Für die Bestimmung der Wärmeübergangsparameter kAi und der restlichen 
Massenströme m*

i werden die Bilanzgleichungen in Form einer linearen Regression dargestellt 
(Gl. (26), (27), (28)).  

Anzahl benötigte Sensoren. Insgesamt werden für den vorliegenden Wärmepumpentyp (Fig. 4) 7 
Temperatursignale, 2 Drucksignale und 1 Leistungssignal benötigt (Gl. (29)), wovon 4 Tempera-
tursignale und ev. 2 Drucksignale standardmässig vorhanden sind (Gl. (30)).  
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Parameteridentifikation. Durch eine Mittelung der Signalwerte über den stationären Bereich und 
anschliessende Inversion können die Parameter bestimmt werden (Gl. (31)). Die Detektion des 
stationären Zustandes kann entweder über die Ableitung eines charakteristischen Signales erfolgen 
(Fig. 5), oder der Zeitpunkt für das Auftreten des stationären Zustandes wird als konstant ange-
nommen. 

Fehler-Interpretation. Aus den Veränderungen der Parameter können die entsprechenden Fehler 
manuell interpretiert werden. Die Fehler sind in einer Liste zusammengefasst (Table 1). 

Online-Betrieb. Prinzipiell ist der Betrieb des Diagnosesystems ohne vorherige Trainingsphase 
möglich, falls das einzige Ziel die Identifikation der aktuellen Parameter ist. Für eine Fehler-
Interpretation müssen jedoch die Abweichungen der Parameter von ihren Anfangswerten oder 
Auslegungswerten berechnet werden. Dazu müssen diese Anfangswerte mit demselben Diagnose-
system in einer kurzen „Trainingsphase“ für den Nominalfall identifiziert werden. Es werden je-
doch keine Daten für die Fehlerfälle benötigt. 

Zyklische statistische Auswertung. Während dem Betrieb werden die identifizierten Parameter 
zyklisch ausgewertet (Fig. 6). Nach mehreren Identifikationsschritten erfolgt eine Mittelwertbil-
dung. Der Verlauf dieser Mittelwerte kann anschliessend in „Parameter-Trend-Charts“ veran-
schaulicht werden (Fig. 7). Da die aktuellen Parameter jederzeit bekannt sind, wird eine zustands-
orientierte Instandhaltung ermöglicht [UAW-7 00]. 

 

Introduction: 

HeatWatch is used for diagnosing heat pump systems (Fig. 3). No mass flow sensors or heat flow 
sensors are needed, which helps to minimize costs. Temperature signals and pressure signals are 
measured by sensors in the refrigerant cycle as well as at the heat source side and at the heat sink 
side. These signals are evaluated in steady state, by calculating the parameters and the characteris-
tics of the heat pump. 

HeatWatch

steady state
parameters

steady state
coefficients

integrated
coefficients

data acquisition + steady state detection

•temperatures
•pressures

•heat transfer
parameters
•mass flows
•compressor 
characteristics
•expansion valve 
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•COP
•exergetic 
efficiency
•heat flows

•Energetic 
efficiency
•energy 
consumption
•heat production
•operating time
•defrosting time

control signals
input signals
(air/ground temperature, 
water temperature)

temperature/pressure sensors

heat pump
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efficiency
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consumption
•heat production
•operating time
•defrosting time

control signals
input signals
(air/ground temperature, 
water temperature)

temperature/pressure sensors

heat pump

 

Fig. 3: The scheme of the fault diagnosis system (called HeatWatch). 
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2.1 Modeling 
The model has been developed for a heat pump with an internal heat exchanger (Fig. 4). On the 
heat source side, the mass flow m*

s is cooled down from the inlet temperature Ts,i to the outlet 
temperature Ts,o. The water mass flow m*

w on the heat sink side is heated up from the inlet tem-
perature Tw,i to the outlet temperature Tw,o. In steady state, the refrigerant mass flow m*

r has the 
same value for the entire refrigerant cycle. The low pressure plp, the high pressure php, the super-
heating temperature Tov, the hot gas temperature Thg, and the subcooling temperature Tsc describe 
the state of the refrigerant.  

M

heat sink
(water cycle)

refrigerant cycle

heat source

condenser

evaporator

internal
heat exchanger

compressor

expansion
valve

liquid
valve

Ts,o

Tw,oTw,i

Thg

Ts,i

plp

php

Tov
Tsc

m*s

m*w

m*r

MM

heat sink
(water cycle)

refrigerant cycle

heat source

condenser

evaporator

internal
heat exchanger

compressor

expansion
valve

liquid
valve

Ts,o

Tw,oTw,i

Thg

Ts,i

plp

php

Tov
Tsc

m*s

m*w

m*r

 

Fig. 4: An industrial heat pump with an internal heat exchanger (type SATAG), temperatures Ti and pres-
sures pi. 

Steady-State Equations 

The model is directly built for steady-state conditions. The energy balances are used for the evapo-
ration process in the evaporator and the internal heat exchanger (eq. (1)), for the superheating 
process in the internal heat exchanger (eq. (2)), for condensation (eq. (3)), for the subcooling proc-
ess in the internal heat exchanger (eq. (4)), for the heat source side (eq. (5)), and for the heat sink 
side (eq. (6)). All terms represent heat flows. 

)()()( ,
*

esceheeselpr TTkATTkAprm −+−=⋅  (1) 

)())(( ,
*

ovscovhelpdovovr TTkApTTcm −=−⋅⋅  (2) 

)()(*
wcchpr TTkAprm −=⋅  (3) 

)()())(( ,,
*

esceheovscovheschpbscr TTkATTkATpTcm −+−=−⋅⋅  (4) 

)()( ,,
*

osisssese TTcmTTkA −⋅⋅=−  (5) 

)()( ,,
*

iwowwwwcc TTcmTTkA −⋅⋅=−  (6) 

The heat transfer parameters kAi are the product of the heat transfer coefficient ki and the heat tran-
fer area Ai. The latent heat of vaporization r(pi), the bubble point temperature Tb(pi), and the dew 
point temperatuer Td(pi) are given by the refrigerant data equations (cf. Chapter 6, Section 6.1, 
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“Refrigerant Data”). The specific heat capacities ci can also been calculated from refrigerant data, 
or they can be regarded as constants. For calculating the heat transfer heat flows, an approach with 
the arithmetic mean temperatures is used (eqs. (7) to (10)). 

2

)( ovlpd
ov

TpT
T

+
=  (7) 

2

)( schpb
sc

TpT
T

+
=  (8) 

2
,, osis

s
TT

T
+

=  (9) 

2
,, owiw

w
TT

T
+

=  (10) 

The evaporation and condensation mean temperautes are calculated from refrigerant data, using 
the mid-point temperatures Tm(pi). 

)( lpme pTT =  (11) 

)( hpmc pTT =  (12) 

At least one mass flow m*
i (or one heat transfer parameter kAi) must be known for calculating the 

other parameters. Here the refrigerant mass flow m*
r is calculated from the power input PHP of the 

compressor (eq. (15)), by using the difference between the superheating enthalpy hov (eq. (13)) and 
the hot gas enthalpy hhg (eq. (14)). The electro-mechanical efficiency ηcmp may be regarded as a 
scaling factor for the mass flow m*

r, thus it is sufficient to use a guess value. 

))(()( hpdhghghphg pTTcphh −⋅+′′=  (13) 

))(()( lpdovovlpov pTTcphh −⋅+′′=  (14) 

ovhg

HPcmp
r hh

P
m

−
=

η*  (15) 

Other parameters of the compressor, such as the polytropic exponent ccmp and the mass flow sup-
ply efficiency λcmp, are determined by eqs. (16) and (17), with ncmp as the compressor speed and 
bcmp as a characteristic parameter. 

)/log(

)/log(

lphp

ovhg
cmp pp

TT
c =  (16) 

cmpb
lphpcmp

r
cmp

ppn

m

)/(

*

⋅
=λ  (17) 

The valve constant kexp (eq. (18)) and the superheating ∆Tov (eq. (19)) characterize the expansion 
valve. 

lphp

r

pp

m
k

−
=

*

exp  (18) 

)( lpdovov pTTT −=∆  (19) 

All the heat flows in the system (1)..(6) can be calculated, if the parameters kAi and the mass flows 
m*

i are known. Eq. (20) represents an example for the heat output heat flow Q*
HP. 

( ) ( ) )(*
,,

***
hprwcciwowwwwHP prmTTkATTcmQQ =−=−==  (20) 

Other heat pump characteristics, such as the coefficient of performance COPHP (eq. (21)) and the 
quality grade εHP (eq. (23)), are also calculated. The carnot value COPCarnot is either determined by 
the source and water temperatures (Ts, Tw), or it is determined by the evaporator and condenser 
temperatures (Te, Tc). 
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HP

HP
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COP
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=  (21) 
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w
swCarnot TT
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−
=,  
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c
ecCarnot TT
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COP

−
=,  (22) 

iCarnot

HP
iHP COP

COP

,
, =ε  (23) 

Using the mass flow m*
w from steady state, the time-varying heat output Q*

HP(t) can be guessed 
for the time interval before steady state (eq. (24)), because during the operation the mass flow m*

w 
through the circulation pump is almost constant, in contrast to the other signals (temperatures). 
Thus, the performance factor PF for the time interval ∆t is given by eq. (25). 

( ))()()( ,,
** tTtTcmtQ iwowwwHP −=  (24) 
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Linear Regression Form 

The steady-state equation system (1)..(6) is transformed into the linear regression form (eq. (26)) 
with the known output vector y, the unknown parameter vector κ (eq. (27)), and the known regres-
sion matrix ϕ (eq. (28)). The mass flows m*

s and m*
w are also regarded as unknown parameters, 

whereas m*
r is known from eq. (15). 

κϕ ⋅=y  (26) 
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Number of Sensors 

For the actual heat pump type (Fig. 4), 10 sensors are needed (eq. (29)). By reducing the number 
of sensors, the number of identifiable parameters is also reduced. 

[ ]HPhplpowiwosisschgovHP PppTTTTTTTy ,,,,=  (29) 

In standard industrial heat pumps, 4 temperature sensors are attached to the heat source as well as 
the heat sink side (eq. (30)). Often pressure switches for high- or low-pressure alarms are used. If 
the pressure signals are continuously measured as well, there are 6 signals, that can be used by 
default. The other sensors have to be added. 

[ ])()(,,,, lplpowiwosisdHP,standar ppTTTTy =  (30) 
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2.2 Parameter Identification 

Steady-State Detection 

A characteristic signal x with a slow transient is chosen for steady-state detection (cf. Fig. 5).  
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Fig. 5: Detection signal and (quasi) steady state interval. 

Steady state is determined by the derivative dx/dt of signal x. A noisy signal first has to be filtered. 
The system is in (quasi) steady state, if the derivative dxf/dt of the filtered signal xf is lower than a 
given limit during a minimum time interval.  

A much simpler approach works with a fixed time tss for the beginning of steady-state, which first 
has to be found for a given data set. In this case, the filtering and the calculation of the derivative 
may be omitted. 

Estimation by Mean Values 

For all variables in ϕ  (eq. (28)) and y (eq. (27)), the mean values are calculated for the time inter-
val tss…tss+∆tss. Afterwards, ϕ  is inverted (eq. (31)). 

yMV
1ˆ −= ϕκ  (31) 

In general, for each of the two modes (off, on), different parameter sets are identified (eq. (32)).  

{ }onoff κκκ ˆ,ˆˆ =  (32) 

For an air-to-water heat pump with a defrosting cycle, three modes have to be defined (off, on, 
defrosting). 

2.3 Fault Interpretation 
From the deviation of the physical parameters κ from the nominal values κ0, the corresponding 
faults have to be interpreted by the user. Table 1 summarizes possible interpretations. 

Table 1: Parameter deviations and corresponding faults. 

changed parameters fault interpretation (air/water heat pump) 

kAe  evaporator fouling (icing) 

kAc  condenser fouling 

kAhe,e, kAhe,ov internal heat exchanger fouling 

m*
s 

 
source cycle fouling, source pump malfunction  
(air channel fouling, air fan malfunction) 

m*
w water cycle fouling, water pump malfunction 

m*
r disfunction in refrigerant cycle, e.g. leakage 

ccmp, λcmp compressor malfunction 

kexp, ∆Tov expansion valve malfunction 



 16

2.4 Online Fault Diagnosis 

Online Application without Fault Training 

In principle, the diagnosis system can directly be applied online without any previous training, if 
the only objective is to identify the actual parameters of the system. For fault interpretation, the 
deviations of the parameters from their initial or design values have to be calculated. Therefore the 
same diagnosis system is used to identify the initial parameters in a short “training phase” for the 
nominal case. No data for any fault case is needed. 

Cyclic Statistical Evaluation 

Each identification sequence iseq yields one parameter set κ(iseq). All parameter sets of one cycle 
icyc, containing l sequences, are stored in the matrix K in eq. (33) (cf. Fig. 6). 

( ) [ ])()2()1( liK cyc κκκ �=  (33) 

At the end of each cycle the parameters are statistically evaluated by eq. (34), which calculates the 
mean values of the parameters.  

( ) �=
=

l

s
cyc s

l
i

1
)(

1 κκ  (34) 

cycle icyc

sequence iseq

offon on offoff

cycle icyc

sequence iseq

offon on offoff

 

Fig. 6: Cycles and sequences 

Parameter Trends 

All parameter mean values of each cycle are stored in the matrix K  (eq. (35)). 

( ) ( ) ( ) ( )[ ]cyccyc nnK κκκ �21..1 =  (35) 

Trend charts such as the one shown in Fig. 7 are informative for the progression of each parame-
ter. Optionally, the remaining time to an alarm limit is predicted, when the next service is due. 
With the knowledge of the actual parameters, a state-oriented maintenance is possible. 
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Cycle, Time 
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(e.g. kAe) 

initial value 
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time to alarm 

initial value 

alarm limit 

damage 

time to alarm 

 

Fig. 7: Trend chart for one parameter over the time, dots = mean values of each cycle.
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3 FuzzyWatch 
Kurzfassung (Deutsch): 

Im Überwachungssystem FuzzyWatch ist neben der Parameteridentifikation auch die Fehlerklassi-
fikation integriert (Fig. 8). Die Signale werden von Temperatursensoren oder optional auch von 
Drucksensoren geliefert, wobei die Anzahl der benötigten Sensoren abhängig vom „Informations-
gehalt“ der Signale ist. Während der Trainingsphase werden die am besten geeigneten Signale 
ausgewählt. 

FuzzyWatch

Parameteridentifikation

Datenerfassung

WärmepumpeWärmepumpe

Fehlerklassifikation

Fehlercodes:
•Verschmutzung/Verschlammung Verdampfer
•Verschmutzung/Verschlammung Kondensator
•Störungen im Arbeitsmittelkreislauf (Leckage, ...)
•Fehlfunktion Sole-Umwälzpumpe / Ventilator
•Fehlfunktion Wasser-Umwälzpumpe
•Fehlfunktion Kompressor
•Fehlfunktion Expansionsventil

Temperatur-/Drucksensoren

Stellgrössen
(Ein/Aus/...)

Eingangsgrössen
(Quellen-/Senken-
temperatur, ...)
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•Verschmutzung/Verschlammung Verdampfer
•Verschmutzung/Verschlammung Kondensator
•Störungen im Arbeitsmittelkreislauf (Leckage, ...)
•Fehlfunktion Sole-Umwälzpumpe / Ventilator
•Fehlfunktion Wasser-Umwälzpumpe
•Fehlfunktion Kompressor
•Fehlfunktion Expansionsventil

Temperatur-/Drucksensoren

Stellgrössen
(Ein/Aus/...)

Eingangsgrössen
(Quellen-/Senken-
temperatur, ...)

 

Fig. 8: Das Schema des Diagnosesystems FuzzyWatch. 

 

Ablauf der Diagnose. Für das Training des Diagnosesystems werden mehrere Testzyklen gefah-
ren für jeden Fehlerfall (Fig. 10), wobei die Wärmepumpe während eines Testzyklus mehrmals 
ein- und ausgeschaltet wird. Eine Datensequenz ist beispielsweise durch eine Einschaltung defi-
niert (Aus-Ein-Sequenz, Fig. 11). Für jede Datensequenz wird ein Parametersatz identifiziert (Fig. 
12), welcher im Parameterraum ein Datenpunkt darstellt (Fig. 13). Die Parameteridentifikation 
wird für jede Sequenz und für alle Fehlerfälle wiederholt. Damit existieren für jeden Fehlerfall 
mehrere Datenpunkte. Diese Datenpunkte (Parametersätze) werden für das Training des Klassifi-
kationssystems benutzt, welches die Fehler aus den Parametern klassifiziert (Fig. 14). 

Modellbildung. Für einen allgemeinen Wärmepumpentyp (Fig. 15) wird ein ARX-Modell defi-
niert (Gl. (37)). Die gemessenen Temperaturen sind in den Eingangssignalen u(t) und den Aus-
gangssignalen y(t) zusammengefasst (Gl. (36)). Dabei ist eine physikalische Modellstruktur (Gl. 
(38)) wie auch eine entkoppelte Modellstruktur (Gl. (40)) möglich. Neben dynamischen ARX-
Ansätzen werden auch statische Modellansätze verwendet. 

Parameteridentifikation. Die Parameter der Modelle werden mit der Least-Squares-Methode 
identifiziert, wobei für die zwei Betriebsmodi (Aus, Ein) bzw. Datensequenzen (Aus-Ein, Ein-
Aus) verschiedene Parametersätze entstehen. 

