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A new method for the computation of flows at the micrometer scale is presented. I

on the recently introduced minimal entropic kinetic models. Both the thermal and is

families of minimal models are presented, and the simplest isothermal entrop

Bhatnagar–Gross–Krook (ELBGK) is studied in detail in order to quantify its rele

microflow simulations. ELBGK is equipped with boundary conditions which are der

molecular models (diffusive wall). A map of three-dimensional kinetic equations o

dimensional models is established which enables two-dimensional simulations of q

dimensional flows. The ELBGK model is studied extensively in the simulation of

dimensional Poiseuille channel flow. Results are compared to known analytical and n

studies of this flow in the setting of the Bhatnagar–Gross–Krook model. The ELB

quantitative agreement with analytical results in the domain of weak ra

(characterized by Knudsen number Kn, the ratio of mean free path to the hydro

scale), up to Kn�0:01, which is the domain of many practical microflows. More

results qualitatively agree throughout the entire Knudsen number range, demo

Knudsen’s minimum for the mass flow rate at moderate values of Kn, as we

logarithmic scaling at large Kn. The present results indicate that ELBM can compl

even replace computationally expensive microscopic simulation techniques such a
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Monte Carlo and/or molecular dynamics for low Mach and low Knudsen number

hydrodynamics pertinent to microflows.
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1. Introduction
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Gas flows at the micrometer scale constitute a major portion of contem
fluid dynamics of engineering interest. Because of its relevance to the engine
micro electro-mechanical systems (MEMS), the branch of computation
dynamics focused on microscale phenomena is often called ‘‘microfluidics’’
Microflows are characterized by the Knudsen number, Kn, which is define

ratio of the mean free path of molecules l and the characteristic scale L of var
hydrodynamic fields (density, momentum, and energy). For typical fl
microdevices, Kn�l=L varies from Kn51 (almost-continuum flows) to Kn�1
rarefied flows). Another characteristic property of microflows is that they ar
subsonic, that is, the characteristic flow speed is much smaller than the speed o
This feature is characterized by the Mach number, Ma�u=cs, where u

characteristic flow speed, and cs is the (isentropic) speed of sound. Thus, for mic
Ma51. To be more specific, typical flow velocities are about 0.2m/s, correspo
Ma�10�4, while values of the Knudsen number range between 10�4pK

Finally, in the majority of applications, microflows are quasi-two-dimensional
Theoretical studies of gas flows at finite Knudsen number have begun

decades ago in the realm of the Boltzmann kinetic equation. To that end, we
pioneering contributions by Cercignani, Sone, and others [3,4]. These studies
on obtaining either exact solutions of the stationary Boltzmann kinetic equa
other model kinetic equations in relatively simple geometries (most often, in
semi-infinite rectangular ducts), or asymptotic expansions of these solution
While analytical solutions are important for a qualitative understan

microflows, and also for the validation of numerical schemes, they certainly
cover all the needs of computational fluid dynamics (CFD) of practical int
present, two CFD strategies for microflows are well established.
� Equations of continuous fluid mechanics with slip boundary conditions. The simplest
n of the
number.

models,
d by slip
proach,
enomen-
sure and
semi-phenomenological observation about microflows is the break dow
no-slip boundary condition of fluid mechanics with increasing Knudsen
Since microflows are highly subsonic, this leads to the simplest family of
equations of incompressible or compressible fluid dynamics supplemente
velocity boundary conditions (a review can be found in Ref. [2]). This ap
although widely used at the early days of microfluidics, remains ph
ological. Moreover, it fails to predict phenomena such as nontrivial pres
temperature profiles observed by more microscopic approaches.



� Direct simulation of the Boltzmann kinetic equation. On the other extreme, it is
o use a
e direct
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possible to resort to a fully microscopic picture of collisions, and t
molecular dynamics approach or a simplified version thereof—th
simulation Monte Carlo method (DSMC) of Bird [5]. DSMC is so
heralded as the method of choice for simulation of the Boltzmann equatio
has indeed proven to be robust in supersonic, highly compressible flo
strong shock waves. However, the highly subsonic flows at small to m
Knudsen number is not a ‘‘natural’’ domain for the DSMC simulations
becomes computationally intensive [6].

