COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun. Comput. Phys.
Vol. 1, No. 1, pp. 1-45 February 2006

Elements of the lattice Boltzmann method I:
Linear advection equation

Iliya V. Karlin®*, Santosh Ansumali?, Christos E. Frouzakis'

and Shyam Sunder Chikatamarla!

L Institute of Energy Technology, Swiss Federal Institute of Technology, CH-8092
Zurich, Switzerland

2 School of Chemical and Biomedical Engineering, Nanyang Technical University Sin-
gapore, Singapore 639798

Abstract. This paper opens a series aimed at finalizing the development of the lattice Boltz-
mann method for complex hydrodynamic systems. Lattice Boltzmann method is introduced
on an elementary level of the linear advection equation. Details are provided on lifting the tar-
get macroscopic equations we want to study to a kinetic equation, and, after that, to the fully
discrete lattice Boltzmann scheme. Over-relaxation method is put forward as a cornerstone
of the second-order discretization in time, and its enhancement with the use of the entropy
estimate is explained in detail. A new asymptotic expansion of the entropy estimate is de-
rived, and implemented in the sample code. It is shown that the lattice Boltzmann method
provides a computationally efficient way of numerically solving the advection equation with
the controlled amount of numerical dissipation and preservation of positivity. The paper can
also serve as a tutorial on the lattice Boltzmann method.
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1 Introduction

One of the most important achievement in physical sciences is that many phenomena become
understandable if one succeeds to recognize a particles’ picture behind it. Particles (point
masses) is the gift of Newton’s classical mechanics. Corpuscular picture of light made it possible
to Planck and Einstein to pioneer quantum mechanics. Some of particle-based programs enabled
to link different fields of science, to explain phenomenology on a simpler (particle-based) level.
Such are the achievements of Gibbs, Boltzmann, Hilbert and Enskog who linked thermodynamics
and fluid dynamics to the particles’s dynamics. Some others programs still require further effort
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as, for example, eddy viscosity models of fluid turbulence dating back to Prandtl, again in a
vein of particles.

Computational physics is a large laboratory where particles’ picture as a guiding idea for
creation of numerical methods evolves in a striking variety. Computational physics is led by
efficiency and accuracy of computations, thus, in many situations ‘good’ computational particles
are only far relatives of the ‘true’ physical particles. These notes are about the lattice Boltzmann
method for solving partial differential equations. Lattice Boltzmann evolved from a particles’
picture of lattice gas automata, something which only barely resembles physical particles. For
the history of the lattice Boltzmann the reader is directed to the book [1]. We believe that
many of the readers of this paper have either heard of the keyword ‘lattice Boltzmann method’
or have their own experience about using a lattice Boltzmann schemes in some problem. This
paper intends to shed some light on the lattice Boltzmann method for a newcomer.

The best way to explain a method or idea is to address a small understandable problem, and
to consider in a full detail how the method works to solve it. Certainly, one should not forget
that once things are cleaned up on the level of a toy problem, different new ideas might be (and
usually are) required when stepping into a ‘real’ problem. Yet, intuition gained from solving
small problems might be of substantial help.

We have chosen the simplest possible equation - linear advection equation in one spatial
variable. While this is indeed a simple equation, it is often used to discuss numerical methods
for solving partial differential equations. The problem of creating accurate and economic nu-
merical schemes for solving the linear advection equation is not simple at all. In this paper we
systematically consider the lattice Boltzmann scheme for solving the linear advection equation.

Linear advection equation is used as a showcase in order to highlight some elements of
the lattice Boltzmann schemes, especially those which contribute to certain, probably unique,
features of these schemes. Presentation therefore differs significantly from other expositions
of the lattice Boltzmann method. After introducing the lifting of the advection equation to a
kinetic system with three velocities (Sec. 2), and explaining how to tune the equilibrium in order
to recover the advection equation from it (Sec. 3), we proceed directly to the heart of the lattice
Boltzmann schemes, the over-relaxation mechanism of time discretization (Sec. 4). We discuss
this in detail, and also explain how entropy enters the game in order to control positivity of
particle’s populations (Sec. 6). We present a new asymptotic expansion of the entropy estimate.
A sample code is provided in order to illustrate how it looks in practice to write the lattice
Boltzmann code, and how to incorporate the entropy estimate into it.

In the first place, what we tried to do is a demo-tour over the lattice Boltzmann terrain
without making it too technical. We also tried to make it possible to a reader to compile a concise
glossary of notions used in kinetic theory, all of these notions are illustrated with simple examples
of usage. Eventually, we believe that most of the lattice Boltzmann method as a numerical
technique is covered in this paper in such a way as to make it possible to read and understand
current technical literature on the subject. A ‘gain-oriented’ reader may ask: What do we gain
from the lattice Boltzmann method for solving the linear advection equations? Eventually, the
lattice Boltzmann approach delivers a simple second-order scheme for these equations, and, what
is mostly important, without adjustable parameters and with a controlled amount of diffusion.
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The latter is maybe most significant: The amount of diffusion is not dictated by the grid, as
in many other methods, rather, by the hydrodynamic limit of the kinetic model. We did not
attempt any extensive comparison of the lattice Boltzmann scheme with other methods, though
some pictures at the end of the paper present also the Essentially Non-Oscillatory (ENO) scheme.
Generally speaking, lattice Boltzmann method provides a reasonable alternative to these more
sophisticated higher-order schemes.

Finally, we did every effort to make the presentation self-containing, thus, references are kept
at a minimal level.

2 Free Flight and Discretization

2.1 Free Flight

A point mass m moves with a constant velocity v along a line. This motion is described by
Newton’s equation:
m = 0, (2.1)

or, equivalently, with Hamilton’s equations:

z=p/m, p=0. (2.2)
Given the initial position at the time ¢ = 0, at any time ¢ we have,

z(t) = x(0) + vt. (2.3)

A cloud of noninteracting particles is characterized by its density p(x,t). By the physical sense
of this quantity, p is a nonnegative function of space x for any time ¢. The advection of the
(passive scalar) density field p(x,t) by a flow of constant velocity v is described by the linear
advection equation:

Op(z,t) + vOyp(z,t) = 0. (2.4)

Equation (2.4) (also, advection equation, free flight equation, ballistic equation...) is the
simplest instance of the Liouville equation!.
Another very useful way to write (2.4) is the following:

atp(x7t)+amj(xat) = 0, (25>
j(.’IJ,t) = ’Up(.%’,t).

TFor Hamilton’s equations, ¢; = OH/dpi, pi = —0H/dq;, i = 1,..., N, where H is a Eamiltonian (energy), the
Liouville equation for the phase space density p(qi,...,qn,p1,...,PnN,t) reads: Owp + II.V:l[(GH/@pi)((?p/aqi) —
(0H/0q:)(0p/0p;)] = 0. Liouville introduced this equation while solving a formal problem of how to put a linear
partial differential equation into correspondence with a set of ordinary differential equations of first order (not
obligatory Hamilton’s equations). A century after that, Liouville’s equation became a cornerstone of statistical
mechanics.
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Equation (2.5) is a conservation law and was formulated with the help of an intermediate object
- the flux j.

Equation (2.5) tells us that the rate of change of the density of particles in an infinitesimal
volume equals the divergence of the flux of particles. That is, particles are neither created nor
destroyed but the change of their amount in an infinitesimal volume is simply due to the fact
that particles flow in and out this volume.

The conservation law cannot be solved because it contains two unknowns, p and j. The
situation is improved by the constitutive equation (2.6) which defines how the flux depends on
density. As the name suggests, in the course of time, the density and the flux vary, depending
on the initial conditions but whatever this variation is, the relation between the flux and the
density obeys (2.6).

Given the density at the initial time ¢ = 0, p(x,0) = po(x), the analytical solution at any
time is embarrassingly simple:

if p(z,0) = po(x), then p(x,t) = po(x — vt).

However, it is much more difficult to solve the advection equation numerically: ‘There is no such
thing as a perfect advection scheme — only differing degrees of badness’ [2]. Any discretization
scheme of space and time introduces numerical diffusion that tends to smooth the discontinuities
and undesirable dispersion behavior creating waves that move with velocities that depends on
their wavenumber. The literature for the numerical solution of the advection equation is vast
and different approaches have been devised to cope with these difficulties.

In this paper, we illustrate how ‘another particles’ picture is used to solve numerically the ad-
vection equation in a way that minimizes the effect of discretization at the lowest computational
cost.

2.2 Kinetic Representation of Free Flight

For simplicity we consider first the one-dimensional case. Let us consider fictitious particles
which we will call ‘quarks’. This will have some (linguistic) analogy to the composition of
elementary particles out of quarks. Quarks are not observed separately, so there will be no point
to think of them as individual particles. In the one-dimensional case, there are three quarks,
right moving (+), left moving (—), and stationary (0) with velocities ¢, 0 and —c, respectively.
Quarks are characterized by their (nonnegative) populations, f_(z,t), fo(z,t), and fi(z,t). The
density of the real particles is the mean of the populations of quarks,

p(x7t) :f_($,t)+f0(.%',t)+f+(l',t). (27)
The aim is to define the dynamics of the quarks in such a way that in the long-time large-

scale limit we obtain the advection equation as closely as possible. The dynamics of the quarks
populations is a combination of a free flight and a relaxation to equilibrium. The simplest set
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of kinetic equations can be written as:

Ouf (1) = cDuf (2,6) = —= (f-(e.t) — F9I (),
dufolart) = — (ol 1) ~ (1)),
Oufilet) 4 cefelwt) = — (Felat) — F9(f(,1))) (2.8)

The free flight operators on the left hand side are the same as in equation (2.4), while the right
hand side describes relaxation to the equilibrium fﬁ?o, +- These equilibrium populations are a
major part of the construction, and will be specified below. The parameter 7 > 0 has the
dimension of time, and is the relaxation time to equilibrium. Thus, the quark dynamics (2.8) is
irreversible in time; the relaxation terms break the time symmetry.