Fehlerklassifikation. Die Klassifikation wird realisiert, indem der Parameterraum in „Cluster“ 
aufgeteilt wird, während pro Fehlerfall ein „Cluster“ entsteht (Fig. 16). Beim Training des Über-
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wachungssystems werden in einem ersten Schritt die „Cluster“ gebildet. In einem zweiten Schritt 
wird darauf basierend ein Klassifikationssystem generiert. Folgende Methoden wurden entwickelt: 

• HCM2Fuzzy. Die Clustermittelpunkte und -standardabweichungen werden ermittelt und ein 
Fuzzy-Klassifikationssystem wird generiert. Als Vorteil können die Fuzzy-Regeln von einem 
Experten betrachtet oder verändert werden. Das Fuzzy-System kann auch als neuronales Netz 
aufgefasst werden und erbt dessen Lernfähigkeit (Fig. 17). 

• HCM2Neuro. Hier werden die obigen Cluster direkt in ein neuronales Netz integriert (Fig. 
18) Vorteilhaft ist die einfache Struktur und die schnelle Auswertung. 

• FCM2Neuro. Diese Methode verwendet einen iterativen Algorithmus für die Clusterbildung. 
Die Cluster werden direkt in ein neuronales Netz integriert. 

Nach der Clusterbildung werden die Cluster auf falsche Klassifikationen geprüft („Cluster Check-
ing“). Dabei wird die Fehlklassifikationsrate ermittelt, welche als Verhältnis zwischen der Anzahl 
falscher Klassifikationen nwrong zur gesamten Anzahl der Klassifikationstests ncheck definiert ist 
(Gl. (56)). 

Automatische Auswahl der Signale. Die Signale, welche am meisten „Informationen“ über die 
Fehler enthalten, werden automatisch ausgewählt. In einem ersten Schritt werden alle Ausgangs-
signale y(t) des Systems ausgewählt, deren Anzahl in weiteren Schritten fortlaufend reduziert 
wird. Für eine bestimmte Auswahl der Ausgangssignale werden die Cluster im entsprechenden 
Parameterraum gebildet und auf falsche Klassifikationen geprüft. Am Schluss werden die Klassi-
fikationsresultate für alle Signalkombinationen verglichen und diejenige Signalkombination mit 
der tiefsten Fehlklassifikationsrate wird gewählt. Generell kann mit der entkoppelten Modellstruk-
tur die Anzahl der Sensoren stärker reduziert werden als mit der physikalischen Modellstruktur, da 
keine Kopplungsterme zwischen den Ausgangssignalen vorhanden sind. 

Graduelle und simultane Fehler. Die Standard-Clustering-Algorithmen (HCM2Fuzzy, 
HCM2Neuro, ...) können auch für Fehler verschiedener Grösse oder für Kombinationen gleichzei-
tig auftretender Fehler verwendet werden (Fig. 19). Mit zunehmendem Fehlergrad bewegen sich 
die Clustermittelpunkte auf (nichtlinearen) Trajektorien. Die Cluster werden aus Trainingsdaten-
sätzen für die verschiedenen Fehlergrade und -kombinationen gebildet. Deshalb ist eine grosse 
Menge von Datensätzen notwendig, was mit grossem Zeitaufwand auf dem Prüfstand verbunden 
ist. 

Um den Trainingsaufwand reduzieren zu können, werden Vektor-Cluster gebildet (Fig. 20). Dazu 
sind nur Datensätze für den Nominalfall sowie für einen Fehlergrad pro Fehlerfall notwendig. Die 
Anzahl der Vektor-Cluster entspricht der Anzahl Fehlerfälle. Jedem Datenpunkt wird ein Fehler-
Zugehörigkeitsgrad („membership grade“) und ein Fehlergrad („fault grade“) zugeordnet. Der 
Zugehörigkeitsgrad entspricht der Wahrscheinlichkeit, dass der Fehler aufgetreten ist, und der 
Fehlergrad entspricht der Grösse des Fehlers. Mit den Vektor-Clustern kann nicht nur der Trai-
ningsaufwand reduziert werden, sondern es entstehen auch weniger komplexe Klassifikationssy-
steme.  

Nominal-Training. Falls nur Datensätze für den Nominalfall (fehlerfreien Fall) vorhanden sind, 
wird die Methode des Nominal-Trainings verwendet. Dabei wird der Parameterraum des Gesamt-
modelles (Fig. 21) in mehrere Parameterräume für verschiedene Submodelle aufgeteilt. Jedes 
Submodell entspricht einer physikalischen Einheit (z.B. Verdampfer, Fig. 22). In jedem Submo-
dell werden die Nominal-Cluster trainiert. Falls ein Datenpunkt ausserhalb des Nominal-Clusters 
ist, wird ein Fehler im entsprechenden Submodell klassifiziert (z.B. Fehler im Verdampfer). Alle 
Submodelle und die entsprechenden Nominal-Cluster werden in einem Klassifikationssystem zu-
sammengefasst (Fig. 23). 
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Online-Betrieb. Beim Offline-Training werden die Modellstruktur (physikalisch oder entkoppelt), 
der Typ der Datensequenzen (aus-ein, ein-aus, ...), die benötigten Signale und der Typ des Klassi-
fikationssystems (Cluster-Typ) bestimmt. Die entsprechenden Module werden aus dem Offline-
System extrahiert und ins Online-System integriert. Während für die Trainingsphase zahlreiche 
Sensoren am Prüfstand montiert werden, benötigt das Online-System nur die ausgewählten Senso-
ren. Die Komplexität des Überwachungssystems wird auf ein Minimum reduziert. 

Zyklische statistische Auswertung. Während dem Betrieb erfolgt nach mehreren Klassifikations-
schritten eine Mittelwertbildung. Der Verlauf dieser Mittelwerte kann anschliessend in „Fehler-
Trend-Charts“ veranschaulicht werden (Fig. 24). Da jederzeit die aktuelle Fehlersituation bekannt 
ist, wird eine zustandsorientierte Instandhaltung ermöglicht. 

 

Introduction: 

This diagnosis system integrates parameter identification as well as fault classification (Fig. 9). 
The signals are measured by temperature sensors, or optionally by pressure sensors, whereas the 
number of sensors depends on the ‘information content’ of the signals. During the training phase, 
those signals are selected, that are best suited for diagnosis.  
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Fig. 9: The scheme of the fault diagnosis system (called FuzzyWatch). 
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3.1 Diagnosis Procedure 
For the training of the fault diagnosis system, various test cycles are run for each fault case (cf. 
Fig. 10). During one test cycle icyc, the heat pump is switched on and off several times, which re-
sults in several data sequences iseq. 

fault 1

fault 2

fault 3

cycle icyc

sequence iseq

offon on offofffault 1

fault 2

fault 3

cycle icyc

sequence iseq

offon on offoff

 

Fig. 10: Test cycles for training 

For a brine-to-water heat pump, two modes (on, off) result in two different types of sequences 
(off-on, on-off). For an air-to-water heat pump with a defrosting cycle, three modes (off, on, de-
frosting) result in six different types of sequences (off-on, off-defrosting, on-off, on-defrosting, 
defrosting-off, defrosting-on). An example signal yi for one off-on sequence is shown in Fig. 11. 

time

signal yi off on off

off-on sequence iseq
time

signal yi off on off

off-on sequence iseq  

Fig. 11: Step response for one signal during  the off-on sequence iseq 

All measured input signals u(iseq) and all measured output signals y(iseq) of one sequence iseq are 
used to identify the parameters θ(iseq) of a heat pump model (cf. Fig. 12 and Sections 3.2 and 3.3). 

heat pump

mode (off, on)
output signals y(iseq)

input signals u(iseq)

parameter
identification

parameter set θ(iseq)

heat pump

mode (off, on)
output signals y(iseq)

input signals u(iseq)

parameter
identification

parameter set θ(iseq)  

Fig. 12: Parameter identification for the data of the sequence iseq 

Each parameter set θ(iseq) of a sequence iseq defines one data point x(iseq) in the parameter space 
(cf. Fig. 13). The parameter identification is repeated for each sequence of all fault cases. Thus, 
each fault case contains several data points. 
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parameter θ2=x2

parameter θ1=x1

data points 
of fault 2

data points 
of fault 1

parameter set θ(iseq)
= data point x(iseq)

parameter θ2=x2

parameter θ1=x1

data points 
of fault 2

data points 
of fault 1

parameter set θ(iseq)
= data point x(iseq)

 

Fig. 13: Parameter space with parameter sets (data points) for each sequence iseq,  
example: two parameter components and two fault cases 

Using this data points as training data, a fault classification system is built (cf. Section 3.4), which 
classifies the faults from the parameter sets (cf. Fig. 14). 

parameter set θ(iseq)=x(iseq)

fault
classification

fault set (iseq)

parameter set θ(iseq)=x(iseq)

fault
classification

fault set (iseq)
 

Fig. 14: Classification of the faults from the parameters of the sequence iseq 

 

3.2 Modeling 
For a general heat pump (Fig. 15) an ARX model is defined with the input vector u(t) and output 
vector y(t) of eq. (36), containing the measured temperature signals Ti and pressure signals pi. 

M
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compressor
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(T1,p1)

(T2,p2)(T3,p3)

(T4,p4)

T7T5

T8 T6
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condenser

evaporator

compressor
expansion
valve

(T1,p1)

(T2,p2)(T3,p3)

(T4,p4)

T7T5

T8 T6

 

Fig. 15: Measured signals of a general refrigerating machine 
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For convenience, only the temperature signals Ti are considered in these equations, but the pres-
sure signals pi could be added as well. 
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A first-order ARX model is given by eq. (37) (AR = auto regressive, X = extra input) [Ljung 87]. 

)()()1()( tetButAyty ++−=  (37) 

Physical Structure (Gray-Box Model) 

The structure is called physical if the matrix A of eq. (37) is built on the basis of physical consid-
erations and therefore is arbitrary. For the general heat pump shown in Fig. 15, the model is given 
by eq. (38). The additional step input ustep(t) is required because the heat pump is switched on and 
off. Consider each element ‘• ’ of eq. (38) being non-zero parameters ai,k or bi,k, respectively. 
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 (38) 

Eq. (38) contains all submodels for each module of the heat pump. For example, the evaporator 
submodel has the form of eq. (39), which corresponds to the 5th row of eq. (38). 
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Decoupled Structure (Black-Box Model) 

The structure is called decoupled if the matrix A of eq. (37) is diagonal. For the general heat pump 
model with an additional step input ustep(t), the system is described  by eq. (40). Here a full matrix 
B is chosen, which means that all output signals depend on the same input signals T7, T8 and on 
the step input ustep. 
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As eq. (40) shows, there are no links among the output signals T1..T6. The relation to physics thus 
is almost lost. On the other hand, the output signals can be easily eliminated without changing the 
system structure. This feature will be important in order to reduce the number of sensors during 
the signal selection task (cf. Section 3.5) 

Other Polynomial Models 

Static models are used as well. Often, static approaches are sufficient for describing fast compo-
nents of the process. Their advantage is that they have the least number of parameters and there-
fore can be identified under most conditions. 

)()()( tetKuty +=  (41) 
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If first-order ARX models are not accurate enough, ARX models of order 2 are used instead, 
which are given by eq. (42). 

)()()2()1()( 121 tetuBtyAtyAty ++−+−=  (42) 

During the training of the fault diagnosis system, the best approaches are selected for each sub-
model.  

3.3 Parameter Identification 
The parameters are identified separately for each submodel (for each row of the eqs. (38) and 
(40)). 

Least-Squares Estimation 

The ARX model permits the parameter identification task to be performed very simply, using the 
Least-Squares estimation method. The linear regression form of an ARX model is given by eq. 
(43), with the output y, the regression vector ϕT, the parameter vector θ, and the equation error ε 
[Ljung 87], [Gertler 98]. 

)()()( ttty T εθϕ +⋅=  (43) 

For example, the evaporator submodel (eq. (39)) is transposed to eq. (44). 
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Thus, the variables of eq. (43) are defined by eq. (45). 
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For k measurements, the linear regression form (eq. (43)) becomes eq. (46). For the evaporator 
submodel, the output vector Y and the regression matrix ΦT are defined by eq. (47). An estimation 
for the parameter vector θ is calculated by building the pseudo-inverse of ΦT (eq. (48), [Ljung 
98]). 

EY T +⋅Φ= θ  (46) 
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YT
LS ⋅ΦΦΦ= −1)(θ̂  (48) 

In general, for each of the modes (off, on) or sequences (off-on, on-off), different parameter sets 
are identified (eq. (49)). 

{ }onoffoffon θθθ ˆ,ˆˆ =  (49) 

3.4 Fault Classification 
The fault classification task is performed by separating the n-dimensional parameter space into nc 
clusters for each fault case. During the training phase, the classification system is built in two 
steps from measured data. In the first step the clusters are built and, based thereon, the classifica-
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tion system is built in the second step. Several clustering methods have been tested for several sets 
of data points. 

HCM2Fuzzy Clustering 

The clustering method Hard-C-means (HCM) calculates the mean values (centers) and standard 
deviations for each cluster on each parameter axis direction (Fig. 16). 
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Fig. 16: Hard-C-means (HCM) clusters for two parameters and two faults with a projection onto four 
Gaussian fuzzy membership functions 

A fuzzy classification system is built by projecting the clusters onto the axis. A Gaussian member-
ship function for the fault i is defined by the mean value (center) ci,k and the standard deviation σi,k 
(eq. (50)), xk being the component k of a data point x. 
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For two fault clusters of Fig. 16 the rules extracted are:  

IF (p1 is p1range1) AND (p2 is p2range1) THEN (fault1 is yes)(fault2 is no) 

IF (p1 is p1range2) AND (p2 is p2range2) THEN (fault1 is no)(fault2 is yes) 

The rules of the fuzzy inference systems (FIS) can be viewed or edited by an expert [Gulley 98]. 
Alternatively, an FIS may be regarded as a neural network and inherits its learning capabilities 
(Fig. 17). An example of a resulting HCM2Fuzzy cluster is visualized in Section 4.5, Fig. 33. 
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Fig. 17: A fuzzy inference system (FIS) in form of a neural network with two inputs, four Gaussian input 
membership functions, two rules, two output membership functions (yes/no), and two outputs. 
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HCM2Neuro Clustering 

The HCM clusters can also be directly included in a neural network classification system. For 
each cluster i the corresponding neuron transfer function is defined by eq. (51), with the cluster 
center components ci,1...ci,n, and the standard deviation components σi,1...σi,n. Setting the exponen-
tial factor a to 2, we get the extension of the Gaussian function of eq. (50) to n dimensions. 
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Fig. 18 shows the resulting neural network for two parameters and two faults. The advantage of 
these neural networks is their simple structure, which results in a fast evaluation. An example of a 
resulting HCM2Neuro cluster is visualized in Section 4.5, Fig. 34. 
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Fig. 18: A neural network with two inputs, two neurons for each cluster, and two outputs. 

FCM2Neuro Clustering 

This method is based on an iterative Fuzzy-C-Means (FCM) clustering algorithm [Höppner 97], 
[Chiu 94]. A classification system is then built, in which the resulting clusters are directly repre-
sented. The membership grade of a point x regarding cluster i is a function of the distance di to the 
actual cluster center ci and of the distances dj to all other nc centers cj, cf. eqs. (52) and (53). 
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( ) ii cxxd −=  (53) 

This means that the shape of an FCM cluster i is influenced by all other clusters j.  

Cluster Checking 

After the creation of the clusters, they are checked for wrong classifications. A wrong classifica-
tion rate can be defined. 

Relative checking. For a data point xi belonging to any fault case i, a wrong classification occurs 
when the membership grade fj to another fault cluster j≠i exceeds the membership grade fi to the 
fault cluster i (eq. (54)). 

( )iiij xfxf >)(  (54) 

Absolute checking. A wrong classification occurs when the membership grade fi to the actual 
cluster i is not the maximum. 

( ) ( ) ( )( ) )(,,,max 21 iiinii xfxfxfxf
c

>�  (55) 
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If eq. (54) or eq. (55), respectively, is fulfilled, the number of wrong classifications nwrong is in-
creased by 1. This checking is repeated for each data point xi of each cluster i=1..nc and the rate of 
wrong classifications is yielded by eq. (56), with ncheck as the total number of checkings. 

check

wrong
wrong n

n
r =  (56) 

3.5 Automated Signal Selection 
During the training of the fault diagnosis system the number of sensors has to be reduced. There-
fore only the signals with the largest amount of ‘fault information’ are selected, whereas the other 
signals are discarded.  

Regarding the system of eq. (38), all combinations of the six output signals T1..T6 are checked. 
Each output signal Ti corresponds to the submodel i, defined by row i. In the first step all output 
signals are selected, in the subsequent steps the number of output signals is reduced. In the case of 
two output signals, one combination is represented by eqs. (57) and (58) for the submodels 4 and 6 
(for example). All other rows of eq. (38) are eliminated and the dimension of the parameter space 
is reduced to n = 8 (eq. (59)). With this parameter combination, the classification systems of Sec-
tion 2.3 are built and checked for the number of wrong classifications. At the end the checking 
results for all combinations are compared and the signal combination with the least wrong classifi-
cations is chosen. 
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[ ]stepstep bbaaabaa ,68,66,63,62,6,44,43,46,4 =θ  (59) 

For the combination above, the total number of signals needed is reduced from 8 to 5 (T2, T3, T4, 
T6, T8). 