Since semi-phenomenological computations are not reliable, and t
microscopic treatment is not feasible, the approach to CFD of microflo
rely on reduced models of the Boltzmann equation. Two classical routes of
the kinetic equations are well known, the Chapman–Enskog method and
moment method (for a modern summary and extensions of these methods
example, Ref. [7]). The Chapman–Enskog method extends the hydro
description (compressible Navier–Stokes equations) to finite Kn in the fo
Taylor series, leading to hydrodynamic equations of increasingly higher ord
spatial derivatives (Burnett’s hydrodynamics). Grad’s method extends the
dynamic equations to a closed set of equations including higher-order m
(fluxes) as independent variables. Both methods are well suited for theoretica
of microflows. In particular, as was already noted by Grad [8], moment equa
especially well suited for low Mach number flows.
However, applications of Grad’s moment equations or of Burnett’s

dynamics (or of existing extensions and generalizations thereof) to C
microflows are limited at present because of several reasons. The mos
difficulty is in formulating the boundary conditions at the reduced level. A
some studies of boundary conditions for moment systems were initiated rec
this problem is far from solved. The crucial importance of the boundary c
for microflows is actually expected. Indeed, as the rarefaction is increasing
the contribution of the bulk collisions becomes less significant as compare
collisions with the boundaries, and thus the realistic modelling of the b
conditions becomes increasingly important.
In this paper we set up a novel approach to the CFD of microflows. It is b

the recently developed entropic lattice Boltzmann method (ELBM) [10–
choice of the ELBM for microflows is motivated by two reasons:

� ELBM is an unconditionally stable simulation method for flows at lo
oundary

M was
numbers.
� In contrast to Grad’s method, ELBM is much more compliant with the b
conditions. Recently, an appropriate boundary condition for the ELB
of the

in Ref.
ulations
found upon a discretization of the diffusive wall boundary condition
Boltzmann equation [16]. This boundary condition was also rediscovered
[22], where ELBM simulations were tested against molecular dynamic sim
with a good agreement.



It should be mentioned that the predecessor of ELBM, the lattice Boltzmann
[24–27].
he LBM
owever,
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The motivation of most of these works was the velocity slip observed in t
simulations using the so-called bounce-back boundary condition [24–27]. H
sults are

sake of
entropic
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method (LBM) [23], was employed several times for microflow simulations

since the bounce-back boundary condition is completely artificial, the re
questionable [22].
The outline of the present paper is as follows: in Section 2, for the

completeness, we present the general description of isothermal and thermal
lattice Boltzmann models. Then, we describe the ELBM setup for the
situation of isothermal flows, the entropic lattice Bhatnagar–Gross–Kroo
(ELBGK). The case of isothermal models is important in itself since it a
study nontrivial flow phenomena such as velocity slip at the wall, and t
known Knudsen minimum of the mass flow rate in pressure-driven chann
Prediction of the Knudsen minimum is a classical benchmark problem
simulation of microflows. In Section 3, we describe in detail the implement
the diffusive boundary conditions for the ELBM for two-dimensional simula
separate Section 4 is devoted to the question of how to simulate qu
dimensional flows with two-dimensional models, and how to map the param
the model onto experimental data and more microscopic simulations. In S
we present simulation results for the quasi-two-dimensional Poiseuille fl
discuss Knudsen’s minimum, comparing results with known asymptotic and
solutions to the Boltzmann kinetic equation. Results are discussed in Se
where we define the domain of validity of ELBM for microflows. We also s
straightforward application of ELBM results to accelerate more mic
simulation approaches like the DSMC method.
2. Minimal kinetic models

ulations
e t. The

(1)

density
thermal
he mass
pulation
ple, for
on), the

(2)

nsion.
We start with a generic discrete velocity kinetic model. Let f iðx; tÞ be pop
of the D-dimensional discrete velocities ci, i ¼ 1; . . . ; nd, at position x and tim
hydrodynamic fields are the linear functions of the populations, namely

Xnd
i¼1

f1; ci; c2i gf i ¼ fr; ru; rDT þ ru2g ,

where r is the mass density of the fluid, ru is the D-dimensional momentum
vector, and e ¼ rDT þ ru2 is the energy density. In the case of iso
simulations, the set of independent hydrodynamic fields contains only t
and momentum densities. It is convenient to introduce nd-dimensional po
vectors f, and the standard scalar product, hfjgi ¼

Pnd
i¼1 f igi. For exam

almost-incompressible hydrodynamics (leaving out the energy conservati
locally conserved density and momentum density fields are written as

h1jfi ¼ r; hcajfi ¼ rua .