For brevity, we can use a short-hand notation for the three-component vector of the popu-
lations,

f(iU,t) = [f_(.T,t),f0($,t),f+($,t)]. (29)

The dependence of the equilibrium functions ff‘h 4 on space and time is mediated by the

dependence on the density p. In other words, we assume (first) that the equilibrium is a function
of p:

o), fo" (), 1 (p)- (2.10)

To this end, we have not specified the dependence of the equilibrium on the density, and tuning
this dependence in a proper way will be the goal of the construction. However, one crucial prop-
erty of the equilibrium must be highlighted from the very beginning: whatever the equilibrium
we choose, it must satisfy the consistency condition:

“p) + fol(p) + f£4p) = p- (2.11)

This should hold for any value of p: if we consider the equilibrium at any given p and compute
the corresponding density, we must get back the same density. Symbolically,

plf*4(p)] = p, (2.12)

where p[f] is the operation (2.7).

For now, assume that the equilibrium functions (2.10) are given. Then (second), in order
to evaluate the right hand sides of the kinetic equations (2.8) for the population vector f(x,t),
one needs to compute the density p(z,t) corresponding to this vector (according to (2.7)), and
substitute the result in the equation for the equilibria (2.10). Symbolically, we write this sequence
of operations as follows:

fx,t) = p(f (2, 1)) — [ p(f(2,1)) = FSf (2, 1)) (2.13)

With the relation (2.13), the set of equations (2.8) is the simplest example of the Bhatnagar-
Gross-Krook kinetic (BGK) model. The meaning of the right hand side of (2.8) (the BGK
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collision integral) is the following: the “current” populations f(z,t) “see” the corresponding
equilibrium f°4(f(z,t)), and tends to it according to the right hand side of (2.8) with the rate
proportional to the deviation of f(x,t) from fei(f(z,t)).

The equilibria at various densities are the stationary points of the relaxation term: the right
hand sides of equation (2.8) become equal to zero if we substitute

f—,0,+ = fi?0,+(p(f))u

and use the consistency condition (2.11).

We have assumed that equilibrium depends on the locally conserved quantity (the density
p). The term ‘local’ reflects the fact that in equations (2.8) and (2.13), f°? depends only on the
values of density at position x and time ¢, but not on its derivatives. This is one of the most
basic features of models like (2.8). In order to check that density is indeed conserved by the
dynamics, we add the three equations (2.8) to obtain an equation for the density

Op + 05 = RHS, (2.14)
where we introduced the momentum flur of the quarks j,

j(mvt) = _cf—(xvt) + cf+(x7t)‘

The right hand side, RHS, is the sum of all the terms in the right hand side of equations (2.8)
and describes how density is changing by the BGK “collisions”

_% {(f=(@,t) = FUf(@,1)))

T (ol t) — S ) + (£ (,8) — £ F 1)}
= (@ 0) + folt) + Fila)
(P (1) + S5 (1) + £ (1))}
= (1)~ pla, 1)} =0 (2.15)

RHS

The crucial role in the evaluation is played by the consistency condition (2.11) which implies
that the density p is a locally conserved quantity, mass is neither created nor destroyed during
relaxation to the local equilibrium.

It is important to distinguish between the cases when the density in the equilibrium is
constant, and when it varies in the space. In the first case we talk of global equilibrium (or
uniform equilibrium, or simply equilibrium), in the second case one talks of the local equilibrium
(or non-uniform equilibrium). The difference between these two notions is crucial: Global
equilibria are solutions of the kinetic equation, whereas local equilibria are not. In other words,
the global equilibrium annuls both the right and the left hand sides of the kinetic equation,
whereas the local equilibrium only the right hand side. So, if we take as the initial condition the
uniform equilibrium, no further change of this state will ever occur. On the contrary, if we take
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a local equilibrium with a non-uniform density as the initial condition, its spatial derivative will
be the driving force which will move the solution out of the local equilibrium.

Under certain assumptions we will be able to compute the solution of the kinetics equations
in the next section. But before doing this we introduce a slightly more general and compact
notation. We denote by ng the number of discrete velocities (ng = 3 in our model), and label the
discrete velocities and the corresponding populations by an integer i, i = 1,...,n4. In our case
we can assign, for example (though any other assignment will also do) 1 — —, 2 — 0,3 — +.
In this notation, the kinetic equations (2.8) read:

Oufi(w, 1) + 02 i, 1) = == (il 0) = S%(p(F 1)), (216)

where, according to the assignment adopted, ¢; = —¢, c2 =0, c3 =c.

3 Hydrodynamic Limit

3.1 Invariance Equation and Its Solution

In order to complete the construction of the kinetic equations (2.8) we must specify the equi-
librium. This requires an analysis of the kinetic equation to obtain information about the
equilibrium expressions that lead to the constitutive equation (2.6).

It will be slightly more instructive to rewrite the kinetic equations (2.8) using three linear
functions of the populations instead of the three populations:

plx,t = f_<$,t)+f0(.%',t)—|—f+(l‘,t),
j(l‘,t) = —cf_(a:,t)+cf+(:1:,t),
P(z,t) = AEf_(x,t)+Af(x,t). (3.1)

The density and the momentum flux were already introduced above. The third function, P, is
the flux of the momentum flux, or the pressure. By differentiating in time the functions (3.1),
and substituting the time derivatives of the populations from the kinetic equations (2.8), we
arrive at the following system of equations (model A):

Op+0:j = 0, (3.2)
. 1
O + 0P = ——(1—J*), (3.3)
1
P+ 20, = —=(P = P), (3.4)

Linear functions of the populations (3.1) are called moments, and the representation of the
kinetic equations (2.8) as the set of equations (3.2), (3.3) and (3.4) is termed the moment
system. The set of three kinetic equations (2.8) is completely equivalent to the three equations
of the moment system: it is just a matter of convenience (or taste) which one to use in the
analysis (but not for the numerical implementation!).
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Let us now use our target constitutive relation (2.6) into the equation for the momentum
flux (3.3):
J = wp. (3.5)

What we expect to happen is that, if the relaxation time 7 is small, the right hand side of
the momentum flux equation (3.3) will dominate all other contributions, and, to leading order,
j ~ vp. That is, if the relaxation of j to its target value is fast, then j is slaved by the dynamics
of p on a larger time scale. The constitutive equation (2.6) will be satisfied dynamically.

For the pressure, P4, we can infer that it will also be some function of p (since the equilibrium
populations depend solely on p). We can even assume that P°? will be proportional to p, but
we are interested in how it should depend on the parameter v (the constant advection velocity)
as well.

In order to obtain the constitutive relations for j(p) and P(p) which emerge as the result of
the dynamics at 7 < 1, we need a way to zoom into the long-time large-scale dynamics of (3.2).
Since we are led by the idea of slaving, the constitutive relations j(p) and P(p) mean that j and
P will not have independent dynamics. Instead, their time derivatives will be dictated by the
time derivative of density. We then compute the time derivative of j and P by the chain rule:

. (d
O = (dp)i%m

dP
@P::(WJQA (3.6)

Substituting these expressions for the time derivatives of the constitutive relations into equations
(3.3) and (3.4) we obtain:

1 .
—0:P — —(j —vp),
-

~~
S
~——
&
<=
|

—é@j—%P—Pm) (3.7)

7N
Q| &
Ok
N—
&
e
Il

Since the time derivative of the density is given by the conservation law (3.2) the latter system
can be written as:

dj 1
- —Ux ] = - $P e Vi ’
<@>(3J) 0 —(J —vp)
dP 1
— ) (=8yj) = —c?0,j — =(P — P*). 3.8
() (oui) = =0 - 1P - P (3.5)
Finally, the spatial derivatives of the the momentum flux and of the pressure can be again

computed by the chain rule:
di\? dp 1,.
—Qm>8w = —<W)aw—70—vm,
dP dj o (dj 1
—— | =0 = - — | Ogp — —(P — P9, .
<®><@>8p C(@>ap - ) (39)



9 1. V. Karlin, S. Ansumali, C. E. Frouzakis, S. S. Chikatamarla / Commun. Comput. Phys., 1 (2006), pp. 1-45

The system of relations for the constitutive relations (3.9) is known as invariance condition and
should be read as follows: For any spatial dependence p(x), functions j(p) and P(p) should be
such that they satisfy (3.9). What is very important in (3.9) is the lack of time derivatives of j
and P which have been eliminated in favor of the spatial derivatives.

The invariance condition is an exact statement (identity) about the constitutive relations:
any constitutive relation j(p), and P(p) has to satisfy (3.9) at least to some order of accuracy.
However, the invariance condition itself does not provide the constitutive relation. In order to
get the answer, we must consider it as an equation (invariance equation [4]) for the unknown
constitutive relations j(p) and P(p), and try to solve it. This solution can be obtained ap-
proximatively by a perturbation method, exploiting the smallness of the relaxation time 7 and
expanding the constitutive relation in power series

i o= O 44204
P = PO 4pMW) 4 2p@ 4 | (3.10)

Upon substitution of the expansion (3.10) into the system (3.9), we equate the terms of each
order in 7. The leading order terms, j(® and P, must cancel the 1 /7 terms in the right hand
side of equations (3.9). This gives:

;O = vp, PO — pea (3.11)
Based on linearity and dimensionality arguments, we now assume that
P*Y(p,v) = PO (p,v) = pU*(v), (3.12)

where the velocity U may be a function of v that will be specified below. In our constant
advection velocity case, this dependence is not so crucial, but we shall keep it for the general
case. The equilibrium pressure (3.12) is the last input needed to establish the constitutive
relations: once the leading-order terms in the expansion (3.10) are specified, all the subsequent
terms are computed recurrently from the invariance equation. The first-order term j() can be
obtained from the first equation of system (3.9),

2
a;© dpP©) 1)
_ - - 1
( i Drp i Aep — 3, (3.13)
resulting in
iV = — (U?(v) — v%) 8up. (3.14)

The approximate constitutive relation for the flux, up to linear order in 7, is then:
j =350 47 :Up—T(UQ(’U) —112) Ozp- (3.15)

With the constitutive relation (3.15), the final equation for the density of the ‘true’ particles
(3.2) becomes:
Otp +vdpp — D(v)92p = 0. (3.16)
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This is the advection-diffusion equation with the diffusion coefficient D(v),
D(v) =7 (U?*(v) —v?). (3.17)

The method used to derive the advection-diffusion equation (3.16) by the expansion in 7 is the
simplest instance of the Chapman-Enskog method [5] of solving the invariance equation associated
with the kinetic equation ¥

It is crucial that the diffusion coefficient to be nonnegative. Then equation (3.16) is well-
behaved at least, it will show the propagation of the density profile p together with its smearing.
The larger the diffusion coefficient, the more the smearing. However, if D is negative, this
immediately leads to anti-diffusion, instead of a smearing we will see a sharpening of the peaks
in the profile to the extend it will become non-smooth, not differentiable and so on, something
we would like to avoid. The diffusion coefficient is an example of a transport coefficient, and it
reflects the fact that we have now quarks which brought in an irreversible behavior.