In the case of the decoupled model structure of eq. (40), the submodels of rows 4 and 6 are ex-
tracted to eqs. (60) and (61) by eliminating the other rows. The dimension of the parameter space 
is reduced to n = 8 as well (eq. (62)). The total number of signals needed can even be reduced to 4 
(T4, T6, T7, T8) because of the missing links between the signals.  
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[ ]stepstep bbbabbba ,68,67,66,6,48,47,44,46,4 =θ  (62) 

Generally, the number of sensors can be reduced more using the decoupled structure. 
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3.6 Gradual and Simultaneous Faults 

Using Standard Clustering Algorithms 

The clustering algorithms of Section 3.4 can be applied for several faults of different grades 
(‘sizes’) and for combinations of faults, as well. The clusters are built from training data sets for 
discrete fault grades and several fault combinations (Fig. 19). With an increasing fault grade, gen-
erally the cluster centers are moving on a nonlinear trajectory through the parameter space. The 
origin of all trajectories is the center of the nominal cluster. 
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Fig. 19: Clusters for the nominal case,  different fault grades and a fault combination of two faults (two 
parameters) 

A large number of data sets has to be acquired. On a test bench, this is very time consuming. By 
using the simulation model (cf. Chapter 6) for training the fault combinations, the experimental 
effort could be reduced. 

Using Vectorized Clustering Algorithms 

The vector clusters shown in Fig. 20 are created by using the centers of existing standard clusters. 
The nominal case as well as one grade for each fault are used, for example grade 2 for faults 1 and 
2. As many vector clusters are built as there are different faults, and the cluster center trajectories 
are assumed to be almost linear. 
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Fig. 20: Vector clusters for two faults, created from the centers of the nominal cluster and the clusters of 
fault grade 2 (two parameters) 

Each fault vector iv
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 is defined by eq. (63), with the center ic
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of the nominal cluster. For a data point x, the fault grade ( )xgi  is defined by the projection onto the 
fault vector (eq. (64)). The fault grade is scaled by the length vi of the fault vector. The member-
ship grade ( )xfi  is a function of the distance di(x) to the fault vector (eq. (65)), whereas the sim-
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Thus, faults of different grades are classified. Under certain conditions (the angles between the 
vectors are not too far from 90°), vector clusters are able to classify simultaneaous faults, as well.  

With the vector clusters, the training effort is reduced to the nominal case and one grade for each 
fault. The complexity of the resulting diagnosis system is minimized. 

3.7 Nominal Training 
If only data sets of the nominal case are available, the nominal training is applied. By using the 
standard clustering algorithms of Section 3.4, nominal clusters are built. The parameter space of 
the full model (eq. (38)) contains the nominal cluster as well as all fault clusters. This situation is 
shown in Fig. 21 for two parameters and two faults, namely fault 1 (evaporator fault) and fault 2 
(condenser fault). By only training the nominal cluster, these faults cannot be separated. It would 
only be possible to decide whether a data point (parameter set) belongs to the nominal cluster or 
not, which means that there is no fault or any unknown fault. 
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Fig. 21: Nominal cluster and fault clusters for the full model,  
example: model parameters θ1 and θ2, two fault cases 

In the case of a physical model structure, the parameter space can be divided into subspaces for 
each submodel. Fig. 22 shows the subspace for submodel 1 (evaporator submodel, eq. (39)). Ide-
ally, the parameters θ1 of the submodel 1 are only sensitive to the faults of this submodel. All pos-
sible faults of submodel 1 (evaporator: reduced heat transfer, reduced mass flow, …) are com-
bined in fault 1 (any fault in the evaporator). The nominal cluster of the evaporator submodel is 
built during the training phase. Fault 1 is classified if a data point (parameter set) is outside the 
nominal cluster 1. The dimension of the subspace is reduced to the number of submodel parame-
ters. 
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Fig. 22: Nominal cluster for submodel 1 (evaporator submodel), 
example: submodel parameters θ1,1 and θ1,2 

For each submodel, the parameter subspace is extracted and the nominal cluster is trained. Hence, 
a classification system is built containing all submodels and the corresponding nominal clusters 
(cf. Fig. 23). With this method, single faults or even multiple simultaneous faults can be classified. 
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Fig. 23: The submodels, the corresponding nominal clusters, and the corresponding faults 
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3.8 Online Fault Diagnosis 

Extracting from the Offline System 

As a result of the offline training, the following selections are made: 

• The model structure. A physical structure or a decoupled structure is selected, subject to the 
classification quality claimed or the maximal number of sensors allowed. 

• The switch mode. From the set of sequences (off-on, on-off, …) the seqence with the most 
information about the faults has to be chosen. If necessary, more than one set can be selected, 
or optionally different sets for different operational conditions (for instance, depending on the 
season). 

• The signal selection. The signals with the most fault information are automatically selected 
(cf. Section 3.5). The associated submodels and parameters are extracted from the model. Al-
ternatively, different model approaches can be defined for each submodel (static, first-order 
ARX, second-order ARX). 

• The classification system. Standard fuzzy/neuro clusters or vector clusters are chosen with the 
corresponding settings. 

Once the modules corresponding to these selections are extracted from the offline system, they are 
integrated in the online fault diagnosis system. Whereas for the training phase numerous sensors 
are mounted on the test bench for comparison, the online module only needs the selected sensors. 
The complexity of the fault diagnosis system is reduced to a minimum. 

Cyclic Statistical Evaluation 

Each identification sequence yields one data point in the parameter space (Fig. 16), which is clas-
sified as to the membership grade vector f(x). All grades of one cycle icyc, containing l sequences, 
are stored to the matrix F in eq. (66). 

( ) ( ) ( ) ( )[ ])()2()1( lxfxfxfiF cyc �=  (66) 

At the end of each cycle the grades are statistically evaluated by eq. (67), which calculates the 
mean values of the grades.  
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Alternatively eq. (68) can be used, which first calculates the median point and then determines the 
membership grade of the median point. 
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With vector clusters, the same statistical evaluations are made for the fault grades gi(x). 

Fault Trends 

All mean membership grades of each cycle are stored to the matrix F  in eq. (69). For vector clus-
ters the mean fault grades are stored in a matrix G . 

( ) ( ) ( ) ( )[ ]cyccyc nfffnF �21..1 =  (69) 

Trend charts as the one shown in Fig. 24 are informative for the progression of each fault. Option-
ally, the remaining time to an alarm limit is predicted, when the next service is due. With the 
knowledge of the actual fault situation, a state-oriented maintenance is possible. 
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Fig. 24: Trend chart for one fault over time, dots = mean values of each cycle. 

The trend charts are especially qualified for the fault grades G of the vector clusters, since they 
indicate the size of the faults in a direct way. 
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4 Software 
Kurzfassung (Deutsch): 

Für die Software-Demonstration wurden die Messdaten des kürzlich erbauten Prüfstandes am 
Institut für Mess- und Regeltechnik, ETH Zürich, verwendet. Die Diagnosesysteme wurden an 
diesem Prüfstand trainiert und die Online-Versionen wurden getestet. Da das Training von Heat-
Watch sehr einfach ist (Identifikation der Auslegungsparameter), wird hier nur die Online-Version 
präsentiert. Für FuzzyWatch wird sowohl die Offline-Trainings-Software als auch die Online-
Software präsentiert. Alle Software-Tools laufen auf MATLAB©. 

Wärmepumpe des ETH-Prüfstandes. Die Überwachungssysteme wurden für die Sole/Wasser-
Testwärmepumpe von SATAG© mit einem internen Wärmeübertrager implementiert (Fig. 25). 
Diese Wärmepumpe wurde mit zusätzlichen Ventilen und Sensoren ausgerüstet. Abschnitt 7.2 
enthält eine Liste aller einstellbaren Fehlerfälle. 

Online HeatWatch. Vor dem Betrieb von HeatWatch müssen die stationären Modellgleichungen 
(vgl. Abschnitt 2.1) für den aktuellen Wärmepumpentyp definiert werden. Zusätzlich müssen die 
Auslegungsparameter bekannt sein. Während dem Betrieb werden die Diagnoseresultate (stationä-
re Parameter) jeweils am Ende eines Zyklus statistisch ausgewertet. Jeder Zyklus enthält mehrere 
Identifikationsschritte für die einzelnen Datensequenzen (z.B. aus-ein). 

Die Diagnoseresultate sind auf Fig. 26 und Fig. 27 beispielhaft für die Fehlerfälle 2 und 3 darge-
stellt. Die Balkenhöhen entsprechen den Abweichungen der Parameter von den Auslegungswer-
ten. Aus den Zyklus-Mittelwerten können die aktuellen Fehler (manuell) interpretiert werden. 

Online FuzzyWatch. Während dem Betrieb werden die Diagnoseresultate (Fehler-
Zugehörigkeitsgrade, Fehlergrade) jeweils am Ende eines Zyklus statistisch ausgewertet. Jeder 
Zyklus enthält mehrere Klassifikationssschritte für die einzelnen Datensequenzen (z.B. aus-ein).  

Für Vektor-Cluster sind die Diagnoseresultate auf Fig. 28 und Fig. 29 beispielhaft mit Daten der 
Fehlerfälle 2 und 3 dargestellt. Die Schattierungen entsprechen den Zugehörigkeitsgraden und die 
Balkenhöhen entsprechen den Fehlergraden. Aus den Zyklus-Mittelwerten können die aktuellen 
Fehler und deren Grössen abgelesen werden. 

Für Standard-Cluster entfallen die Fehlergrade, und es werden lediglich die Zugehörigkeitsgrade 
dargestellt. So zeigt Fig. 30 die Resultate für den Fehlerfall 3. 

Trend Charts. Für alle Clustertypen von FuzzyWatch können Fehler-Trend-Charts dargestellt 
werden. Damit ist es in späteren Anwendungen möglich, den Verlauf der Fehler zu visualisieren. 
Fig. 31 zeigt die Trend-Charts für eine Test-Sequenz mit allen Fehlerfällen 1-2-3-4-5-6. Ähnliche 
Trend-Charts können auch für die Parameter von HeatWatch dargestellt werden. 

Training von FuzzyWatch. Als erster Schritt wird die Modellstruktur in einem sehr kurzen Pro-
grammcode definiert. Anschliessend führt ein Bedienfeld (Fig. 32) durch die weiteren Schritte der 
Trainingsphase, bestehend aus der Datenanalyse, dem Bilden und Überprüfen der Cluster mit 
Trainingsdaten, dem Bilden von Vektor-Clustern, dem (optionalen) Editieren der Fuzzy-Regeln 
und der Visualisierung der resultierenden Cluster. Als Beispiele sind zwei verschiedene Clusterty-
pen graphisch dargestellt (Fuzzy-Cluster in Fig. 33 und Neuro-Cluster in Fig. 34). 

 

Introduction: 

For the demonstration of the software, measured data is used from the recently built test bench at 
the Measurement and Control Laboratory, ETH Zurich. The diagnosis systems have been trained 
for this test bench and the online versions have been tested. Since the training of HeatWatch is 
very simple (identification of the design parameters), only the online version is presented here. For 
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FuzzyWatch, the offline training software as well as the online software are presented. The soft-
ware tools all run on MATLAB©. 

4.1 The Heat Pump of the ETH Test Bench 
The diagnosis systems have been implemented for the brine-to-water SATAG© heat pump repre-
sented in Fig. 25 with an internal heat exchanger, which is equipped with additional valves and 
sensors. For FuzzyWatch, only the temperature sensors are used as the set of initial sensors. For 
HeatWatch, some of the temperature sensors and two pressure sensors are needed (for a total of 10 
sensors). 
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Fig. 25: An industrial brine-to-water heat pump (SATAG) with additional temperature sensors 
(TT01..TT12) and pressure sensors (pT01 and pT03). 

A list of all fault cases is presented in Section 7.2, whereas here only the fault cases 1..6 are tested. 

4.2 Online HeatWatch 
Before the operation of HeatWatch, the steady-state model equations (cf. Section 2.1) have to be 
defined for the actual heat pump type. Additionally, the design parameters have to be known. Dur-
ing operation, the diagnosis results (steady-state parameters) are statistically evaluated at the end 
of each cycle, which contains several diagnosis steps. One step corresponds to one data sequence 
(for example off-on).  
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Run Online Diagnosis 

Fig. 26 shows the diagnosis results of a first data example. The deviations of the actual parameters 
from the design values are displayed. The highest deviation is in the parameter kMS, which repre-
sents the mass flow of the heat source (cf. Table 2). The parameter kVV is influenced secondly, 
which is the evaporator heat transfer parameter. From the mean parameter deviations (bars in the 
columns “Mean”), the actual fault can be (manually) reasoned by the user. Here, fault case 2 is 
present, which is a reduction of the heat source mass flow. With an increasing number of steps per 
cycle, the quality of this conclusion is increasing as well. 

 

Fig. 26: The results of a cycle with 3 identification steps (data sequences) for fault case 2. Each plot region 
corresponds to one parameter. For each identification step one bar is plotted. The heights of the bars indi-
cate the deviations from the design parameters (= 0). All parameters of one cycle are averaged and dis-
played as mean values (columns “Mean”). 

Fig. 27 shows the diagnosis results of a second data example. The highest deviation is in the pa-
rameter kVV, which represents the evaporator heat transfer parameter (cf. Table 2). The parameter 
epsSW is influenced secondly, which is the quality grade of the heat pump (SW = source-to-
water). Here, fault case 3 is present, which is a reduction of the evaporator heat transfer. 
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Fig. 27: The results of a cycle with 3 identification steps (data sequences) for fault case 3. 

Table 2: Legend for the parameters of HeatWatch. 

software model parameter description 

kVV kAe heat transfer parameter of the evaporator 

kZWV kAhe,e heat transfer parameter of the internal heat exchanger (evaporation part) 

kZWU kAhe,ov heat transfer parameter of the internal heat exchanger (superheating part) 

kKK kAc heat transfer parameter of the condenser 

kMW m*w water mass flow 

kMS m*s source medium mass flow 

kM m*r refrigerant mass flow 

kexp ccmp polytropic exponent of compressor 

klam λcmp mass flow supply efficiency parameter of compressor 

kEV kexp valve constant of expansion valve 

deltaTU ∆Tov superheating temperature difference 

COP COPHP coefficient of performance 

epsSW, epsVK εHP,sw, εHP,ec quality grade (source-to-water, evaporator-to-condenser) 
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4.3 Online FuzzyWatch 
The diagnosis results (membership grades, fault grades) are statistically evaluated at the end of 
each cycle, which contains several diagnosis steps. One step corresponds to one data sequence (for 
example off-on).  

Run Online Diagnosis With Vector Clusters 

Fig. 28 shows the diagnosis results of a first data example. From the mean values, the actual fault 
number and the actual fault size are concluded (column “Mean”). The highest membership grade 
is displayed for fault 2 (dark shading of the bar in the column “Mean”). The fault grade for fault 2 
is close to 1 (height of the bar in the column “Mean”). Thus, with a high probability fault case 2 is 
present with a fault size close to 1 (about the same size than the trained fault). As the number of 
steps per cycle increase, the reliability of this conclusion increases, as well. 

 

Fig. 28: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 2, using vector clus-
ters. Each plot region (row) corresponds to one fault. For each diagnosis step one bar is plotted. The shad-
ings of the bars indicate the membership grades (dark = high membership grades) and the heights of the 
bars indicate the fault grades. All grades of one cycle are averaged and displayed as mean values (column 
“Mean”). Fault 1 (nominal case) is not used here. 
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Fig. 29 shows the diagnosis results of a second data example. The highest membership grade is 
displayed for fault 3 (dark shading of the bar in the column “Mean”). The fault grade for fault 3 is 
close to 1 (height of the bar in the column “Mean”). 

 

Fig. 29: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 3, using vector clus-
ters. 
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Run Online Diagnosis With Standard Clusters 

Fig. 30 shows the diagnosis results of a data example. From the mean values, the actual fault 
number is concluded (column “Mean”). The highest membership grade is displayed for fault 3 
(dark shading of the bar in the column “Mean”). Thus, with a high probability fault case 3 is pre-
sent. With standard clusters, there is no information about the size of the faults. The membership 
grades of the particular diagnosis steps are much lower (light shadings) than the mean membership 
grade (dark shading), which is a consequence of the parameter spread. This shows the importance 
of taking the mean values for drawing conclusions. 

 

Fig. 30: The results of a cycle with 3 diagnosis steps (data sequences) for fault case 3, using standard clus-
ters. Each plot region (row) corresponds to one fault. For each diagnosis step one bar is plotted. The shad-
ings of the bars indicate the membership grades (dark = high membership grades). All grades of one cycle 
are averaged and displayed as mean values (column “Mean”). Fault 1 (nominal case) is also used here.  
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4.4 Trend Charts 
For all cluster types of FuzzyWatch, fault trend charts may be plotted. Fig. 31 shows an example 
for standard clusters. The mean membership grades of all cycles are stored and visualized in the 
charts. In future applications, these trend charts will be used to observe the progressions of the 
faults. Here, a test sequence of six faults with two cycles each is diagnosed and plotted (two cycles 
of fault 1, two cycles of fault 2, etc.). The membership grades (fault probabilities) are scaled to the 
interval 0..100%. Thus, all fault cases are classified successfully with a probability of almost 
100%. 