Here 1 ¼ f1gnd
i¼1, ca ¼ fciag

nd
i¼1, and a ¼ 1; . . . ;D, where D is the spatial dime



The construction of the kinetic simulation scheme begins with finding a convex
ollowing
dynamic
higher-

Galilean

(3)

models
e 1). For

(4)

fields,
collision
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function of populations H (entropy function), which satisfies the f
condition: if feqðr; uÞ (local equilibrium) minimizes H subject to the hydro
constraints (Eqs. (1) or (2)), then feq also satisfies certain restrictions on the
order moments. For example, the equilibrium stress tensor must respect the
invariance,

Xnd
i¼1

ciacibf
eq
i ðr; uÞ ¼ rc2sdab þ ruaub .

The corresponding entropy functions for the isothermal and the thermal
were found in Refs. [11,16,17], and are given below (see Section 2.4 and Tabl
the time being, assume that the convex function H is given.
The next step is to obtain the set of kinetic equations

qtf i þ ciaqaf i ¼ Di .

Let m1; . . . ;mnc be the nd-dimensional vectors of locally conserved
Mj ¼ hmjjfi, j ¼ 1; . . . ; nc, ncond. The nd-dimensional vector function D (
integral), must satisfy the conditions

hmijDi ¼ 0; i ¼ 1; . . . ; nc ðlocal conservation lawsÞ ,

h=HjDip0 ðentropy production inequalityÞ ,

Table 1
Minimal kinetic models

1. Order 2. Fields 3. Velocities 4. Weights 5. Hydrodynamic limit

2 r
ffiffiffiffiffiffi
T0

p
1
2

Diffusion

�
ffiffiffiffiffiffi
T0

p
1
2

3 r, ru 0 2
3

Isothermal Navier–Stokesffiffiffi
3

p ffiffiffiffiffiffi
T0

p 1
6

�
ffiffiffi
3

p ffiffiffiffiffiffi
T0

p 1
6

4 r, ru, e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
6

pp ffiffiffiffiffiffi
T0

p
1=½4ð3�

ffiffiffi
6

p
Þ� Thermal Navier–Stokes

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
6

pp ffiffiffiffiffiffi
T0

p
1=½4ð3�

ffiffiffi
6

p
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ
ffiffiffi
6

pp ffiffiffiffiffiffi
T0

p
1=½4ð3þ

ffiffiffi
6

p
Þ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
6

pp ffiffiffiffiffiffi
T0

p
1=½4ð3þ

ffiffiffi
6

p
Þ�

Column 1: order of Hermite velocity polynomial used to evaluate the Gauss–Hermite quadrature; Column

2: locally conserved (hydrodynamic) fields; Column 3: discrete velocities for D ¼ 1 (zeroes of the

corresponding Hermite polynomials). For D41, discrete velocities are all possible tensor products of the

one-dimensional velocities in each component direction; Column 4: weights in the entropy formula (10),

corresponding to the discrete velocities of Column 3. For D41, the weights of the discrete velocities are

products of corresponding one-dimensional weights; Column 5: macroscopic equations for the fields of

Column 2 recovered in the hydrodynamic limit of the model.
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equilibrium vector f must be the only zero point of D, that is, Dðf Þ ¼

finally, feq must be the only zero point of the local entropy production, sð
Collision integrals which satisfies all these requirements are called admissibl
discuss several possibilities of constructing admissible collision integrals.

2.1. BGK model

Suppose that the entropy function H is known. If, in addition, t
equilibrium is also known as an explicit function of the locally conserved v
(or some reliable approximation of this function is known), the simplest opt
use the Bhatnagar–Gross–Krook (BGK) model. In the case of iso
hydrodynamics, for example, we write

D ¼ �
1

t
ðf � feqðrðfÞ; uðfÞÞÞ .

The BGK collision operator is sufficient for many applications. However, it
advantageous only if the local equilibrium is known in a closed form and is
complicated. Often only the entropy function is known but not its minimi
these cases one should prefer to construct collision integrals based solely
knowledge of the entropy function. We present here two particular realiza
the collision integral based on the knowledge of the entropy function only.

2.2. Quasi-chemical model

For a generic case of nc locally conserved fields, let gs, s ¼ 1; . . . ; nd � nc, b
of the subspace orthogonal (in the standard scalar product) to the vector
conservation laws. For each vector gs, we define a decomposition gs ¼

where all components of vectors g�s are nonnegative, and if g�
sia0, then g�

si

us consider the collision integral of the form

D ¼
Xnd�nc

s¼1

jsgsfexpðh=Hjg�s iÞ � expðh=Hjgþs iÞg .

