Available online at www.sciencedirect.com

sciznce (oimeer: PHYSICA

ELSEVIER Physica A 359 (2006) 289-305

www.elsevier.com/locate/physa

Entropic lattice Boltzmann method
for microflows

S. Ansumali, I.V. Karlin®, C.E. Frouzakis, K.B. Boulouchos

Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology (ETH),
CH-8092 Zurich, Switzerland

Received 25 November 2004; received in revised form 10 March 2005
Available online 24 June 2005

Abstract

A new method for the computation of flows at the micrometer scale is presented. It is based
on the recently introduced minimal entropic kinetic models. Both the thermal and isothermal
families of minimal models are presented, and the simplest isothermal entropic lattice
Bhatnagar—Gross—Krook (ELBGK) is studied in detail in order to quantify its relevance for
microflow simulations. ELBGK is equipped with boundary conditions which are derived from
molecular models (diffusive wall). A map of three-dimensional kinetic equations onto two-
dimensional models is established which enables two-dimensional simulations of quasi-two-
dimensional flows. The ELBGK model is studied extensively in the simulation of the two-
dimensional Poiseuille channel flow. Results are compared to known analytical and numerical
studies of this flow in the setting of the Bhatnagar—Gross—Krook model. The ELBGK is in
quantitative agreement with analytical results in the domain of weak rarefaction
(characterized by Knudsen number Kn, the ratio of mean free path to the hydrodynamic
scale), up to Kn~0.01, which is the domain of many practical microflows. Moreover, the
results qualitatively agree throughout the entire Knudsen number range, demonstrating
Knudsen’s minimum for the mass flow rate at moderate values of Kn, as well as the
logarithmic scaling at large Kn. The present results indicate that ELBM can complement or
even replace computationally expensive microscopic simulation techniques such as kinetic
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Monte Carlo and/or molecular dynamics for low Mach and low Knudsen number
hydrodynamics pertinent to microflows.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Gas flows at the micrometer scale constitute a major portion of contemporary
fluid dynamics of engineering interest. Because of its relevance to the engineering of
micro electro-mechanical systems (MEMS), the branch of computational fluid
dynamics focused on microscale phenomena is often called “microfluidics™ [1,2].

Microflows are characterized by the Knudsen number, Kn, which is defined as the
ratio of the mean free path of molecules A and the characteristic scale L of variation of
hydrodynamic fields (density, momentum, and energy). For typical flows in
microdevices, Kn~1/L varies from Kn<1 (almost-continuum flows) to Kn~1 (weakly
rarefied flows). Another characteristic property of microflows is that they are highly
subsonic, that is, the characteristic flow speed is much smaller than the speed of sound.
This feature is characterized by the Mach number, Ma~u/c;, where u is the
characteristic flow speed, and ¢ is the (isentropic) speed of sound. Thus, for microflows,
Ma<1. To be more specific, typical flow velocities are about 0.2 m/s, corresponding to
Ma~107*%, while values of the Knudsen number range between 10~*<Kn<107!.
Finally, in the majority of applications, microflows are quasi-two-dimensional.

Theoretical studies of gas flows at finite Knudsen number have begun several
decades ago in the realm of the Boltzmann kinetic equation. To that end, we mention
pioneering contributions by Cercignani, Sone, and others [3,4]. These studies focused
on obtaining either exact solutions of the stationary Boltzmann kinetic equation, or
other model kinetic equations in relatively simple geometries (most often, infinite or
semi-infinite rectangular ducts), or asymptotic expansions of these solutions.

While analytical solutions are important for a qualitative understanding of
microflows, and also for the validation of numerical schemes, they certainly do not
cover all the needs of computational fluid dynamics (CFD) of practical interest. At
present, two CFD strategies for microflows are well established.