 

 

Fig. 31: Trend charts for 2 cycles of each fault case; fault sequence 1-2-3-4-5-6. 

 

Similar trend charts may be plotted for the parameters of HeatWatch. 
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4.5 Training of FuzzyWatch 

The Model Definition 

For the heat pump depicted in Fig. 25, the model is defined by a very short MATLAB© code: 
StrucListName = 'struc_phys' % PHYSICAL MODEL STRUCTURE 
StrucList{1}  = [8 9 11 0]; % evaporator (refrigerant output) 
StrucList{2}  = [1 5 6 0];  % internal heat exchanger (superheating output) 
StrucList{3}  = [2 0];   % compressor 
StrucList{4}  = [3 10 12 0]; % condenser (refrigerant output) 
StrucList{5}  = [4 0];   % refrigerant collector 
StrucList{6}  = [1 2 5 0];  % internal heat exchanger (subcooling output) 
StrucList{7}  = [6 0];   % subcooling refrigerant line 
StrucList{8}  = [7 0];   % expansion valve 
StrucList{9}  = [1 8 11 0]; % evaporator (brine output) 
StrucList{10} = [3 4 12 0]; % condenser (water output) 

A physical model structure is defined here (first line). Each subsequent line represents one sub-
model, which is defined by its output signal and a list of the respective input signals. For example, 
the evaporator submodel is defined by StrucList{1}, with the output signal 1 (temperature 
sensor TT 01) and the input signals 8 (TT 08), 9 (TT 09), 11 (TT 11), as well as an additional step 
input 0, which is needed because the heat pump is switched on and off. 

The User Interface Panel 

An interface panel leads the user through the consecutive steps of the training phase (Fig. 32):  

“Analyze Data”. The logged data files are analyzed by extracting the sequences, identifying the 
parameters, and comparing them for different fault cases. 

“Create and Check Clusters by Training Data”. For each fault case, a cluster in the parameter 
space is built on the basis of training data. The clusters are then checked against wrong classifica-
tions by applying the same training data. “Single Check” takes the full model with all output sig-
nals from the model definition and checks the clusters therefore. “Multi Check” permits to mini-
mize the number of signals (sensors) required. A reduced number of output signals is selected and 
the clusters corresponding to all combinations of these output signals are checked for wrong clas-
sifications. A ranking list is provided, which permits the user to select the signal combination with 
a minimal number of wrong classifications (cf. Section 3.5) 

“Create Vector Clusters”. From the clusters above, specialized vector clusters can be created to 
handle gradual faults. 

“Edit and Check Clusters by Validation Data”. In the case of fuzzy clusters, the properties of 
the fuzzy classification system such as the fuzzy rules can be edited. The trained fuzzy, neuro net, 
or vector clusters can be checked by validation data, which differs from the training data. 

“Plot Clusters and Data”. The clusters and optionally the corresponding data are visualized. 
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Fig. 32: The panel for training the fault diagnosis system step by step. 

Plot Clusters 

The clusters of the resulting classification systems can be plotted. Fig. 33 shows one cluster of a 
fuzzy classification system as well as the training data points. The high-dimensional parameter 
space is projected onto two dimensions and the cluster is cut through its center. With the 
HCM2Fuzzy clustering method (and the default settings), the shape of the clusters is rectangular. 

Fig. 34 shows one cluster of a neuro net classification system as well as the data points. With the 
HCM2Neuro clustering method, the shape of the clusters is ellipsoid. 

 



 42

 

Fig. 33: Fuzzy cluster plot (projection onto two dimensions). 

 

Fig. 34: Neuro cluster plot (projection onto two dimensions). 
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5 Anwendungen und Resultate - Applications and Results 
Kurzfassung (Deutsch): 

Beide Diagnosesysteme werden an verschiedenen Anwendungen getestet.  

Anwendungen von HeatWatch: 

• Messdaten aus Barzheim, nur Nominaldaten (Abschnitt 5.1) 

• Prüfstand ETH (Online-Software in Kapitel 4) 

Anwendungen von FuzzyWatch: 

• Prüfstand ZHW (Abschnitt 5.2, [Zogg 01]) 

• Daten aus dem Simulationsmodell (Abschnitt 5.3, Kapitel 6) 

• Prüfstand ETH (Trainings- und Online-Software in Kapitel 4) 

Detailliertere Resultate für den Prüfstand ETH werden in [Zogg 02] verfügbar sein. 

HeatWatch mit Messdaten aus Barzheim. Das Diagnosesystem wurde mit Nominaldaten aus 
einer Heizperiode (Jahr 1998) des Einfamilienhauses in Barzheim getestet [KTM-3 98], [UAW-7 
00]. Dazu werden Daten aus 7 Temperatursensoren, 2 Drucksensoren und 1 elektrischer Lei-
stungsmessung verwertet. Die relativen Standardabweichungen der identifizierten Parameter in-
nerhalb der einzelnen Tage liegen für 7 aus 11 Parametern unter oder bei 10% (Fig. 35). Für die 
Leistungsziffer (COP) liegen die Standardabweichungen ebenfalls unter oder bei 10%, während 
die Standardabweichungen des Gütegrades sogar unter oder bei 5% liegen (Fig. 36). 

Im Wärmeübergangs-Parameter kAe des Verdampfers ist die Auswirkung der Vereisung ersicht-
lich (Wintertage mit tiefen Werten in Fig. 37). Deshalb könnte dieser Parameter zur Detektion der 
Vereisung und zum Starten des Abtauvorganges benutzt werden. Auch die täglichen Verläufe 
anderer Parameter sind dargestellt (Fig. 38 bis Fig. 42). Der Gütegrad εHP,aw eignet sich für die 
Fehlerdetektion (Entscheidung, ob irgend ein Fehler vorhanden ist). 

FuzzyWatch auf dem ZHW-Prüfstand. Die Sole/Wasser-Laborwärmepumpe enthält einen zu-
sätzlichen Unterkühler (Fig. 43). Das „Anfangs-Sensor-Set“ für das Training des Diagnosesystems 
besteht aus 13 Sensoren (T11..T14 mit T11=T13). 8 Fehler können eingestellt werden (Table 3). Alle 
Standard-Clustering-Methoden HCM2Fuzzy, HCM2Neuro und FCM2Neuro werden ausgetestet. 
Je nach Verteilung der Datenpunkte eignen sich bestimmte Clusterformen besser als andere. 

Die Klassifikationsresultate sind in Table 4 für die physikalische Modellstruktur und in Table 5 
für die entkoppelte Modellstruktur zusammengefasst, wobei die Anzahl der gewählten Ausgangs-
signale variiert wird. Da die Ausgangssignale wiederum von anderen Signalen abhängig sind, ist 
die Anzahl der benötigten Sensoren höher als die Anzahl der Ausgangssignale. Je weniger Aus-
gangssignale gewählt werden, desto höher ist die Fehlklassifikationsrate. Bei der physikalischen 
Modellstruktur ist die Fehlklassifikationsrate tiefer als bei der entkoppelten Modellstruktur, sie 
benötigt aber i.A. wesentlich mehr Sensoren. Mit der entkoppelten Struktur kann die Anzahl der 
Sensoren auf 4 reduziert werden. Es wird ebenfalls ersichtlich, dass hier die Methoden 
HCM2Fuzzy und HCM2Neuro die besten Resultate liefern. 

FuzzyWatch mit Simulationsdaten. Eine mögliche Sensorkonfiguration für die industrielle 
Luft/Wasser-Wärmepumpe ist in Fig. 44 dargestellt. Hier sind die Signale nicht gemessen, son-
dern mit dem Simulationsmodell aus Kapitel 6 simuliert. Das Diagnosesystem wird mit einem 
„Anfangs-Sensor-Set“ von 10 Temperatursensoren (T1..T10) trainiert, wobei 9 Fehlerfälle simuliert 
werden durch entsprechende Parametervariationen im Simulationsmodell (vgl. Abschnitt 6.2, 
Table 11). Von den drei Betriebsmodi der Wärmepumpe (Ein, Aus, Abtauen) wird hier nur die 
Umschaltung Abtauen-Ein betrachtet, da diese während der Winterperiode am häufigsten ist. 
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Die Standard-Cluster werden aufgrund eines Trainingsdatensatzes gebildet und anschliessend 
anhand eines Validierungsdatensatzes getestet (Klassifikationsresultate in Table 6). Zunächst wird 
die physikalische Modellstruktur gewählt und die Anzahl der Ausgangssignale schrittweise redu-
ziert, anschliessend wird die entkoppelte Modellstruktur gewählt. Dabei nehmen die Fehlklassifi-
kationsraten zu. Ein vernünftiger Kompromiss ist der Fall mit 6 Sensoren unter Verwendung der 
physikalischen Modellstruktur (dritte Zeile). 

Im nächsten Schritt werden Vektor-Cluster gebildet und anhand von verschiedenen Validierungs-
datensätzen überprüft. Die Qualität der Klassifikation ist für die einzelnen wie auch für graduelle 
Fehler gut; die Klassifikation der simultanen Fehler ist schwierig (Table 7). Detaillierte Resultate 
sind in [Zogg 02] verfügbar. 

Auch Nominal-Cluster werden gebildet und validiert. Hier werden die Fehler in verschiedenen 
Submodellen zusammengefasst (Table 8). Die Qualität der Klassifikation ist für die einzelnen 
Fehler 1..6 gut, für graduelle und simultane Fehler ausreichend (Table 9). Detaillierte Resultate 
sind in [Zogg 02] verfügbar. Die Fehler 7..9 beeinflussen alle Submodelle gleichzeitig und können 
nur über bekannte „Fehlermuster“ identifiziert werden (Table 10). Ohne Training können nur die 
Fehler 1..6 klassifiziert werden. 

 

Introduction: 

Both diagnosis systems are tested on several applications.  

HeatWatch is applied to: 

• Measured data from Barzheim, nominal case only (Section 5.1) 

• ETH test bench (online software in Chapter 4) 

FuzzyWatch is applied to: 

• ZHW test bench (Section 5.2, [Zogg 01]) 

• Data from simulation model (Section 5.3, Chapter 6) 

• ETH test bench (training and online software in Chapter 4) 

More detailed results for the ETH test bench will be available in [Zogg 02]. 
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5.1 HeatWatch with Measured Data from Barzheim 
The diagnosis system is tested with nominal data of one heating period (1998) from the residential 
building at Barzheim. Therefore, the data of seven temperature sensors, two pressure sensors and 
one electrical power measurement is evaluated. The relative standard deviations of the parameters 
identified within each day are shown in Fig. 35. They are below or around 10% for seven parame-
ters (kAe, m

*
w, m*

r, ccmp, λcmp, ∆Tov, kexp), below 20% for three parameters (kAhe,ov, kAc, m
*

a), while 
only one parameter (kAhe,e) reaches the 20% mark. 
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Fig. 35: Relative standard deviations of the identified parameters for each day. 

The relative standard deviations of some characteristics calculated within each day are shown in 
Fig. 36. 
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Fig. 36: Relative standard deviations of the coefficient of performance (COP_HP), the Carnot coefficient 
(COP_Carnot), and the qualitiy grade (eps_HP). aw = calculated from the air and water temperatures,  
ec = calculated from internal evaporator and condenser temperatures. 

The identified parameters are shown in the following figures. The evaporator heat transfer 
parameter kAe clearly shows the icing effect (Fig. 37, scaled to 0..100%). For those days in winter 
with a low air temperature and a high air humidity (98-01-27, 98-01-29, …), the parameter kAe is 
lower than for those days in spring with a higher air temperature (98-04-09, …). The parameter 
kAe could be used for detecting ice and starting the defrosting cycle. Whereas the variations be-
tween the different days are high, the variations within each day are low (cf. Fig. 35 also). 
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Fig. 37: Scaled evaporator heat transfer parameter kAe, trends for each day. 
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Fig. 38: Scaled compressor supply efficiency λcmp, trends for each day. 

The variations of the refrigerant mass flow m*
r is higher than the variation of the water mass flow 

m*
w through the circulating pump (Fig. 39 and Fig. 40). 
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Fig. 39: Water mass flow m*
w in kg/s, trends for each day. 
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Fig. 40: Refrigerant mass flow m*
r in kg/s, trends for each day. 

Comparing the coefficient of performance COPHP (Fig. 41) with the (air-to-water) quality grades 
εHP,aw (Fig. 42), the lower variations of εHP,aw are obvious. Thus, the quality grade could be used 
for fault detection (decision, if any fault is present or not). 
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Fig. 41: Coefficient of performance COPHP, trends for each day. 
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Fig. 42: Quality grade εHP,aw (air-to-water): trends for each day. 
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5.2 FuzzyWatch on the ZHW Test Bench 
FuzzyWatch has been applied on a test bench at the University of Applied Sciences, Winterthur 
(ZHW). The test bench contains a laboratory brine-to-water heat pump with an additional sub-
cooler (after the condenser).  

The Actuators and Sensors 

The existing actuators and sensors of the laboratory heat pump are used to set the faults and meas-
ure the signals (Fig. 43). The manual 2-way and 3-way valves affect the refrigerant cycle, the 
brine cycle, and the water cycle. On the water cycle, only the valves at the subcooler are used. The 
temperature of the media is measured by a total of 13 sensors (T11=T13), which are used as an ini-
tial set of sensors for the training of the diagnosis system. 
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Fig. 43: The fully instrumented laboratory brine-to-water ZHW heat pump, with additional valves and 
temperature sensors (T1..T14). The locations of the faults 1..8 are indicated.  

All faults are introduced by adjusting the corresponding valves, except for fault 4, which is set by 
the compressor speed (cf. Table 3).  

Table 3: The faults of the ZHW heat pump (in parentheses: faults in real applications). 

fault  actuator fault description 

fault 1 - normal behaviour, no fault 

fault 2 3-way valve reduced evaporator heat transfer (evaporator fouling) 

fault 3 valve reduced evaporator mass flow  
(fouling, brine pump malfunction) 

fault 4 compr. 
speed 

reduced compressor mass flow  
(compressor malfunction) 

fault 5 valve reduced expansion valve mass flow  
(refrigerant line restriction, expansion valve malfunction) 

fault 6 valve reduced subcooler mass flow 
(refrigerant line restriction) 

fault 7 3-way valve reduced subcooler heat transfer (heat exchanger fouling) 

fault 8 valve reduced subcooler mass flow  
(fouling, water pump malfunction) 
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Classification Results 

Table 4 shows the classification quality attained during the training phase for the physical model 
structure, regarding the clustering method and the number of output signals or submodels, respec-
tively. For each fault case, 15 data sets were measured. Of the eight faults, the separation of seven 
faults was possible with good results. Fault 5 affects the system similarly to fault 6. For 7 clusters 
with 15 points each, and 7 checks per point, a total of 735 classification tests are run. The relative 
checking algorithm is used. 

Table 4: Results for the physical model structure with different clustering methods and output signal selec-
tions. Table field contents: number (rate) of wrong classifications for 735 tests (=100%), selected output 
signals, number of required sensors. 

method 9 output  
signals 

3 of 9 output  
signals  

2 of 9 output 
signals 

HCM- 
2Fuzzy 

4 (0.54%) 
T2, T4..T11 
13 sensors 

7 (0.95%) 
T9, T10, T11 

11 sensors 

11 (1.50%) 
T9, T11 

8 sensors 

HCM- 
2Neuro 

7 (0.95%) 
T2, T4..T11 
13 sensors 

7 (0.95%) 
T6, T9, T11 

11 sensors 

11 (1.50%) 
T9, T11 

8 sensors 

FCM- 
2Neuro 

30 (4.08%) 
T2, T4..T11 
13 sensors 

20 (2.72%) 
T5, T9, T11 

10 sensors 

26 (3.54%) 
T9, T11 

8 sensors 

 

In the first column the results are presented for all nine output signals T2, T4..T11. The second and 
third columns present the results for the selection of three and two output signals out of nine. Gen-
erally, the output signal combinations with the best ranking (fewest wrong classifications) vary 
according to the clustering method. In the case of two output signals (last column), the signals T9 
and T11 always have best ranking. 

Table 4 shows that HCM2Fuzzy and HCM2Neuro yield the best results with a rate of wrong clas-
sifications at or below 1.5%. FCM2Neuro has more wrong classifications because its shape is less 
flexible. Comparing HCM2Fuzzy with HCM2Neuro, the fuzzy system is slightly better. 

The number of sensors required is quite high for the physical model structure because the selected 
output signals depend on a number of different signals. In the case of two output signals (last col-
umn), the output signal T9 also needs the signals T1, T2, T12, and the output signal T11 needs T7, T8, 
T14, which adds up to a total of eight measured signals. 