Here js40. By construction, the collision integral (6) is admissible. If the
function is Boltzmann–like, and the components of the vectors gs are inte
collision integral assumes the familiar Boltzmann–like form. An example o
collision term for the D2Q9-discrete velocity model is described in Ref. [11

2.3. Single relaxation time gradient model

The BGK collision integral (5) has the following important prope
linearization of the operator (5) around the local equilibrium point has a ver
spectrum f0;�1=tg, where 0 is the nc-times degenerate eigenvalue correspo
the conservation laws, while the nonzero eigenvalue corresponds to the re
(kinetic) eigenvectors. Nonlinear collision operators which have this pro
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They play an important role in modelling because they allow for the
identification of transport coefficients.
The SRTM, based on the given entropy function H, is constructed as

(single relaxation time gradient model, SRTGM). For the system with
conservation laws, let es, s ¼ 1; . . . ; nd � nc, be an orthonormal basis in th
subspace, hmijesi ¼ 0, and hesjepi ¼ dsp. Then the single relaxation time
model is

D ¼ �
1

t

Xnd�nc

s;p¼1

esKspðfÞhepj=Hi ,

where Ksp are elements of a positive definite ðnd � ncÞ � ðnd � ncÞ matrix K

KðfÞ ¼ C�1
ðfÞ ,

CspðfÞ ¼ hesj==HðfÞjepi .

Here, ==HðfÞ is the nd � nd matrix of second derivatives, q2H=qf iqf j. Linea
of the collision integral at equilibrium has the form

L ¼ �
1

t

Xnd�nc

s¼1

eses ,

which is obviously single relaxation time. Use of the SRTGM instead of t
model results in the same hydrodynamics even when the local equilibrium
known in a closed form. Further details of this model can be found in Ref

2.4. H-functions of minimal kinetic models

The Boltzmann entropy function written in terms of the one-particle dist
function f ðx; cÞ is H ¼

R
f ln f dc, where c is the continuous velocity. Clos

global (reference) equilibrium, this integral can be approximated by u
Gauss–Hermite quadrature with the weight

W ¼ ð2pT0Þ
ðD=2Þ expð�c2=ð2T0ÞÞ .

Here D is the spatial dimension, T0 is the reference temperature, while the
mass and Boltzmann’s constant kB are set equal to one. This gives the
functions of the discrete-velocity models [11,16,17]

H ¼
Xnd
i¼1

f i ln
f i

wi

� �
.

Here, wi is the weight associated with the ith discrete velocity ci (zeroe
Hermite polynomials). The discrete-velocity distribution functions (popu
f iðxÞ are related to the values of the continuous distribution function at the
the quadrature by the formula,

f iðxÞ ¼ wið2pT0Þ
ðD=2Þ expðc2i =ð2T0ÞÞf ðx; ciÞ .
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construction of minimal kinetic models.
With the increase of the order of the Hermite polynomials used in evalu

the quadrature (10), a better approximation to the hydrodynamics is obtain
first few models of this sequence are represented in Table 1.

2.5. Entropic lattice Boltzmann method

If the set of discrete velocities forms the links of a Bravais lattice (with
several sub-lattices), then the discretization of the discrete velocity kinetic eq
in time and space is particularly simple, and leads to the entropic lattice Bo
scheme. This happens in the important case of the isothermal hydrodynam
equation of the entropic lattice Boltzmann scheme reads

f iðx þ cidt; t þ dtÞ � f iðx; tÞ ¼ baðfðx; tÞÞDiðfðx; tÞÞ ,

where dt is the discretization time step, and b 2 ½0; 1� is a fixed paramete
matches the viscosity coefficient in the long-time large-scale dynamics of th
scheme (11). The function a of the population vector defines the maxim
relaxation of the scheme, and is found from the entropy condition

Hðfðx; tÞÞ þ aDðfðx; tÞÞ ¼ Hðfðx; tÞÞ .

The nontrivial root of this equation is found for populations at each lattice
(12) ensures the discrete-time H-theorem, and is required in order to stab
scheme if the relaxation parameter b is close to one. We note in passing
latter limit is of particular importance in the applications of the entropi
Boltzmann method to hydrodynamics because it corresponds to vanishing v
and hence to numerically stable simulations of very high Reynolds number

2.6. Entropic lattice BGK method (ELBGK)

An important simplification occurs in the case of the isothermal simulatio
the entropy function is constructed using third-order Hermite polynomials (s
1): the local equilibrium population vector can be obtained in closed form [1
enables the simplest entropic scheme—the entropic lattice BGK mo
simulations of isothermal hydrodynamics. We present this model in dimen
lattice units.
Let D be the spatial dimension. For D ¼ 1, the three discrete velocities a

c ¼ f�1; 0; 1g .

