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Abstract. – Engineering applications of computational fluid dynamics typically require speci-
fication of the boundary conditions at the inlet and at the outlet. This issue remains unresolved
for kinetic-theory based approaches such as the lattice Boltzmann method. Empirically it is
known that the accuracy and stability of simulations is greatly influenced by the boundary
conditions even at moderate Reynolds numbers. In this paper, we derive a novel outflow
boundary condition for the lattice Boltzmann simulations from non-equilibrium thermodynam-
ics and Grad’s moment closure. The proposed boundary condition is validated with a three-
dimensional simulation of flow over a backward facing step. Results demonstrate that the new
outlet condition significantly extends simulation capacity of the lattice Boltzmann method.

In recent years, the lattice Boltzmann method (LBM) [1–4] has drawn considerable atten-
tion as an efficient simulation method for complex flows. The essence of LBM, as inherited
from its predecessor, the lattice gas automata [5], is a simple stream-and-collide dynamics
on a lattice. The links of the lattice are discrete velocities while the dynamic variables are
populations of the links. Although the field of applications of LBM has increased considerably,
there remain outstanding issues (stability, boundary conditions, grid-refinement etc) which so
far hindered a wider acceptance of LBM for computational fluid dynamics applications. One
of these issues, namely numerical stability of simulations of flows at large Reynolds numbers,
has been solved in the framework of the entropic formulation of LBM [4, 6, 7]. This solution
was essentially based on the choice of time step that does not violate the entropy growth
condition (a physically relevant condition prescribed by the second law of thermodynamics).
Furthermore, the boundary conditions at solid walls were derived from the continuous kinetic
theory [8]. However, other major difficulties that are not related to the sub-grid instability at
high Reynolds numbers, still persist. Such difficulties are here referred to as “missing data”,
and are typical in situations where off-lattice structures are present (open boundary condi-
tions, curved solid wall boundaries, grid refinement etc.). It is common to these problems
that populations of the links at certain nodes become unavailable. It is best to illustrate this
with an example.
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Fig. 1 – Situation at the outlet node. Data is missing for the populations of the velocities pointing
into the fluid (dash).

A typical problem of this kind is the specification of the outlet boundary condition in
duct-like flows with large aspect ratio. Such flows are most common in engineering and med-
ical applications such as wind tunnels, blood vesicles etc. In Fig. 1, we show a situation at
the outlet node. Since there are no lattice nodes beyond the outlet, populations of the three
discrete velocities pointing into the fluid are not known and need to be fixed by additional
considerations. At present, there is no established way to cope with this problem. Because
specification of pressure at the outlet has no significance in long pipes, one relies on interpo-
lation schemes (see, e.g. [9]) lacking physical intuitions. Interpolation often becomes a major
source of inaccuracy in the simulations.

In this paper we derive and implement a new outlet boundary condition for the lattice
Boltzmann simulations. Our construction is based on the idea of a low-dimensional sub-
manifold in the space of populations which contains most of the dynamics (slow invariant
manifold [10]). The main assumption is that this manifold is well approximated by (an analog
of) Grad’s distribution functions used in the kinetic theory of gases. The Grad distribution is
used for extrapolating the missing populations with the resulting outlet condition being local
in space, and is thus easy to implement. We report a three-dimensional lattice Boltzmann
flow simulation over a step (so-called backwards facing step problem) with this new outlet
boundary condition. This setup is a stringent test for the lattice Boltzmann method because
of the problems at the outlet. Present results are found to be in good agreement with spectral
method and experimental data over a range of Reynolds numbers. This extends the domain
of lattice Boltzmann simulations by approximately an order of magnitude.

The structure of the paper is as follows: First the derivation of the lattice Boltzmann
equation is revisited. Then we present the Grad approximation pertinent to the discrete-
time kinetics before giving details of the outlet boundary condition. Finally, we present
the backward-facing step simulation and compare the results with other computational and
experimental data.

We consider the simplest setting of the lattice Boltzmann equation. Let ci be the links of
a regular lattice, i = 1, . . . , nd, and the populations fi(x, t) at the location x and time t obey
the kinetic equation,

∂tfi + ciα∂αfi = Qi, (1)
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where ∂t = ∂/∂t and ∂α = ∂/∂xα are dimensionless time and space derivatives, summation
convention is assumed, and the relaxation term is in the Bhatnagar-Gross-Krook (BGK)
form [11],

Qi = −1
τ

(fi − f eq
i (ρ, j)). (2)

Here τ > 0 is the dimensionless relaxation time, and the equilibrium f eq
i (ρ, j) is a function

of the locally conserved fields (density ρ and momentum j), tailored in such a way as to
reconstruct the Navier-Stokes equation in the hydrodynamic limit of the model (1) when
τ → 0. Below we use a specific three-dimensional velocity set with nd = 15 (so-called D3Q15
model [2]), with

f eq
i (ρ, jα) = Wi

[
ρ +

jαciα

c2
s

+
1

2c4
s

jαjβ

(
ciαciβ − c2

sδαβ

)]
. (3)