® Equations of continuous fluid mechanics with slip boundary conditions. The simplest
semi-phenomenological observation about microflows is the break down of the
no-slip boundary condition of fluid mechanics with increasing Knudsen number.
Since microflows are highly subsonic, this leads to the simplest family of models,
equations of incompressible or compressible fluid dynamics supplemented by slip
velocity boundary conditions (a review can be found in Ref. [2]). This approach,
although widely used at the early days of microfluidics, remains phenomen-
ological. Moreover, it fails to predict phenomena such as nontrivial pressure and
temperature profiles observed by more microscopic approaches.
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® Direct simulation of the Boltzmann kinetic equation. On the other extreme, it is
possible to resort to a fully microscopic picture of collisions, and to use a
molecular dynamics approach or a simplified version thereof—the direct
simulation Monte Carlo method (DSMC) of Bird [5]. DSMC is sometimes
heralded as the method of choice for simulation of the Boltzmann equation, and it
has indeed proven to be robust in supersonic, highly compressible flows with
strong shock waves. However, the highly subsonic flows at small to moderate
Knudsen number is not a “‘natural” domain for the DSMC simulations where it
becomes computationally intensive [6].

Since semi-phenomenological computations are not reliable, and the fully
microscopic treatment is not feasible, the approach to CFD of microflows must
rely on reduced models of the Boltzmann equation. Two classical routes of reducing
the kinetic equations are well known, the Chapman—Enskog method and Grad’s
moment method (for a modern summary and extensions of these methods see, for
example, Ref. [7]). The Chapman-Enskog method extends the hydrodynamic
description (compressible Navier—Stokes equations) to finite Kn in the form of a
Taylor series, leading to hydrodynamic equations of increasingly higher order in the
spatial derivatives (Burnett’s hydrodynamics). Grad’s method extends the hydro-
dynamic equations to a closed set of equations including higher-order moments
(fluxes) as independent variables. Both methods are well suited for theoretical studies
of microflows. In particular, as was already noted by Grad [8], moment equations are
especially well suited for low Mach number flows.

However, applications of Grad’s moment equations or of Burnett’s hydro-
dynamics (or of existing extensions and generalizations thereof) to CFD of
microflows are limited at present because of several reasons. The most severe
difficulty is in formulating the boundary conditions at the reduced level. Although
some studies of boundary conditions for moment systems were initiated recently [9],
this problem is far from solved. The crucial importance of the boundary condition
for microflows is actually expected. Indeed, as the rarefaction is increasing with Kn,
the contribution of the bulk collisions becomes less significant as compared to the
collisions with the boundaries, and thus the realistic modelling of the boundary
conditions becomes increasingly important.

In this paper we set up a novel approach to the CFD of microflows. It is based on
the recently developed entropic lattice Boltzmann method (ELBM) [10-21]. The
choice of the ELBM for microflows is motivated by two reasons:

e ELBM is an unconditionally stable simulation method for flows at low Mach
numbers.

® In contrast to Grad’s method, ELBM is much more compliant with the boundary
conditions. Recently, an appropriate boundary condition for the ELBM was
found upon a discretization of the diffusive wall boundary condition of the
Boltzmann equation [16]. This boundary condition was also rediscovered in Ref.
[22], where ELBM simulations were tested against molecular dynamic simulations
with a good agreement.
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It should be mentioned that the predecessor of ELBM, the lattice Boltzmann
method (LBM) [23], was employed several times for microflow simulations [24-27].
The motivation of most of these works was the velocity slip observed in the LBM
simulations using the so-called bounce-back boundary condition [24-27]. However,
since the bounce-back boundary condition is completely artificial, the results are
questionable [22].

The outline of the present paper is as follows: in Section 2, for the sake of
completeness, we present the general description of isothermal and thermal entropic
lattice Boltzmann models. Then, we describe the ELBM setup for the simplest
situation of isothermal flows, the entropic lattice Bhatnagar-Gross—Krook model
(ELBGK). The case of isothermal models is important in itself since it allows to
study nontrivial flow phenomena such as velocity slip at the wall, and the well-
known Knudsen minimum of the mass flow rate in pressure-driven channel flows.
Prediction of the Knudsen minimum is a classical benchmark problem for the
simulation of microflows. In Section 3, we describe in detail the implementation of
the diffusive boundary conditions for the ELBM for two-dimensional simulations. A
separate Section 4 is devoted to the question of how to simulate quasi-two-
dimensional flows with two-dimensional models, and how to map the parameters of
the model onto experimental data and more microscopic simulations. In Section 5,
we present simulation results for the quasi-two-dimensional Poiseuille flow, and
discuss Knudsen’s minimum, comparing results with known asymptotic and analytic
solutions to the Boltzmann kinetic equation. Results are discussed in Section 6,
where we define the domain of validity of ELBM for microflows. We also suggest a
straightforward application of ELBM results to accelerate more microscopic
simulation approaches like the DSMC method.

