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Abstract

A new thermal entropic lattice Boltzmann model on the standard two-dimensional
nine-velocity lattice is introduced for simulation of weakly-compressible flows. The
new model covers a wider range of flows than the standard isothermal model on the
same lattice, and is computationally efficient and stable.
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1 Introduction

Lack of energy conservation in the isothermal lattice Boltzmann models (ILBM)
[1–5] leads to spurious bulk viscosity and limits their use in many applications
such as slow convective flows and microflows. Early attempts to include the
energy conservation suffered from severe numerical instabilities. Nonlinearly
stable thermal models were proposed [5], but they remaind so far less efficient
because the advection term cannot be fitted on a lattice. So-called passive
scalar models [6] are often used to simulate thermal flows. In these models,
dynamics of the temperature field is done on a separate lattice. Apart from
doubling the lattice, also the collision requires gradient terms to be evaluated
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at each lattice cite which deprives the scheme from the locality pertinent to
the lattice Boltzmann method.

In this paper we revisit derivation of the thermal lattice Boltzmann model on
the standard nine-velocity lattice (D2Q9). With an extension of the previous
derivation of the isothermal entropic lattice Boltzmann model from continuous
kinetic theory [5], we derive a novel thermal model on the same lattice. This
model is valid for small temperature deviations and is pertinent to weakly-
compressible flows. The lattice Bhatnagar-Gross-Krook scheme for the new
thermal equilibrium is validated with the Couette flow between parallel walls
at different temperatures, and the thermal convection flow in a cavity.

2 D2Q9 thermal entropic lattice BGK model

Discrete velocities are defined as the nodes of the third-order, two-dimensional
Gauss-Hermit quadrature [3],

ci =





0, i = 0,

{cos((i− 1)π/2), sin((i− 1)π/2)}, i = 1, 2, 3, 4,
√

2{cos[(i− 5)π/2 + π/4], sin[(i− 5)π/2 + π/4]}, i = 5, 6, 7, 8.

(1)

Generating function for the equilibrium (the H-function) has the form [5],

H =
8∑

i=0

fi ln

(
fi

Wi

)
, (2)

where Wi are the weights of the nodes of the quadrature. The thermal local
equilibrium is the minimum of H (2) under fixed mass, momentum, and energy,

8∑

i=0

{
fi, ci, c

2
i

}
=

{
ρ, ρu, DρT + ρu2

}
, (3)

where T is the temperature, and D = 2 is the dimension.

Starting from (2), and minimizing it under constraints (3), the equilibrium
is found as: f eq

i = Wi exp (µ + ζxcix + ζyciy + γc2
i ), where µ, ζx, ζy and γ are

Lagrange multipliers. Their values can be found by perturbation in the mo-
mentum. At u = 0, Lagrange multipliers can be evaluated exactly, and we
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obtain,

f eq
i (ρ,0, T ) = ρWi(T ) = ρ(1− T )2

(
T

2(1− T )

)c2i

. (4)

Note that the weights Wi(T ) in (4) are only seemingly independent of the
weights of the Gauss-Hermit quadrature Wi. Indeed, for T = T0 = 1/3 (re-
duced reference temperature of the Gaussian weight of the quadrature), we
have Wi(1/3) = Wi. This implies that the present thermal model reduces to
the standard isothermal equilibrium on the same lattice. Equation (4) also tells
us that the variation of the reduced temperature is restricted to the interval
(0, 1). Variation of the temperature around the reference value T0 is further
restricted by the accuracy of the higher-order moments of the equilibrium
populations (see below). For non-zero values of the momentum, equilibrium
populations f eq

i (ρ, u, T ) are evaluated in terms of a series in un
α, and we here

present the polynomial approximation of this series to the order u3 in compo-
nent notation:

feq
0 = ρ

{
(T − 1)2 + (T − 1)u2

}
(5)

feq
1 =

ρ

2

{
(1− T )(T + ux) +

(1 + T − 4T 2)u2

4T
− (1− T )uy

2

2T
− (3T − 1)u3

x

4T
− (1 + T )uxu2

y

4T

}

feq
2 =

ρ

2

{
(1− T )(T + uy) +

(1 + T − 4T 2)u2

4T
− (1− T )ux

2

2T
− (3T − 1)u3

y

4T
− (1 + T )u2

xuy

4T

}

feq
3 =

ρ

2

{
(1− T )(T − ux) +

(1 + T − 4T 2)u2

4T
− (1− T )uy

2

2T
+

(3T − 1)u3
x

4T
+

(1 + T )uxu2
y

4T

}

feq
4 =

ρ

2

{
(1− T )(T − uy) +

(1 + T − 4T 2)u2

4T
− (1− T )ux

2

2T
+

(3T − 1)u3
y

4T
+

(1 + T )u2
xuy

4T

}

feq
5 =

ρ

4

{
T 2 + T (ux + uy) + uxuy + Tu2 +

3T − 1
4T

(
u3

x + u3
y

)
+ uxuy(ux + uy)

1 + T

4T

}

feq
6 =

ρ

4

{
T 2 + T (uy − ux)− uxuy + Tu2 +

3T − 1
4T

(
u3

y − u3
x

)− uxuy(uy − ux)
1 + T

4T

}

feq
7 =

ρ

4

{
T 2 + T (ux − uy)− uxuy + Tu2 +

3T − 1
4T

(
u3

x − u3
y

)− uxuy(ux − uy)
1 + T

4T

}

feq
8 =

ρ

4

{
T 2 − T (ux + uy) + uxuy + Tu2 − 3T − 1

4T

(
u3

x + u3
y

)− uxuy(ux + uy)
1 + T

4T

}

Note that at T = 1/3, and retaining the quadratic in u terms, (5) reduces to
the standard isothermal equilibrium on the D2Q9 lattice [2].

