

**Annual report 2003, 15. December 2003****Project****Calculation method for the seasonal performance of heat pump compact units and validation**

|                                    |                                                                                                                                                                                                                     |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author and Coauthors               | Carsten Wemhöner, Ralf Dott, Patrick Keller, Prof. Dr. Thomas Afjei                                                                                                                                                 |
| Institutions in charge             | Institute of Energy (IfE), University of Applied Sciences Basel (FHBB)<br>Dep. of Heating, Ventilation, Air Conditioning and Domestic Hot Water<br>(HLKS), University of Engineering and Architecture Lucerne (HTA) |
| Address                            | Fichtenhagstr. 4, CH - 4132 Muttenz, Switzerland                                                                                                                                                                    |
| Phone, Email, Website              | +41-(0)61-467-4349, <a href="mailto:t.afjei@fhbb.ch">t.afjei@fhbb.ch</a> , <a href="http://www.fhbb.ch/energie">http://www.fhbb.ch/energie</a>                                                                      |
| SFOE Project-/Contract-Number      | 100238 / 150322                                                                                                                                                                                                     |
| Duration of project (from – until) | 1.9.2003 – 30.4.2005                                                                                                                                                                                                |

**SUMMARY**

The focus of the activities in 2003 was to encounter pilot plants for the field measurements and the definition of the measurement concept and the devices for the testing of the compact units. The IfE (FHBB) will carry out field measurements of the LWTZ 303 SOL by the manufacturer STIEBEL ELTRON. The measurement concept has been worked out and the measurement devices procurement is in progress. The installation and implementation of the measurements will take place at the beginning of next year.

At the HLKS (HTA Lucerne), which will develop a test procedure as basis for the calculation method, first test rig measurements of the Vitotres 343 by the manufacturer Viessmann have been carried out. A pilot plant for the field measurement of this system could not be found so far.

The calculation method, - entitled FHBB-method -, which was developed in the SFOE-project "calculation method and seasonal performance factor of residential heat pumps for combined space heating and domestic hot water production", was modified to meet the requirements set by the European standardisation in CEN. It is the basis for the extension to compact units in this project. The FHBB-method forms the major part of the final draft for the heat pump calculation in the framework of the draft standard prEN14335. This final draft of the heat pump part of prEN14355, which has basically been written by Switzerland, was presented and accepted in the plenary meeting of the respective CEN working group CEN/TC 228/WG 4 end of october. It will be sent out for public enquiry soon.

The focus for the further work in the next year is the installation and carrying out of measurements in an appropriate pilot plant and the validation and extension of the calculation method. The HLKS test centre of HTA Lucerne provides the new testing method to be verified on the new test rig for compact units at HTA Lucerne.



## Objectives

Objective of the project is the development of an as far as possible easy-to-use hand calculation method for the seasonal performance factor of heat pump compact units and its validation. The calculation is based on the product characteristic of the heat pump compact unit, which has to be delivered by an adequate test procedure that is to be developed at the HLKS test centre at HTA Lucerne. The calculation method is to be validated by field measurements of two systems, the *LWZ 303 SOL* of the manufacturer *Stiebel Eltron* and the *Vitotres 343* of the manufacturer *Viessmann*. As the systems are in the market introduction, neither detailed experience with the real behaviour in the field application nor extensive data of the systems in operation exist, so field measurements for the two systems are to be carried out in this project as input for the validation of the calculation method, too.

The seasonal performance calculation of the systems is needed on the one hand to compare the performance of compact units to other heating systems, which is enhancing the market competitiveness, as actually only limited statements can be given on the annual system performance in the field. On the other hand, the seasonal performance calculation is needed for labelling, which is required e.g. for building standards like the Swiss *MINERGIE* standard.

The calculation method and the test procedure shall be an input to the CEN Standardisation Committees on the European level.

## Work carried out and results

### Field measurements of the pilot plant

As there was only short time from the start of the project to the beginning of the heating season, the focus of the work carried out in 2003 was the development of the measurement concept and the acquisition of pilot plants for the field measurements.