2. Minimal kinetic models

We start with a generic discrete velocity kinetic model. Let f,(x, 7) be populations
of the D-dimensional discrete velocities ¢;, i = 1, ..., nq, at position x and time ¢. The
hydrodynamic fields are the linear functions of the populations, namely

nd
Z{la ¢, C%}f}':{p’ pu, pDT+pu2}’ (1)
i=1

where p is the mass density of the fluid, pu is the D-dimensional momentum density
vector, and e = pDT + pu* is the energy density. In the case of isothermal
simulations, the set of independent hydrodynamic fields contains only the mass
and momentum densities. It is convenient to introduce ng-dimensional population
vectors f, and the standard scalar product, (f|g) =>4, f;9;. For example, for
almost-incompressible hydrodynamics (leaving out the energy conservation), the
locally conserved density and momentum density fields are written as

(1f) = p, (c,lf) = pu, . (2)
Here 1 = {1}/, ¢, = {¢is),, and o = 1,..., D, where D is the spatial dimension.
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The construction of the kinetic simulation scheme begins with finding a convex
function of populations H (entropy function), which satisfies the following
condition: if f*(p, u) (local equilibrium) minimizes H subject to the hydrodynamic
constraints (Egs. (1) or (2)), then ¢ also satisfies certain restrictions on the higher-
order moments. For example, the equilibrium stress tensor must respect the Galilean
invariance,

nq
Z CinCipf i (p, u) = Pczéa[f + pugip . 3)

i=1

The corresponding entropy functions for the isothermal and the thermal models
were found in Refs. [11,16,17], and are given below (see Section 2.4 and Table 1). For
the time being, assume that the convex function H is given.

The next step is to obtain the set of kinetic equations

Of i + cin0uf i = 4 . 4)

Let my,...,m, be the ny-dimensional vectors of locally conserved fields,
M; = mlf), j=1,...,n., nc<ng. The ny-dimensional vector function A (collision
integral), must satisfy the conditions

(m;|A) =0, i=1,...,n. (local conservation laws) ,
(VH|A) <0 (entropy production inequality) ,

Table 1
Minimal kinetic models

1. Order 2. Fields 3. Velocities 4. Weights 5. Hydrodynamic limit

2 P JTo : Diffusion
—JT, %

3 0, put 0 Z Isothermal Navier-Stokes
V3JT, g
—/3JTo §

4 p, pu, e /36 JTo 1/[4(3 — \/5)] Thermal Navier—Stokes
—V3 6Ty 1/[4(3 — V6)]
V3 + /6Ty 1/[43 + V6)]
—V3+ V6T, 1/[4G +V0)]

Column I: order of Hermite velocity polynomial used to evaluate the Gauss—Hermite quadrature; Column
2: locally conserved (hydrodynamic) fields; Column 3: discrete velocities for D =1 (zeroes of the
corresponding Hermite polynomials). For D> 1, discrete velocities are all possible tensor products of the
one-dimensional velocities in each component direction; Column 4: weights in the entropy formula (10),
corresponding to the discrete velocities of Column 3. For D> 1, the weights of the discrete velocities are
products of corresponding one-dimensional weights; Column 5: macroscopic equations for the fields of
Column 2 recovered in the hydrodynamic limit of the model.
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where VH is the row-vector of partial derivatives 0H /0f;. Moreover, the local
equilibrium vector f*9 must be the only zero point of A, that is, A(f°?) =0, and,
finally, 4 must be the only zero point of the local entropy production, o(f*1) = 0.
Collision integrals which satisfies all these requirements are called admissible. Let us
discuss several possibilities of constructing admissible collision integrals.

2.1. BGK model

Suppose that the entropy function H is known. If, in addition, the local
equilibrium is also known as an explicit function of the locally conserved variables
(or some reliable approximation of this function is known), the simplest option is to
use the Bhatnagar—Gross—Krook (BGK) model. In the case of isothermal
hydrodynamics, for example, we write

A= — 1~ 0, u(h). 5)

The BGK collision operator is sufficient for many applications. However, it becomes
advantageous only if the local equilibrium is known in a closed form and is not too
complicated. Often only the entropy function is known but not its minimizer. For
these cases one should prefer to construct collision integrals based solely on the
knowledge of the entropy function. We present here two particular realizations of
the collision integral based on the knowledge of the entropy function only.

