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Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the
bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather
than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from
Boltzmann’s kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the
valid approximation of the Boltzmann equation for weakly compressible flows and micro-flows.
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The overwhelming majority of fluid flows of physical
and engineering interest are slow, i. e., characteristic flow
speed u is small compared to the speed of sound cs. This
is quantified by the Mach number, Ma ∼ u/cs, which
typically varies from 10−3− 10−2 in hydrodynamic flows
(turbines, reactors etc) to 10−4 in flows at a microme-
ter scale. The simplest characterization of the degree of
molecularity is then the Knudsen number Kn ∼ λ/H, the
ratio of the mean free path λ and the characteristic scale
H of variation of hydrodynamic fields (density, momen-
tum, and energy). When Kn . 10−3, one considers the
hydrodynamic limit where molecularity reduces to a set
of transport coefficients (viscosity, thermal conductivity
etc). If, in addition, the Mach number is also small, one
obtains the incompressible hydrodynamics with the or-
dering Kn ¿ Ma ¿ 1, and the flow can be characterized
solely by the ratio Re ∼ Ma/Kn (one of the definitions
of the Reynolds number).

Computational fluid dynamics becomes increasingly
more interested in the domain where Mach number re-
mains small but Knudsen number increases, thus, incom-
pressibility becomes gradually lost. Due to its relevance
to the engineering of micro electro-mechanical systems
(MEMS), the branch of computational fluid dynamics
focused on micro scale phenomena is often called “micro-
fluidics” [1]. Flows in micro-devices are highly subsonic
(with characteristic flow velocities about 0.2 m/s, corre-
sponding to Ma ∼ 10−4), while Knudsen number varies
from Kn ∼ 10−2 (so-called slip-flow regime) to Kn ∼ 0.1
(moderately rarefied gas flows) [1]. There is much need
for computational models in the domain of slow flows.
Indeed, such methods as Molecular Dynamics or Direct
Simulation Monte Carlo are inefficient for slow flows at
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small Knudsen numbers [2].
In recent years, the lattice Boltzmann method has

drawn considerable attention as a simulation method for
flows at low Mach numbers. Especially popular are the
isothermal lattice Boltzmann models (ILBM) without en-
ergy conservation [3]. In view of impressive number of
simulations including turbulent flows, ILBM can be re-
garded as established method for hydrodynamic simula-
tions. Owing to their outstanding computational features
and established relations to the continuous kinetic the-
ory [4–6], there is increasing interest in applying lattice
Boltzmann models also to micro-flow simulation [1, 7–
10]. The hydrodynamic (locally conserved) fields in the
ILBM are the density ρ and the momentum density j,
whereas the conservation of the energy is not addressed.
All ILBM models have one point in common: The lack of
energy conservation inevitably leads to a bulk viscosity.
Indeed, the non-equilibrium part of the stress tensor in
ILBM reads:

P neq
αβ ∼ Kn

[
∂α

(
jβ

ρ

)
+ ∂β

(
jα

ρ

)]
. (1)

This tensor is not traceless, P neq
αα ∼ 2Kn∂α(jα/ρ), which

immediately leads to the bulk viscosity terms in the equa-
tion for the momentum density. We remind that the
physical bulk viscosity in hydrodynamic models is related
to a redistribution of the energy among the translational
and internal degrees of freedom of molecules rather than
to any non-conservation of the energy. The physical bulk
viscosity of fluids is typically much smaller than the shear
viscosity. Thus, from the physical standpoint, the bulk
viscosity of the ILB models is just spurious because its
magnitude is of the order of the shear viscosity. Cer-
tainly, the presence of the bulk viscosity, spurious or not,
by no means precludes the limit of incompressible hydro-
dynamics because, loosely speaking, the divergence of the
velocity field u = j/ρ vanishes in that limit [11]. Thus,
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ILBM is a valid model for the incompressible hydrody-
namics. However, the spurious bulk viscosity of ILBM
becomes a severe drawback when such models are ap-
plied to weakly-compressible or micro-flow simulations.