For the *Stiebel Eltron LWZ 303 SOL* a pilot plant has been encountered in Gelterkinden BL, see fig. 1. The measurement concept for the first pilot plant was discussed with the project partner at HTA Lucerne and is determined now. The procurement of the measurement devices is in progress. Installation will be completed by the beginning of 2004 and the measurement data acquisition will presumably start by the end of January.



fig. 1: situation of the pilot plant *Stiebel Eltron LWZ 303 SOL* in Gelterkinden (Kt. BL)

The measurement concept has the aim to calculate the following key values to evaluate the seasonal performance of the compact units. These values are:

- electro-thermal amplification factor of air heat recovery system

$$ETV_{wrg} = \frac{H_{wrg\_ZU} - H_{wrg\_AU}}{E_{wrg\_VE\_EB}}$$

eq. 1

- temperature change coefficient of air heat recovery system

$$\Phi_{AB} = \frac{T_{wrg\_AB} - T_{wrg\_FO}}{T_{wrg\_AB} - T_{wrg\_AU}}$$

eq. 2

- heat recovery efficiency

$$\eta_{wrg\_AB} = \frac{\dot{H}_{wrg\_AB} - \dot{H}_{wrg\_FO}}{\dot{H}_{wrg\_AB} - \dot{H}_{wrg\_AU}}$$

eq. 3

- generator seasonal performance factor

$$WNG = \frac{Q_{h\_HK} + Q_{h\_WW} + Q_{v\_VW}}{E_{s\_EB} + E_{wp\_KP\_EB} + E_{wp\_VE\_EB} + E_{wrg\_VW-VE\_EB} + E_{h-ww\_EH\_EB} + E_{aux}}$$

eq. 4

- system seasonal performance factor

$$SNG = \frac{Q_{h\_HK\_NE} + Q_{ww\_NE} + Q_{wrg\_NE}}{\sum E_{EB}}$$

eq. 5

- heat generation shares
- used heat shares

The measurement points are therefore set in a way that, as far as possible, energy balances for all component groups and operation modes can be carried out.

The measurement points for the Stiebel Eltron pilot plant are shown in fig. 2. A detailed description of the single points is given in the Appendix. Measurements are partly recorded using the internal interface of the compact unit and partly realised with additional measurement devices and a data logging system. The data will be transferred via modem connection to the Institute of Energy in Muttenz and checked and evaluated there in a weekly schedule to avoid greater data losses at system faults.

