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cETH-Zürich, Institute of Energy Technology,CH-8092 Zürich, Switzerland

Abstract

A new kinetic model for binary mixtures and its Lattice Boltzman (LB) discretiza-
tion is presented. In the hydrodynamic limit the model recovers the Navier-Stokes
and the Stefan-Maxwell binary diffusion equations. The thermodynamic consistency
is ensured by the defined non-negative entropy production within the domain of ap-
plicability of the model. The present formulation is able to simulate mixtures with
different Schmidt numbers and with a large molecular weight ratio of the compo-
nents.
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1 Introduction

Traditionally, the mass and momentum transfer in engineering flows is mod-
eled using the continuum approach. However, in applications such as porous
media, where sizes can be comparable to the mean free path of the gases, the
use of kinetic theory is required. Recent success of kinetic algorithms such as
the lattice Boltzmann method (Higuera et al. (1989); Qian et al. (1992);
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Ansumali et al. (2003)) showed that use of the kinetic theory approach might
be benifical in the continuum domain too. Thus, it seems natural to extend
the lattice Boltzmann approach to mixtures. Indeed, recently some LB models
were proposed for mixtures (for recent a review see McCracken and Abraham
(2005) and Asinari (2005)). Such these attempts are based on either a passive
scalar model or a direct discretization of BGK-type models derived from the
continuous kinetic theory. For example, the model of Luo and Girimaji (2003)
and its subsequent modification by McCracken and Abraham (2005) are dis-
crete velocity formulations of the Sirovich model (Sirovich (1962)). However,
it is well known that the Sirovich model obeys neither the H-theorem nor the
indifferentiability principle (i.e., it does not reduce to the single-component
BGK fluid when the species become mechanically equivalent, see, e.g. Andries
et al. (2002)). A physically sound modeling approach for approximating the
mixture collision term is thus needed in any discrete velocity formulation. Re-
cently, a new approach to model kinetic equations has been developed (Gorban
and Karlin (1994); Levermore (1996); Ansumali et al. (2005); Gorban and
Karlin (2005)). The basic idea (Gorban and Karlin (1994)) is a model rep-
resentation on the fast-slow decomposition of motions near quasi-equilibrium
states. Therein it was proposed that the relaxation to the equilibrium is mod-
eled as a two-steps process, a ”fast” relaxation from the initial state to the
quasi-equilibrium f ∗ with a relaxation time τ1, and a ”slow” motion from the
quasi-equilibrium state f ∗ toward the equilibrium. The fast relaxation is as-
sumed in the BGK form, 1

τ1
(f−f ∗). The slow motion can also be approximated

by a BGK term (Levermore (1996); Ansumali et al. (2005)) such that this
process leads to the equilibrium f eq with a second relaxation time τ2 ≥ τ1. In
this paper this model is extended to binary mixtures, and unlike the Sirovich’s
model, the approach ensures thermodynamic consistency (the H-Theorem is
satisfied, Gorban and Karlin (1994)) as well as the indifferentiability principle.
Furthermore, the lattice Boltzmann models for mixtures face severe numerical
instabilities at large mass ratios (McCracken and Abraham (2005)). Some of
these instabilities can be attributed to the discretization used in the previous
works (Luo and Girimaji (2003); McCracken and Abraham (2005)). We de-
rive the second-order Lattice Boltzamnn scheme, and numerically show that
the present model can simulate mixtures with arbitrarily mass ratios.

2 Model Description

The discrete-velocity kinetic equation for each component j = A, B of a binary
mixture can be written as:

∂t fj i + vj i α ∂α fj i =Ωj i, (1)
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where i = 1, .. N , with N number of the discrete lattice velocities vj i α and
the collision term is Ωj i. Hydrodynamic quantities such as the density ρj and
the momentum density Jj α, in the α direction (α = x, y, z), of the individual
components j are:

ρj =
∑

i

fji, Jjα =
∑

i

fji cjiα, (2)

respectively. Here cjiα = vjiα/
√

kBT0/mj are reduced discrete velocities of
the components and T0 is the reference temperature. Along with the species
densities, the total mass density ρ = ρA + ρB and total momentum density,
Jα = JAα + JB α are the invariant of the collision term. We propose to write
the collision term as (Ansumali et al. (2005)):

Ωj i =
1

τ1

[

f ∗

j i (ρj, Jj α) − fj i

]

+
1

τ2

[

f eq
j i (ρj, Jα) − f ∗

j i (ρj, Jj α)
]

, (3)

The quasi-equilibrium population distribution function f ∗corresponding to
each component j is obtained by maximizing the entropy function under fixed
ρj and Jj α (Karlin et al. (1999)). This implies that only those two variables
are approaching slowly to equilibrium and all the other moments are assumed
to equilibrate faster. The result of the minimization problem is immediately
read off the equilibrium for a single-component fluid (Ansumali et al. (2003)):

f ∗

ji = ρjWi

D
∏

α=1





2 −

√

√

√

√1 + 3

(

Jjα

ρj

)2

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×









2
(

Jjα

ρj

)

+

√

1 + 3
(

Jjα

ρj

)2

1 −

(

Jjα

ρj

)









cjiα

.