2.2. Quasi-chemical model

For a generic case of n. locally conserved fields, letg,, s = 1,...,nq — n., be a basis
of the subspace orthogonal (in the standard scalar product) to the vectors of the
conservation laws. For each vector g,, we define a decomposition g, = gF — g,
where all components of vectors g are nonnegative, and if g£ 0, then g% = 0. Let
us consider the collision integral of the form

nq—ne

A= " o lexp(VH|g)) — exp((VH|g))} . (6)
s=1
Here ¢,>0. By construction, the collision integral (6) is admissible. If the entropy
function is Boltzmann-like, and the components of the vectors g, are integers, the
collision integral assumes the familiar Boltzmann-like form. An example of such a
collision term for the D2Q9-discrete velocity model is described in Ref. [11].

2.3. Single relaxation time gradient model

The BGK collision integral (5) has the following important property: the
linearization of the operator (5) around the local equilibrium point has a very simple
spectrum {0, —1/7}, where 0 is the n.-times degenerate eigenvalue corresponding to
the conservation laws, while the nonzero eigenvalue corresponds to the rest of the
(kinetic) eigenvectors. Nonlinear collision operators which have this property of
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their linearizations at equilibrium are called single relaxation time models (SRTM).
They play an important role in modelling because they allow for the simplest
identification of transport coefficients.

The SRTM, based on the given entropy function H, is constructed as follows
(single relaxation time gradient model, SRTGM). For the system with 7, local
conservation laws, let e;, s =1,...,n4 — ne, be an orthonormal basis in the kinetic
subspace, (m;le;) =0, and (esle,) = Jy,. Then the single relaxation time gradient
model is

ng—ne
A=——3 eKyl)ie)VH). v
s,p=1

where K, are elements of a positive definite (ng — nc) x (ng — ne) matrix K,
K(f) = C'(f),
Csp(f) = (es|VVH(f)|ep> . 8)

Here, VVH(f) is the ny x ng matrix of second derivatives, O*H /of of I3 Linearization
of the collision integral at equilibrium has the form

1 ng—ne

L == _; Z €€ , (9)
s=1

which is obviously single relaxation time. Use of the SRTGM instead of the BGK

model results in the same hydrodynamics even when the local equilibrium is not
known in a closed form. Further details of this model can be found in Ref. [15].

2.4. H-functions of minimal kinetic models

The Boltzmann entropy function written in terms of the one-particle distribution
function f(x,¢) is H = [fInf de, where ¢ is the continuous velocity. Close to the
global (reference) equilibrium, this integral can be approximated by using the
Gauss—Hermite quadrature with the weight

W = (2nTo)P/? exp(—*/(2T})) .

Here D is the spatial dimension, T is the reference temperature, while the particles
mass and Boltzmann’s constant kg are set equal to one. This gives the entropy
functions of the discrete-velocity models [11,16,17]

H= Zf,.ln<{%> | (10)
i=1 !

Here, w; is the weight associated with the ith discrete velocity ¢; (zeroes of the
Hermite polynomials). The discrete-velocity distribution functions (populations)
fi(x) are related to the values of the continuous distribution function at the nodes of
the quadrature by the formula,

[ix) = wi@n To)*? exp(c] /2 To)f (x, ¢,) -
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The entropy functions (10) for various {w;, ¢;} are the only input needed for the
construction of minimal kinetic models.

With the increase of the order of the Hermite polynomials used in evaluation of
the quadrature (10), a better approximation to the hydrodynamics is obtained. The
first few models of this sequence are represented in Table 1.

2.5. Entropic lattice Boltzmann method

If the set of discrete velocities forms the links of a Bravais lattice (with possibly
several sub-lattices), then the discretization of the discrete velocity kinetic equations
in time and space is particularly simple, and leads to the entropic lattice Boltzmann
scheme. This happens in the important case of the isothermal hydrodynamics. The
equation of the entropic lattice Boltzmann scheme reads

fix+eidt,t + 6t) — fi(x, 1) = Pa(f(x, 1)Ai(f(x, 1)), (11)

where ot is the discretization time step, and f € [0, 1] is a fixed parameter which
matches the viscosity coefficient in the long-time large-scale dynamics of the kinetic
scheme (11). The function o of the population vector defines the maximal over-
relaxation of the scheme, and is found from the entropy condition

H(f(x, 1)) + A (x, ) = H((x, 1)) . (12)

The nontrivial root of this equation is found for populations at each lattice site. Eq.
(12) ensures the discrete-time H-theorem, and is required in order to stabilize the
scheme if the relaxation parameter f is close to one. We note in passing that the
latter limit is of particular importance in the applications of the entropic lattice
Boltzmann method to hydrodynamics because it corresponds to vanishing viscosity,
and hence to numerically stable simulations of very high Reynolds number flows.