The best way to illustrate this problem is to consider
a representative example. Plane Poiseuille flow is one of
the most studied benchmarks on gas dynamics. The gas
moves between two parallel plates driven by a fixed pres-
sure difference between the inlet and outlet. It is known
from the classical kinetic theory [12] that the flow rate
Q has the following asymptotic at low and high Knudsen
numbers:

Q0 = (6Kn)−1 + s + (2s2 − 1) Kn, Kn ¿ 1
Q∞ ∼ (1/

√
π) ln (Kn) + O(1), Kn →∞,

with s = 1.015. These two asymptotic limits ensure that
the flow rate has a minimum at some finite Kn (the Knud-
sen minimum [12]). While a qualitative agreement of
the ILBM simulations with the continuous-velocity ki-
netic theory was found at all Knudsen numbers [9, 10],
the quantitative agreement is poor beyond the slip-flow
regime at Kn > 10−2. It was found that the ILBM sys-
tematically over-predicts the flow rate at small Knudsen
numbers. This is the effect of the bulk viscosity which
can be qualitatively explained as follows: At low Knudsen
numbers the behavior is still dominated by particle’s col-
lisions in the bulk, therefore, the steady state is reached
upon a balance between the frictional force ∼ Kn∂βP neq

αβ

and the forcing due to the constant pressure gap between
the inlet and the outlet. Thus, if there is additional con-
tribution of the bulk viscosity (more friction), this bal-
ance at the same Kn shifts to a higher velocity at the
steady state, and results in the over-prediction of the
flow rate.

In this paper we introduce new lattice Boltzmann mod-
els with the energy conservation for weakly compressible
flows. These models are derived from the continuous ki-
netic theory, are free from the drawbacks of the ILBM,
and at the same time they retain in full the outstanding
computational efficiency of the latter.

Starting point of our derivation is the grand canonic
potential of the Boltzmann kinetic theory [12],

H =
∫

F ln Fdv+µ

∫
Fdv+ζα

∫
Fvαdv+γ

∫
Fv2dv,

(2)
where F (x,v) is the one-particle distribution function,
and µ, ζα, and γ are Lagrange multipliers correspond-
ing to density, momentum and energy, respectively. The
D + 2-parametric family of functionals (2), where D is
the dimension of the velocity space, describes the equi-
librium states as its minima, δH = 0, and it also defines
the locally conserved fields (density ρ, momentum j, and
energy e),

∂H

∂µ
= ρ,

∂H

∂ζα
= jα,

∂H

∂γ
= e. (3)

In order to derive the discrete velocity kinetic the-
ory, functional (2) is evaluated with the D-dimensional
Gauss-Hermite quadrature, with the Gaussian weight
W = (2πθ0)

−D/2 exp
(−v2/(2θ0)

)
, where θ0 = (kBT0/m)

is the reduced uniform reference temperature. Quadra-
ture evaluation of an integral replaces it by a sum,∫

W (v)G(v)dv ≈ ∑nd
i=1 WiG(vi), where vi, i = 1, . . . , nd

are the nodes of the quadrature, and Wi are correspond-
ing weights. In our case, the nodes of the quadra-
ture (discrete velocities) are at the zeroes of Hermite
polynomials. For concreteness, we shall consider the
third-order Hermite polynomial. Then nd = 3D, and
the discrete velocities and weights is constructed as fol-
lows: For D = 1, the three roots and corresponding
weights are (−√3θ0, 0,

√
3θ0), (1/6, 2/3, 1/6); for D > 1,

the roots are all possible tensor products of the roots
in D = 1, and the weights are corresponding prod-
ucts of one-dimensional weights. We shall consider
D = 3 below, that is nd = 27 (same considerations
apply to any quadrature, in particular, to the popular
9-velocity model for D = 2). As is well known, the
third-order quadrature has the unique feature that its
nodes form a face-centered cubic lattice which is the cru-
cial feature to the further lattice Boltzmann discretiza-
tion in space and time. Introducing the populations,
fi = Wi(2πθ0)3/2 exp

(
v2

i /(2θ0)
)
F (x,vi), and using the

reduced discrete velocities, ci = vi/
√

3θ0, we write the
quadrature for (2)

H =
27∑

i=1

{
fi ln

(
fi

Wi

)
+ µfi + ζαfici + γfic

2
i

}
. (4)

Differentiation of (4) with respect to Lagrange multipliers
implies the locally conserved fields in the discrete case,

27∑

i=1

{1, ciα, c2
i }fi = {ρ, jα, 3p + ρ−1j2}. (5)

The equilibria f eq
i are now found as minima of H (4).