The equilibrium populations are a subset of f ∗ corresponding to the momen-
tum of the mixture J = JA + JB, that is:

f eq
ji (ρj,J) = f ∗

ji(ρj,J). (4)

This completes the model description and it is obvious that the standard BGK
model for single-component fluid is recovered for τ1 = τ2 and mA = mB.
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3 Hydrodynamic Limit

The balance equation for the locally conserved quantites can be written using
kinetic Eq.(1) as:

∂t ρ + ∂α Jα = 0

∂t (ρA − ρB) + ∂α

(

(ρA − ρB)
Jα

ρ
+ 2 Vα

)

= 0

∂t Jα + ∂β Pαβ = 0,

(5)

where the pressure tensor

Pαβ = PA α β + PB α β =
∑

i,j

fji cjiα cjiβ, (6)

and the diffusion velocity between the two components Vα is defined as:

Vα = µAB

(

JAα

ρA

−
JB α

ρB

)

, (7)

with µAB = ρAρB

ρA+ρB
the reduced mass.

In the hydrodynamic limit, the present model recovers the Navier-Stokes equa-
tion for the momentum and Stefan-Maxwell diffusion equation for the densities
of species with the viscosity µ and diffusion DAB coefficients:

µ = nτ1kB T, DAB = XA XB

P

µAB

τ2, (8)

where Xj =
nj

n
is the molar fraction of the component j, nj =

ρj

mj
the number

density, and n = nA + nB. The present model is restricted to τ1 ≤ τ2. The
implications of such a model on the Schmidt number Sc is:

Sc =
µ

ρDAB

≤
YAYB

XAXB

, (9)

where Yj =
ρj

ρ
is the mass fraction of the component j.

4 Numerical Implementation

It is reminded that in the lattice Boltzmann scheme, Eq. (1) is discretized
by applying the implicit trapezoidal rule between time t and t + δt (over-
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relaxation) as:

fji(x + cji δt, t + δt) = fji(x, t)

+
δt

2
[Ωji(f(x, t)) + Ωji(f(x + cji δt, t + δt))] + O(δt3).

(10)

This scheme is rendered explicit by introducing a local transformation through
auxiliary functions gji such that:

gji(x, t) = fji(x, t) −
δt

2
Ωji(f(x, t)). (11)

Evaluating the moments of gji(x, t) from Eq. (11) for the collision model under
consideration yields:

ρj(f) = ρj(g), Jα(f) = Jα(g),

Jjα(f) =
δt
2τ2

Jjα(g) +
ρj

ρ
Jα(g)

1 + δt
2τ2

.
(12)

The momentum Jjα of each individual species differs in the two distribution
functions. This happens because species momentum is not conserved by the
collision term (a general feature of collision models for mixtures). The differ-
ence between Jjα(f) and Jjα(g) vanishes when the two masses are the same
(mA = mB), but becomes non-negligeble when the mass ratio becomes large.
This effect of discreteness, which leads to a redefinition of the non-conserved
moments, is overlooked in previous works and led to lattice Boltzmann meth-
ods that were of first order accuracy (McCracken and Abraham (2005) and
Luo and Girimaji (2003)). By substituting in Eq. (10):

gji(x, t + δt) = gji(x, t)

− ω1 (gji(x, t) − f ∗(ρj, Jj))) − ω2

(

f ∗

ji(ρj, Jj) − f eq
ji (ρj, J)

)

,

(13)

with: ω1 = 2δt
2τ1+δt

and ω2 = ω1
τ1
τ2

. This discretization scheme allows for trasform-
ing the initial implicit problem in f into an explicit equation for g. It is noted
that in order to evaluate f eq and f ∗, moments must be computed using Eq.
(12). Moreover, the time integration scheme is second order accurate.

In general, any space discretization can be used to solve Eq. (13). However,
in order to keep the simplicity and computational advantages of the LB spa-
cial integration scheme, the square root of the mass ratio was chosen to be
an integer. This approach circumvents complicated interpolation schemes to
calculate the moments from one grid to the other. The speed of sound for the
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Fig. 1. Diffusion of a binary mixture. Initial molar concentration 60%A÷ 40%B for
x < 0 and 40%A ÷ 60%B for x > 0, mass ratio mA

mB
= 100, and µ

D
= 0.5. Symbols

LB predictions: up triangles time step 500; circles time step 2000; down triangles
time step 5000, and diamonds time step 10000. Continuous lines: corresponding
analytical solution.

species j is given by: cj
s =

√

(

kBT0

mj

)

. In the LB formulation the time step is de-

fined as: dt = dx
cs

, with dx lattice spacing. In order to have the same time step
for both components during the calculations, two different lattice grids have
to be used and the corresponding lattice spacing ratio is related to the ratio
of the sound speeds of the two components, i.e. to the inverse of the square

root of the mass ratio: dxA

dxB
= cA

s

cB
s

=
√

mB

mA
. This implies the heavier component

will have a finer grid or that the lighter component is diffusing faster than the
heavier (Graham effusion law).
The model was tested by simulating the time evolution of the diffusion of two
binary mixtures having a different component concentrations and comparing
with the corresponding analytical solution (Incropera-DeWitt (2002)). Fig-
ure 1 shows the agreement between the LB calculations and the corresponding
analytical solution for the larger mass ratio simulated.

A new Lattice Boltzmann model based on the quasi-equilibrium formulation
for binary mixtures is developed, that, despite its simplicity (the implemen-
tation on top of the standard LBGK code is straightforward), is free of the
drawbacks of previous models, is thermodynalically consistent and can acco-
modate high mass ratios within a wide range of the Schmidt numbers.

I.V. Karlin was supported by the BFE-Project Nr. 100862.

6



References

P. Andries, K. Aoki, and B. Perthame J. Stat. Phys. 106 (2002) 993-1018.
S. Ansumali and I.V. Karlin, Phys. Rev. E65 (2002) 056312.
S. Ansumali and I.V. Karlin, Phys. Rev. E 66 (2002) 026311.
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