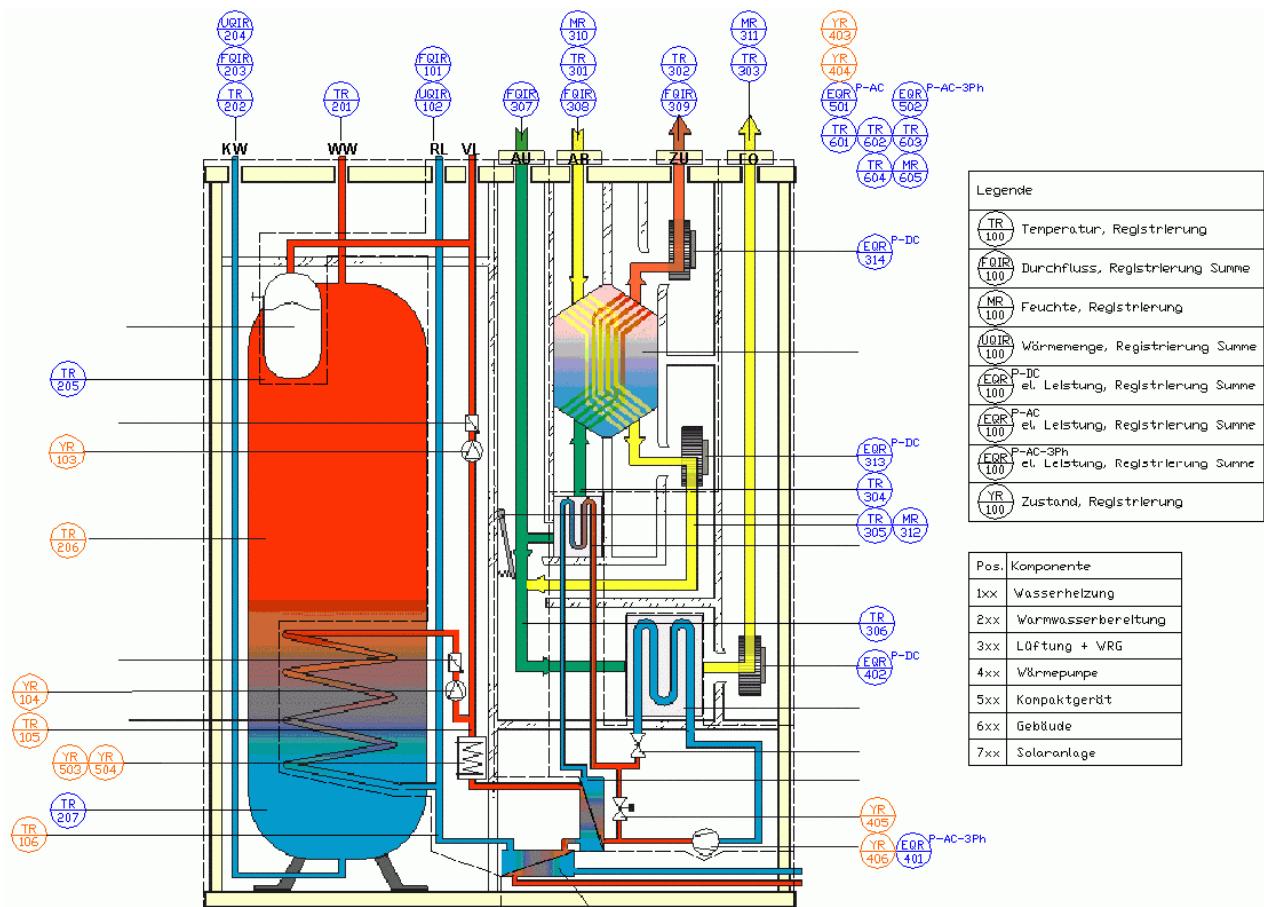



fig. 2: measurement points for the Stiebel Eltron LWZ 303 SOL pilot plant (taken from [1])

#### Test rig measurements carried out at the HLKS test centre at HTA Lucerne

The heat pump compact unit Viessmann Vitotres 343 has been measured on a provisional test rig of the HLKS test centre at the HTA Lucerne. In the framework of a diploma thesis first preliminary thermodynamic and acoustic measurements were accomplished [2]. The results of these investigations will be considered to extend the existing test procedure [8] to compact units.

The results specified in the following are extracts of the diploma thesis and are therefore preliminary to be scrutinized in upcoming measurements.

The results of the thermodynamic examination are on the one hand difficulties with the measurements and on the other hand first thermodynamic measurements [2]. The main difficulties concerning the measurements were the adjustment of the different mass flows and the balance of mass flow rates. The reasons are:

- ⇒ Leakages
- ⇒ Difficulties in adjusting the internal fans which show divergent fan characteristics
- ⇒ Undefined pressure conditions caused by the heat pump ventilator
- ⇒ Additional pressure build-up by external fans

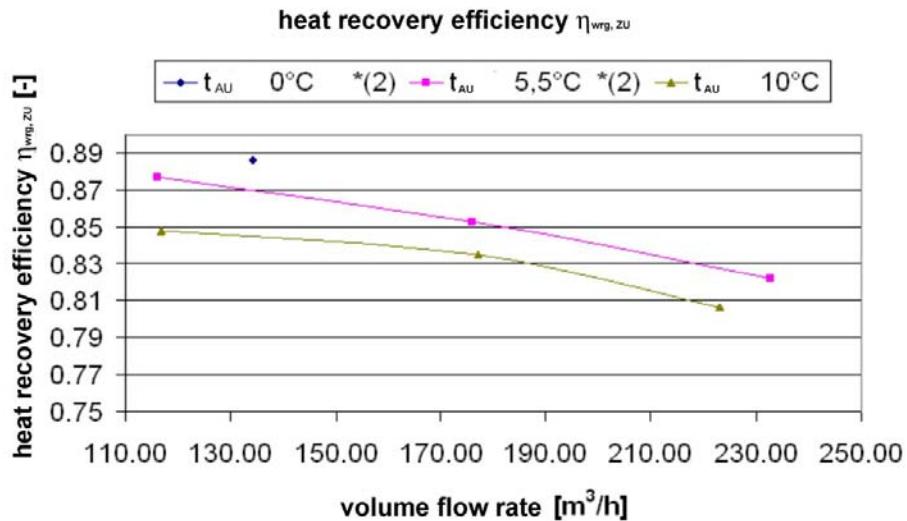



fig. 3: measured values for the heat recovery efficiency of Viessmann Vitotres 343 (taken from [2])

#### Adaption of the FHBB calculation method in the framework of the CEN standardisation

The FHBB calculation method developed in the SFOE project "calculation method for the seasonal performance factor of residential heat pumps with combined space heating and domestic hot water production" [5] has been introduced in the work going on in the European standardisation process in the working group CEN/TC 228/WG 4 "heating systems in buildings – methods for the calculation of system requirements and systems efficiencies". The participants of the heat pump sub-group of this CEN working group are the countries FR, CH, NL, DE and UK. FR and CH have each worked out a standard draft, which had to be harmonised for the public enquiry of the document on the European level.