It is crucial that the diffusion coefficient is nonnegative, and, therefore, the velocity U (v)
must be greater than the velocity of the particles v. The simplest guess for U(v) would be to
write

P = 2p + pv?. (3.20)

This form of the equilibrium pressure contains the simplest hydrostatic pressure, p = c2p, where
¢s is the speed of sound. The unknown velocity U(v) in the equation (3.12) is then

Uv) = sV 1+ Ma?, (3.21)

where Ma = |v|/cs is the Mach number. With this choice, the diffusion coefficient D in the
advection-diffusion equation becomes independent of the velocity of the particles,

D = rc. (3.22)

However, we could also address other possibilities, not obligatory leading to (3.22), since a
diffusion coefficient independent of v is not our particular goal here.

What remains is to find equilibrium populations which respect all these properties. Con-
struction of the equilibria is, in general, one of the most important ingredients in the lattice

fFor the sake of completeness, let us also find the first-order solution for the pressure P® . From the second
equation in (3.9), we obtain

dp© dj(O) 5 dj(o)

Oup=—c2 “L— 9yp—PWY. 3.18
i ap P i P (3.18)

Substituting zeroth-order expressions (3.11), we find

PY =u & —U?(v) 8up. (3.19)
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Boltzmann method. We will not discuss in this paper how equilibria are derived, rather, will
use one of the possibilities [6]:

2p v2
eq _
follp,v) = 3[2— 1+g )
2 2
eq _ plue—c 1.
f+ (p,U) 3 [ 203 + + Cg ’
2 2
eq N N 3.23
where the value of the speed of sound c¢g is
= —. (3.24)

The equilibrium pressure corresponding to the equilibrium populations (3.23) reads

2
P = pe? (21 1+ %2 - 1) , (3.25)
S

while the corresponding diffusion coefficient D as a function of Mach number is as follows:
D=1 (2 1+ Ma? — (1+ Maz)) . (3.26)

We remark that the diffusion coefficient (3.26) differs from (3.22) only by the terms of the order
Ma? and higher:

1
D=1 (1 — ZMa‘l +.. ) . (3.27)

Thus, for a low Mach number flow (Ma < 1) the difference between the diffusion coefficients
(3.26) and (3.22) is negligible.

Above, we have used the moment system to study the long time dynamics but the same
result can be derived directly from the kinetic equation (2.8). For the sake of completeness, let
us present the corresponding derivation in Appendix A.

The construction of the kinetic equation for the quarks is now complete: Kinetic equations
(2.8) with the equilibria (3.23). The kinetic equations lead (if the relaxation time is small) to the
advection-diffusion equation. The advection-diffusion equation is a very useful physical model,
but our target equation is actually the advection equation (2.4). Thus, we need to find a way
to numerically attain as small as possible values of the diffusion coefficient. This will be our
primary goal in the next section.

Before closing this section, it should be noted that there are certainly other possibilities of
constructing quark models. Indeed, we could start with a set of different moment equations,
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tune them the way we want, and check whether it is possible to write them down in the form of
kinetic equations for some different populations. For instance, above we started with a system of
kinetic equations for three populations, but even a simpler model with just two fields is possible
(model B):

atp + 84&7 = 07
. 1, .

O +0ep = ——(1 = vp). (3.28)
Model B (3.28) is simpler than the Model A, it has one field less, and thus we do not need to care
about the pressure. However, important question to ask here: For the Model A, we know that
one can transform it into a ‘particle’ picture. In fact, we obtained the set of moment equations
from the kinetic equation (2.8). Is it possible to create some particles also for Model B? What
should we do in order to find this out?

In order to answer this question, let us drop the relaxation terms (the right hand sides) in

(3.28), and write it in a matrix form:

a[5]+ [0 1]-10] )

The matrix associated with the spatial derivatives terms has the form,

(Vo)

It is symmetric and therefore diagonalizable:

(0 7)

Now, the diagonal elements in the latter matriz can be treated as velocities of some fictitious
particles, and so we can recast Model B into a kinetic setting with some other populations with
velocities ¢ and —c¢. The motion of these particles follows characteristic directions, and the idea
to find and use characteristic directions dates back to Godunov and famous Godunov schemes.
It can be easily shown that the diffusion coefficient in this case becomes D = 7(1 — v?). Now,
if one wants to make the diffusion as small as possible, then why not to consider a model where
the diffusion coefficient becomes equal to zero? For example, we could consider the following
Model C:

8tp + ax] = Oa
. L .
Orj +v20p = —;(] —vp). (3.30)

The matrix associated with the spatial derivatives is:

ol
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Its Jordan normal form is not diagonal but is Jordan cell:

Rt

So, it is impossible to recast Model C into a kinetic equation for any particles.
Summarizing, our three models lead to the advection-diffusion equation with the following

diffusion coefficient:
rc2 + O(Ma?) Model A

D= 7(1-1? Model B (3.31)
0 Model C

We are interested only in Models like A and B, because the discretization then has two crucial
advantages. Below, we shall continue discussing Model A with three velocities.

4 Over-relaxation

4.1 Implicit Made Explicit

In the previous section, we have devised the set of kinetic equations for fictitious particles
(quarks) which recovers the advection-diffusion equation. Equation (3.23), suggests that we can
factor the equilibrium function in the following way:

FEA) = p(Hei() = [f- + fo+ f+lei(v). (4.1)

Here i takes values —, 0, 4+, and functions ¢;(v) are the equilibrium populations at unit density,

p—(v) + po(v) + 4 (v) =1, (4.2)

and for the equilibrium (3.23) they are:

2 v?
— 2l 1+2
SOO(/U) 3 + cg ?
1 [ve— c? v?
= = 1+ —
§0+(’U) 3 9 2 + + Cg )
1 ve + 2 v?
_ = - |- 14+ — 4.3
o) = |51+ 5 (4.3

Furthermore, we shall denote, when necessary, the three-dimensional vector of populations f as

flx,t) ={fj(z,t)}. (4.4)
For example, the shift of the arguments x and t in the population vector will be denoted as:

{f-(x —cdt, t + 0t), fo(x,t + 6t), f1(z + cot, t + 0t)} = {fj(x + ¢;0t, t + 0t)}. (4.5)
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The system of kinetic equations then reads:

8tf—(x7t) _Caxf—(xvt) = Q_({fj(l‘,t)}),
8tf0(m7t) = Qo({fj($7t)}),
atf+($7t)+caxf+($vt) = Q+({fj($,t)}),

8
~

fj( )@*(U))v

8

I 9

ﬁ
~—
|
=

Q = U (

<
Il
-

M

Qo = —%(fo(il%t)— fi(x, t)po(v)),

<
Il
R

NE

Qi = (o) = 3 ilw 0ps(v)) (16)

<.
Il
—_

Now, we have a set of three partial differential equations (4.6) and two natural time scales in the
problem, which must be respected for stable and accurate simulations. One of the time scales
is associated with the free flight of the quarks, and the other with relaxation. The relaxation
time scale 7 is much smaller than that of the free flight. Such a situation when there are two
or more very different time scales in the problem is usually referred to as stiffness. In order to
have an efficient simulation scheme for hydrodynamics, it is desirable to follow the time scale of
the free flight, that is, we should be able to use a time step dt with d¢ > 7. In this section, we
describe such a discretization scheme, known as over-relazation.
Integrating (4.6) for the time ¢, we obtain:

ot

filx + ciot, t 4+ 6t) = fi(z,t)+ | Qi ({fj(x+c¢js,t+s)})ds. (4.7)
0

The time integrals of the relaxation terms can be evaluated with the trapezoidal rule $:
ot
filz + bt ¢+ 6t) = fi(z,t) + 5 [Qi ({£i(@,0}) + Qi ({fi(x +¢ot,t +81)}) | +O(8t%), (4.8)

with the accuracy of the solution being O(5t3).

At first glance, this approximation does not seem very useful because the relationship between
populations at two different times is implicit. In order to create an efficient explicit numerical
scheme, we introduce a new set of functions g;,

ot

gi(z.t) = filz,t) = S Qi ({fi(z,1)}) . (4.9)

R
$Trapezoidal rule for evaluation of an integral, tT f(s)ds = (1/2)(f(T)+f(t))(T—t), assumes a linear interpolation
between the ‘present’ (¢) and the ‘future’ (T')
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Although we shall discuss this and related transformations in more details below, one remark
should already be made here: While we started with populations f; (that is, f; are non-negative
functions), functions g; (4.9) are not, strictly speaking, populations. The sign of the collision
integral @; can be positive (and indeed at least one of Q; must be positive if f # f°4 because
@;’s must sum up to zero by the mass conservation). So, if §t is fixed at some value, we can get
negative values of g; and in general we do need to worry about this. We will return to this later.

It should be noted that local conservation is the same for f, and g. Indeed, by the conser-
vation of mass,

ng
> Qi(f)=0
i=1
Hence,
ng ng
S =g
i=1 i=1
implying that at equilibrium both variables are equal,
=g
4 (2

For the BGK model, we find upon direct computation (we apply the same notation convention
to the three-component vector function g):

ot
@) = (14 57 @i (7621, (4.10)
In terms of the variables g, equation (4.8) (omitting the O(3t3) errors) can be rewritten as:
@+ et t 4+ 1) = ga( 1) + (oo ) Qi ({5, 1)) (4.11)
gi\T  C;01, = gi\ZT, o + ot i \195\ T, . .