For D41, the discrete velocities are tensor products of the discrete velocities
one-dimensional velocities. Thus, we have the 9-velocity model for D ¼ 2 an
velocity model for D ¼ 3. The H function is Boltzmann-like

H ¼
X3D

i¼1

f i ln
f i

wi

� �
.



The weights wi are associated with the corresponding discrete velocity ci. For D ¼ 1,
(13) is

(15)

ted with

density

(16)
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and the
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the three-dimensional vector of the weights corresponding to the velocities

w ¼ f1
6
; 2
3
; 1
6
g .

For D41, the weights are constructed by multiplying the weights associa
each component direction.
The local equilibrium minimizes the H-function (10) subject to the fixed

and momentum

X3D

i¼1

f i ¼ r;
X3D

i¼1

f icia ¼ rua; a ¼ 1; . . . ;D .

The explicit solution to this minimization problem reads

f
eq
i ¼ rwi

YD
a¼1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u2a

q� �
2ua þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u2a

p
1� ua

 !cia

.

Note that the exponent, cia, in Eq. (17) takes the values �1; and 0 only,
speed of sound, cs, in this model is equal to 1=

ffiffiffi
3

p
. The factorization of t

equilibrium (17) over spatial components is quite remarkable, and resem
familiar property of the local Maxwellians.
The entropic lattice BGK model for the local equilibrium (17) reads

f iðx þ cidt; t þ dtÞ � f iðx; tÞ ¼ �baðf iðx; tÞÞ � f
eq
i ðrðfðx; tÞÞ; uðfðx; tÞÞÞ.

The parameter b is related to the relaxation time t of the BGK model (5
formula

b ¼
dt

2tþ dt

and the value of the over-relaxation parameter a is computed at each lattice s
the entropy estimate

Hðf � aðf � feqðfÞÞÞ ¼ HðfÞ .

In the hydrodynamic limit, model (18) reconstructs the Navier–Stokes eq
with the viscosity

m ¼ rc2s t ¼ rc2sdt
1

2b
�
1

2

� �
.

The zero-viscosity limit corresponds to b ! 1. We remind [11] that the expa
the equilibrium (17) to second order in u, together with the approximate
a ¼ 2 to the entropy estimate (20) results in the lattice BGK model (LBGK
in the hydrodynamic simulations the ELBGK is clearly preferable du
nonlinear stability, in the applications below the difference in performance
the ELBGK and LBGK was not observed to be crucial.
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The boundary (a solid wall) qR is specified at any point x 2 qR by the inw
normal e, the wall temperature Tw, and the wall velocity uw. The simplest b
condition for the minimal kinetic models is obtained upon evaluation of the
wall boundary condition for the Boltzmann equation [3] with the help
Gauss–Hermite quadrature [16,20,22]. The essence of the diffusive b
condition is that particles lose their memory of the incoming direction after
the wall. Once a particle reaches the wall, it gets redistributed in a way co
with the mass-balance and normal-flux conditions. Further, the boundary c
must also satisfy the condition of detailed balance: if the incoming populatio
equilibrium (corresponding to the wall-velocity), the outgoing populations
at equilibrium (corresponding to the wall-velocity).
For the purpose of simulations below, let us consider the case when

normal, e, (pointing towards the fluid) is in the positive y direction. The la
the 9-velocity isothermal model is depicted in Fig. 1.
For this particular case, the boundary update rules for incoming and

populations on a two-dimensional lattice are

f 0ðx; y; t þ dtÞ ¼ f �
0ðx; y; tÞ ,

f 1ðx; y; t þ dtÞ ¼ f �
0ðx � cdt; y; tÞ ,

f 3ðx; y; t þ dtÞ ¼ f �
0ðx þ cdt; y; tÞ ,

f 4ðx; y; t þ dtÞ ¼ 1
2
½f �

4ðx; y þ cdt; tÞ þ f �
4ðx; y; tÞ� ,

f 7ðx; y; t þ dtÞ ¼ 1
2
½f �

7ðx þ cdt; y þ cdt; tÞ þ f �
7ðx; y; tÞ� ,

f 8ðx; y; t þ dtÞ ¼ 1
2
½f �

8ðx � cdt; y þ cdt; tÞ þ f �
8ðx; y; tÞ� ,

where f � denotes post-collision populations, and the update rules for o
populations are

f 2ðx; t þ dtÞ ¼ f
eq
2 ðr; uwallÞ

f 4ðx; t þ dtÞ þ f 7ðx; t þ dtÞ þ f 8ðx; t þ dtÞ

f
eq
2 ðr; uwallÞ þ f

eq
5 ðr; uwallÞ þ f

eq
6 ðr; uwallÞ

,

f 5ðx; t þ dtÞ ¼ f
eq
5 ðr; uwallÞ

f 4ðx; t þ dtÞ þ f 7ðx; t þ dtÞ þ f 8ðx; t þ dtÞ

f
eq
2 ðr; uwallÞ þ f

eq
5 ðr; uwallÞ þ f

eq
6 ðr; uwallÞ

,

56 2 e
7 4

3 1

8

Fig. 1. Schematic diagram for the situation near a flat wall, when the wall normal, e, (pointing towards the

fluid) is in the positive y direction.