From the extremum condition, δH = 0, it follows

f eq
i = Wi exp{−µ− ζαciα − γc2

i }. (6)

In order to express the Lagrange multipliers in (6) in
terms of hydrodynamic fields (5), we substitute (6) into
(5) and derive the functions µ(ρ, j, p), ζα(ρ, j, p) and
γ(ρ, j, p) by perturbation for small momentum, owing
for the fact that ζα(ρ,0, p) = 0, and that the zero-
momentum functions µ(ρ,0, p) and γ(ρ,0, p) can be
found in a closed form. Computation is quite straightfor-
ward, and we write here the final result to second order
in the momentum:
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f eq
i (ρ, j, p) = ρ

(
1− p

ρ

)3



p
ρ

2
(
1− p

ρ

)



c2
i

1 +

ciαjα

p
+

jαjβ

2p2


ciαciβ −

6p2

ρ2 + c2
i

(
1− 3 p

ρ

)

3
(
1− p

ρ

) δαβ





 . (7)

The pre-factor in this formula has the following limit
when (p/ρ) → (1/3):

lim
(p/ρ)→(1/3)

(
1− p

ρ

)3



p
ρ

2
(
1− p

ρ

)



c2
i

= Wi. (8)

Implication of (8) will be important below when dis-
cussing the relation of the present model to the ILBM.

We now proceed with the evaluation of the stress ten-
sor P eq

αβ(ρ, j, p) and of the energy flux qeq
α (ρ, j, p) at equi-

librium. The important observation to be made here is
that if the pressure to density ratio satisfies the condi-
tion, (p/ρ) = (1/3), then P eq

αβ and qeq
α satisfy the cor-

responding relations pertinent to the continuous-velocity
Maxwell distribution. In dimensional units, the condi-
tion just mentioned reads p = (kBT0ρ)/m, that is, it
corresponds to the ideal gas equation of state at the ref-
erence temperature of the Gaussian weight. Moreover, if
we allow small variations of the pressure around the point
p/ρ = 1/3 (weakly compressible flows, |(p/ρ) − (1/3)| .
Ma2), then Maxwell’s form of P eq

αβ and qeq
α persists:

P eq
αβ =

27∑

i=1

f eq
i ciαciβ = pδαβ +

jαjβ

ρ
, (9)

qeq
α =

27∑

i=1

f eq
i ciαc2

i = 5
p

ρ
jα. (10)

With the equilibrium (7), we write up the simplest
kinetic equation (the Bhatnagar-Gross-Krook model),

∂tfi + ciα∂αfi = −1
τ

(fi − f eq
i (ρ, j, p)), (11)

where τ > 0 is the relaxation time. In order to find out
the hydrodynamic limit of the model, we perform the
Chapman-Enskog analysis at low Mach numbers. In so
doing, we neglect all terms in jα of the order three and
higher, and we end up with the following non-equilibrium
expressions for the stress and the heat flux:

P neq
αβ = −τp

[
∂α

(
jβ

ρ

)
+ ∂β

(
jα

ρ

)
− 2

3
δαβ∂γ

(
jγ

ρ

)]
,(12)

qneq
α = −2τp∂α

(
p

ρ

)
. (13)

The most important achievement is that now the non-
equilibrium (Newtonian) stress (12) is traceless, as perti-
nent to the classical case of Boltzmann’s fluid considered
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FIG. 1: Flow rate in the pressure driven Poiseuille flow
as a function of inverse Knudsen number. Comparison of
the present energy-conserving model with the isothermal
lattice Boltzmann model [6] and the continuous linearized
Boltzmann-BGK model [13].

herein. That is, by preserving the energy conservation in
the derivation, we eliminated the spurious bulk viscosity
of ILBM. The heat flux (13) obeys the Fourier law. It
should be noted that the present model does not solve the
problem of the bulk viscosity and heat conductivity en-
tirely, and cannot be applied to highly compressible flows
(supersonic flows, for example). However, the domain of
validity is wide enough to include such important flows
as convection flows and micro-flows.

We have implemented the lattice Boltzmann space-
time discretization of the kinetic equation (11), and redo
the micro-Poiseuille flow simulation mentioned in the in-
troduction. The flow is driven by a constant pressure
drop between the inlet and the outlet, and, as the kinetic
theory suggests [12], the temperature variation is negli-
gible. Results are presented in Fig. 1, where the present
model is compared to the exact solution of the continu-
ous linearized BGK model [13], and the 2DQ9 isothermal
lattice Boltzmann model with the spurious bulk viscosity
[14]. It is clearly visible that the effect of the spurious
bulk viscosity is eliminated at small Knudsen numbers,
and that the quantitative agreement with the continuous
BGK model extends up to Kn ∼ 0.1. For higher values
of Knudsen numbers, the agreement remains qualitative.
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FIG. 2: Steady-state temperature variation between parallel
walls. Reduced temperature Y = (T−T0)/(TL−TR) is shown
as the function of the reduced distance x at (a) Kn = 0.001
and (b) Kn = 0.05. Symbols: simulation; Line: analytical
solution by Bassanini, Cercignani and Pagani [15].