Expanding the BGK relaxation terms Q;, equation (4.11) becomes:
gi(x + ¢t t + 0t) = gi(z,t) —w [gi(x, t) — gfq(g(m, t))] , (4.12)

where w (discrete inverse relazation time) is a non-linear function of the inverse relaxation time

1/7 and the time step dt:
26t

21 + 6t

At any fixed 0t, the range of w is the interval [0, 2] (linear stability interval), and we have the
following asymptotic limits for a fixed dt:

w(r, ot) = (4.13)

w— 0 when 7 — oo, (4.14)

w—2 when 7 — 0.
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The diffusion coefficient can be written in terms of §¢ and w by solving (4.13) for 7:

T:5t<1—1). (4.15)

w 2

The general formula for the diffusion coefficient (3.17) then becomes

1 1
D=6t=—=)(U%w) —?). 4.16
(2-3) @*w-w) (4.16)

Equation (4.12) is one of the key results about the numerical implementation of the lattice
Boltzmann models. We conclude this section with a discussion of some of the features of the
discrete-time equation 4.12.

4.2 Discussion of the Over-Relaxation

It is a point here to dwell on some of the features of the discrete-time equation (4.12). A
remarkable property is its superficial similarity with the first-order Euler method, and it is very
instructive to make a clear distinction between them. The Euler method, as applied to the
evaluation of the integral in (4.7) gives:

filz 4 cit, t +6t) = fi(w,t) +5tQ; ({ f;(,1)}) + O(5t?), (4.17)

and the corresponding scheme reads:

fz(m + ciét,t"‘ 6t) = fi(xvt) - ?(fl(ﬂf,t) - ffq(f(ﬂf,t)), (418)

or

fi(z + ot t 4 ot) = (1 - (j_t) fiz,t) + ?ffq(f(x,t)). (4.19)

The latter form of the Euler scheme is particularly revealing because the right hand side is noth-
ing but a convex linear combination between the current population f(x,t) and the equilibrium
corresponding to this f(x,t). 9. This sets a very severe restriction on the ratio of the time step

to the relaxation time:

LAY (4.20)
.

If we want to achieve minimum possible values of the diffusion coefficient (proportional to 7),
then we also must decrease the time step ¢ in order to respect (4.20).

YThe convex linear combination between two vectors, f and f®, is the segment between them, I(a) = (1 —
a)fm +af? where the parameter o takes values from 0 to 1. If all the components of the vectors f(l) and f<2>
are nonnegative, then also all the components of any of the vectors [(«) are nonnegative.
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On the other hand, our second-order accurate scheme (4.12) can be written as a convex
linear combination of a different pair of functions:

gi(x + ¢t t + 6t) = <1 — 27_(2 &) gi(x,t)
1O (g g, 1)) — gi 1)) (4.21)
21 + 6t 7 ’ B '
or,

gi(x + c;6t,t + 6t) = (1 — B) gi(w,t) + Bg™™ (g(, 1)), (4.22)

where
B(r,t) = — (4.23)

27 + 0t

Here, we have introduced another vector g™ (this is the simplest case of the mirror state):

g™ = 2¢%(g) — g. (4.24)

mir

Now, as long as g™ is a population vector, the outcome of the right hand side in (4.22) will
also be a population vector if 0 < § < 1, and

ot
<
27 + 6t —

(4.25)

We can now see that small values of the diffusion coefficient can be attained because the time
step 0t does not need to be small as 7 — O:

f—1 as 7— 0 forany dt! (4.26)

Using the parameter [ instead of w, the diffusion coefficient (4.16) is written as:

D=t <21ﬂ - ;) (UQ(U) - U2) . (4.27)

The time step dt is no longer restricted to be smaller than the relaxation time 7, and we have
achieved our desired objective of obtaining a discrete kinetic equation with a large time step.
In practical terms, this means that we have an explicit second-order accurate numerical scheme
(4.12) with the computational cost of a first-order scheme. This scheme is called over-relazation.
The reasoning for this terminology is rather obvious: The solution to the space-independent
kinetic equation

0f =~ (f — 1. (4.25)

with the initial condition fi" is:

F(t) = (1 - e_t/T) Fin et/ fea, (4.29)
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Geometrically, we can consider a ray with the origin at f™ and directed towards f¢4:
(@) = (1—a)f"+af, a>0.

The trajectory of this solution is the segment of this ray between f™ and f°d. Starting at fi,
it is not possible to cross along the ray “over” the equilibrium, since f — 4 as t — oo. This is
why the first-order Euler (4.19) scheme which refers to the same segment between f* and fe4
is sometimes called ‘under-relaxation’.

On the contrary, the right hand side of equation (4.22) suggests that the segment between
™ and f°9 is only half the segment between f™ and f™ because f°d corresponds to 3 = 1/2.
All the points on the ray for 5 > 1/2 are “over-relaxed” states, and the mirror state is mazimally
over-relaxed.

From this discussion it becomes once again clear that over-relaxed states cannot be obtained
from a ‘classical’ relaxation, and one has to be careful in interpreting them as populations because
they may become negative-valued even if the initial state and the equilibrium are populations.
We shall explain in detail in Section 6 how to extend the present over-relaxation scheme in order
to guarantee that the over-relaxed states are also populations. Before doing so, we will discuss
the spatial discretization, without distinguishing between over-relaxed states and populations.

5 Advantage of the Lattice

5.1 Lattice Boltzmann Method

In the previous section, we have established a promising second-order accurate in time numerical
scheme for solving the kinetic equations. Now we need to pick the time step dt in equation (4.12).
To this end, we notice that we can endow the line with a lattice structure with spacing c, and
assign the grid points at the nodes of the lattice. That is, we apply the rule:

if x is a grid point, then x + ¢ are also grid points. (5.1)
For such a grid, the time step dt is chosen so that any grid point is matched by the propagation,

i.e.
ot = 1. (5.2)

Thus, the kinetic equations (4.12) become the following lattice Boltzmann scheme
QZ(IE + Ciat + 1) = gl(:l:a t) - w(.gi(l'a t) - gjq(f(l‘a t)))? (53)

or, in terms of the mirror state, g™ = 2¢:(g) — i,

gi(z +ci,t+1) = (1= Bgi(z, ) + Bg™ (9(x,1)). (5.4)
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The diffusion coefficient is given by the formulae of the previous section for 6t = 1 according
to (5.2): equations (3.17) and (4.27) become, respectively,

D = (1 - 1) (U2(0) —v), (5.5)
D - <1 _ ;) (U2(0) —v?) (5.6)

Note that this scheme is linear. We stress that it is written not for the populations but for the
functions g; (4.9) which might be not populations at all. With this said, we will adopt calling
them populations in the further description (as it is done in the lattice Boltzmann literature).

The implementation of the lattice Boltzmann scheme is based on repeating the sequence of
two operations consisting of the propagation step and the relaxation step:

e Propagation step. Populations of the links ¢; are moved to the corresponding adjacent
links:

gi(x,t) — gi(z + ¢, t), (5.7)

resulting in a repopulation of the lattice, g7 (x,t).

e Relazation step. Populations g} (z,t) are equilibrated by the over-relaxation rule:
g5 (@,t) — (1= B)g; (w,t) + Bgi"™ (g* (. 1)). (5.8)

This can be equivalently rewritten

gi (x,t) = g (2,t) + af(g; (9" (2, 1) — g"(x,1)), @ =2. (5.9)
We shall use the latter form of the relaxation step below in the sample code, and earmark
the notation « for the maximal over-relaxation step. Later on we shall see how the entropy
estimate enhances o but in the lattice Boltzmann scheme right now it is just a constant,

«a = 2. The value of the parameter § is chosen between 0 and 1 so as to reproduce the
desired value of the diffusion coefficient (5.6).

Thus, if the set of the discrete velocities can be matched to a regular lattice, and if the time step
is chosen as (5.2), no further error is introduced by the spatial discretization of equation (4.12).
The lattice Boltzmann scheme can be thus called second-order accurate in time, accurate in space
method for solving the kinetic equations, and the implementation of the algorithm (5.3) becomes
extremely simple on serial as well as on parallel computer architectures. However, the key
ingredient in the algorithm is the over-relaxation rather than the lattice itself. The lattice just
provides an important and very desirable advantage. In a sense, the ‘infinitely accurate’ spacial
discretization is even an ‘overkill’ because the accuracy of the scheme is anyway dictated by the
second-order accuracy of the temporal discretization. Moreover, in hydrodynamic simulations,
it is not always possible to map the computational domain on a regular lattice (e.g. in the
presence of internal boundaries), and following the discretization of the particle’s velocities
while discretizing space is not always optimal.
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5.2 Lattice Boltzmann Code and Simulation

Implementation of the lattice Boltzmann scheme for the transformed population consists of two
repetitive operations, namely, the collision and the propagation step. Apart from these two
operations, one also needs to apply the boundary conditions at the appropriate lattice cites. A
pseudo code for the current LB scheme would look like:

Initialize the lattice with equilibrium population, f¢ = p™p(v™™),
Loop for N time steps

{

Perform relaxzation step (5.9) at each lattice cite;

Propagate populations(5.7) to their neighboring lattices;

Apply periodic boundary conditions;

}

Perform the post processing on pressure and velocity data.