3



With the equilibrium (5), we consider the simplest single relaxation time BGK
equation,

∂tfi + ciα∂αfi = −τ−1(fi − f eq
i (ρ, u, T )), (6)

With the Chapman-Enskog method, and assuming small variation of the tem-
perature around the reference temperature (a precise estimate will be given
below), we derive the non-equilibrium pressure tensor and the heat flux of the
present model:

P neq
αβ =−τρT

[
∂αuβ + ∂βuα − 2

3
δαβ∂γuγ

]
, (7)

qneq
α =−2τρT∂αT, (8)

whereupon the transport coefficients are identified as µ = τρT (viscosity) and
κ = 2τρT (thermal conductivity). Note that, unlike the isothermal lattice
Boltzmann models, the non-equilibrium (Newtonian) stress (7) is traceless, as
pertinent to the classical case of Boltzmann’s fluid considered herein. That
is, by preserving the energy conservation in the derivation, we eliminated the
spurious bulk viscosity of ILBM. The heat flux (8) obeys the Fourier law.

Let us comment on the domain of validity and accuracy of the present ther-
mal model. The leading-order error is ∼ u∆T , where ∆T is a characteristic
deviation of the temperature from the reference value T0 = 1/3 (error terms
in the diagonal part of the third-order tensor Qαβγ =

∑8
i=0 f eq

i ciαciαciα). Thus,
in order to maintain the same accuracy as in the isothermal lattice Boltz-
mann models, we need to choose the values for u ∼ 10−1 − 10−4 and ∆T/T0

∼ 10−3 − 5.10−1 such that the product u∆T is less than 10−3. This accuracy
is sufficient for simulations of weakly-compressible flows.

The lattice Boltzmann method is the second-order accurate implicit scheme
for the kinetic equation (6), and is derived as follows: (i) Integrate (6) over
the time δt, (ii) Apply trapezoidal rule in order to evaluate the collision term
(second-order accuracy in δt), (iii) use the map, fi → gi = fi + (δt/2τ)(f −
f eq(f)), and note the property f eq

i = geq
i . The result is the discrete-time scheme

for (6):

gi(x + ciδt, t + δt) = gi(x, t) +
2δt

2 τ + δt

[
geq

i (x, t)− gi(x, t)
]
. (9)

Furthermore, fixing the grid points in such a way that if x is a grid point then
also x± ciδt are the grid points, equation (9) becomes the lattice Bhatnagar-
Gross-Krook scheme (LBGK). Note that the implicit second-order scheme for
the populations fi (9) can be interpreted as the explicit first-order scheme
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for the variables gi obtained from a kinetic equation of the form (6) with
a renormalized relaxation time τ ′ = τ + (δt)/2. We note in passing that a
nonlinearly stable entropic version of the scheme (6) can be written for the
populations fi rather than for the functions gi, where the factor (2δt)/(2 τ +δt)
in (9) is replaced with (αδt)/(2 τ + δt), and α is the solution to the entropy
estimate, H(f) = H(f + (α/τ)(f eq − f)), with α → 2τ in the hydrodynamic
limit (see, e. g. Eq. (9) in Ref. [5].)

We present the results of the validation studies performed. We simulate Cou-
ette flow between two parallel isothermal plates of which one is at rest and the
other is moving with a constant velocity of U0 (in grid units) parallel to the
stationary wall. The temperature of the moving wall is maintained at T0 +∆T
while the other wall is at a constant temperature of T0 (reference temperature).
For these boundary conditions, the steady state solution for non-dimensional

temperature reads as T ′ = T (X)−T0

∆T
= X +

µU2
0

2κρ∆T
X(1−X), where X denotes

non-dimensional width of the channel. Diffusive wall boundary condition [7]
was used in the simulation. Comparison of the simulation with the analytical
solution is given in Fig. 1.
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Fig. 1. Comparison of ELBM(symbol) with analytical solution(line) for thermal
Couette flow problem.

Natural convection in a square cavity was also simulated using the present
model. The fluid enclosed in a square cavity is suddenly heated on one side
(left) and cooled on the opposite side (right) via isothermal walls; the other two
walls are adiabatic. Gravitational force is perpendicular to the adiabatic walls.
We present the results of simulations up to Rayleigh numbers Ra = 105 in Fig.
2 where the temperature field in the cavity for various Ra is demonstrated.
Results are found to be in a qualitative agreement with other studies. However,
the use of the single relaxation time model (fixed Prandtl number) precludes
a quantitative comparison which is out of the scope of this paper.

In conclusion, the main result of this paper is that the construction of the
isothermal entropic lattice BGK models of Refs. [4,5] can be extended to the
lattice Boltzmann models capable of simulating weakly-compressible thermal
flows. The thermal BGK model retains all the features of the genuine lattice
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Fig. 2. Isotherms of the steady-state convection in the cavity at Ra = 103, Ra = 104,
and Ra = 105 (from left to right).

Boltzmann, that is, locality of collisions, ease and efficiency of the numeri-
cal implementation, and stability. Unlike the isothermal model, the present
thermal model has no spurious bulk viscosity, and thus is a valid model of
Boltzmann’s fluid. It is straightforward to switch from the standard isother-
mal LBGK code to the present thermal model by just changing the isothermal
equilibrium to that given by equation (5). Extension of the present LBGK to
a model with a tailored Prandtl number, as well as the stability enhancement
via the entropy estimate, will be done in our subsequent publications. IVK
was supported by the BFE-Project Nr. 100862. SSC and NIP were supported
by ETH Projects 0-20280-05 and 0-20235-05.
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