The reason is in the simplicity of the present model with
only 27 velocities. Models with more velocities extend
the domain further in Kn (see, e. g. [5, 6]). However,
from the standpoint of practical applications in micro-
flow simulations, the domain Kn < 0.1 is most relevant,
and the present lattice Boltzmann model fits well into
this domain.

In another simulation, we compared the present model
with the steady-state temperature variation between two
parallel walls kept at the temperatures TL and TR at a
distance L. Analytical solution to the stationary continu-
ous linearized BGK model reads [15], T = [(TL−TR)/(1+

3.88234Kn)]x + [(TL + TR)/2], where x is the dimension-
less distance from the center of the channel. Diffusive
wall boundary conditions [7] were applied, and a small
temperature gap TL−TR was considered (approximately
1% variations of the average temperature). Results are
presented in Fig. 2. Quantitative agreement with the con-
tinuous kinetic theory up to Kn ∼ 0.05 is observed. We
remind here that there is no adjustable slip coefficients,
or other tunable parameters, in our simulation, and thus
it is remarkable that the model is able to reproduce ac-
curately the velocity and the thermal slip as known from
the classical kinetic theory. This clearly demonstrates
that the present lattice Boltzmann equation is a valid
model of the Boltzmann equation for almost isothermal
low Knudsen number flows.

Finally, let us place our derivation with respect to pre-
viously reported lattice Boltzmann models on the same
lattice. If we substitute p = (1/3)ρ into the equilibrium
function (7), and use the limit (8), then f eq

i (ρ, j, ρ/3)
recovers the second-order polynomial equilibrium of the
isothermal lattice Boltzmann method on the same lattice,
and instead of the traceless stress tensor (12) we recover
(1) with the bulk viscosity component. It needs to be
stressed that the second-order polynomial in j (7) is an
approximation to the positive-definite discrete-velocity
equilibrium (6). Same as with the isothermal models, this
second-order approximation simply happens to be good
enough for stable computations at Ma < 0.1. If we keep
the relation p = (1/3)ρ to all the orders in j, we recover
the exact positive-definite equilibrium of the isothermal
27-velocities entropic lattice Boltzmann model [6]:

f eq
i (ρ, j, ρ/3) = ρWi

3∏
α=1

(
2−

√
1 + 3(jα/ρ)2

) 
2 (jα/ρ) +

√
1 + 3 (jα/ρ)2

1− (jα/ρ)




ciα

. (14)

Our approach to the discretization of the velocity space
differs from the earlier attempts [4, 5]. While we use
the same Gauss-Hermite quadrature, we apply it on
the grand canonical potential (2) (that is, we evalu-
ate the velocity integral (2) as pertinent to the mean-
ing of a quadrature), and after that find the discrete-
velocity equilibrium upon minimization of the discrete-
velocity grand canonical potential (4). Instead, authors
of [4, 5] evaluate the local Maxwellian (that is, they eval-
uate a function, not an integral) of continuous kinetic
theory, M(ρ, j, T ;v) = ρ(2πkBT/m)−D/2 exp(−m(v −
u)2/2kBT ), u = j/ρ, on the nodes of the quadrature.
Certainly, just replacing M(ρ, j, T ;v) → Mi(ρ, j, T ;vi)

makes no sense because the conservation laws will be lost.
However, it was noticed in [4] that if the second-order
expansion of the Maxwellian is used instead, M (2) =
ρW (1 + avαjα + bvαvβjαjβ), the replacement, M (2) →
ρWi(1 + aviαjα + bviαviβjαjβ), coincides with the previ-
ously known second-order equilibrium of the ILBM [14].
It should be stressed that while in [4, 5] the Maxwellian
must be truncated to second order (to rescue conserva-
tion laws), and thus positivity of populations has to be
sacrificed together with the second law of thermodynam-
ics (Boltzmann’s H-theorem), our equation (7) is just a
good approximation to the positive equilibrium (6). The
discretization of the velocity space done at the level of
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generating functional (2) violates none of the properties
of the continuous kinetic theory [16].

In conclusion, we have derived the genuine lattice
Boltzmann model for simulations of incompressible and
weakly-compressible flows. The new model, unlike the
ILBM, is a valid physical model of ideal fluid. It retains
the computational efficiency of the ILBM models on the
same lattices, and at the same time it extend consider-
ably the domain of validity of simulations especially into
the micro-flow domain. Even in the case of hydrody-
namics, the present models should be preferred on the
grounds that they correspond more to the physics. IVK
was supported by the BFE-Project Nr. 100862.
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