2.6. Entropic lattice BGK method (ELBGK)

An important simplification occurs in the case of the isothermal simulations when
the entropy function is constructed using third-order Hermite polynomials (see Table
1): the local equilibrium population vector can be obtained in closed form [17]. This
enables the simplest entropic scheme—the entropic lattice BGK model—for
simulations of isothermal hydrodynamics. We present this model in dimensionless
lattice units.

Let D be the spatial dimension. For D = 1, the three discrete velocities are

c={-1,0,1}. (13)

For D> 1, the discrete velocities are tensor products of the discrete velocities of these
one-dimensional velocities. Thus, we have the 9-velocity model for D = 2 and the 27-
velocity model for D = 3. The H function is Boltzmann-like

3P f-
"= ;filn<;i> . (14)
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The weights w; are associated with the corresponding discrete velocity ¢;. For D =1,
the three-dimensional vector of the weights corresponding to the velocities (13) is

w= (534 - (15

For D>1, the weights are constructed by multiplying the weights associated with
each component direction.

The local equilibrium minimizes the H-function (10) subject to the fixed density
and momentum

3P 3P
Zfi=l)a Zf,’cia=pu%, a=1,...,D. (16)
i=1 i=1
The explicit solution to this minimization problem reads
& Quy+ /14 32\ "
=] 2—\/::3;5 TV (17
a=1 . 1 — Uy

Note that the exponent, c¢;,, in Eq. (17) takes the values 1, and 0 only, and the
speed of sound, ¢, in this model is equal to 1/ V3. The factorization of the local
equilibrium (17) over spatial components is quite remarkable, and resembles the
familiar property of the local Maxwellians.

The entropic lattice BGK model for the local equilibrium (17) reads

filx+ ot t+01) =[x, 1) = —falf i(x, 1)) — f74(p(£(x, 1)), u(f(x, 1))). (18)
The parameter f is related to the relaxation time t of the BGK model (5) by the

formula

ot

ﬁ=2r+5t

(19)

and the value of the over-relaxation parameter o is computed at each lattice site from
the entropy estimate

H(f — of — £9(f))) = H(f) . (20)

In the hydrodynamic limit, model (18) reconstructs the Navier—Stokes equations
with the viscosity

= pcf‘c = pcgét(;ﬂ — ;) . 21
The zero-viscosity limit corresponds to § — 1. We remind [11] that the expansion of
the equilibrium (17) to second order in u, together with the approximate solution
o = 2 to the entropy estimate (20) results in the lattice BGK model (LBGK). While
in the hydrodynamic simulations the ELBGK is clearly preferable due to its
nonlinear stability, in the applications below the difference in performance between
the ELBGK and LBGK was not observed to be crucial.
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3. Wall boundary conditions

The boundary (a solid wall) OR is specified at any point x € OR by the inward unit
normal e, the wall temperature Ty, and the wall velocity u,,. The simplest boundary
condition for the minimal kinetic models is obtained upon evaluation of the diffusive
wall boundary condition for the Boltzmann equation [3] with the help of the
Gauss—Hermite quadrature [16,20,22]. The essence of the diffusive boundary
condition is that particles lose their memory of the incoming direction after reaching
the wall. Once a particle reaches the wall, it gets redistributed in a way consistent
with the mass-balance and normal-flux conditions. Further, the boundary condition
must also satisfy the condition of detailed balance: if the incoming populations are at
equilibrium (corresponding to the wall-velocity), the outgoing populations are also
at equilibrium (corresponding to the wall-velocity).

For the purpose of simulations below, let us consider the case when the wall
normal, e, (pointing towards the fluid) is in the positive y direction. The lattice for
the 9-velocity isothermal model is depicted in Fig. 1.