eq f 4ðx; t þ dtÞ þ f 7ðx; t þ dtÞ þ f 8ðx; t þ dtÞ
ð23Þ
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f 6ðx; t þ dtÞ ¼ f 6 ðr; uwallÞ
f
eq
2 ðr; uwallÞ þ f

eq
5 ðr; uwallÞ þ f

eq
6 ðr; uwallÞ

.

4. Simulation of quasi-two-dimensional flows with two-dimensional kinetic models

t can be
such as
irection.
of such
of two-
ulations.
at some
of two
as three
red as a
sions in
ensions.
onto the

-dimen-
As mentioned in the introduction, many microflows of engineering interes
considered as quasi-two-dimensional. This means that averaged quantities
flow velocity and density do not depend appreciably on the third spatial d
Thus, it is tempting to use two-dimensional kinetic models in simulations
flows. However, care should be taken in order to map correctly the results
dimensional simulations onto experimental data or molecular dynamics sim
Indeed, molecular motion remains three dimensional in spite of the fact th
averages can be considered two dimensional. In the DSMC simulations
dimensional flows, for example, collisions of the particles are always treated
dimensional. The two-dimensional kinetic models therefore must be conside
computational device which uses fictitious particles moving in two dimen
order to mimic quasi-two-dimensional flows of particles moving in three dim
The mapping of the parameters of the three-dimensional kinetic equation

two-dimensional lattice Boltzmann scheme is done in two steps:

� Map the continuous three-dimensional kinetic equation onto the three
ensional

sional discrete velocity model.

� Map the three-dimensional discrete velocity model onto the two-dim
velocity model.
kinetic

(24)

we shall
us BGK
terparts.
ion time

(25)

cosity is

(26)

ep of the
al BGK
n for the
In the case considered in this paper, the three-dimensional continuous
model is the BGK model [3], which contains the relaxation parameter tBGK

qtf þ caqaf ¼ �
1

tBGK
ðf � f LMÞ ,

where f LM is the local Maxwell distribution function. In this subsection
explicitly indicate all the functions and parameters related to the continuo
model with the subscript in order to distinguish them from the lattice coun
The viscosity coefficient of the BGK model (24) is related to the relaxat

tBGK as follows:

mBGK ¼ rBGKTBGKtBGK .

In the isothermal discrete velocity BGK model of Section 2, the vis
expressed not as a function of temperature but of sound speed cs,

m ¼ rc2s t ,

where cs ¼ 1=
ffiffiffi
3

p
in lattice units used in simulations. Therefore, in the first st

above procedure, we map the parameters of the continuous three-dimension
equation onto the three-dimensional discrete velocity model using the relatio



speed of sound, cs BGK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTBGK

p
, where g is the adiabatic exponent. For an ideal

5

ð27Þ

e three-
thermal
al model

l model
in both
is done
irection
ice. This
r3D in

(28)

ensity in
-velocity
t is used
etc.
la of the
rison of
roscopic
xample).
model-
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gas, g ¼
3
. Thus, the first step is accomplished by the relation

cs BGK ¼ cs ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
TBGK

r
¼

ffiffiffi
1

3

r
.

This formula establishes the relation between the relaxation parameter of th
dimensional continuous BGK equation (24) and the three-dimensional iso
discrete velocity model of Section 2. Note that the sound speed of the therm
is made equal to the sound speed of the isothermal model by relation (27).
At the second step, we map the three-dimensional 27-velocity isotherma

onto the two-dimensional 9-velocity model. Note that the sound speed
models is identical (and equals to

ffiffiffiffiffiffiffiffiffiffiffi
kBT0

p
in dimensional units). The mapping

by populating at the equilibrium the links of the 27-velocity lattice in the d
orthogonal to the fixed plane containing the links of the 9-velocity sub-latt
amounts to the following recomputation of the three-dimensional density
terms of the two-dimensional density r2D:

r3D ¼ 3
2
r2D .