Here Wi > 0 are weights specified for the given velocity set, and cs = 1/
√

3 is the speed of
sound. Kinematic viscosity in the Navier-Stokes recovered in the limit τ ¿ 1 is ν = τρc2

s . Note
that equilibrium (3) is the approximate (accurate to the order j2) solution to the conditional
minimization problem of the entropy function H,

H =
nd∑

i=1

fi ln
(

fi

Wi

)
→ min,

nd∑

i=1

{1, ci} f eq
i = {ρ, j} . (4)

The lattice Boltzmann method [1–4] is the second-order accurate implicit scheme for the
kinetic equation (1). Let us recall the derivation here. After integrating (1) over the time δt,
and applying trapezoidal rule in order to evaluate the collision term (second-order accuracy
in δt), we get

fi(x + ciδt, t + δt)− fi(x, t) =
δt

2
(Qi(f(x, t) + Qi(f(x + cδt, t + δt)) + Err(δt), (5)

where the error term comes from the evaluation of the collision integral, and is of the order,

Err(δt) ∼ 1
τ

δt3. (6)

Using in (5) the map,

fi → gi = fi − δt

2
Qi(f), (7)

we derive the discrete-time scheme for (1):

gi(x + ciδt, t + δt) = gi(x, t) +
2δt

2 τ + δt

[
geq

i (x, t)− gi(x, t)
]
. (8)

Furthermore, fixing the grid points in such a way that if x is a grid point then also x ± ciδt
are the grid points, equation (8) becomes the lattice Bhatnagar-Gross-Krook scheme (LBGK).
Note that the implicit second-order scheme for the populations fi (8) can be interpreted as
the explicit first-order scheme for the variables gi (7) obtained from a kinetic equation of the
form (1) with a renormalized relaxation time τ ′ = τ + (δt)/2 (1).

(1)We note in passing that a nonlinearly stable entropic version of the scheme (8) can be written for the
populations fi rather than for the functions gi, where the factor (2δt)/(2 τ+δt) is replaced with (αδt)/(2 τ+δt),
and α is the solution to the entropy estimate, H(f) = H(f +αQ), with α → 2 in the hydrodynamic limit (see,
e. g. Eq. (9) in Ref. [4].)
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One simple but important implication of this derivation of the lattice Boltzmann scheme
from the kinetic equation (1) deserves to be mentioned. Since the kinetic equation is singularly
perturbed (τ ¿ 1), the error term gives vanishing contribution to the hydrodynamic (Navier-
Stokes) equations if Err(δt) ∼ 1, that is, δt . τ1/3. Using the standard relation Re = Ma/Kn,
where Re, Ma and Kn are Reynolds, Mach and Knudsen numbers, this estimate can be
recast into a grid resolution requirement. Indeed, since Kn ∼ τ , and δt ∼ δx ∼ N−1, where
N = L/δx is the number of grid points along the characteristic length L in the definition of
Reynolds number Re = UL/ν, we find that the error terms do not spoil the Navier-Stokes
equation on the time step of the order of δt if Re . N3Ma. Finally, the Navier-Stokes equation
is resolved on the flow time scale T ∼ Nδt if

Re . N2Ma. (9)

For a fixed number of grid points N , (9) estimates the order of magnitude of the Reynolds
number up to which the simulation is resolved (that is, the second-order scheme (8) recon-
structs the Navier-Stokes equations exactly). The resolution estimate (9) is pertinent to the
kinetic scheme, and is flow-independent. It should not be confused with other (flow-dependent)
definitions of resolution in computational fluid dynamics, for example, with those based on
a characteristic length of fully developed turbulent flows (Kolmogorov’s length scale). The
estimate (9) simply tells whether the scheme (8) reconstructs the Navier-Stokes equations, or
the reconstructed hydrodynamic equations have a feature of a sub-grid model (the sub-grid
correction to the Navier-Stokes equation was derived from similar considerations in [12]).

Coming back to the continuous kinetic equation (1), we introduce (an analog of) Grad’s
moment approximation for the populations. We remind that the classical Grad’s distribution
functions [13] were obtained as a truncated expansion in Hermite velocity polynomials of the
distribution function around the local Maxwellian. Grad’s distributions are parameterized by
the values of relevant moments which include, besides the locally conserved fields, also those
which are supposed to vary slower than the rest. These are the stress tensor and the energy
flux in the original setting of Grad. Later studies revealed important relations of Grad’s distri-
butions to quasi-equilibrium (or maximum entropy) approximations, and suggested extensions
for various other macroscopic variables (not obligatory moments) [10,14]. In the context of the
lattice Boltzmann method, the Grad approximation was discussed in [3, 8]. In the athermal
case under consideration, we choose the relevant variables as the locally conserved fields, ρ
and j, and the pressure tensor Pαβ ,

Pαβ =
nd∑

i=1

ficiαciβ . (10)

Grad’s approximation for the populations can be derived by standard techniques (see, e.
g. [10, 14]), and we write here the final result:

f∗i (ρ, jα, Pαβ) = Wi

[
ρ +

jαci α

c2
s

+
1

2 c4
s

(
Pαβ − δαβρc2

s

) (
ci αci β − c2

sδαβ

)]
. (11)

Grad’s (non-equilibrium) populations (11) span a sub-manifold in the phase space of the
kinetic equation (1), parameterized by the values of the density, momentum and pressure
tensor.