The most efficient data structure for storing the populations would be a multi-dimensional array
with the innermost dimension (contiguous data) used to store populations at one lattice cite (i.e.
f[3][Nx]).The propagation step can be combined with the boundary conditions(periodic in the
current case). A C realization of it would look like

void advect( double f[3][Nx] ) {
int i;
double temporary_left,temporary_right;

temporary_right = f[1] [Nx-1]; /* For periodic boundary condition */
temporary_left = f£[2][0];

for ( i=Nx-1; i>0; i-- )
{
f[11[i] = £[1]1[i-1]; /* advection for direction ’right’ */
}
for ( i=0; i< Nx-1; i++)
{
f[2][i] = f[2][i+1] ; /* advection for direction ’left’ x*/
}

f[1][0] = temporary_right; /* Complete periodicity */
f[2] [L-1] = temporary_left;
}

Since the propagation step involves simply a transfer of the populations from one lattice cite to
another and the boundary conditions are applied on only a small fraction of the lattice nodes,
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the relaxation step is the only computationally intensive part of the algorithm. The task is
further simplified because of the locality of the relaxation process. A simple C realization of the
relaxation step would be as follows:

void collide(double f[3] [Nx], double Ma, double beta ) {
int i;
double feql[3];
double rho,v,cs;
cs = 1/sqrt(3);
v = Maxcs;

for ( i=0; i< Nx; i++)
{
rho = f£[0][i] + f[1][i] + £[2][i];
feq[0] = 2#rho/3 * ( 2 - sqrt(l + Ma*Ma) );
feq[1] = rho/3 * ((v - cs*cs)/(2*cs*cs) + sqrt(l + MaxMa) );
feq[2] = rho/3 * ((-v - cs*cs)/(2*cs*cs) + sqrt(l + MaxMa) );

alpha = 2.0 /* setting the maximal over-relaxation */

f[0]1[i] = £[0]1[i] - (alphaxbeta) * ( f[0][i] - feq[0] );
f[11[i] = £[11[i] - (alphax*beta) * ( f[1]1[i] - feqll] );
f[2]1[i] = f[2]1[i] - (alphax*beta) * ( f[2][i] - feql2] );

¥

This lattice Boltzmann code can be ran with different initial profiles of p(z,0) like Gaussian
peak, square wave, hyperbolic tangent etc. Let us consider several examples.
Consider first the advection of a steep Gaussian profile,

p(x,0) = 1.0 + 0.5 * exp(—5000 * (z — 0.25)?),

with periodic boundary conditions. In the simulation presented in Fig. 1, the advection velocity
is v = 0.1, corresponding to Mach number Ma = 0.17, and the diffusion coefficient D = 5x 1078.
Long-time propagation (¢ = 4000 lattice units) does not show any significant distortions of the
initial profile.

The effect of the size of the discretization interval and of the diffusion coefficient on the L,
Lo and L, error norms can be seen in Fig. 2 after one return of the Gaussian to the initial
location (this is qualified as a very long time integration). It can be clearly seen that for low
enough diffusion coefficient, all three error norms follow the expected second-order accuracy.

The advection of hyperbolic tangent profiles,

p(x,0) = 1.0 4+ 0.25 * (1 — tanh((x — 0.2)/9)),
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Figure 1: Advection of the Gaussian peak with the speed v = 0.1 after ¢ = 4000 time steps. Diffusion
coefficient D = 5 x 1078, Grid size N = 800.

10
107 +
3
2
Z10° -
IS
i
o--oL,(D=109)
o--0L,(D=10")
100 L a--s L, (D=10) |
L, (D=10%
——L,(D=10%)
L, (D=10)
10° L - g
10* 10° 107

Figure 2: Error norms for the advection of the Gaussian peak after one period.
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Figure 3: Advection of the tanh profile (§ = 0.01) after ¢ = 4000. Diffusion coefficient D = 5 x 1075.
Grid size N = 800.

with variable thickness, §, were also computed with the lattice Boltzmann code. In this case,
zero-gradient boundary conditions (populations at the node 0 are taken from the node 1, and
populations at the node N are taken from the node N — 1) were used instead of periodic and the
errors after 0.5 time units were analyzed. In Fig. 3, propagation of the tanh profile with § = 0.01
is shown with the advection velocity is v = 0.1, corresponding to Mach number Ma = 0.17, and
the diffusion coefficient D = 5 x 1078, Again, the quality of the numerical solution to the
advection equation is very good.

The error norms for two profiles with decreasing § are shown in Fig. 4(a) and Fig. 4(b).
In both cases, second-order accuracy is recovered provided that the steep layer is adequately
resolved. In the steeper profile case, the error is insensitive to both values of the diffusion
coefficient considered and is determined by the amplitude of the oscillations close to the steep
increase.

As we can see from these examples, the lattice Boltzmann scheme runs stably, very low
values of the diffusion coefficients are achieved, and the quality of the result depends only on
the resolution of the steepest gradients of the initial density profile.

In order to discuss the oscillations caused by under-resolution, we consider the final case of
the advection of a square density profile,

oy [ 0L i 025w <04
pATE) = 1.0,  otherwise
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Figure 4: Error norms for the advection of the tanh profile after t=0.5: (a) 6 = 0.1, (b) § = 0.001.

with periodic boundary conditions. This is a somewhat pathological case, designed in such a way
that the derivative of the density profile becomes infinite at a point, no matter how fine is the
grid. This is clearly the case which will always be beyond the applicability of the hydrodynamic
limit whatever small the diffusion coefficient is taken. Small values of the diffusion coefficient
are again attainable, however, oscillations start growing at the discontinuities (see Fig. 5).

The error in this case is governed by the error at the discontinuities and, at best, it shows
first-order accuracy (Fig. 6). The diffusion coefficient provides a well-defined parameter to dump
the oscillations at the discontinuities. The error behavior is the same as the 3"%order essentially
non-oscillatory (ENO) method of Harten, Engquist, Chakravarthy, and Osher [9].

To conclude, we see that the lattice Boltzmann code performs excellently if the initial data
is resolved. This is good news. However, if there is not enough resolution (that is, not enough
grid points per regions where the density varies appreciably (it is just one grid point at the dis-
continuity, for example), oscillations are triggered. Moreover, given enough time, the amplitude
of these oscillations can grow in some cases so much that the density will become negative at
some points, and the physical sense of the simulation will be completely lost. Our goal is now
to refine the lattice Boltzmann algorithm in such a way as to mitigate this problem. In the first
place, this requires understanding of the numerically stability of the lattice Boltzmann scheme.
This way we come to the notion of the entropy which we are going to discuss in the next section.
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Figure 5: Advection of the step profile after ¢ = 3000. Diffusion coefficient D = 5 x 107%. Grid size
N = 800.
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Figure 6: Error norms for the advection of the square density profile after one period with the LB and a
374-order ENO scheme.
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6 Advantage of the Entropy

6.1 Entropy Function and the H-theorem

We continue with observations about our system (2.8). Consider a quadratic function of three

real variables,

P R S !
20-(v)  2¢0(v)  2¢4(v)

Note that H is defined for all values of f;, both positive and negative. Let us consider all the

vectors f with the same value of density p,

f-+fo+f+=p (6.2)

If the density is fixed, then equation (6.2) is a linear constraint and the vectors f cannot be
chosen arbitrarily. In other words, the constraint (6.2) defines a linear subspace L, corresponding
to the given value of p:

L, = {All vectors f = (f—, fo, f+) satisfying f_ + fo+ f+ = p}. (6.3)

If the equilibrium at unit density ¢(v) is a positive vector (all ¢;(v) > 0), then function
H(f) (6.1) is conver, and the Hessian matrix, G, of H is positive-definite. Indeed, computing
the second derivatives 02 H/df;0f; of (6.1) we obtain

H(f) (6.1)

w}(v) 0 0
G = 0 @ O . (6.4)
0 0 5
It is easy to check that:
w0 0 -
(f=: fo, [+) 0 @ O fo | =0.
0 0 = F+

The equilibrium at density p, fi(p), is of course one of the vectors which satisfies the
constraint (6.2). However, it is not just one of such vectors but it also furnishes the minimum
of the function H on the linear subspace L,. Indeed, the extremum condition for the function
H subject to the constraint (6.2) reads:

EARE R
8f() 8f0_ fextr ’

OH ap |

gH _\or — 0,

|:8f0 afO_ fextr

OH p |

— = A= = 0 6.5
|:8f+ af"r_ fextr ( )
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Here A is the Lagrange multiplier corresponding to the constraint (6.2), and must also be deter-
mined. The extremum condition states that the vector of partial derivatives of the function H is
orthogonal to the subspace L, at their common point — the point of the extremum. Computing
the derivatives in (6.5), we obtain:

fextr

¢—(v)

(r)sxtr N 0

¢o(v) -

ixtr ( )
-\ = 0, 6.6

o+(v)

or,
fixtr _ )\QO,(U), (()extr _ )\QDO(U), —T—Xtr — ASO+(U)' (67)

We now need to determine the Lagrange multiplier from the condition that the extremum (6.7)
belongs to L,. We thus write,

fEXtr 4 fgxtr 4 sz_xtr =, (68)
which gives
M- () +¢o(v) +9+(v) = p. (6.9)

Finally, taking into account the normalization (4.2), the Lagrange multiplier can be expressed
as a function of the constraint:

A=p. (6.10)

Substituting the result (6.10) back into (6.7), we observe that the extremum is indeed the
equilibrium:

= pp_(v), f& = peo(v), [T = poi(v). (6.11)

This provides an alternative description of equilibrium. Up till now, the equilibrium was
constructed as the stationary point of the relaxation term. We have just found that the equi-
librium is also the minimizer of the convex function H(f) (6.1), subject to the constraint of the
conservation law. This is reminiscent (up to the sign convention) of thermodynamics where equi-
libria are defined as maxima of entropy. Following this analogy, and possibly with some abuse
of the terminology, we shall call all the convex functions we are going to construct and minimize
as H-functions, and the negative of them — the concave functions which we then maximize —
entropy functions, S

S=—H. (6.12)

The link between the two specifications of equilibrium is the H-theorem (following the fun-
damental discovery of Boltzmann), which, loosely speaking, states that entropy grows along
solutions of the kinetic equation until it reaches the mazximum at equilibrium. We shall discuss
it now for our model.
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Above, we considered the density as a constant in the minimization problem. When density
and populations are functions of x and ¢, one considers first the density of the H-function,

(=) n f3(=,t) n fi(,t)

H(z,t) = H(f(x,t)) = . 6.13
(28 = HU@ D) = 50700+ 200(0) T 204 (0) (6.13)
The time derivative of this function due to the kinetic equation (2.8) reads Il.

OcH (z,t) + Opju(z,t) = o (x,t), (6.14)

where

ju(z,t) = ici G (6.15)

is the flux of the density of the H-function, and

rulet) = =7 3 D 0,0) - pla i) (6.16)
i=1 7!

is the production rate of the density of the H -function.
In the entropy terminology, we have

atS(ZE,t) —}—axjs(l',t) = O's(l‘,t), (617)
which is called the entropy balance equation, with jg = —jg the entropy flux density, and
os = —op the entropy production density.