In order to reduce the number of measured signals, the decoupled model structure is chosen. Here 
the number of sensors is ny+nu, ny representing the number of selected output signals and nu = 2 
representing the number of input signals. For all output signals the same two input signals T12 and 
T14 are needed. As shown in Table 5, in the case of HCM2Fuzzy the rate of wrong classifications 
is below 4% with five sensors and below 6% with four sensors. 
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Table 5: Results for the decoupled model structure with different clustering methods and output signal 
selections. Table field contents: cf. Table 4. 

method 9 output  
signals 

3 of 9 output  
signals  

2 of 9 output 
signals 

HCM- 
2Fuzzy 

29 (3.95%) 
T1, T4..T11 
11 sensors 

29 (3.95%) 
T6, T9, T11 

5 sensors 

41 (5.58%) 
T9, T11 

4 sensors 

HCM- 
2Neuro 

27 (3.67%) 
T1, T4..T11 
11 sensors 

32 (4.35%) 
T6, T9, T11 

5 sensors 

53 (7.21%) 
T9, T11 

4 sensors 

FCM- 
2Neuro 

52 (7.07%) 
T1, T4..T11 
11 sensors 

47 (6.39%) 
T5, T9, T11 

5 sensors 

88 (11.97%) 
T8, T9 

4 sensors 

 

5.3 FuzzyWatch with Simulation Data 

Simulated Faults and Signals 

Fig. 44 shows a possible sensor configuration for the industrial air-to-water heat pump. The sig-
nals are not measured at the real heat pump, but simulated by the simulation model described in 
Chapter 6, which was designed for this special type of heat pump. 
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Fig. 44: The air-to-water SATAG heat pump, with the simulated faults 1..9 and the temperature signals 
T1..T10. 
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From the simulation model, any “measurable” temperature or pressure signal can be chosen as a 
sensor signal, whereas here ten temperature signals (T1..T10) have been selected as the initial sen-
sor configuration for the training of the fault diagnosis system. No mass flows, heat flows, or other 
internal signals of the simulation model are used for the fault diagnosis system, because in real 
applications the sensors for measuring those signals would be too expensive. The power input of 
the heat pump is not used, either. 

Nine faults were simulated by changing the corresponding parameters of the simulation model (cf. 
Section 6.2, Table 11). Fault 1 defines the nominal case, faults 2 and 3 affect the evaporator and 
air side, faults 4 and 5 the condenser and water side, fault 6 affects the internal heat exchanger, 
fault 7 the compressor, fault 8 the expansion valve, and fault 9 represents refrigerant leakage (cf. 
Fig. 44). 

The industrial heat pump has three modes (off, on, defrosting). Either the off-on or the defrosting-
on sequences would be the most interesting for diagnosing faults of the normal operation. Since 
during the winter period, the defrosting-on sequences are more numerous, only those sequences 
are used for identifying the parameters. 

 

Classification Results for Standard Clusters 

Several clustering methods (cf. Section 3.4) have been tested with simulation data. The simula-
tions are run for one heating period (1998) of the residential building at Barzheim. The resulting 
simulation data was divided into two different data sets, one data set for the training of the diagno-
sis system (cluster building), and the other data set for its validation (cluster checking). The classi-
fication of all nine faults is tested by relative checking as well as the absolute checking algorithms. 

For the HCM2Neuro method, the results are summarized in Table 6. The physical and the decoup-
led model structure, as well as different signal selections are investigated (rows of Table 6). The 
rate of wrong classification is higher for absolute checking, since it is more restrictive (second 
lines in the cells of the last two columns). Moreover, the wrong classification rate for validation 
data (last column) is higher than for training data (column before). In the first row, the results for 
the full physical model with 8 output signals are displayed. For this case, 10 sensors are needed, 
including 8 output signals (T1..T8) and 2 input signals (T9, T10). In the next row, the 3 best of 8 
output signals are selected (T2, T3, T5), where the criterion is a minimum number of wrong classi-
fications using the absolute checking algorithm. Because of the couplings in the physical model, 
the output signals T2, T3, T5 depend on the input signals T4 and T6..10, which adds up to 9 sensors. 
With 2 of 8 output signals (T2, T3), the number of sensors is reduced to 6. For a further sensor 
reduction, the model has to be switched to the decoupled structure, where a total of 7 output sig-
nals are preselected (without signal T6). Here the number of sensors could be reduced to 5 or even 
4. But the rate of wrong classifications is too high for the decoupled model structure (last two col-
umns). Therefore, as a compromise between a minimal number of sensors and a minimal wrong 
classification rate, the physical model with 6 sensors (third row) is chosen. 
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Table 6: Results for the physical and decoupled model structures with HCM2Neuro clustering method, 
different sets of selected signals (bold = output signals). Table cell contents for last two columns:  
(number of wrong classifications) / (number of checks) = rate of wrong classifications,  
first line = relative checking, second line = absolute checking. 

Model, number of output 
signals 

signals required,  
number of sensors 

training data set 
wrong class. rate 

validation data set 
wrong class. rate 

physical 
8 output signals 

T1..T8, T9, T10 
10 sensors 

11/720=1.5% 
7/90=7.8% 

24/792=3.0% 
13/99=13.1% 

physical 
3 of 8 output signals 

T2, T3, T5, T4, T6..T10 
9 sensors 

23/720=3.2% 
13/90=14.4% 

72/792=9.1% 
31/99=31.3% 

physical 
2 of 8 output signals 

T2, T3, T5, T6, T7, T9 
6 sensors 

43/720=6.0% 
20/90=22.2% 

70/792=8.8% 
33/99=33.3% 

Decoupled 
3 of 7 output signals 

T1, T4, T7, T9, T10 
5 sensors 

45/720=6.3% 
23/90=25.6% 

164/792=20.7% 
48/99=48.5% 

Decoupled 
2 of 7 output signals 

T1, T7, T9, T10 
4 sensors 

68/720=9.4% 
31/90=34.4% 

66/792=8.3% 
44/99=44.4% 

 

For the validation data set, the wrong classification rates are quite high (also for the selected third 
row). Table 6 contains the results if each data point is evaluated without any averaging (“worst 
case”). For online fault diagnosis it is necessary to average the data points by a cyclic statistical 
evaluation (cf. Section 3.8), which results in lower wrong classification rates. 

Classification Results for Vector Clusters 

Investigations with simulation data for single, gradual and simultaneous faults have shown the 
results in Table 7. The vector clusters are able to classify single as well as gradual faults with a 
good quality. 

Table 7: Classification quality for the vector clustering method. 

fault set classification quality 

single faults 1..9 good 

gradual faults 1..9 good 

simultaneous faults 1..9 low 

Detailed results are available in [Zogg 02]. 
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Nominal Clusters 

For each submodel of the physical structure (rows of the system matrix, cf. Section 3.2 eq. (38)), 
its corresponding faults are listed in Table 8 (with fault definitions of Table 11, Section 6.2,). Dur-
ing the training phase, the nominal clusters have been built for each submodel (cf. Section 3.7). 
During the operational phase, a fault in a submodel is present, when a data point is outside of the 
nominal cluster of the corresponding submodel. Faults 1..6 only affect the corresponding submod-
els, but the faults 7..9 additionally affect all the other submodels.  

Table 8: Submodels and their corresponding faults for nominal training. Faults 7, 8, and 9 affect all sub-
models. 

submodel 
number 

output signal 
of submodel 

submodel 
name 

output signal 
(input signals) 

list of corresponding faults 
(affect all submodels) 

1 T1 evaporator inlet 
temperature 

expansion valve T1 (T6, ustep) fault 8, (fault 7, fault 9) 

2 T2 evaporator outlet 
temperature 

evaporator 
and expansion valve 

T2 (T6, T7, T9, ustep) fault 2, fault 3, fault 8 
(fault 7, fault 9) 

3 T3 superheating 
temperature 

internal heat  
exchanger 

T3 (T2, T5, T6, ustep) fault 6,  
(fault 7, fault 8, fault 9) 

4 T4 hot gas  
temperature 

compressor T4 (T3, ustep) fault 7, (fault 8, fault 9) 

5 T5 condenser outlet 
temperature 

condenser T5 (T4, T8, T10, ustep) fault 4, fault 5,  
(fault 7, fault 8, fault 9) 

6 T6 internal heat exch. 
outlet temperature 

internal heat  
exchanger 

T6 (T2, T3, T5, ustep) cf. submodel 3 

7 T7 air outlet 
temperature 

evaporator 
and expansion valve 

T7 (T2, T6, T9, ustep) cf. submodel 2 

8 T8 water outlet 
temperature 

condenser T8 (T4, T5, T10, ustep) cf. submodel 5  

 

Classification Results for Nominal Clusters 

Investigations with simulation data for single, gradual and simultaneous faults have shown the 
results in Table 9. The nominal clusters are able to classify the single faults 1..6 with a good qual-
ity, whereas in the case of the gradual and simultaneous faults, the classification quality is still 
sufficient. For the faults 7..9 (second row), the “fault patterns” can only be observed from data (cf. 
Table 10 and explanation below). 

Table 9: Classification quality for the nominal clustering method. 

fault set classification quality 

single faults 1..6 good 

single faults 7..9 “fault patterns” 

gradual faults 1..6 ok 

simultaneous faults 1..6 ok 

Detailed results are available in [Zogg 02]. 
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Table 10 shows the submodels, which are activated for each fault case. A submodel is activated, if 
the data points are outside its nominal cluster. Each column represents one submodel with the 
corresponding output signal (T1..T8, cf. Table 8) and the selected model approach (arx1 = first 
order ARX model, static = static model). For each submodel, the corresponding faults from Table 
8 are displayed as gray cells. Thus, the locations of the gray cells is defined by a priori (physical) 
knowledge. For the faults 1..6 the locations of the activated submodels (framed cells) are equal to 
the known locations, which means that there are no wrong classifications. 

Table 10: Fault cases and activated submodels (fault 1 = nominal case),  
columns = submodels (with output signals and model approaches), rows = faults,  
gray cells = faults corresponding to the submodels (a priori knowledge) 
framed cells = activated submodels (observed “fault patterns”) 

T1 T2 T3 T4 T5 T6 T7 T8
arx1 static static arx1 static arx1 arx1 static

fault 1
fault 2
fault 3
fault 4
fault 5
fault 6
fault 7
fault 8
fault 9  

The faults 7..9 affect all submodels in some way (all cells are gray). By using this a priori (physi-
cal) knowledge only, it would be impossible to classify those faults. But the “fault patterns” can be 
observed and stored during a training phase (framed cells). Thus, in future applications these faults 
can also be classified by comparing to the trained “fault patterns”. 

Without any training, only the faults 1..6 can be classified. 
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6 Simulationsmodell – Simulation Model 
Kurzfassung (Deutsch): 

Ein detailliertes Modell für die Simulation einer industriellen Luft/Wasser-Wärmepumpe wurde 
entwickelt. Es wurde anhand der Messdaten eines Einfamilienhauses für den Nominalfall validiert. 
Anschliessend wurden mit dem Modell mehrere Fehlerfälle simuliert, indem die Parameter verän-
dert wurden. Das Modell wurde in C/C++ unter Verwendung der MATLAB C++ Math Library© 
programmiert und als EXE-File compiliert. MATLAB© dient als Simulationsumgebung für die 
Definition der Parameter, das Aufrufen des EXE-Files und das Plotten der Resultate. 

Modellierung des Kältemittelkreislaufes. Das Modell stellt die Wärmepumpe in Fig. 45 dar, 
welche zusätzlich mit einem internen Wärmeübertrager und einer Heissgas-Abtauvorrichtung 
ausgestattet ist. Alle drei Betriebsmodi (Ein, Aus, Abtauen) wurden im Modell berücksichtigt. Die 
Kältemittelmigration von der Hochdruckseite auf die Niederdruckseite während des ausgeschalte-
ten Zustandes wie auch die Aktivierung des Heissgasbypasses während des Abtaubetriebes sind 
modelliert [Zogg 02]. In diesem Kapitel werden nur die Gleichungen für den Normalbetrieb dar-
gestellt. Die Differentialgleichungen der Energie- und Massenbilanzen werden für jeden einzelnen 
Prozessschritt definiert. Dazu gehören die Prozesse der Verdampfung, Überhitzung, Kompression, 
Heissgasabkühlung, Kondensation, Unterkühlung und Expansion. Beim Verdampfungsprozess 
wird die variable Verdampfungslänge Le berücksichtigt, bei welcher alle Flüssigkeit verdampft ist. 
Analog wird beim Kondensator ein variables Flüssigkeitsniveau Lc definiert. Die Druckdifferenz 
(pl-pv) zwischen Flüssig- und Dampfphase wird als treibende Kraft für den Verdampfungsmassen-
strom bzw. den Kondensationsmassenstrom angenommen. Der Kompressor und das Expansions-
ventil sind durch ihre Kennlinien gegeben. 

Vereisung des Verdampfers. Bei tiefen Temperaturen und hoher Luftfeuchtigkeit der Aussenluft 
vereist der Verdampfer. Die Eisbildung, Selbstabtauung und erzwungene Abtauung (während des 
Abtauzyklus) ist ebenfalls modelliert [Ginsburg 99]. 

Kältemitteldaten. Die Daten für das verwendete Kältemittel R407C sind in Form von Polynom-
ansätzen gegeben, wobei die Stoffdaten für die Verdampfungs- und Kondensationsprozesse als 
Funktion des Druckes p angegeben werden. 

Validierung für den Nominalfall. Die Daten einer Heizperiode im Jahr 1998 wurden verwendet, 
um das Modell zu validieren. Dabei wurden die Parameter angepasst und ein Parametersatz abge-
speichert. Am Beispiel der Daten eines Tages (29. Januar 1998) werden die Simulationsresultate 
geplottet und mit den Messdaten verglichen. Die Messdaten wurden von den Sensoren in Fig. 45 
aufgezeichnet. Die Positionen der Sensoren entsprechen nicht genau den Positionen der Signale 
im Modell. Deshalb können die Messdaten von den Simulationsdaten abweichen. Fig. 46 zeigt den 
Betriebsmodus, Fig. 47 bis Fig. 52 vergleichen einige simulierte Signale mit den gemessenen Si-
gnalen und Fig. 53 bis Fig. 55 zeigen einige interne Modellsignale. Das Modell ist in der Lage, die 
wesentlichen Eigenschaften der Wärmepumpe darzustellen und kann als Datenquelle für das Trai-
ning der Diagnosesysteme benutzt werden. 

Kopplung mit dem Gebäudemodell. Für eine realistische Simulation wird das Gebäudemodell 
aus [KTM-3 98] über den Heiz-Wärmestrom Q*HP und die Wasser-Eintrittstemperatur Tw,i mit 
dem Wärmepumpenmodell gekoppelt (Fig. 56). 

Simulation für verschiedene Fehlerfälle. Für die Simulation der Fehlerfälle ist das Wärmepum-
penmodell mit dem Gebäudemodell gekoppelt. 9 Fehlerfälle werden simuliert, indem die entspre-
chenden Parameter verändert werden (Table 11). Drei simulierte Signale für Fehler 2 sind auf Fig. 
57 bis Fig. 59 im Vergleich zum Nominalfall dargestellt (Tagesdaten vom 29. Januar 1998). Alle 
Fehlerfälle und verschiedene Fehlergrade wurden simuliert. 
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Introduction: 

A detailed model has been developed for simulating an industrial air-to-water heat pump. It is 
validated for the nominal case by using measured data from a residential building. The model is 
then used to simulate several fault cases by changing the model parameters. The model was pro-
grammed in C/C++, including the MATLAB C++ Math Library©, and was compiled to an EXE 
file. MATLAB© is used as a simulation environment for the definition of the parameters, for call-
ing the EXE file, and for plotting the results. 

 

6.1 Modeling the Heat Pump Refrigerant Cycle 
The simulation model represents the air-to-water heat pump shown in Fig. 45 with an internal heat 
exchanger and a hot gas defrosting cycle. At low air temperature and high air humidity, the icing 
decreases the heat transfer rate of the evaporator. Therefore the defrosting cycle must be activated 
periodically by feeding the evaporator with hot gas. 

The refrigerant cycle process has been divided into several sub-processes, for which the models 
are developed in the next sections. The model is designed for all three modes of the heat pump 
(on, off, defrosting). The refrigerant migration from the high pressure side to the low pressure side 
during the off-mode as well as the activation of the hot gas bypass during the defrosting-mode are 
modelled [Zogg 02]. The migration process is also described in [DWPT 99]. The following sec-
tions only contain the equations for the on-mode. 

Evaporation 

The liquid refrigerant evaporates, while it is flowing through the evaporator tubes. At the inlet the 
vapour mass ratio is x=x0 defined by (70). 

0

0,
0 m

m
x v=  (70) 

At the position Le there is no liquid left (x=1), thus Le is called the “evaporation length” (see Fig. 
45). Generally, Le is time-varying, which must be considered by the model. As a first approach, 
the evaporation process could be divided into several finite elements of equal size, each having a 
vapour mass ratio xi. Here one element with a varying size has been chosen [Gruhle 87] which 
reduces the order of the model.  

The balance for the liquid mass me,l is given by eq. (71), with m*
exp being the input mass flow from 

the expansion valve, and m*
e representing the evaporating mass flow. 

**
exp

,
e

le mm
dt

dm
−=  (71) 

From eq. (71), the differential equation (72) for Le is yielded by considering the liquid density 
ρ’(pe,l), the evaporator cross-sectional area Ae, and the mean liquid cross-sectional area ratio βe. 
Regarding an evaporator with bundles of pipes, Ae is the sum of the areas over all the parallel 
pipes. 
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Fig. 45: Refrigerant cycle of the air-to-water heat pump with an internal heat exchanger from SATAG 
Thermotechnik AG, Switzerland. 