Finally, in order to use the Grad approximation within the second-order scheme (8), pop-
ulations (11) should be interpreted with the transform (7):
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g∗i = f∗i −
δt

2
Qi(f∗). (12)

The main assumption in using Grad’s approximations is that the sub-manifold (12) ap-
proximates well the slow manifold of the dynamic system (8). While in most of the cases
of applications of Grad’s approximation this indeed remains an assumption, for some lattice
Boltzmann models, this was recently verified affirmatively in a simulation of the lid-driven
cavity flow [15].

With this assumption, we impose the outlet condition (see Fig. 1) by the following rule:
On the time step n + 1, the populations of the links at the outlet pointing into the fluid are
assigned the values (12), whereas the values of the moments ρ, j, and Pαβ are taken from the
previous time step n at the same nodes. Initially, all links are at equilibrium.

The three-dimensional backwards-facing step flow was used to validate the outlet boundary
condition. The standard D3Q15 lattice Boltzmann model with the polynomial equilibrium
(3) was used. Geometry of the setup was chosen in such a way as to mimic the experiment of
Armaly et al [16]: The channel length (X) was 20S, where S is the step height, the channel
width (Y ) was 2S. The step heights was S = 10 (lattice units), the step length was 2S. The
ratio of the span width (Z) to the step height was equal 36 : 1 (that is, the span width was
36S lattice units). The total number of grid points was about 1.5 × 106. Kinetic boundary
conditions [8] were applied on the wall nodes. The inflow was a fully developed velocity profile
in a duct flow (simulated separately in the duct with the dimension 15S × S × 36S). The
inflow velocity maximum ranged between 10−2 to 4× 10−2 while the kinematic viscosity was
fixed at ν = 10−3. The outlet condition (12), (11) was applied both in the backwards-facing
step channel and in the the auxiliary duct simulations. All simulations were done on a single-
processor facility (PC), a single run time ranged between one to several hours depending
on the Reynolds number, Re = (2US)/ν, where U is cross-section averaged inlet velocity.
According to (9), the kinetically resolved maximal Reynolds number is Remax ∼ 10.

Before reporting the results, we need to admit that, for example, the same three-dimensional
lattice Boltzmann model with the outlet boundary conditions based on a simple second-order
interpolation formula for the missing populations (see, e. g. [9]) failed at Reynolds number
Re < 50. The reason for such a poor performance, as we mentioned it already, is the errors
which start at the outlet and propagate upstream.

The range of Reynolds number covered in our simulation with the new outlet was 100 <
Re < 392 (that is, essentially in the unresolved regime in the sense of (9), which is typical
of most of the lattice Boltzmann simulations). In Fig. 2, snapshots of the velocity on the
mid-plane at Re = 270 are shown in the full computation domain, including the outlet. It is
visible in Fig. 2 that the velocity profile stays smooth during the whole simulation. In Fig. 3,
the primary flow reattachment length (the distance at which the velocity field on the bottom
wall becomes directed towards the outlet) is compared with the results of the simulations
of the incompressible Navier-Stokes equation by various numerical techniques [17, 18], with
the recent two-dimensional lattice Boltzmann simulation on a non-uniform grid [9], as well as
with the experimental data of Armaly et al [16], and was found to be in excellent agreement.
We stress that the accuracy and stability achieved with the new outlet boundary condition
allowed to use a small step size of only ten grid points, much less than it would be required
with different boundary conditions.

In conclusion, we have derived a new outlet condition for lattice Boltzmann simulations
of hydrodynamic problems. The derivation is based on the physically intuitive picture that
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Fig. 2 – Snapshots of the velocity field on the mid-plane at Re = 270 at 9×103, 18×103, and 40×103

time steps in lattice units (from top to bottom).

Re

X
1

/S

0 100 200 300 400
0

2

4

6

8

10

Experiment
Kim & Moin
Kaiktsis et. al.
Ubertini & Succi
Present (LBGK)

Fig. 3 – Primary reattachment length X1 normalized by the step height S. Comparison of the present
simulation with the experiment of Armaly et al [16], and simulations of Kaiktsis et al [17], Kim and
Moin [18], and Ubertini and Succi [9].
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Grad’s approximation contains most of the dynamics of the kinetic model. The outlet condi-
tion was verified in the three-dimensional simulation of the benchmark problem, and clearly
outperformed other suggestions in terms of stability and accuracy. Similar considerations
should be applicable in a variety of other problems where one faces off-grid structures such as
grid refinement and curved boundary. IVK was supported by the BFE-Project Nr. 100862.
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