In physics, the fundamental fact about the entropy production is that it is always nonnegative
(second law of thermodynamics). To find out if our model also has a similar property we need
to check if the function o (f) (6.16) is non-positive for all f’s. By a direct computation:

IS fi
ou(f) = —= [fi = p(f)pi(v)]
1 T;%(v) p(f)e

_ ! (Z Ji [fi—p(f)w(v)]—p(f)Z[fi—p(f)sOi(v)]>

T\ wilv) pt
LA i pD i) Ifi — p(f)ei(v)]
B T; @i(v)
< 0. (6.18)

IDerivative of a function H(z) due to a dynamic system Z = F(z) is an application of the chain rule: H =
(dH/dz)z = (dH/dz)F (z).
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Note that in the second line we have “subtracted zero”, because

nq

D i = p(f)pi(v)] =0,

=1

by the local mass conservation.
Thus, the H-function production is non-positive (and the entropy production is non-negative)
for any vector f. From (6.18), it is obvious that oy becomes equal to zero at equilibrium

op(f) =0 if and only if f = f. (6.19)

Equation (6.19) is the third and the final specification of equilibrium: entropy is not produced
at these states. So, the complete specification of equilibria reads: These are states of zero relaz-
ation, which minimize the H-function under fized conserved quantities, and where the production
rate of H vanishes.

With the result (6.18), let us come back to the entropy balance equation. Now we need to say
something about the entropy flux. We shall insulate it from the balance equation by applying
boundary conditions which ensure zero entropy flux through the boundaries. For example, we
can consider periodic or zero flux at infinity boundary conditions. All this is called closing
the system. We then introduce the total H-function (and the total entropy), and the total
production of these quantities by integrating the corresponding densities over the domain (a
segment L = (L_, L); L can also be the whole line):

Ly

Ly
)= [ (e ), 5H(t):/ o1 (f (1)) dz. (6.20)

Integrating the balance equation (6.14) over L, the integral of the spatial derivative of the flux
reduces to the boundary values of jp (L=, t) which drop out, and what remains is:

dH (t)
—= =(t). 21

HUS 0 (6.21)
Finally, since the integrand o (f(z,t)) is always non-positive, we proved that for closed systems:

dH (t)

—= <0. 6.22
a - (6:22)

This is the H-theorem for our model. It states that in a closed system (when the entropy

flux is of no concern), the total H-function is a non-increasing function of time. One usually

refers to (6.22) as to the global H-theorem, and to the production inequality (6.18) as the local

H-theorem. This immediately implies that in the space-independent case,

dH (t)

dt
The H-theorem is one of the cornerstones of statistical physics because it implies the irre-
versible behavior of “real” systems. For our purposes, another aspect is more relevant: this

= o(t) <0. (6.23)
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is a stability theorem. A function which behaves monotonically along solutions (monotonically
decreases or increases) is called a Lyapunov function, and Lyapunov’s direct method to prove
stability is based on finding such a function. In our case, one Lyapunov function is the to-
tal H-function, and thus we may expect that it will be useful to access stability of the lattice
Boltzmann scheme. We shall explore this in the next section.

6.2 Entropy Estimate of the Over-relaxation

The over-relaxation scheme and its implication, the lattice Boltzmann method introduced in
sections 4 and 5 is a discrete in time kinetic system to which we want to apply the stability
analysis of the previous section. In this section we take care of extending the H-theorem to
discrete time. We start with the space-independent case. This is appropriate since for the
lattice Boltzmann method the update of the populations is split into the propagation step and
the relaxation step. It is the relaxation step where we need to care about the entropy growth.

We begin with the definition of the mirror state. This notion was mentioned already in
section 4, and the over-relaxation from a state f was essentially a convex combination between
f and f™r. But now we would like to rederive it from stability considerations. For each vector
f we define the mirror state f™ as

() = fi + aQu(f), (6.24)

where a > 0 is the nontrivial solution to the equation resulting from the entropy estimate of the
mazximal over-relaxation:

H(f +aQ(f)) = H(f). (6.25)

What motivates this definition of f™*? Let us imagine the vector f® = f as a point in the
ng-dimensional space (in the quark model, ng is three, so this can be even shown graphically).
Relaxation moves this point in the direction defined by the vector Q(f). In our model, @ is
pointing towards the equilibrium point f°4. When moving the point in the direction @), the
H-function decreases towards the minimum at f°4. This is the ‘classical’ segment of the linear
stability interval. However, if we do not stop at f°? and continue moving in the direction @, the
H-function will start increasing again past f°. This is, of course, a wrong behavior from the
classical (continuous-in-time) standpoint. However, there is nothing wrong with this from the
discrete-time point of view. Indeed, the states between the initial f™ and the final point fout
along the ray f + a@, a > 0 where we will finish the update are simply not present, it does not
matter whether fo" is reachable in the continuous-time dynamics or not. If the value of the
H-function at the initial state, H(f™"), is not larger than its value in the final state, H(f°),
this move will still be acceptable as the H-function will decrease, H(f°") — H(f) < 0, and
we can use fO°% even if it is “behind the mirror” at f°4. When we continue moving further and
further along our ray, we will reach at some point a mirror state f™ for which the value of
the H-function is equal to the initial value H(f™). This is the limiting value given by equation
(6.25). We cannot place f°* beyond f™ because then the value of the H-function will be larger
that at the beginning, and such states are ruled out by entropy considerations. The definition
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of the mirror state (6.24) and (6.25) is the precise statement of the qualitative picture just
described.
It is easy to find « from (6.25) when the H-function is quadratic. Starting from

[fz + an
Z T et Z 2% (6.26)

i=1 2pi(v

we obtain a quadratic equation for a:

( 22% Z];gv )— . (6.27)

The trivial root a = 0 is not of interest, as it corresponds to f™ = f;. The nontrivial root is:

—-a[3o 2| 152

2p;(v
This expression is quite general. Using of the BGK form of @,

Qu(f) = —(fi~ plDgi(w))

-1
] . (6.28)

2<,0Z

and substituting this expression into equation (6.28),

. [Z 2% i<v>>] [Z <fi—5;{(>5i<v>>] | (6.20)

i=1

The denominator in this expression is further simplified by exploiting mass conservation:

D) o)
; 2;(v) B Z 2%
-2 ;(ﬁ )

_ fi(fi z( )
= Z 2% . (6.30)

Substituting this result back into (6.29), we finally derive the remarkably simple formula:
a=2r. (6.31)

Substituting (6.31) back into the definition of the mirror state (6.24) and expanding the BGK
relaxation term @);, we obtain:

SR = 2£59F) = fi- (6.32)
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This result coincides with the definition of the mirror state obtained earlier in section 4. However,
now we have obtained it using a different and rather direct (entropy) argument. While staying
with the space-independent case, we are able to prove the first version of the H-theorem for the
time-discrete case.

Let us consider the discrete-time update,

filt +t) = (L= B)fi(t) + BF(f(1)). (6.33)

Here, [ is a fixed parameter between 0 and 1. Its dependence on the time step 4t is unimportant.
Let us denote by H(t + dt) the value of the quadratic H-function at f(t + dt):

ng ) 2
Ht+ot) =Y W (6.34)
i=1 !

Now we come to the local discrete-time H-theorem:

nd ) _ fed 2
H(t+6t)— H(t) = -28(1-8) ) (f(t;(vf) (6.35)
i=1 ¢

Thus, if 3 is between 0 and 1, we have the non-increase of H as the result of the discrete-time
update (6.33):
H(t+dt)— H(t) <0. (6.36)
It is also instructive to rewrite equation (6.35) by comparing it to the formula of the entropy
production of the continuous case (6.18):

H(t+5t) — H(t) = 2r8(1 — B)on(t), (6.37)

where opz(t) is the production of the H-function at time t.

Finally, let us prove the global H-theorem in the space-dependent case for the lattice Boltz-
mann spatial discretization. This is merely the same as in the continuous case; one needs to
insulate the space dependence by summing over all the nodes of the lattice and assuming appro-
priate boundary conditions (we shall assume periodic boundary conditions). Thus, we introduce

the total H-function,
i t
=3 § Wiz, ) (6.38)

and consider how it changes during one time step:

Ai+1) = ZZ fzx—i-cz,t—i-l)}

r =1 2('07'
[(1 = B) fi(z,t) + B (x,t)]?
- oy "Z :
r =1 (pl( )

= H(t)+2768(1 - B3)au(t). (6.39)
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Here, —oy(t) = — ), on(z,t) is the total entropy production at time ¢. Therefore,

At +1)— H(t) = 2rB(1 — B)au(t) <0, (6.40)

and we have proven the H-theorem for the lattice Boltzmann discretization of the quark model.
Thus, we can add one more statement about the lattice Boltzmann scheme for our quark model:
It is a second-order accurate linear scheme, and it is stable.

What still remains somewhat unsatisfactory is that we have not managed to control positivity
of the populations. Although we proved stability of the scheme, we have not proved that during
the simulation all the populations f; remain non-negative on every iteration. This means that
during a simulation negative values of f; may start appearing (we need to stress that this is not
necessarily so). Although this will not result in any instability here, the physical meaning of
the result will be lost as this may also result in negative density. The reason why we cannot
guarantee positivity is that the quadratic H-function supports both positive and negative f;’s,
and so the mirror states are also allowed to be both positive and negative. Since we see that the
key issue in the definition of the mirror state is the choice of the H-function, we may wish to cure
the positivity issue by choosing another H-function (not quadratic) which rules out negative f;’s.
This we shall do in section 6.4. In the next section we shall describe other Lyapunov functions
for the kinetic system (2.8).