This formula enables the computation of the effective three-dimensional d
terms of the two-dimensional density used in the simulations with the 9
model. Specification of density is an important part of the simulation since i
to define data as prescribed pressure drop at the inlet and outlet of pipes,
The formulas collected in this section, together with the viscosity formu

fully discretized entropic lattice Boltzmann method (21), enable the compa
two-dimensional simulation results with the results obtained by mic
simulations with different collision models (the hard sphere model, for e
The choice of the model is needed to identify the mean free path which is
dependent, especially at moderate values of Knudsen number.
5. Plane Poiseuille flow

ics. The
between
a cross-
vements
ass flow

long the
ion. The
Pout are
sequent
nudsen
Plane Poiseuille flow is one of the most studied benchmarks on gas dynam
gas moves between two parallel plates driven by a fixed pressure difference
the inlet and outlet. It is well known that for this setup the flow rate through
section of the pipe exhibits a minimum [3,28]. In fact, one of the major achie
in the early days of kinetic theory was the prediction of a minimum of the m
rate as a function of the Knudsen number for Kn�1.
We simulate the two-dimensional flow in a rectangular duct of length L a

streamwise direction (x) and width H5L along the wall-normal (y) direct
flow is driven by a fixed pressure difference DP ¼ Pin � Pout, where Pin and
the pressure at the inlet and outlet of the duct, respectively. In the sub
analysis, we shall follow the convention used by Cercignani, where the K



number for the BGK model is defined as (continuous BGK units):ffiffiffiffiffiffiffiffip

(29)

ressures,
l-known

(30)

=ð2mLÞ.
hat the

(31)

(32)

–Stokes
nudsen

(33)

n of the
t have at
avior is
tered by
hus, the
applied
. On the
d mostly
rofile in

of the
the next
umerical

LBGK
d in the
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Kn ¼
m 2T0

P0H
,

where the pressure P0 is defined as the mean of the inlet and outlet p
P0 ¼ ðPin þ PoutÞ=2. In the hydrodynamic limit, this results in the wel
Hagen–Poiseuille parabolic velocity profile

uðyÞ ¼ U0
1

4
�

y

H

2
� �

,

where the amplitude of the flow for a two-dimensional duct is U0 ¼ H2DP

From the analysis of the Boltzmann–BGK equation it is known t
dimensionless flow rate

Q ¼
1

HU0Kn

Z H=2

H=2
uðyÞdy

has a low-Knudsen ðKn51Þ asymptotic

Q0 ¼
1

6Kn
þ s þ ð2s2 � 1ÞKn ,

with s ¼ 1:015 (see Ref. [3]), which is equivalent to solving the Navier
equation with a second-order slip boundary condition. Further, the high-K
asymptotic expression for the flow rate is

Q1�
1ffiffiffi
p

p logðKnÞ þ Oð1Þ ,

which implies a slow logarithmic divergence of the flow rate as a functio
Knudsen number. These two asymptotic limits ensure that the flow rate mus
least one minimum at some finite Kn. The low-Knudsen asymptotic beh
related to the situation where on the average the number of collisions encoun
a molecule in the bulk is much larger than the collisions with the wall. T
effective balance between the frictional forces (due to collisions) and the
pressure gradient ensures a parabolic velocity profile (with a slip at the wall)
other hand, any molecular motion in high Knudsen number flows is retarde
by collisions occurring at the wall. This leads to an effectively flat velocity p
the channel.
In addition to the asymptotic analysis, more detailed investigations

linearized Boltzmann equation are available (see, for example, Ref. [29]). In
subsection, we compare the result of our numerical simulation with the n
result of Ref. [29] and the asymptotic expressions.

5.1. Numerical simulation

Poiseuille flow in a two-dimensional duct was simulated with the entropic
model for a range of Knudsen numbers. The length to height ratio use



simulation was 30, and the resolution was taken 1101� 45 points. In lattice units,

(34)

ith the
mptotic
are:

he range
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the Knudsen number is

Kn ¼
t
H

ffiffiffi
2

5

r
.

The simulation results for the flow-rate is plotted in Fig. 2 together w
numerical solution of the stationary linearized BGK model [29] and the asy
expressions. Some of the important conclusions following from this study

� Quantitative agreement with the fully microscopic results is obtained in t

be used
expected
they do
of 0pKnp0:01. This indicates that the parameter-free ELBGK model can
in the domain of slip-flow for quantitative simulations.