For this particular case, the boundary update rules for incoming and grazing
populations on a two-dimensional lattice are

Sole,y, 1460 =f5(x, », 1),

S106,p, 1+ 60) = f5(x — cot, p, 1),

[0y, t+0t) = f(x + cot, y, 1),

a6y, 1+ 00 =3[ 3(x,y + cot,0) + f1(x, , 1] ,

f706p, 0+ 60) = f5(x + o1,y + ¢dt, 1) + [3(x, 3, 1)]

fs(6,y, 1400 = 4[f5(x — cdt,y + ¢t 1) + f5(x, 3, )], (22)

where /™ denotes post-collision populations, and the update rules for outgoing
populations are

Sa(X, 1+ 80) + f7(X, 1 + 51) + fg(X, t + 51)
L3 uan) + /510, uyan) + (05 Uyan)
Jfax,t+00) + f4(x,t + 1) + fg(x, t + 57)
f;q(p’ Uyall) +f§q(p, Uyall) +f2q(p’ Uyall)

fo(x, 1+ 01) = f3(p, uyan)

fs(x, 1+ 01) = f5(p, uwan)

6 2 5 ¢
[ J [ ] [ J [ ]
H
3 1
oo @mmimimims @ - QDO - - S @mimim ®---
7 4 8

Fig. 1. Schematic diagram for the situation near a flat wall, when the wall normal, e, (pointing towards the
fluid) is in the positive y direction.
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fa(X, 1408+ fo(X, t + 01) + fg(x, t + O1)
f;q(p: Uyall) +f§q(,0, Uyyall) +fzq(,0, Uyall)

Sfo(X, 14 00) = f¢(p, uan) (23)

4. Simulation of quasi-two-dimensional flows with two-dimensional kinetic models

As mentioned in the introduction, many microflows of engineering interest can be
considered as quasi-two-dimensional. This means that averaged quantities such as
flow velocity and density do not depend appreciably on the third spatial direction.
Thus, it is tempting to use two-dimensional kinetic models in simulations of such
flows. However, care should be taken in order to map correctly the results of two-
dimensional simulations onto experimental data or molecular dynamics simulations.
Indeed, molecular motion remains three dimensional in spite of the fact that some
averages can be considered two dimensional. In the DSMC simulations of two
dimensional flows, for example, collisions of the particles are always treated as three
dimensional. The two-dimensional kinetic models therefore must be considered as a
computational device which uses fictitious particles moving in two dimensions in
order to mimic quasi-two-dimensional flows of particles moving in three dimensions.

The mapping of the parameters of the three-dimensional kinetic equation onto the
two-dimensional lattice Boltzmann scheme is done in two steps:

® Map the continuous three-dimensional kinetic equation onto the three-dimen-
sional discrete velocity model.

® Map the three-dimensional discrete velocity model onto the two-dimensional
velocity model.

In the case considered in this paper, the three-dimensional continuous kinetic
model is the BGK model [3], which contains the relaxation parameter tggk

Of + es0uf = — —

TBGK
where /™ is the local Maxwell distribution function. In this subsection we shall
explicitly indicate all the functions and parameters related to the continuous BGK
model with the subscript in order to distinguish them from the lattice counterparts.
The viscosity coefficient of the BGK model (24) is related to the relaxation time
gk as follows:

F =™, (24)

HBGK = PBGK I BGKTBGK - (25)

In the isothermal discrete velocity BGK model of Section 2, the viscosity is
expressed not as a function of temperature but of sound speed c;,

u=pct, (26)

where ¢; = 1/+/3 in lattice units used in simulations. Therefore, in the first step of the

above procedure, we map the parameters of the continuous three-dimensional BGK
equation onto the three-dimensional discrete velocity model using the relation for the
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speed of sound, ¢s sk = +/YTBGK, Where 7 is the adiabatic exponent. For an ideal
gas, y = % Thus, the first step is accomplished by the relation

Cs BGK = Cs »

\/iTBGK=\/; (27)

This formula establishes the relation between the relaxation parameter of the three-
dimensional continuous BGK equation (24) and the three-dimensional isothermal
discrete velocity model of Section 2. Note that the sound speed of the thermal model
is made equal to the sound speed of the isothermal model by relation (27).