Therefore some modifications of the FHBB-method (e.g. concerning system boundary, recoverable heat losses, domestic hot water calculation etc.) had to be made to the FHBB-method to match the requirements of the general calculation scheme of the prEN 14335 [4].

The Swiss and French draft have been harmonised in two working meetings in Muttenz, Switzerland, and Paris, France. A harmonisation with the boiler calculation approach, which is described in another part of the standard prEN 14335, could be achieved as far as possible. The editing of the final draft [7] was completed by Switzerland. It incorporates most of the FHBB calculation method worked out in the SFOE project [5] and has been presented at the plenary meeting of the working group CEN/TC 228/WG 4. Members of the working group agreed broadly on the draft, so that the document is now in preparation of the public enquiry.

## National co-operation

The national co-operation takes place with the HLKS test centre at HTA Lucerne, which is in the process of establishing a test rig for ventilation systems with the capability to measure heat pump compact units, as well. The objective of the HTA is the development a test procedure that can deliver the product characteristic for the calculation method.

The test procedure shall be based on the test procedure developed by WPZ Töss [8], which has to be extended for the ventilation operation mode. Moreover the HTA Lucerne takes care of the projected field measurements of the second pilot plant, the Vitotres 343 of the manufacturer Viess-

mann, which is especially designed for extremely low energy houses according to the Swiss MINERGIE-P standard.

## International co-operation

The international co-operation is based on the co-operation within the framework of the IEA HPP Annex 28 [3]. The objective of the Annex 28 is the development of comprehensive test procedures and calculation methods for the seasonal performance of different types of combined operating heat pump systems. Thus this project is a Swiss national contribution to the IEA HPP Annex 28. Nine other countries (AT, CA, DE, FR, JP, NO, SE, UK, USA) are participating in the IEA HPP Annex 28.

On the other hand the results should be an input to standardisation committees, and so, a co-operation in the respective working groups of the CEN standardisation on the European level is undergoing. The developed FHBB calculation method is brought in the respective working group by an expert of the IfE. The HTA Lucerne has nominated an expert for the working group CEN/TC 113/WG 10 dealing with the domestic hot water system testing, that is currently under constitution.

## Evaluation of 2003 and Perspectives for 2004

The focus of the three month in 2003 was to encounter and to install the measurement devices for the pilot plants. This was the priority since the heating season has already begun and measurements of the pilot plants are to be recorded as early as possible. At the end of October a pilot plant for the LWZ 303 SOL has been encountered and the measurement concept is worked out. The installation of the measurement devices and the commissioning will be carried out beginning of next year.

The FHBB-calculation method [5] as basis for the method to be developed in this project has been modified and successfully introduced in the respective European standardisation carried out in the CEN working CEN/TC 228/WG 4 in the framework of the draft standard prEN 14335 [4]. The final draft of the heat pump calculation was accepted by the working group and will be sent out to public enquiry at the beginning of next year. Due to the deadlines of the CEN/TC 228/WG 4 the validation of the developed FHBB-method with existing measurement data was postponed and will be carried out beginning of 2004.

For the second compact unit under investigation, the Vitotres 343, first test rig measurements have been accomplished at the HLKS test centre at the project partner HTA Lucerne. However, a pilot plant has not been encountered so far, as currently no system of this type is in operation in Switzerland. The contact to the manufacturer, SATAG, is established to be up to date for the acquisition of the second pilot plant.