6.3 Entropy Functions and Positivity

The quadratic H-function (6.1) is an example of a Lyapunov function for our quark kinetic
equation (2.8). Actually, there are many more Lyapunov functions for this model which are
constructed from a smooth strictly convex function of one variable, h(z), and the given equi-
librium (h(z) is convex if its derivative, h'(z) is monotonic, that is the second derivative is
sign-definite, h”(z) > 0). In the space-independent case, all these Lyapunov functions have the
form:

H(f) =) ¢i(v)h (SO,JZQ - (6.41)
i=1 v

Some of the functions h proposed by different authors in various contexts are:

zlnz Boltzmann — Gibbs — Shannon
—Inz Burg
azlnz—(1—a)lnz, 0 <a<1 Boltzmann — Burg family (6.42)
(24—=1)/(1—¢q), ¢>0 Tsallis family
22/2 quadratic
The corresponding entropies are S = —H. The Boltzmann entropy is a fundamental quantity

in statistical physics and thermodynamics. The Burg entropy is used in signal processing. The
Boltzmann and Burg entropy are both additive (the entropy of the system composed of two
independent sub-systems is equal to the sum of the entropies of the subsystems). The family
obtained as a convex combination between the Boltzmann and Burg entropies is the class of
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additive entropies (there are no other entropies with the additivity property). The class of the
Tsallis entropies is not additive but is widely used in various fits in the physics of complex
systems. Finally, the quadratic entropy was used in the previous section.

All H-functions of the form (6.41) are equally well suited to be a Lyapunov function for
the kinetic system (2.8). It can be shown that the equilibrium f; = p¢p;(v) minimizes each of
the functions (6.42) subject to fixed density, and the rate of production oy is non-positive (see
Appendix B), exactly as was the case for the quadratic H function. **.

However, one distinction should be made: Our linear kinetic equation may have both positive
and negative solutions, but some of the H-functions of the family (6.41) are not defined when
fi is negative. In fact, the Boltzmann, Burg and Tsallis (for non-integer ¢) functions of the list
(6.42) are not defined for z < 0. Thus, by choosing H which is defined only if f;’s are populations
in the construction of the mirror state, we will preclude f’s to leek into the negative domain,
and thus guarantee positivity of the density p.

In the sequel, we choose the function h(z) = zIlnz. It is defined at z > 0 (at z = 0, the
logarithm is not defined but zlnz — 0 as z — 0, so zIlnz is defined as zero at z = 0 by
continuity). The H-function thus reads:

Hgp = dei In ( /i ) (6.43)
=1

pi(v)

and in expanded notation

H = Joln (@f@) LR (wi)) e (s@ﬁ@) ' (6.44)

The choice of (6.44) is again not unique (we could use, for instance, the Burg or the Tsallis
entropy), and is merely motivated by the fact that in the nonlinear lattice Boltzmann models
[7, 8], the H-function is not arbitrary but usually of the Boltzmann form. The Boltzmann H-
function for our model will be used in the next section in order to modify the entropy estimate
of the over-relaxation scheme in such a way as to make the lattice Boltzmann scheme stable and
guarantee that density remains positive.

6.4 Entropic Lattice Boltzmann Scheme

The mirror state of the form (6.32) was derived using the quadratic H-function and resulted in
the lattice Boltzmann algorithm. However, the entropy estimate (6.25) itself is not restricted
to quadratic functions. Therefore, it allows the extention of the lattice Boltzmann method to
any H-function of our choice, and in particular, to use the Boltzmann H-function, Hg, (6.44)

**Large number of entropy functions for a kinetic system is always the case of linear kinetic equations. Linear
kinetic equations such as the Fokker-Planck equation, Markov chain etc., all they have families of the Lyapunov
functions of the form closely related to 6.41. The situation changes drastically for nonlinear kinetic equations
such as the Boltzmann equation which have just one entropy function.
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which supports only populations. This extension which results in the entropic lattice Boltzmann
scheme amounts to replacing the mirror state (6.32) by the mirror state corresponding to Hp.
The rest of the discretization steps remain as before, and we only write down the following set
of equations:

= (= OVl 0) + B (T ),
PR ) = fiet) + ali 0)@:( (1),

Qi) = i( il t) = plf (@ )i(0),
Hy(f"™2,6) = Hy(f(x.1)

The value of the parameter [ is again fixed by the formula of the diffusion coefficient (5.6),
that is,

filz +eit+1)
)
) ) =
) )-

1
f=——55—, in terms of the diffusion coefficient, (6.49)
L+ U2(v)—v?
or
8= 1o in terms of the relaxation time. (6.50)

The rules of the update of the populations are now as follows:

e Propagation step. Populations of the links ¢; of the lattice are moved to the correspond-
ing adjacent links:

filz,t) = fi(z + ¢, t), (6.51)

resulting in a new set of populations on every link, f*(z,t).

¢ Relaxation step. First, for each set of populations f*(z,t), the entropy estimate equation

(6.48) )
Z?(f;m@i(f*))ln(”f) Zf o (L) (652
is solved.

Second, once the solution «(z,t) is found for all nodes x, the mirror states are defined,

T F(2,1)) = [ (@, t) + ol OQi(f (w,1), (6.53)
and populations f;(x,t) are over-relaxed by the rule:
fi(@,t) = (1= B)f (w,t) + BF(f* (2, 1)). (6.54)

The only difference from the lattice Boltzmann algorithm is in the use of another H-function
for the estimation of the mirror step. The lattice Boltzmann algorithm can thus be viewed as a
particular case of the entropic lattice Boltzmann method equipped with the quadratic entropy
function. The nonlinear equation (6.48) determining « in the definition of the mirror population
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(6.46) must be solved on every iteration of the algorithm and at every node of the lattice . In
the general case, this solution can be obtained only numerically (not analytically as in the case
of the quadratic H-function), and we will need to develop reliable ways to do this in order to
minimize the computational overhead. We shall return to this issue later.

All Lyapunov functions (6.41) represent the irreversibility of the continuous-time kinetic
equation, there is no reason to prefer one to another. The H-theorem in the continuous case is
just a feature of the dynamics. However, in the construction of the discrete-time entropic lattice
Boltzmann scheme we use the H-function in order to define the maximum of the allowable over-
relaxation. When the H-theorem is used, we have to decide which H-function to pick, and thus
entropic lattice Boltzmann schemes with different H-functions are not equivalent. But should
we worry about this?

In order to answer this question, let us remind that here we are not so much interested
in the details of the dynamics far from the local equilibrium. Rather, we are willing to keep
the dynamics close to the local equilibrium where we recover the advection-diffusion equation.
So, let us examine what the entropy estimate reports when the states are close to the local
equilibrium.

Let us consider a small deviation from equilibrium at some p, f; = fi%(p) + ¢ fi, and expand
the generic H-function (6.41) up to second-order around the equilibrium. Neglecting everything
of order O((Sff) and higher:

, Lone X~ 07
Hy(0f) = hp) + 1 (p)dp+ 5h"(p) D 7

oi(0) (6.55)
i=1 7"

where dp = p(6f) = > 14, §f; is the deviation of density from the equilibrium density p(f°9).
The entropy estimate in the entropic lattice Boltzmann scheme appears at the relaxation step.
Thus, for our analysis it is sufficient to consider only such deviations which do not change the
density, dp = 0.

If the state f is close to the equilibrium, the mirror state f™ will also be close to the same
equilibrium:

mir e Qe € e
it = f¢q+5fi_;(fiq‘f’(;fi_fiq(fq"‘éf))
_ seq @ A
= fi + (1 T) o fi- (6.56)
Denoting
mir __ o 2 5
ofrr = (1-2) o
the entropy condition for « is written for the deviations as:
Hy(6f™") = Ha(6f),

or,
ng

1// _32 5fi2 _1// ndeiQ
W) (1-2) ;%@) = Sh <p>;%(v), (6.57)
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resulting in the relevant solution being
af =27, (6.58)

Thus, independently of what entropy function is used to determine the mazimal over-relaxation,
close to the local equilibrium, all the corresponding entropic lattice Boltzmann schemes give the
same answer for the over-relaxation parameter «: it is the same estimate derived earlier from
the trapezoidal rule and from the quadratic H-function. Hence, in the domain we are inter-
ested in, that is, close to the local equilibria, all the entropic lattice Boltzmann schemes become
equivalent and recover the advection-diffusion equation with the same diffusion coefficient when
the parameter [ is chosen according to the relation (5.6). The limit of no diffusion, D — 0,
corresponds to 8 — 1 for any H used.

The difference between the schemes is in how the system is brought to its hydrodynamic
limit. The use of the Boltzmann entropy function precludes appearance of negative populations,
while the use of the quadratic cannot guarantee positivity. Thus, we choose to work with the
entropic lattice Boltzmann scheme of this section which is then a second-order nonlinearly stable
scheme which guarantees positivity.

Due to their feature of unconditional stability, entropic schemes for solving kinetic equations
are clearly preferable. However, their efficiency in computations crucially depends on how effec-
tively can we solve for the entropy estimate. In our entropic lattice BGK scheme, for example,
we need to solve the nonlinear equation (6.48) on every lattice node at each time step. For
the Boltzmann entropy function, this equation includes logarithmic operations which are com-
putationally expensive. Thus, we need a fast method for solving the entropy estimate in order
to make the entropic lattice Boltzmann code efficient. In the next section we present such an
approach.