� At higher Knudsen numbers, the simulation results predict the
logarithmic divergence (as indicated by the dashed line in Fig. 2), but
quation.
deviate from the numerical solution of the linearized stationary BGK e

102
10-1 100 101 102

1/Kn

100

101

Q

linear BGK Boltzmann (Cercigniani et al., 2004)

ELBGK

asymptotic solution (small Kn)

Navier Stokes

Fig. 2. Comparison of the ELBM solution for the dimensionless flow rate with the low Kn asymptotic

solution, and the numerical solution of the stationary linearized BGK equation [29]. The dashed line

indicates the qualitative agreement with the expected logarithmic scaling at higher Kn. All the curves

become indistinguishable at Knp0:01.



At very high Knudsen numbers, the finite size of the duct will always lead to a

Kn. The
te (and

ARTICLE IN PRESS

S. Ansumali et al. / Physica A 359 (2006) 289–305 303
nearly flat (independent of Kn) flow rate.
� Our simulations predict the Knudsen minimum at moderate values of
minimum is found around Kn ¼ 0:35, whereas much more elabora
e semi-

n of the
ause the
ernative
main of
ed (slip-
thermal
rocesses.
computationally expensive) molecular dynamics simulations [2] and th
analytical solutions to the stationary BGK equation indicate the locatio
minimum at Kn in the range 0:8� 1. The discrepancy is not surprising bec
model used in our simulation is drastically simpler than any of the alt
models. In particular, the built-in isothermal assumption limits its do
validity to the cases when incompressibility is a good approximation inde
flow). In the domain of Kn�1 it is therefore required to use the noniso
model which includes correctly the energy redistribution in the collision p
6. Discussion and conclusions

for the
e have
thermal
model—
n of the
ELBGK
tions on
m of the
rom the
lidity of
s of the
Kn�0:1.
f more
h is the
thermal
els, and
ake into
out the
data set
rocessor

ich may
dels. In
a good
ficiently.
ribution

(35)
In this paper, we have set up the basis of a new computational approach
simulation of microflows—the entropic lattice Boltzmann method. W
described the hierarchy of entropic lattice Boltzmann models for both iso
and thermal simulations. Here, we have focused on the simplest isothermal
the entropic lattice BGK equation and presented in detail the implementatio
diffusive wall boundary condition in the lattice Boltzmann setting. For the
model, we derived the parameter map of two-dimensional isothermal simula
the three-dimensional data, and have tested all this on the benchmark proble
planar Poiseuille flow in the full range of rarefaction (Knudsen number) f
nearly continuous case to the free-molecular flow. Thus, we confirm the va
the entropic lattice Boltzmann method as a viable tool for computation
microflows in the most relevant to MEMS applications domain of Kn up to
This confirmation clearly points to the usefulness of development o
sophisticated lattice Boltzmann models in this range of parameters whic
subject of further studies. It should be stressed that applications of the iso
models can be considered as a parameter-free slip-flow hydrodynamic mod
that the way to extend the domain of the quantitative predictions must t
account energy conservation in the collisions. We would also like to point
computational efficiency of the proposed models. For example, the full
presented in Fig. 2 was computed within several hours on a single-p
computer facility.
Finally, let us briefly mention the following by-product of our study, wh

be relevant for the use of the lattice Boltzmann simulations in molecular mo
particular, the direct simulation Monte Carlo method (DSMC) requires
initial choice of the velocity distribution function in order to perform ef
Most of the current simulations use the local equilibrium Maxwell dist
function. A better choice could be the anisotropic Gaussian approximation

f ðv;xÞ� expð�ðva � uaÞrP�1
ab ðvb � ubÞÞ ,



where P�1 is the inverse of the pressure tensor,Z
(36)

quasi-
e tensor
a good
for the
e quasi-
tem [7].
s can be

used as
function
f steady
hen it is
cations.
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Pab ¼
ðva � uaÞðvb � ubÞ

2
f dv .

Indeed, the anisotropic Gaussian approximation is nothing but the
equilibrium approximation under fixed density, momentum, and pressur
[7]. It is expected that the sub-manifold of the distribution functions is
approximation to the invariant manifold of the Boltzmann equation
situations where heat conduction is of no concern. In particular, th
equilibrium approximation (35) underpins the ten-moment Grad sys
Numerical realization of Eq. (35) in the framework of molecular dynamic
found elsewhere (see, e.g. Ref. [30]), and we do not discuss it here.
The LB data for the stationary stress tensor and for the flow field can be

initial guess for the functions uaðxÞ and P�1
ab ðxÞ in the velocity distribution

(35). This initial condition for DSMC or molecular dynamics simulation o
states can significantly reduce the simulation time as compared to the case w
initialized at equilibrium. This approach will be studied in our future publi
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