## References

- [1] **Manufacturer description LWZ 303 SOL**, Stiebel Eltron, Holzminden, 2002
- [2] G. Ghisletta, B. Mettler: **Theoretical and practical investigation of compact units for mechanical ventilation systems**, Diploma thesis in German, HTA Luzerne, 2003
- [3] M. Zogg et al: **IEA HPP Annex 28, legal text**, IEA HPP Annex 28 N1, March 2003
- [4] **prEN 14335, Heating systems in buildings – calculation of the system requirements and system efficiencies, general part**, 2001
- [5] C. Wemhöner, T. Afjei: **Calculation method for the seasonal performance factor of residential heat pumps for combined space heating and domestic hot water production**, final report in English, SFOE research programme heat pumping technologies, cogeneration, refrigeration, October 2003  
Download available on the website of the SFOE research program  
<http://www.waermepumpe.ch/fe>, category “Berichte”
- [6] J. Zirngibl, B. Young, L. Socal: **Heating systems in buildings – method for calculation of the system requirements and system efficiencies – Part 2: Heat generation - combustion systems**, internal working document N292 of CEN/TC 228/WG 4 for the draft standard prEN14335, October 2003
- [7] C. Wemhöner, T. Afjei, C. Feldmann: **Heating systems in buildings – Method for calculation of the system requirements and system efficiencies – Part 4: Heat pump systems**, internal working document N295 of CEN/TC 228/WG 4 for the draft standard prEN 14335, September 2003
- [8] A. Montani: **Wärmepumpentest für die kombinierte Raumheizung und Warmwasserbereitung**, final report in German, SFOE research programme heat pumping technologies, cogeneration, refrigeration, November 2003.  
Download available on the website of the SFOE research program  
<http://www.waermepumpe.ch/fe>, category “Berichte”

## Appendix

### LIST OF MEASUREMENT POINTS FOR THE STIEBEL ELTRON LWZ 303 SOL PILOT PLANT

| Pos. | Symbol               | Unit              | Measured value                                                   | Measurement principle  |
|------|----------------------|-------------------|------------------------------------------------------------------|------------------------|
| 101  | $\dot{V}_{h\_HK}$    | l/Pulse           | volume flow heating (>550 l/h)=1420 l/h                          | Mass flow rate meter   |
| 102  | $\dot{Q}_{h\_HK}$    | Wh/Pulse          | heat amount to heating circuit                                   | Heat meter             |
| 103  | $Z_{h\_UWP-HK}$      | 1/0               | status circulation pump heating circuit                          | LWZ 303 SOL            |
| 104  | $Z_{h\_UWP-WW}$      | 1/0               | status circulation pump domestic hot water                       | LWZ 303 SOL            |
| 105  | $\theta_{h\_VL\_EH}$ | °C                | temperature supply HP + natural gas heating                      | LWZ 303 SOL            |
| 106  | $\theta_{h\_RL}$     | °C                | temperature return                                               | LWZ 303 SOL            |
| 107  | $\theta_{h\_VL\_WP}$ | °C                | temperature supply HP (optional)                                 | Pt100                  |
|      |                      |                   |                                                                  |                        |
| 201  | $\theta_{ww\_WW}$    | °C                | temperature domestic hot water                                   | PT100                  |
| 202  | $\theta_{ww\_KW}$    | °C                | temperature cold water                                           | PT100                  |
| 203  | $\dot{V}_{ww}$       | l/min             | volume flow rate domestic hot water                              | Volume flow rate meter |
| 204  | $\dot{Q}_{ww}$       | Wh/Pulse          | heat amount delivered to domestic hot water                      | Heat meter             |
| 205  | $\theta_{ww\_SP-o}$  | °C                | temperature storage top position                                 | PT100                  |
| 206  | $\theta_{ww\_SP-m}$  | °C                | temperature storage middle position                              | LWZ 303 SOL            |
| 207  | $\theta_{ww\_SP-u}$  | °C                | temperature storage bottom position                              | PT100                  |
|      |                      |                   |                                                                  |                        |
| 301  | $\theta_{v\_AB}$     | °C                | temperature inlet air entering compact unit from building        | PT100                  |
| 302  | $\theta_{v\_ZU}$     | °C                | temperature outlet air from compact unit to building             | PT100                  |
| 303  | $\theta_{v\_FO}$     | °C                | temperature outlet exhaust air leaving compact unit to ambience  | PT100                  |
| 304  | $\theta_{wrg\_EIN}$  | °C                | temperature inlet air entering heat recovery within compact unit | PT100                  |
| 305  | $\theta_{wrg\_AUS}$  | °C                | temperature outlet air exiting heat recovery within compact unit | PT100                  |
| 306  | $\theta_{wp\_ML}$    | °C                | temperature mixed air entering HP                                | PT100                  |
| 307  | $\dot{V}_{v\_AU}$    | m <sup>3</sup> /h | volume flow rate outside air                                     | anemometer             |