At the second step, we map the three-dimensional 27-velocity isothermal model
onto the two-dimensional 9-velocity model. Note that the sound speed in both
models is identical (and equals to /kg Ty in dimensional units). The mapping is done
by populating at the equilibrium the links of the 27-velocity lattice in the direction
orthogonal to the fixed plane containing the links of the 9-velocity sub-lattice. This
amounts to the following recomputation of the three-dimensional density p;j, in
terms of the two-dimensional density p,p:

P3p = %sz . (28)

This formula enables the computation of the effective three-dimensional density in
terms of the two-dimensional density used in the simulations with the 9-velocity
model. Specification of density is an important part of the simulation since it is used
to define data as prescribed pressure drop at the inlet and outlet of pipes, etc.

The formulas collected in this section, together with the viscosity formula of the
fully discretized entropic lattice Boltzmann method (21), enable the comparison of
two-dimensional simulation results with the results obtained by microscopic
simulations with different collision models (the hard sphere model, for example).
The choice of the model is needed to identify the mean free path which is model-
dependent, especially at moderate values of Knudsen number.

5. Plane Poiseuille flow

Plane Poiseuille flow is one of the most studied benchmarks on gas dynamics. The
gas moves between two parallel plates driven by a fixed pressure difference between
the inlet and outlet. It is well known that for this setup the flow rate through a cross-
section of the pipe exhibits a minimum [3,28]. In fact, one of the major achievements
in the early days of kinetic theory was the prediction of a minimum of the mass flow
rate as a function of the Knudsen number for Kn~1.

We simulate the two-dimensional flow in a rectangular duct of length L along the
streamwise direction (x) and width H < L along the wall-normal (y) direction. The
flow is driven by a fixed pressure difference AP = Py, — Py, Where Pi, and Py, are
the pressure at the inlet and outlet of the duct, respectively. In the subsequent
analysis, we shall follow the convention used by Cercignani, where the Knudsen
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number for the BGK model is defined as (continuous BGK units):

2T
Kn = 29
=" (29)
where the pressure Py is defined as the mean of the inlet and outlet pressures,
Py = (Pin + Pou)/2. In the hydrodynamic limit, this results in the well-known

Hagen—Poiseuille parabolic velocity profile

) =Uo(3-7 ). (30)

where the amplitude of the flow for a two-dimensional duct is Uy = H*AP/(2uL).
From the analysis of the Boltzmann—-BGK equation it is known that the
dimensionless flow rate

1 H)/2
= d 31
e L a1
has a low-Knudsen (Kn < 1) asymptotic
1
=— 28 — DK 2
Oy = o+ 5+ (25" = DKn, (32)

with s = 1.015 (see Ref. [3]), which is equivalent to solving the Navier-Stokes
equation with a second-order slip boundary condition. Further, the high-Knudsen
asymptotic expression for the flow rate is

0. ~=lox(Kn) + O(1) (33)
which implies a slow logarithmic divergence of the flow rate as a function of the
Knudsen number. These two asymptotic limits ensure that the flow rate must have at
least one minimum at some finite Kn. The low-Knudsen asymptotic behavior is
related to the situation where on the average the number of collisions encountered by
a molecule in the bulk is much larger than the collisions with the wall. Thus, the
effective balance between the frictional forces (due to collisions) and the applied
pressure gradient ensures a parabolic velocity profile (with a slip at the wall). On the
other hand, any molecular motion in high Knudsen number flows is retarded mostly
by collisions occurring at the wall. This leads to an effectively flat velocity profile in
the channel.

In addition to the asymptotic analysis, more detailed investigations of the
linearized Boltzmann equation are available (see, for example, Ref. [29]). In the next
subsection, we compare the result of our numerical simulation with the numerical
result of Ref. [29] and the asymptotic expressions.

5.1. Numerical simulation

Poiseuille flow in a two-dimensional duct was simulated with the entropic LBGK
model for a range of Knudsen numbers. The length to height ratio used in the
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simulation was 30, and the resolution was taken 1101 x 45 points. In lattice units,
the Knudsen number is

T 2
Kn:H\/S. (34)

The simulation results for the flow-rate is plotted in Fig. 2 together with the
numerical solution of the stationary linearized BGK model [29] and the asymptotic
expressions. Some of the important conclusions following from this study are:

e Quantitative agreement with the fully microscopic results is obtained in the range
of 0< Kn<0.01. This indicates that the parameter-free ELBGK model can be used
in the domain of slip-flow for quantitative simulations.

o At higher Knudsen numbers, the simulation results predict the expected
logarithmic divergence (as indicated by the dashed line in Fig. 2), but they do
deviate from the numerical solution of the linearized stationary BGK equation.