Usually the evaporation process is not finished at the outlet of the evaporator, but extends to the 
internal heat exchanger. Thus, Le has to be divided into two parts, Le,e for the evaporator and Lhe,e 
for the internal heat exchanger. After the evaporation process, there is the superheating process, 
which usually takes place in the internal heat exchanger (Le > total length of the evaporator Le,tot). 
During some transients it is possible that the evaporator is almost empty. Then the superheating 
process takes place in the evaporator already (Le < Le,tot) and the “superheating length” Lov has to 
be divided into two parts, Le,ov as well as Lhe,ov. The cases above are represented by the second and 
third cases of eq. (73). The first case in eq. (73) stands for an “overfilled” evaporator as well as an 
“overfilled” internal heat exchanger (Le > Le,tot+Lhe,tot). In this case Le is defined virtually as being 
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outside of the real modules. If the volume of the liquid phase Ve,l (c.f. eq. (81)) is as large as the 
volume of the modules, then the model will reach a limit and Le will not increase anymore.  
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The balance for the vapour mass me,v is given by eq. (74) with m*
e representing the evaporating 

mass flow, and m*
cmp representing the output mass flow to the compressor. 
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cmpe

ve mm
dt

dm
−=  (74) 

The energy balance for the liquid phase is expressed by eq. (75), with the time derivative of the 
pressure dpe,l / dt and the partial derivative of the energy du’e / dpe,l. 
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The convective heat flow Q*el contains several parts, depending on the operation mode of the heat 
pump. When the heat pump is switched on during the normal operating mode, eq. (76) is valid, 
with the liquid enthalpy hl as a function of the subcooling temperature Tsc at the input and the satu-
rated vapour enthalpy h’’(pe,l) at the output. For a given pressure pe,l the saturated vapour enthalpy 
h’’ is the sum of the saturated liquid enthalpy h’ and the latent heat of vaporization r,  h’’=h’+r. 

)()( ,
**

exp
*
, leesclle phmThmQ ′′⋅−⋅=  (76) 

The heat transfer heat flow Q*e,e in eq. (75) is driven by the difference between the mean air tem-
perature aT and the mean liquid refrigerant temperature leT ,  (eq. (77)).  

)( ,,,
*
, leaeeeeee TTLkbQ −⋅⋅=  (77) 

The heat transfer parameters kbi in this model are defined by eq. (78) with ki for the heat transfer 
coefficient in [W/m2K], bi for the width of the considered heat transfer element, Li for its length, 
and Ai for the heat transfer area. In the case of a heat exchanger with bundles of tubes, bi is equal 
to the circumference of one tube, multiplied by the number of parallel tubes. In the case of a heat 
exchanger consisting of plates, bi is equal to the width of one plate, multiplied by the number of 
parallel plates. 

iii bkkb ⋅=  iiiiii LbkAkkA ⋅⋅=⋅=   (78) 

The heat flow Q*
he,e between the subcooled refrigerant and the evaporated refrigerant in the inter-

nal heat exchanger is defined by eq. (79).   
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, lesceheeheehe TTLkbQ −⋅⋅=  (79) 

Whereas the pressure of the liquid phase pe,l is a state variable (eq. (75)), the pressure of the va-
pour phase pe,v is calculated from the gas equation (80) with the temperature Tov and the specific 
volume ve,v as inputs. Here a simplified version of the real gas equation for the refrigerant is used.   
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letothetoteve VVVV ,,,, −+=  eeele ALV β=,  (81) 

The vapour volume Ve,v and the liquid volume Ve,l are given by eq. (81), with Ve,tot for the total 
evaporator volume and Vhe,tot for the total volume of the internal heat exchanger. 

The evaporation mass flow m*
e is directly proportional to the difference of the (vapour) pressure 

pe,l in the liquid phase and the (partial) pressure pe,v in the vapour phase (eq. (82)). The mass trans-
fer rate ktr,e is regarded as a parameter.  
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*

veleetre ppkm −⋅=  (82) 

Superheating 

The superheating process takes place mainly after the evaporation region (≥Le) where there is no 
liquid left, but also partly in the gaseous phase of the evaporating region (<Le). Thus, the super-
heating region may overlap with the evaporating region. The change of the superheating tempera-
ture Tov is given by the energy balance (eq. (83)) with the convective heat flow Q*

ov and the trans-
fer heat flows Q*

e,ov in the evaporator as well as Q*
he,ov in the internal heat exchanger. 
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ov QQQcm
dt

dT ++=⋅  (83) 

Eq. (84) is valid for the normal operating mode, with the saturated vapour enthalpy h’’(pe,l) from 
the evaporation process at the input and the enthalpy hv(Tov,pe,v) of the overheated refrigerant at the 
output.  

),()( ,
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,
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veovvcmpleeov pThmphmQ ⋅−′′⋅=  (84) 

The heat transfer heat flow Q*he,ov between the subcooling process and the superheating process is 
given by eq. (85), with the mean subcooling temperature scT and the mean superheating tempera-
ture ovT . The heat transfer parameter kbhe,ov is defined for the region without any liquid left (≥Le), 
whereas the parameter kbhe,ev is defined for the region with liquid (<Le). For neglecting the super-
heating in the region with liquid, the parameter kbhe,ev may be set to zero. 

)()( ,,,,
*

, ovsceheevheovheovheovhe TTLkbLkbQ −⋅⋅+⋅=  (85) 

Eq. (86) describes the heat flow Q*
e,ov transferred from the air. The parameter kbe,ov is defined for 

the case of full evaporation in the evaporator (Le<Le,tot). If the parameter kbe,ev is nonzero, there is 
always a heat flow from the air to the superheating region. 

)()( ,,,,
*
, ovaeeeveoveoveove TTLkbLkbQ −⋅⋅+⋅=  (86) 

Compression 

The mass flow for the normal operating mode is calculated by the characteristics of the compres-
sor (eq. (87)) for the actual pressure ratio php/plp. Whereas the parameters acmp, bcmp and dcmp de-
scribe the characteristics themselves, the parameter λcmp is defined as the mass flow supply effi-
ciency of  the compressor. 
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The temperature Tcmp,hp at the high-pressure side is calculated from the temperature Tov at the suc-
tion line by the polytropic law (eq. (88)) with the polytropic exponent ccmp. 

cmpc

lp

hp
ovhpcmp p

p
TT

�
�

�

�

�
�

�

�
⋅=,  (88) 



 60

The low pressure plp is set to the corresponding evaporation pressure pe,v and the high pressure php 
is set to the condensation pressure pc,v (eq. (89)). 

velp pp ,=  vchp pp ,=  (89) 

From the enthalpy difference between the input and the output of the compressor, the electrical 
power input can be calculated by eq. (90) with the electro-mechanical efficiency ηcmp. 
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Eq. (91) considers the dynamics of the compressor as they influence the compressor temperature 
Tcmp. 
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cmpcmpcmp

cmp Qcm
dt

dT
=⋅  (91) 

For the normal operating mode, eq. (92) defines the convective heat flow Q*
cmp, which relies on 

the enthalpy difference between the output temperature Tcmp,hp supplied and the current tempera-
ture Tcmp. 

[ ]),(),( ,,,
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1, vccmpvvchpcmpvcmpcmp pThpThmQ −⋅=  (92) 

Hot Gas Cooling 

The hot gas cooling process takes place in the upper region of the condenser (≥Lc). The change of 
the gas temperature Tg is given by the energy balance (eq. (93)), with the convective heat flow 
Q*

hgc and the transfer heat flow Q*
c,g. 
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gc QQcm
dt
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−=⋅  (93) 

The convective heat flow Q*
hgc is defined by eq. (94). The enthalpy hv(Tcmp,pc,v) from the compres-

sor is an input and the enthalpy hv(Tc,g,pc,v) of the cooled gas is an output. The input compressor 
mass flow is represented by m*

cmp and the output mass flow m*
c will condensate later. 

),(),( ,,
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vcgcvcvccmpvcmphgc pThmpThmQ ⋅−⋅=  (94) 

The heat transfer heat flow Q*c,g between the hot gas side and the water side is given by eq. (95), 
with the mean gas temperature gcT , and the mean water temperature wT . The heat transfer parame-
ter kbc,g is defined for the entire hot gas region with the length Lc,g. 

)( ,,,
*
, wgcgcgcgc TTLkbQ −⋅⋅=  (95) 

Condensation 

The gaseous refrigerant condensates between the plates of the condenser. Because of gravity, the 
liquid phase fills up the condenser from below to the level Lc (cf. Fig. 45). With a changing filling 
grade of the condenser, Lc is time-varying. In analogy to the evaporator, here one element with a 
varying size has been chosen for the liquid phase.  

The balance for the liquid mass mc,l is given by eq. (96), with m*
c representing the condensating 

input mass flow and m*
exp representing the output mass flow. 
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exp

*, mm
dt

dm
c

lc −=  (96) 

From eq. (96) the differential equation (97) for Lc is built by considering the liquid density ρ’(pc,l) 
and the condenser cross-sectional area Ac. Regarding a condenser with plates, Ac is the summa-
rized cross-sectional area between all parallel plates, defined by the distance between the plates 
and the width of the plates. 
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The liquid level Lc defines the height of the liquid phase Lc,c and the height of the gaseous phase 
Lc,g (eq. (98)). When Lc reaches the limit Lc,limit, the condenser is full. 
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The region of hot gas and the region of the vapour phase are combined in the model. Eq. (99) de-
scribes the balance for the vapour mass mc,v with the input mass flow m*

cmp and the condensating 
mass flow m*

c. 
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The energy balance for the liquid phase is expressed by eq. (100), with the time derivative of the 
pressure dpc,l / dt and the partial derivative of the energy du’c / dpc,l. 
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During the normal operating mode, eq. (101) is valid for the convective heat flow Q*c,l. The con-
densating mass flow m*

c with the vapour enthalpy hv(Tc,g,pc,v) is an input, whereas the mass flow 
m*

exp with the saturated liquid enthalpy h’(pc,l) is an output. 
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exp,,
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, lcvcgcvclc phmpThmQ ′⋅−⋅=  (101) 

The heat transfer heat flow Q*c,c in eq. (100) is driven by the difference between the mean liquid 
refrigerant temperature lcT , and the mean water temperature wT  (eq. (102)), with the heat transfer 
parameter kbc,c and the liquid level Lc,c.  
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, wlccccccc TTLkbQ −⋅⋅=  (102) 

In the vapour phase, the pressure pc,v is calculated from the gas equation (103), with the tempera-
ture Tc,g and the specific volume vc,v as inputs. Here the same approach is used as in the evapora-
tor.  
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lctotcvc VVV ,,, −=  cclc ALV =,  (104) 

The vapour volume Vc,v and the liquid volume Vc,l are given by eq. (104), with Vc,tot for the total 
volume of the refrigerant side in the condenser.  

The condensation mass flow m*
c is directly proportional to the difference between the pressure pc,v 

in the vapour phase and the pressure pc,l in the liquid phase (eq. (105)), with the mass transfer rate 
ktr,c.  

)( ,,,
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lcvcctrc ppkm −⋅=  (105) 

Subcooling 

The subcooling process takes place in the internal heat echanger. The energy balance is given by 
eq. (106), with the subcooling temperature Tsc, the convective heat flow Q*

sc, and the transfer heat 
flows Q*

he,e, Q
*
he,ov to the evaporation and the superheating sides (cf. eqs. (79), (85)). 
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Eq. (107) is valid for the normal operating mode, with the saturated liquid enthalpy h’(pc,l) from 
the condenser at the input and the enthalpy hl(Tsc) of the subcooled refrigerant at the output.  
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[ ])()( ,
*
exp

*
scllcsc ThphmQ −′⋅=  (107) 

Expansion 

A thermostatic expansion valve works like a P controller, which feeds back the superheating ∆Tov 
and adjusts the mass flow m*

exp to the evaporator. In eq. (108), the variable Td(pe,l) is the dew point 
temperature of the evaporation process. 

)( ,ledovov pTTT −=∆  (108) 

In reality, the valve opening is defined by the difference between the pressure pov(Tov) and the 
pressure pe,l at the input of the evaporator. In the model, the temperature difference ∆Tov is used 
directly to calculate the valve opening (109). The range for the valve opening uexp is between 0 for 
a closed valve and 1 for an open valve. 

exp0,expexp )( bTTau ovov +∆−∆⋅=  10 exp ≤≤ u  (109) 

With an superheating setpoint ∆Tov,0, the parameter aexp corresponds to the P value of the control-
ler, whereas the parameter bexp defines the opening offset for the operating point. From the valve 
opening uexp and the pressure drop over the valve, the mass flow m*

exp through the valve is calcu-
lated. Here the characteristics correspond to an incompressible flow, but they could be extended to 
a compressible flow as well. Eq. (110) calculates the mass flow m*

exp from the condensation pres-
sure pc,l and the evaporation pressure pe,l. 

lelcl ppkum ,,exp,exp
*
exp −⋅=  (110) 

During the expansion, the entropy s is increasing, but the enthalpy h is constant. Thus in the 
evaporator equation (76), the enthalpy hl(Tsc) from the subcooler is directly introduced. 

Air Side 

The energy balance for the heat source is defined by eq. (111), with the output air temperature Ta,o. 
The heat transfer heat flows Q*

e,e and Q*
e,ov to the evaporator are taken from eq. (77) and eq. (86). 
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The convective heat flow Q*
a,o depends on the air mass flow m*

a and on the difference between the 
input and output temperatures Ta,i, Ta,o (eq. (112)). 
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, oaiaapaoa TTcmQ −⋅⋅=  (112) 

Water Side 

Eq. (113) defines the energy balance for the heat sink, with the output water temperature Tw,o. The 
heat transfer heat flows Q*

c,c and Q*
c,g to the condenser are defined by eq. (102) and eq. (95). 
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The convective heat flow Q*
w,o depends on the water mass flow m*

w, the input temperature Tw,i, 
and the output temperature Tw,o (eq. (114)) 
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, owiwwpwow TTcmQ −⋅⋅=  (114) 

Icing of the Evaporator 

At low temperatures and high humidity of the outside air, some icing effects take place on the 
evaporator of air-to-water heat pumps. These effects are modelled in [Ginsburg 99], which has 
been slightly simplified and modified for the present model. As a measured input, the relative 
humidity ϕ of the air is known. Eq. (115) shows how the vapour mass ratio x can be calculated 
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from ϕ. The vapour mass mv as well as the whole air mass ma are substituted by the corresponding 
gas equations. Whereas the ratio of the air gas constant Ra and the vapour gas constant Rv is de-
fined by the parameter kR, the partial pressure of the air pa is expressed by the overall pressure p0 
and the partial pressure pv of the vapour. The relative humidity ϕ is given as the ratio of pv and the 
saturation pressure ps. 
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Substituting pv by ϕ ps, yields eq. (116). 
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Eq. (116) is evaluated for the evaporator air input, with the humidity ϕa,i and the temperature Ta,i 
(eq. (117)).  
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The saturated vapour mass ratio xsa,o at the output is given by eq. (118) for ϕ=1.  
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Using these equations, the preconditions for icing and the rate of icing can be determined (case I). 
The mass flow m*

ice,build, which is proportional to the air mass flow m*
a, increases the ice layer, 

whereas the heat flow Q*
ice,build arises from the enthalpy change rice of the icing process. Icing is 

only possible for temperatures below Tice,build (here 1 °C is chosen). 

Case I: (xa,i > xsa,o) and (Ta,o < Tice,build) � ice building, eq. (119),(120)  

)( ,,
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, osaiaabuildicebuildice xxmkm −⋅⋅=  (119) 

icebuildicebuildice rmQ ⋅= *
,

*
,  (120) 

For temperatures above Tice,selfdefr (here 0 °C is chosen), some self-defrosting process is initiated 
(case II), which decreases the ice layer by the mass flow m*

ice, selfdefr. The factor kice,mass considers 
the actual ice mass mice and stops the self-defrosting process for small values of mice. 

Case II: (Ta,o > Tice,selfdefr) � self-defrosting, eq. (121), (122), (123)  
2
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iceselfdefriceselfdefrice rmQ ⋅= *
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,  (122) 
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During the defrosting mode the hot gas valve is opened, the evaporator is warming up, and the ice 
is melting (case III). The model functions on the assumption that the temperature of the refrigerant 
side of the evaporator rises above the outside air temperature and that the total heat flow 
(Q*

e,e+Q*
e,ov) to the air side is directly used to melt the ice (eq. (124)).The enforced defrosting 

mass flow m*
ice,enfdefr is thus calculated from the heat flow Q*

ice,enfdefr and the enthalpy change rice 
for liquefaction. 
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Case III: {mode=defrosting} � Enforced defrosting, eq. (124), (125), (123)  
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With the ice mass flows, the ice mass balance is defined by eq. (126). 
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An existing ice layer causes several effects, the first of which is a pressure drop ∆pa on the air side 
of the evaporator (eq. (127)).  

icepaa mkpp ⋅+∆=∆ ∆0,  (127) 

Secondly, the heat transfer rate of the evaporator is reduced. The reduction factor kice is introduced 
by eq. (128). 

)(1 min,iceiceiceice mmak −⋅−=  (128) 

The evaporation heat transfer heat flow Q*
e,e of eq. (77) is replaced by eq. (129) and the superheat-

ing heat transfer heat flow  Q*
e,ov of eq. (86) is replaced by eq. (130). 
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Finally, the additional icing heat flows have to be added to eq. (111), which results in eq. (131). 
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Refrigerant Data 

The physical property data of the refrigerant R407C is given by polynomials with validated pa-
rameters from the refrigerant manufacturer [Klea 95]. For the equation of state, the Martin-Hou 
approach is used, which can be simplified to eq. (132). The critical point is defined by (Tc, pc, vc). 
This equation is used in eqs. (80) and (103). 
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Because of the azeotropic properties of R407C, there is a temperature glide during the evapora-
tion. For a given evaporation pressure p, a bubble-point temperature Tb, a mid-point temperature 
Tm, and a dew-point temperature Td can be defined (eqs. (133), (134) and (135)). 