| Pos. | Symbol                | Unit                  | Measured value                                                     | Measurement principle    |
|------|-----------------------|-----------------------|--------------------------------------------------------------------|--------------------------|
| 308  | $\dot{V}_{v\_AB}$     | $\text{m}^3/\text{h}$ | volume flow rate inlet air entering compact unit from building     | anemometer               |
| 309  | $\dot{V}_{v\_ZU}$     | $\text{m}^3/\text{h}$ | volume flow rate outlet air from compact unit to building          | anemometer               |
| 310  | $\varphi_{v\_AB}$     | %r.F.                 | rel. humidity inlet air entering compact unit from building        | cap. sensor              |
| 311  | $\varphi_{v\_FO}$     | %r.F.                 | rel. humidity outlet exhaust air leaving compact unit to ambience  | cap. sensor              |
| 312  | $\varphi_{wrg\_AUS}$  | %r.F.                 | rel. humidity outlet air exiting heat recovery within compact unit | cap. sensor              |
| 313  | $P_{v\_VE-AB\_EB}$    | Wh                    | el. energy input fan inlet air from building                       | U&I DC                   |
| 314  | $P_{v\_VE-ZU\_EB}$    | Wh                    | el. energy input fan outlet air to building                        | U&I DC                   |
| 401  | $P_{wp\_KP\_EB}$      | kWh                   | energy input compressor                                            | rotating current counter |
| 402  | $P_{wp\_VE\_EB}$      | Wh                    | el. energy input fan HP                                            | U&I DC.                  |
| 403  | $Z_{kpg\_ERR-HD}$     | 0/1                   | high pressure fault                                                | LWZ 303 SOL              |
| 404  | $Z_{kpg\_ERR-ND}$     | 0/1                   | low pressure fault                                                 | LWZ 303 SOL              |
| 405  | $Z_{wp\_MV}$          | 0/1                   | status defrosting valve                                            | LWZ 303 SOL              |
| 406  | $Z_{wp\_KP}$          | 0/1                   | status compressor                                                  | LWZ 303 SOL              |
| 501  | $P_{kpg\_VE+CON\_EB}$ | Wh                    | el. energy input fans and control                                  | energy meter             |
| 502  | $P_{kpg\_EB}$         | kWh                   | el. energy input compact unit                                      | Counter Utility          |
| 503  | $Z_{h\_EH\_St1}$      | 0/1                   | status el. back-up heating step 1 (BE1)                            | LWZ 303 SOL              |
| 504  | $Z_{h\_EH\_St2}$      | 0/1                   | status el. back-up heating step 2 (BE3)                            | LWZ 303 SOL              |
| 601  | $\theta_{geb\_EG}$    | $^{\circ}\text{C}$    | room temperature ground floor                                      | PT100                    |
| 602  | $\theta_{geb\_UG}$    | $^{\circ}\text{C}$    | room temperature cellar                                            | PT100                    |
| 603  | $\theta_{geb\_TR}$    | $^{\circ}\text{C}$    | temperature plant room                                             | PT100                    |
| 604  | $\theta_{geb\_AU}$    | $^{\circ}\text{C}$    | temperature outside air building                                   | PT100                    |
| 605  | $\varphi_{geb\_AU}$   | %r.F.                 | rel. humidity outside air building                                 | cap. sensor              |

## NOMENCLATURE

### Variables

| Variable | Description                                                      | Unit |
|----------|------------------------------------------------------------------|------|
| H        | Enthalpy flow rate                                               | W    |
| $\eta$   | Heat recovery efficiency                                         | -    |
| $\Phi$   | Temperature change coefficient of air heat recovery system       | -    |
| E        | Electrical energy                                                | J    |
| ETV      | Electro-thermal amplification factor of air heat recovery system | -    |
| H        | Enthalpy                                                         | J    |
| Q        | Heat energy                                                      | J    |
| SNG      | System seasonal performance factor                               | -    |
| WNG      | Generation seasonal performance factor                           | -    |

### Indices

| Index | Description                                            |
|-------|--------------------------------------------------------|
| AB    | Outlet air from building to heat recovery              |
| AU    | Outside air from ambience to heat recovery             |
| aux   | Supplementary components                               |
| EB    | Energy demand                                          |
| EH    | Back-up heating                                        |
| FO    | Exhaust air from heat recovery to ambience             |
| h     | Space heating by means of hydronic distribution system |
| HK    | Hydronic heating circuit                               |
| KP    | compressor                                             |
| NE    | Used energy                                            |
| s     | Solar system                                           |
| v     | ventilation                                            |
| VE    | fan                                                    |
| VW    | preheating                                             |
| wp    | Heat pump                                              |
| wrg   | Heat recovery                                          |
| WW    | Domestic hot water                                     |
| ww    | Domestic hot water system                              |
| ZU    | Inlet air from heat recovery to building               |