102 T | T T TTTTT T roTT T T rorTTTTT
r O— linear BGK Boltzmann (Cercigniani et al., 2004) T
L O——-0O ELBGK ]
3 —-— asymptotic solution (small Kn) E
s Navier Stokes -

o 10t

10° M | MR | A L
101 100 10t 10?
1/Kn

Fig. 2. Comparison of the ELBM solution for the dimensionless flow rate with the low Kn asymptotic
solution, and the numerical solution of the stationary linearized BGK equation [29]. The dashed line
indicates the qualitative agreement with the expected logarithmic scaling at higher Kn. All the curves
become indistinguishable at Kn<0.01.
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At very high Knudsen numbers, the finite size of the duct will always lead to a
nearly flat (independent of Kn) flow rate.

e Our simulations predict the Knudsen minimum at moderate values of Kn. The
minimum is found around Kn = 0.35, whereas much more elaborate (and
computationally expensive) molecular dynamics simulations [2] and the semi-
analytical solutions to the stationary BGK equation indicate the location of the
minimum at Kn in the range 0.8 — 1. The discrepancy is not surprising because the
model used in our simulation is drastically simpler than any of the alternative
models. In particular, the built-in isothermal assumption limits its domain of
validity to the cases when incompressibility is a good approximation indeed (slip-
flow). In the domain of Kn~1 it is therefore required to use the nonisothermal
model which includes correctly the energy redistribution in the collision processes.

6. Discussion and conclusions

In this paper, we have set up the basis of a new computational approach for the
simulation of microflows—the entropic lattice Boltzmann method. We have
described the hierarchy of entropic lattice Boltzmann models for both isothermal
and thermal simulations. Here, we have focused on the simplest isothermal model—
the entropic lattice BGK equation and presented in detail the implementation of the
diffusive wall boundary condition in the lattice Boltzmann setting. For the ELBGK
model, we derived the parameter map of two-dimensional isothermal simulations on
the three-dimensional data, and have tested all this on the benchmark problem of the
planar Poiscuille flow in the full range of rarefaction (Knudsen number) from the
nearly continuous case to the free-molecular flow. Thus, we confirm the validity of
the entropic lattice Boltzmann method as a viable tool for computations of the
microflows in the most relevant to MEMS applications domain of Kn up to Kn~0.1.
This confirmation clearly points to the usefulness of development of more
sophisticated lattice Boltzmann models in this range of parameters which is the
subject of further studies. It should be stressed that applications of the isothermal
models can be considered as a parameter-free slip-flow hydrodynamic models, and
that the way to extend the domain of the quantitative predictions must take into
account energy conservation in the collisions. We would also like to point out the
computational efficiency of the proposed models. For example, the full data set
presented in Fig. 2 was computed within several hours on a single-processor
computer facility.

Finally, let us briefly mention the following by-product of our study, which may
be relevant for the use of the lattice Boltzmann simulations in molecular models. In
particular, the direct simulation Monte Carlo method (DSMC) requires a good
initial choice of the velocity distribution function in order to perform efficiently.
Most of the current simulations use the local equilibrium Maxwell distribution
function. A better choice could be the anisotropic Gaussian approximation

S, %)~ exp(—(vs — u)p P (v5 — up)) (35)
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where P~! is the inverse of the pressure tensor,

Indeed, the anisotropic Gaussian approximation is nothing but the quasi-
equilibrium approximation under fixed density, momentum, and pressure tensor
[7]. Tt is expected that the sub-manifold of the distribution functions is a good
approximation to the invariant manifold of the Boltzmann equation for the
situations where heat conduction is of no concern. In particular, the quasi-
equilibrium approximation (35) underpins the ten-moment Grad system [7].
Numerical realization of Eq. (35) in the framework of molecular dynamics can be
found elsewhere (see, e.g. Ref. [30]), and we do not discuss it here.

The LB data for the stationary stress tensor and for the flow field can be used as
initial guess for the functions u,(x) and P;ﬂ] (x) in the velocity distribution function
(35). This initial condition for DSMC or molecular dynamics simulation of steady
states can significantly reduce the simulation time as compared to the case when it is
initialized at equilibrium. This approach will be studied in our future publications.
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