32 )(ln)(lnln)( pDpCpBApT bbbbb +++=  (133) 

32 )(ln)(lnln)( pDpCpBApT mmmmm +++=  (134) 

32 )(ln)(lnln)( pDpCpBApT ddddd +++=  (135) 

The saturated liquid enthalpy h’(p) is defined by eq. (136) and eq. (137), with Tb(p) from eq. (133) 
and the critical temperature Tc. 

)()()()()( 432 pxEpxDpxCpxBAph bbbb ′+′+′+′+′=′  (136) 

3/1)/)(1()( cbb TpTpx −=  (137) 

In a similar way the latent heat of vaporization r(p) is defined by eq. (138) and eq. (139), with 
Tm(p) from eq. (134). 

)()()()()( 432 pxEpxDpxCpxBApr mrmrmrmrr ++++=  (138) 
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3/1)/)(1()( cmm TpTpx −=  (139) 

The saturated vapour enthalpy h’’(p) (eq. (140)) is the sum of eq. (136) and eq. (138). 

)()()( prphph +′=′′  (140) 

In a similar way, the other variables of the refrigerant data are calculated. 

 

6.2 Simulations 
After the validation for the nominal case, the model is used to simulate the fault cases. 

Validation for Nominal Case 

The heat pump simulation model has been validated by comparing it with the measured data from 
the residential building at Barzheim (Switzerland). By hand-tuning, one parameter set is obtained 
for all data files of one heating period in the year 1998. For the following plots, this parameter set 
is used to simulate one day of the heating period (January 29, 1998). The operation mode umode in 
Fig. 46 is an input from the power and defrosting controller, which specifies the three states of the 
heat pump (off, on, defrosting). During the day selected, the heat pump was switched on three 
times, whereas the defrosting cycles were started at constant time intervals the heat pump was 
running. The power and defrosting controller itself is not implemented in the simulation model. 
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Fig. 46: Operation mode umode, 0 = off, 1 = on, 2 = defrosting. 

Measured data is acquired by the sensors shown in Fig. 45. The locations of the sensors in the real 
heat pump are not exactly the same as the locations of the signals in the simulation model. Thus, 
the measured signals are not necessarily equal to the simulated signals. 

Fig. 47 and Fig. 48 show the simulated evaporation pressure pe,v and condensation pressure pc,v, 
compared to the measured low pressure plp,m and high pressure php.m. Especially in the high pres-
sure signal pc,v, a superposition of the slow daily transient and the fast switching transients can be 
observed. Generally, the pressures react very fast, when the heat pump is switched on. After a fast 
response immediately at shut-down, the high pressure signal pc,v and the low pressure signal pe,v 
equalize slowly. During the defrosting cycles, a level change as a result of the valve switching can 
be observed. 
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Fig. 47: Simulated evaporation vapour pressure pe,v (solid line) and measured low pressure plp,m (dashed) 
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Fig. 48: Simulated condensation vapour pressure pc,v (solid line) and measured high pressure php,m 
(dashed) 

In the measured superheating temperature Tov (Fig. 49), some oscillations are present due to the 
hunting effect of the expansion valve. These effects are not modelled. Regarding Fig. 50, the slow 
reaction of the hot gas temperature Thg can be observed. 
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Fig. 49: Simulated superheating temperature Tov (solid line) and measured superheating temperature Tov,m 
(dashed) 
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Fig. 50: Simulated hot gas temperature Thg (solid line) and measured hot gas temperature Thg,m (dashed) 
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Fig. 51: Simulated subcooling temperature Tsc (solid line) and measured subcooling temperature Tsc,m 
(dashed) 

In the water outlet temperature Fig. 52, the superposition of the slow and fast transients can again 
be observed. The slow transients are a result of the large time constant of the building.  
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Fig. 52: Simulated water output temperature Tw,o (solid line) and measured water output temperature Tw,o,m 
(dashed) 
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From the internal model signals, only the filling levels of the evaporator and the condensator are 
plotted here. The evaporation length Le is plotted in Fig. 53. During the shut-down periods, the 
evaporation length increases because of the migration process. 
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Fig. 53: Simulated evaporation length Le 

During the shut-down periods, the liquid level Lc in the condensator decreases and may become 
zero when the condensator is “empty” (cf. Fig. 54). 
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Fig. 54: Simulated condensation liquid level Lc 

Due to the icing effect on the evaporator, which is also included in the model, the pressure drop 
∆pa on the air side increases (cf. Fig. 55). 
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Fig. 55: Simulated (solid line) and measured (dashed) icing pressure drop ∆pa 

Clearly, the model is able to represent the significant characteristics and dynamics of a heat pump 
and can be used as a data source for training fault diagnosis systems. 

Coupling with Building Model 

For a realistic simulation, the model of the building has to be taken into account, as well. A linear 
one-zone building model of order 3 as described in [KTM-3 98] is used (eq. (141)), with the heat-
ing water return flow temperature Tw,r, the heated floor temperature Tf, and the room temperature 
Tr as state variables. The parameters are identified and averaged for the heating period 1997/98. 
They include the heat transfer parameters kAw,f from the heating water to the floor, kAf,r from the 
floor to the room, kAr,amb from the room to the environment, the total volume Vw of the heating 
water, the mass mf of the floor heating system, and the time constant τr of the building. Inputs to 
the building model are the ambient temperature Tamb and the supplied heat flow Q*w,s to the heat-
ing water. 
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 (141) 

The coupling of the heat pump model and the building model is realized by setting the supply heat 
flow Q*w,s to the heat output Q*HP of the heat pump, and by setting the input temperature Tw,i of 
the heat pump to the return flow temperature Tw,r, which is illustrated in Fig. 56. 

heat pump
model

Tw,i=Tw,r Q*w,s=Q*HP

building
model

...Ta,i

umode

heat pump
model

Tw,i=Tw,r Q*w,s=Q*HP

building
model

...Ta,i

umode

 

Fig. 56: Coupling of the heat pump model and the building model. 

Simulations for Fault Cases 

For the fault simulations, the heat pump model is coupled with the building model. Nine faults 
have been simulated by changing the appropiate parameters of the heat pump model (cf. Table 
11). 

Table 11: The simulated faults of the air-to-water SATAG heat pump. 

fault  simulation model 
parameters 

fault description 
(faults in real applications) 

fault 1 - normal behaviour, no fault 

fault 2 kbe,e, kbe,ov, kbe,ev reduced evaporator heat transfer  
(evaporator fouling) 

fault 3 m*
a,0 reduced evaporator air mass flow  

(evaporator/air channel fouling, air fan malfunction) 

fault 4 kbc,c, kbc,g reduced condenser heat transfer  
(condenser fouling) 

fault 5 m*
w,0 reduced condenser water mass flow  

(fouling, water pump malfunction) 

fault 6 kbhe,e, kbhe,ov, kbhe,ev reduced internal heat exchanger heat transfer  
(internal heat exchanger fouling) 

fault 7 λcmp reduced compressor efficiency  
(compressor malfunction) 

fault 8 kexp reduced expansion valve flow rate  
(expansion valve malfunction) 

fault 9 Le,e,0, me,v,0,  
Lc,c,0, mc,v,0 

reduced refrigerant charge  
(refrigerant leakage) 
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For simulating the evaporator fault 2, the heat transfer parameters kbe,e, kbe,ov and kbe,ev have been 
reduced by a factor fi ∈  [0..1] (eq. (142)). In the real heat pump, this fault would correspond to 
evaporator fouling. In a similar way, all other faults are listed in Table 11 with their corresponding 
simulation parameters. 

iifi f⋅= 0,, θθ  (142) 

The air mass flow m*
a,0 (fault 3) and the water mass flow m*

w,0 (fault 5) are defined as constant 
during the simulation and therefore are regarded as parameters. For simulating refrigerant leakage 
(fault 9), the initial conditions of the state variables Le,e,0, Lc,c,0, (evaporation length and condensa-
tion level) as well as me,v,0, mc,v,0 (vapour mass of evaporator and condenser) are changed. They are 
linked to the filling of the refrigerant cycle. 

Fig. 57 through Fig. 59 show the simulation results for fault 2 of the size f2 = 0.8 (eq. (142)), 
compared to the nominal case (data of January 29, 1998). Only the signals with the largest devia-
tions from the nominal case are plotted. By reducing the heat transfer rate in the evaporator, the 
evaporation pressure (pe,l, pe,v) and the corresponding bubblepoint, meanpoint, and dewpoint tem-
peratures (Tb,m,d(pe,l)) decrease. Thus, the superheating temperature Tov is also at a lower level. 
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Fig. 57: Evaporation vapour pressure pe,v, simulation for fault 2 (dashed) and nominal case (solid). 
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Fig. 58: Evaporation dew point temperature  Td(pe,l), simulation for fault 2 (dashed) and nominal case 
(solid). 
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Fig. 59: Superheating temperature Tov, simulation for fault 2 (dashed) and nominal case (solid). 

The simulations have been repeated for all faults of Table 11 and for the fault sizes fi=0.8, fi=0.7, 
fi=0.6, fi=0.5 (faults i=2..8) and f9=0.9, f9=0.8, f9=0.7 (fault 9). 
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7 ETH-Prüfstand – ETH Test Bench 
Kurzfassung (Deutsch): 

Im Labor des Instituts für Mess- und Regeltechnik, ETH Zürich, wurde ein neuer Prüfstand für 
industrielle Sole/Wasser-Wärmepumpen aufgebaut (Fig. 1 auf Seite 8 und Fig. 60). Mit diesem 
Prüfstand ist es möglich, realistische Temperaturtransienten (und Durchflusstransienten) an den 
Eingängen der Test-Wärmepumpe zu generieren. 

 

 

Fig. 60: The test bench at the Measurement and Control Laboratory, ETH Zürich (seen from above).  

Die Testumgebung. Der Solekreislauf enthält einen warmen und einen kalten Tank. Die Ausgän-
ge der beiden Tanks werden gemischt, um die gewünschte Wärmepumpen-Eintrittstemperatur zu 
erreichen (Fig. 62). Mit den Mischventilen zwischen den beiden Tanks ist es möglich, die 
Mischtemperatur schnell zu regeln, um schnelle Störungen zu unterdrücken oder schnellen Soll-
wertänderungen folgen zu können. Andererseits reagieren die Tanktemperaturen langsamer. Sie 
werden über die Aktivierung der zwei Wärmetauscher geregelt (linke Seite), welche dem warmen 
Medium Wärme entziehen. Die Sollwerte der oberen und unteren Tanktemperaturen werden aus 
dem Sollwert der Mischtemperatur berechnet, indem ein Offset ∆T addiert bzw. subtrahiert wird 
(Fig. 61). Analog funktioniert die Regelung des Wasserkreislaufes. 

Ein zusätzlicher Wärmetauscher zwischen dem Wasserkreislauf und dem Solekreislauf ermöglicht 
eine Wärmerückführung von der warmen auf die kalte Seite. Eine Hilfs-Wärmepumpe sorgt dafür, 
dass die Temperaturen auch noch bei abgeschalteter Test-Wärmepumpe geregelt werden können. 
Die Tankgrösse wurde optimiert in Bezug auf einen minimalen Regelfehler und einen minimalen 
Energieverbrauch [Lackner 00], wobei das optimale Volumen bei 50 l liegt. Zahlreiche Sensoren 
messen Temperaturen, Differenztemperaturen, Druckdifferenzen und Durchflüsse. 
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Testwärmepumpe. Die industrielle Sole/Wasser-Wärmepumpe von SATAG© wurde mit zusätz-
lichen Ventilen (V1..V8) und total 20 Temperatur- bzw. Drucksensoren ausgerüstet. Damit kön-
nen die üblichsten Fehlerfälle eingestellt werden und die Auswirkungen auf die Signale erfasst 
werden (Fig. 63, Liste der Fehlerfälle in Table 12). Ein externer Kältemitteltank mit einer Waage 
ermöglicht es, den Füllzustand zu variieren oder eine Leckage zu simulieren. 

Datenerfassung und Automatisierung. Die Steuerung und Datenerfassung ist realisiert durch ein 
digitales CAN-Bus-System von WAGO© mit 5 Feldknoten, zwei Target-PCs, einem Host-PC und 
einem LabView©-PC. Als Software wird MATLAB xPC Target© verwendet. Die PCs sind unter-
einander und mit dem Intranet durch TCP/IP verbunden. Für den Betrieb des Prüfstandes können 
die Tasks nach Bedarf auf die einzelnen PCs verteilt werden. Beispielsweise kann die Regelung 
der Testumgebung und die Durchführung der Testzyklen von den Online-Überwachungssystemen 
oder zu testenden Reglern getrennt werden. LabView© dient zur Datenerfassung und Visualisie-
rung, ermöglicht aber auch den manuellen Betrieb der Anlage. 

Testzyklen durchführen. Für alle Fehlerfälle der Test-Wärmepumpe werden zahlreiche Testzy-
klen mit Ein-/Ausschaltungen unter verschiedenen Bedingungen durchgeführt. Dazu wurde eine 
spezielle Software entwickelt [Bianchi 01]. Ein Beispiel eines Testzyklus ist in Fig. 65 dargestellt, 
wobei der Testzyklus für jeden Fehlerfall wiederholt wird. Die Zeitdauer der eingeschalteten Pha-
sen kann kürzer gewählt werden als in der späteren Anwendung, da für das Training nur die Daten 
der ersten 10-15 Minuten massgebend sind. 

Die Ventilpositionen der Testumgebung sind konstant während eines Testzyklus. Zwischen den 
Zyklen können sie jedoch verändert werden, um verschiedene Betriebszustände zu simulieren. Mit 
den entsprechenden Ventilen kann die Wärmeaufnahme auf der Wärmequellenseite, die Wär-
meabgabe auf der Wärmesenkenseite, die Wärme-Rückgewinnung und die Trägheit der Wärme-
quelle sowie der Wärmesenke beeinflusst werden. 

Emulation. Um die Wärmepumpe unter realistischeren Bedingungen testen zu können, wird in 
Zukunft die Emulation der Wärmequelle und der Wärmesenke implementiert. Dabei laufen ein 
Modell für den Sondenkreislauf und ein Modell des Gebäudes parallel zur realen Wärmepumpe 
(Fig. 66). In Echtzeit berechnen diese Modelle die Sollwerte für die Wärmepumpen-
Eintrittstemperaturen und die Volumenströme durch die Wärmepumpe. Eine hierarchische Reg-
lerarchitektur berechnet die entsprechenden Stellgrössen für alle Ventile. 

 

Introduction: 

At the Measurement and Control Laboratory of ETH Zurich, a new test bench for industrial brine-
to-water heat pumps has been installed (Fig. 1 on page 8 and Fig. 60). This test bench allows to 
generate any realistic temperature (and flow) transients at the inputs of the test heat pump. 

 

7.1 Test Environment 
A brine cycle is realized on the heat source side and a water cycle is realized at the heat sink side 
(Fig. 62). The brine cycle contains a warm storage tank and a cold storage tank, whereas the out-
puts of both tanks are mixed in order to get the desired temperature (TT 206). This temperature is 
equal to the input temperature of the test heat pump (TT 210). With the mixing valve between the 
tanks, it is possible to control the mixing temperature quickly for suppressing fast disturbances 
(for example the switching of the test heat pump) or handling fast setpoint changes. Otherwise, the 
upper and lower tank temperatures (TT 108, TT 310) react more slowly. They are controlled by 
activating the two heat exchangers (left side). Therefore, the openings of the valves 421/422 and 
429/430 are controlled. The heat exchangers withdraw the heat from the warm laboratory medium 
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(which operates at about 30°C). The setpoints of the upper and lower tank temperatures are calcu-
lated from the setpoint of the mixing temperature, by adding or subtracting a constant temperature 
offset ∆T (Fig. 61).  

t

upper level

setpoint

lower level

temperature

 

Fig. 61: Two tanks with an upper and a lower temperature level, and the mean setpoint between.  

The water cycle works in the same way as the brine cycle, where two heat exchangers dispense the 
heat to the cold laboratory medium (which operates at about 14°C, on the right-hand side). An 
additional heat exchanger between the water cycle and the brine cycle allows the recycling of the 
heat from the warm side to the cold side (on the top, between the warm brine tank and the cold 
water tank). Thus, a part of the heating energy can be saved. It is also desirable to control the tem-
peratures when the test heat pump is switched off. Therefore, an auxiliary heat pump is installed, 
which permits to increase the difference between the brine and the water temperature levels addi-
tionally (between the cold brine tank and the warm water tank). 
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Fig. 62: The test environment with two brine tanks, two water tanks, five heat exchangers, an auxiliary heat 
pump and the test heat pump. TT = temperature sensors, dTT = temperature difference sensors, dpT = 
pressure difference sensors, FT = flow sensors.  
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The volume of the tanks has been optimized by simulations, subject to a minimal control error and 
minimal energy consumption [Lackner 00]. An optimum was found at a volume of 50 Liter. Lar-
ger volumes would increase the energy consumption to follow the setpoint temperatures, and 
smaller volumes would result in higher control errors because of fast disturbances due to the 
switching of the heat pump. 