6.5 Asymptotic expansion of the entropy estimate

The analysis in the previous section revealed that the limit of the entropy estimate when f; —
4 Qi(f) — 0is @ — 27 (6.58). A natural extension of this result is an asymptotic series
expansion of the entropy estimate. In order to derive this expansion, let us rewrite the entropy
estimate for the populations vector f (6.48) as follows:

aZQ,ln< >+Zf, <1+a) In <1+a%> =0. (6.59)

We now expand the second term in (6.59) into Taylor series in powers of z = a?’ using the

formula

o _1>m72
(I+z)ln(l+z)=x+ Z ™. (6.60)

—, m(m — 1)

This gives

a {a(f) +> a"cn(f)} =0, (6.61)
n=1
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where —o > 0 is the entropy production at the state f, and we have introduced coefficients ¢,

(_1)n—1 nd Qn—i-l
n n(n+1) ‘

> 6.62
- (662

Equation (6.61) is equivalent to the entropy estimate equation, and the relevant (nonzero) root
can be obtained from

) + Za en(f) =0. (6.63)

The equilibrium value a®? = 27 is recovered from equation (6.63). Indeed, when the state is
close to equilibrium, f; — fi" ~ 8, Q; ~ 6, §/f{" < 1, and the coefficients ¢, have the following

order of magnitude:
~ 6n+1
n I

whereas
o~ 62

Therefore, when § — 0, the first term of the infinite sum in (6.63) should balance the entropy
production while the rest of the terms vanish and we obtain

-0+ a1 =0 (6.64)
Therefore,
-2 Qiln (5
o = ©i(v)
04(0) = a ( ) . (665)
2 Z] 1 f]

By writing f; = {4+ 6 fi, Qi = —(1/7)d f;, and keeping the first non-vanishing terms in the
nominator and denominator of (6.65):

5f2

o = Z eq +o 5f7, )
1 <%0 f2
cp = 57 2 feq fi (6.66)

Therefore, the ratio of these expressions becomes independent of the deviation § f; when 6 f;/ fi* —
0, and
lim  «) = 27. 6.67
5t/ 1—0 O (6.67)
Thus, the solution to equation (6.64) recovers our previous result for the equilibrium value of
the entropy estimate.
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Next, we are going to gradually introduce corrections to the leading-order result « ) by
exploring further terms in the series in (6.63). The next-order equation reads:
craqy + 0204%0) =0, (6.68)

where « ) is already defined by the previous-order equation (6.64), and we have

€20

e

2
(&) g
C1 (Cl>

_ 4 (Zznﬁl Qiln (wij%v)>)2 <Z?il ?Jg> (6.69)

3 (e, %Y’

In order to automate the procedure of finding further corrections, we introduce a book-
keeping parameter € into equation (6.63) by re-scaling o — 620, ¢, — *+1cg, and writing

a=> &g (6.70)
k=0

Equation (6.63) then becomes

—6%0 + Z <Z 6ka(k)> e (f) =0. (6.71)
n=1 \k=0

Equating to zero terms of the same order in § in this expression, we derive a sequence of
recurrently solvable equations for the coefficients . The first of these equations is (6.64), the
second is (6.68) and so on.

The resulting set of equations for the coefficients ) is recurrently solvable to any order,
and we obtain the solution to the entropy estimate in the form of approximations to the for-
mal series (6.70). This procedure is a progressive refinement of the zero-order estimate (6.65)
when deviations of populations away from equilibrium become more pronounced (at the end of
computation we set § = 1). Let us write down, as an example, an equation for the coefficient
a(2)

c1oyg) + 262a(0)a(1) + Cgoz?o) =0, (6.72)

whereupon

QCga(O)a(l) + c;;a?o)

&1

22 ¢3 o\*
(022 — C) () . (6.73)
1 1 C1
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By the same token, the function a ) is found as

5cocs 50% Cq o\*
_ _ 2 =) . 6.74
04(3) ( C% C:{’ C1 C1 ( )

From the analysis of the formulas (6.64), (6.69) and (6.73) we can infer that the entropy
estimate resulting from the above procedure has the form

a = 2 aq
k=0
S su(2)”
i W\ ¢

o co [ o 2 22 ¢y a\?
_ <>_<> +(2_> <> o (6.75)
c1 c1 \C1 1 Cc1 &1

In other words, the entropy estimate is represented by formula (6.75) as a series in powers
of the entropy production o, where the expansion coefficients are rational functions of ¢ (6.62).
Let us remind that (6.75) obeys the asymptotic property: all coefficients &) with k > 1 tend
to zero when the populations tend to local equilibrium, and only the contribution from the first
term remains non-vanishing (and tends to 27).

From our experience, the zero-order approximation g (6.65) is often rather far from 27
even if the populations are close to equilibrium. Since the approximation « (g is specified only
by its asymptotic property (6.67), we may gain an even better approximation if we set o/c; just
equal to its asymptotic value 27 in (6.75)

2c3 5
a=2r - 2(2r)* 4 <C§ - 03> 2r)° + (562263 - C4> @2r)*+.... (6.76)

[\

This formula does not require computation of the entropy production, thus avoiding logarithmic
evaluations altogether.

By repeated application of the binomial formula, the explicit form of the recurrence solution
(k1) (Q(k)s - - - (0y) can be obtained. We do not display this solution here not only because
it is rather bulky but mainly because the too high orders in the expansion are almost surely
useless. The expansion (6.76) is only asymptotic, and it is able to refine the equilibrium value
a®l = 27 only if the populations are sufficiently close to the (local) equilibrium . In practice,
the entropy estimate (6.75) is sufficiently accurate in up to some 90% of the lattice nodes. This
depends on the grid resolution of the simulation. In the cases when the asymptotic expansion
(6.76) does not work (large deviations of the populations from local equilibrium), different ways
of solving for the entropy estimate should be explored (e.g. Newton-Raphson iteration).

In the lattice Boltzmann code of section 5.2, the value of the maximal over-relaxation « is
kept constant at 2.0 (this is without considering the entropic time stepping process. In order to
implement an entropic version of the LB scheme, the parameter o has to be replaced by «(f)
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Figure 7: Advection of the step profile by the entropic lattice Boltzmann scheme after ¢ = 3000. Diffusion
coefficient D = 5 x 10~%. Grid size N = 800.

and calculated as described above. In Fig. 7, propagation of the square step profile is computed
with the entropic lattice Boltzmann scheme. As compared to the same result computed with
the lattice Boltzmann scheme (see Fig. 5), we see that oscillations at the discontinuities are
suppressed. Smearing of the profile in Fig. 7 is due to a relatively large value of diffusion
coefficient (D = 5 x 10™%) used. Finally, it should be noted that the entropic correction has no
effect on the behavior of the error. However, it reduces the oscillations at the discontinuities of
the density for very low diffusion coefficients.

7 Conclusions

Here we conclude our first tour over the lattice Boltzmann method. We presented the de-
tailed derivation of lattice Boltzmann methods for the solution of the linear advection problem.
The derivation clearly shows that in essence we solve an advection-diffusion problem with a
user-defined diffusivity. This can be used advantageously to propagate discontinuous profiles
while smoothing the typically observed oscillations close to the discontinuities. In addition,
the method can be made nonlinearly stable and guarantee positivity by entropy considerations.
The additional computational cost can be minimized by employing the entropic correction only
where it is really needed.

Our plan for the forthcoming contributions to this series of papers is the following: In the
second paper, again of a tutorial nature, we shall consider the simplest nonlinear situation
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(one-dimensional Navier-Stokes equations), and will discuss in detail how one constructs the
entropic lattice Boltzmann method. In the third paper, we shall construct three-dimensional
entropic lattice Boltzmann models which will be essentially sufficient for a reader to start a ‘real’
simulation. Further contributions will incluce the derivation of the lattice Boltzmann method
from continuous kinetic theory, and special chapters of this science such as grid refinement and
off-lattice solvers.

A Invariance Equation for Populations

1. Write the invariance condition for the populations f; assuming they depend on = and ¢
only through their dependence on the density, fi(x,t) = f;(p(x,t))!T and using the kinetic
equation (2.8).

2. Solve the invariance equation for f;(p(z,t)) by perturbation to order 7, assuming as above
the local equilibrium f;% = pg;(v), where Y 14 ;(v) =1, Y., cipi(v) = v, as the initial
approximation.

Using the chain rule to compute the derivative,

Ofi

Ocfi = ap

atpa
replacing 9,p with the right hand side of the density balance equation,
nq
Op=—0: > cifi,
i=1

and equating the result to the time derivative of f; from the kinetic equation (2.8), we obtain
the invariance condition:

-G, zqf@— il fi = (i = £, (A1)

Considering the solution in the form of the expansion around local equilibrium,

1
fi= M (A.2)
substituting the latter expression into the invariance equation (A.1l), we find the solution for

s

eq nq
O = 8fp s ch £ = 0, £, (A.3)

HFollowing the language of kinetic theory, this is called normal solution.
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Substituting f;4, we find:

w_ fit
= P (v —¢;)0p. (A.4)
Thus, to the first order in 7, solution to the invariance equation reads:
£
fi=f1- 7'17(01 — )0y p. (A.5)

Now we compute the constitutive relation for the momentum flux from this solution:

ng
io= Y cfi
i=1
ng T nqg
= D afft—— (D el —v) | Oup
=1 P =1
pea 2
= pv— 7'7’0’0633,0
P
= pv— T(U(U)2 - 1)2)8xp, (A.6)

where in the last line we have used the expression for the equilibrium pressure (3.12),

ng ng
Pa=3 UG =pY wilv)e = pU%(v).
=1 i=1

The flux (A.6) is the same as the one given by the formula (3.15), and thus we have derived the
advection-diffusion equation (3.16).

B Proof of the Entropy Production Inequality

Let us prove that any of the functions (6.41) is the Lyapunov function of the space-independent
kinetic equation (2.8). The entropy production due to the relaxation system,

Oufi =~ (fi ~ pil®))

reads:
ZdOH
g (f) = 76](@
" ;M ;
ISy (LY,
= 1Y w () U ol B1)
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Now we need to show that the latter expression is non-positive. We transform it as:

i=1
S ()l

i=1
+i;h'<pm<v> )

B —ii%(v) [h/ (@f@) - h/(p)} {@fv) - p] ' (5:2)

In the second line of this computation we have again ‘subtracted zero’ due to mass conservation:

_ 1, -
0=——1(p) ;(fz — ppi(v)).
Introducing
L fi
" opi(v)

we see that o (f) (B.2) is the proportional to the sum of functions A,

A(zi, p) = [ (2:) = W (p)][2i — pl. (B.3)

with positive weights ¢;(v). Now we make use of the strict convexity of the function h which
states that its derivative h'(z) is monotonic (h” > 0). This means that if z > y then 1'(z) > h/(y).
This implies in B.3:

R (zi)=h'(p) >0, z —p>0, if z; > p;

B (zi)—h'(p) <0, z—p<0, if z < p. (B.4)

Hence, A(zi,p) is the product of two expressions of equal sign for any z; and p, and thus A is
positive except for the case z; = p (that is, except for the equilibrium, f; = py;(v), in which
case it is equal to zero). Thus, oy < 0 for any strictly convex function h. Thus, if the solution
of the kinetic equation belongs entirely to the domain of definition of H, function H(f(t))
monotonically decreases along this solution, dH/dt = o < 0.
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