For controlling the flows, 3-way valves and 2-way valves are used, whereas numerous pumps 
induce circulation. The signals are measured by four types of sensors, such as absolute tempera-
ture sensors (Pt100), temperature difference sensors at the heat exchangers (combinations of 2 
thermocouples), pressure difference sensors at the circulation pumps (membrane transmitters), and 
flow meters (magnetic-inductive) at the outputs of the test heat pump. From the pressure differ-
ences, the volumetric flows are estimated by the characteristics of the pumps, and from the tem-
perature differences, the heat flows are calculated. 

7.2 Test Heat Pump 
The industrial brine-to-water heat pump from SATAG© is modified by adding actuators and sen-
sors for inducing the most common faults and measuring their effects on the signals (Fig. 63). The 
continuous control valves V1..V4 affect the refrigerant cycle, V5/V6 affect the brine cycle and 
V7/V8 affect the water cycle. 
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Fig. 63: The modified brine-to-water SATAG heat pump, with additional valves (V1..V8), pressure sensors 
(pT01..pT06), pressure difference sensors (dpT01, dpT02), temperature sensors (TT01..TT12), energy 
counter (PwT01) and an external refrigerant tank with a scale (WT01). 

A total of 20 sensors measure the pressures (pT 01..06), the pressure differences (dpT 01-02)  and 
the temperatures (TT 01..12) of the media, whereas the Pt100 temperature sensors are plunged into 
the media for a fast response. The electrical power consumption of the compressor is measured by 
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a standard energy counter (PwT 01). For varying the refrigerant filling grade and simulating a 
refrigerant leakage, an external tank with a scale is added (WT 01). The filling grade is controlled 
by the valves V2 and V3. The manual valves (MV1..MV3) are not used here. Optionally a refrig-
erant mass flow sensor could be installed (FT 01).The faults induced by the additional valves 
V1..V8, are summarized in Table 12. They correspond to the faults in real applications. Fault 8 is 
not implemented.  

Table 12: Faults of a brine-to-water heat pump. 

fault  actuator fault description faults in real applications 

fault 1 - normal behaviour, no fault normal behaviour, no fault 

fault 2 valve V5 reduced evaporator mass flow fouling, brine pump malfunction 

fault 3 3-way valve V6 reduced evaporator heat transfer evaporator fouling 

fault 4 valve V7 reduced condenser mass flow fouling, water pump malfunction 

fault 5 3-way valve V8 reduced condenser heat transfer condenser fouling 

fault 6 valve V1 compressor backward flow compressor malfunction 

fault 7 valves V2 and V3  refrigerant tank inlet and outlet refrigerant leakage, wrong filling 

fault 8 valve V4 reduced expansion valve mass flow expansion valve malfunction, refrigerant line restriction 

 

7.3 Data Acquisition and Automation 
A digital bus system by WAGO© is implemented (Fig. 64). Its five field nodes contain input mod-
ules with integrated A/D converters and signal conditioning as well as output modules with inte-
grated D/A converters or relais. These nodes are connected to three PCs by a CAN bus. Two PCs 
are used as realtime target systems for MATLAB xPC Target©, while one PC is dedicated to run 
LabView©. The CAN master card is also plugged into one of the target PCs. Both of the target 
PCs are connected to one host PC by TCP/IP, which is controlling the targets. The host PC as well 
as the LabView© PC are connected to the intranet. 
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Fig. 64: The bus system of the test bench, connecting five field nodes, four PCs, and the intranet. The 100 
channels of the 1 Mbit/s CAN bus contain 56 analog inputs, 6 analog outputs, and 38 digital outputs. 
TCP/IP is working at 10 Mbit/s.  
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The tasks for the operation of the test bench can be assigned to the various PCs, for example: 

xPC Target I and xPC Host. The first target PC controls the test environment, runs test cycles on 
the test heat pump and optionally runs the emulation (cf. Section 7.5). On the host PC, a graphical 
user interface allows the handling of the test cycles. 
xPC Target II and xPC Host. Using this combination, the realtime fault diagnosis systems are 
tested. The graphical user interfaces of the fault diagnosys systems run on the host PC. For other 
projects, new heat pump controllers could be tested. 
LabView. LabView© is used for data vizualisation and acquisition. Additionally, the manual con-
trol of the test bench is facilitated by a graphical user interface. 

7.4 Running Test Cycles 

Definition of the Test Cycles 

For all fault cases of the test heat pump, numerous test cycles with on-off switching are run under 
different conditions. For this purpose, a special software tool has been developed [Bianchi 01]. An 
example of a test cycle is illustrated in Fig. 65, where the same cycle is repeated for each fault 
case. 
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Fig. 65: An example test cycle.  

The duration of the on-sequences (normal operation) can be selected to be shorter than it will be in 
future real applications, since for the training of the fault diagnosis systems, only the first 10-15 
minutes of each off-on sequence is relevant, until a (quasi) steady state is reached. On the other 
hand, the off-sequences must have different time durations in order to change the initial conditions 
for the subsequent off-on sequences. 

Constant Valve Positions 

The valve positions of the test environment (Fig. 62) are constant during one test cycle. However, 
between the test cycles, they can be changed for simulating different operating conditions: 

Heat transfer at the heat source side. The valve 421/422 controls the flow through the heat ex-
changer at the warm brine tank, whereas the valve 429/430 controls the flow through the heat ex-
changer at the cold brine tank. With these valves the heat transfer from the warm medium to the 
brine cycle can be influenced, which in reality refers to the heat transfer from the ground to the 
brine fluid in the ground pipes. 

Heat transfer at the heat sink side. The valve 417/418 controls the flow through the heat ex-
changer at the cold water tank, whereas the valve 427/428 controls the flow through the heat ex-
changer at the warm water tank. With these valves the heat transfer from the water cycle to the 
cold medium can be influenced, which in reality refers to the heat transfer from the water in the 
floor heating system to the room, the house and, finally, to the surroundings. 

Heat recycling between the heat sink and the heat source. With the valve 419/420 the brine 
flow through the heat exchanger between the warm brine tank and the cold water tank is con-
trolled. Thus, the heat recycling rate is influenced. 

Inertia of the heat source side. If the mixing valve 425/426 between the warm brine tank and the 
cold brine tank is in the mid-position, then both tanks are active and the ‘inertia’ of the brine cycle 
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is high. If the mixing valve 425/426 is in the upper or lower position, then only one tank is active 
and the ‘inertia’ of the brine cycle is low. In reality, the heat source ‘inertia’ refers to the type of 
the ground cycle or its operating conditions. 

Inertia of the heat sink side. In the same way the ‘inertia’ of the water cycle is influenced by the 
valve 423/424 between the cold water tank and the warm water tank. In reality, the heat sink ‘iner-
tia’ refers to the type of the house or its operating conditions. 

Using the Emulation 

Here the valve positions are controlled by using the emulation models described in Section 7.5. 
For each test cycle, different input data files for the models have to be selected, such as different 
weather data, different user behaviour, or different heat pump controller settings.  

7.5 Emulation 
In order to test the heat pump under more realistic conditions, an emulation of the heat source side 
as well as the heat sink side will be implemented in the near future. Therefore, a model of the 
ground cycle and a model of the building run parallel to the real heat pump (Fig. 66). In realtime, 
these models calculate the setpoints for the heat pump input temperatures (Tbr,return,sp, Tw,return,sp) as 
well as the setpoints for the volumetric flows through the heat pump (V*br,sp, V*w,sp) from the 
measured heat pump output temperatures (Tbr,supply, Tw,supply) and from stored weather data (Tground, 
Tamb, Q*radation, etc.). Four controllers are fed by the setpoints. The outputs of these four controllers 
are the inputs for a hierarchical control system of the test bench. Primarily they influence the posi-
tions of the mixing valves 425/426 and 423/424 for the temperature control as well as the valves 
437/438 and 431/432 for the flow control. However, all the other valves have to be controlled, as 
well. 
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Fig. 66: Emulation of the ground cycle and the building. 
Tground = ground temperature, Tamb = ambient temperature, Q*radation = solar radiation heat flow,  
Tbr,supply = brine supply flow temperature, Tbr,return,sp = setpoint for brine return flow temperature,  
V*br,sp = setpoint for brine volumetric flow,  
Tw,supply = water supply flow temperature,Tw,return,sp = setpoint for water return flow temperature,  
V*w,sp = setpoint for water volumetric flow



8 Ausblick 
Emulation am ETH-Prüfstand. Als nächster Schritt soll die Emulation der Wärmequelle (Erd-
sonde) und der Wärmesenke (Haus) am Prüfstand realisiert werden: 
• Emulation des dynamischen Verhalten des Hauses (Wärmeverteilsystem und Gebäude): Dabei 

werden die Differentialgleichungen des Wärmeverteilsystems und des Gebäudes (vgl. [KTM-3 
98] und Abschnitt 6.2) on-line gelöst, um die Transienten der Rücklauftemperatur und des 
Kondensatorvolumenstroms zu bestimmen. Diese Grössen werden als Sollwertverläufe für die 
Regelung der entsprechenden Grössen am Prüfstand verwendet. Als Aussentemperaturverlauf 
kann der Datensatz eines beliebigen Referenzjahres verwendet werden. 

• Emulation der Wärmequelle: Ähnlich wie oben kann auch die Quellentemperatur und der 
Quellenvolumenstrom am Prüfstand emuliert werden. Vorerst werden entweder konstante 
Sollwerte oder Sollwertverläufe basierend auf einfachen Modellen der Quelle verwendet. 

Resultate ETH-Prüfstand. Die Überwachungssysteme werden momentan am ETH-Prüfstand 
getestet (mit der Software im Kapitel 4). Die detaillierten Testresultate werden in [Zogg 02] publi-
ziert.  

Umsetzung. Nach Abschluss der Tests am ETH-Prüfstand ist eine Felderprobung möglich. Da-
nach muss entschieden werden, in welcher Form die Überwachungssysteme industriell umgesetzt 
werden. Für die Implementierung der Überwachungssysteme muss eine genaue Analyse der 
Hardware- und Softwareanforderungen durchgeführt werden. Die Systeme sind gegebenenfalls zu 
vereinfachen: 

• Bei HeatWatch kann das lineare Gleichungssystem für die Parameter schrittweise gelöst wer-
den, falls die Matrixinversion für eine Online-Realisierung zu aufwendig ist (Abschnitt 2.2). 
Durch Einsetzen und Auflösen nach den einzelnen Parametern können für jeden Parameter 
einzelne Gleichungen formuliert werden. Eine Reduktion der Parameterzahl bzw. der Anzahl 
benötigten Signale ist ebenfalls möglich.  

• Da bei FuzzyWatch während dem Training die Anzahl der benötigten Signale automatisch 
reduziert wird, wird auch die Anzahl der benötigten Parameter automatisch reduziert. Damit 
sinkt der Rechenaufwand für die Parameteridentifikation. Trotzdem kann die Berechnung der 
Pseudo-Inversion zur Lösung des Least-Square-Problems zu aufwendig sein für eine Online-
Realisierung (Abschnitt 3.3). In diesem Fall kann auch ein rekursiver Algorithmus mit schritt-
weisem Parameter-Update benutzt werden [Shafai 97], [Gertler 98]. Andererseits ist die Feh-
lerklassifikation mit der Berechnung der Zugehörigkeitsgrade nicht aufwendig.  

Erweiterung zum Gesamt-Überwachungssystem. Die entwickelten Überwachungssysteme sind 
für das Teilsystem der Wärmepumpe zuständig, während der Rest der Wärmepumpenanlage 
(Haus) durch Modelle der früheren Projektphasen abgedeckt ist [KTM-3 98]. Damit können so-
wohl die Parameter auf der Wärmepumpenseite (aus dem Überwachungssystem HeatWatch) wie 
auch die Parameter auf der Hausseite identifiziert werden. Prinzipiell könnte die Fehlerklassifika-
tion des Überwachungssystems FuzzyWatch auch auf das Hausmodell angewandt werden. 

Abtau-Steuerung. Mit HeatWatch kann über den Wärmeübertragungs-Parameter im Verdampfer 
die Vereisung festgestellt werden und damit der Abtauvorgang gestartet werden. FuzzyWatch kann 
speziell auf Vereisung trainiert werden. Diese Möglichkeiten müssten näher untersucht werden. 
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9 Symbolverzeichnis – Symbols 

Symbole und Einheiten–  symbols and units 

A m2 (Wärmeübergangs-) Fläche (heat transfer) area 
Ai, Bi, Ci, … Parameter (Arbeitsmitteldaten) parameters (refrigerant data) 
ai,k, bi,k Modellparameter („black box“) model parameters (black box) 
b m (Wärmeübergangs-) Breite (heat transfer) width 
c i,k  “Cluster”-Zentrum cluster center 
c, cp J/kg.K spezifische Wärmekapazität specific heat capacity 
cm* J/kg.K konvektiver Wärmeübertragungs-Par. c*m* convective heat transfer parameter c*m* 
d, di(x) Distanz distance 
e, e(t)  Modellfehler, Prädiktionsfehler model error, prediction error 
f, f(x)  (Zugehörigkeits-) Funktion (membership) function 
fi Fehler fault 
g, g(x) (Fehlergrad-) Funktion (fault grade) function 
h J/kg spezifische Enthalpie specific enthalpy 
K  Parameter (Arbeitsmitteldaten) parameter (refrigerant data) 
k W/m2.K Wärmeübergangs-Koeffizient (heat transfer) coefficient 
kA W/K Wärmeübergangs-Parameter k*A heat transfer parameter k*A 
kb W/m.K Wärmeübergangs-Parameter k*b heat transfer parameter k*b 
ktr kg/sec.Pa Massenübergangs-Koeffizient (Verd.) mass transfer rate (evap.) 
L m (Verdampfungs-) Länge (evaporation) length 
m kg Masse mass 
m* kg/s Massenstrom mass flow 
n 1/sec Drehzahl rotation speed 
n…  Anzahl … number of … 
p Pa, bar Druck pressure 
P W Leistung / Leistungsaufnahme power / power input 
PF - Arbeitszahl (AZ) performance factor 
Q* W Wärmestrom heat flow 
R J/kg spezielle Gaskonstante special gas constant 
r J/kg spezifische Verdampfungsenthalpie specific latent heat of vaporization 
T °C Temperatur temperature 
t sec Zeit time 
u J/kg spezifische innere Energie specific energy 
u, u(t)  Eingangssignale (Vektor) input signals (vector) 
V m3 Volumen volume 
v m3/kg spezifisches Volumen specific volume 
V* m3/s Volumenstrom volumetric flow 
w m/sec Geschwindigkeit velocity 
X  Parameter (Arbeitsmitteldaten) parameter (refrigerant data) 
x, x0  Dampfmassenanteil vapour mass ratio 
xk, x(k) Datenpunkt data point 
Y  Signalvektor signal vector 
y, y(t)  Ausgangssignale (Vektor) output signals (vector) 
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Griechische Symbole und Einheiten – greek symbols and units 

η - Wirkungsgrad efficiency 
λ - Liefergrad supply efficiency 
ρ kg/m3 Dichte density 
βe - Flüssigkeits-Flächenverhältnis (Verd.) liquid area ratio (evap.) 
ε - Gütegrad quality index 
ϕ  Regressionsvektor regression vector 
Φ   Regressionsmatrix regression matrix 
κ  (stationärer) Parametervektor (steady state) parameter vector 
θ  Parametervektor parameter vector 
σ, σi,k  Standardabweichung standard deviation 
τ 1/sec Zeitkonstante time constant 
∆T °C Temperaturdifferenz temperature difference 
∆p Pa, bar Druckdifferenz pressure difference 
 

Indices 

…’  Sättigungspunkt Flüssigphase saturated liquid point 
…’’  Sättigungspunkt Dampfphase saturated vapour point 
0 Startwert, Betriebspunkt initial value, operating point 
a Luft air 
amb Umgebung ambient 
aw Luft zu Wasser air-to-water 
b Verdampfung: „bubble point“ evaporation: bubble point 
br Sole brine 
c Kondensator/Kondensation condenser/condensation 
c kritischer Punkt (Arbeitsmitteldaten) critical point (refrigerant data) 
cmp Kompressor compressor 
cyc Zyklus cycle 
d Verdampfung: „dew point“ evaporation: dew point 
defrost(ing)  im Abtau-Zustand in defrosting mode 
e Verdampfer/Verdampfung evaporator/evaporation 
ec Verdampfer zu Kondensator evaporator-to-condenser 
ev Überhitzung im Verdampfungsbereich superheating in the region of evaporation 
exp Expansionsventil expansion valve 
f Fussboden (Gebäudemodell) floor (building model) 
g Gasphase gas phase 
he interner Wärmeübertrager internal heat exchanger 
hg Heissgas hot gas 
HP Gesamt-Wärmepumpe overall heat pump 
hp Hochdruck high pressure 
i am Eingang/Eintritt at the input/inlet 
l Flüssigphase liquid phase 
lp Niederdruck low pressure 
m Mittelwert / Verdampfung: “mid point” mean value / evaporation: mid point 
o am Ausgang/Austritt at the output/outlet 
off im ausgeschalteten Zustand in shut-down mode 
on im eingeschalteten Zustand in operational mode 
ov Überhitzung superheating 
r Kältemittel refrigerant 
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r Raum (Gebäudemodell) room (building model) 
s Wärmequelle heat source 
sc Unterkühlung subcooling 
sp Sollwert setpoint 
ss im stationären Zustand in steady state 
step Sprung (am Systemeingang) step (at the input of the system) 
sw Quelle zu Wasser source-to-water 
v Dampfphase vapour phase 
w Wasser-/Wärmesenke water / heat sink 
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