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In flows through microdevices the continuum fluid mechanics description often breaks
down and higher order corrections to the Navier–Stokes description arise both at the
boundaries and in the bulk. The interaction between the flow geometry, rarefaction and
compressibility is not completely understood for such flows. Recent advances in compu-
tational kinetic theory, such as the entropic lattice Boltzmann method, provide a simple
and realistic framework which enable the systematic study of such interactions.

We consider a specific example of entropic lattice Boltzmann model and compare
it with Grad’s moment system. We show that for the model under consideration, the
dispersion relation is closely related to that of Grad’s ten-moment system. We perform a
parametric study of the flow in a microcavity, which is a prototype problem, where the
deviations from incompressible hydrodynamics can be studied conveniently. Simulation
results obtained with the entropic lattice Boltzmann method are compared with those of
the Direct Simulation Monte-Carlo method. Based on the parametric study, we discuss
aspects of the interaction between rarefaction and compressibility.

1. Introduction

Flow in microdevices is an emerging application field for the fluid dynamics (Ho & Tai
1998; Beskok & Karniadakis 2001). Despite impressive experimental progress, under-
standing of the fluid mechanics in such devices is still incomplete. Microflows are highly
subsonic but the continuum description of incompressible hydrodynamics often breaks
down and higher order corrections to the Navier–Stokes description arise both at the
boundaries and in the bulk. In principle, such flows can be studied using molecular level
methods, such as the Direct Simulation Monte Carlo (DSMC) method (Bird 1994). How-
ever, these methods have severe limitations for subsonic flows. The number of particles
required for geometries with large aspect ratios and the number of time steps required
to reach the statistical steady state (the time step of DSMC is comparable to the col-
lision time scale ∼ 10−10s), are prohibitively high for realistic simulations (Oran et al.

1998). Thus, an important focus of microflow research is to develop minimal and reliable
computational models. Minimal kinetic models for microflows should have the following
properties:
• Parameter-free description of the slip-flow regime: For a dilute gas, the Knudsen

number (the ratio of the mean free path to the characteristic length) in microdevices
ranges from Kn ∼ 0.001 to Kn ∼ 10, with most of the applications in the range of
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Kn < 1. In this regime, continuum models like the Navier-Stokes equations with no-
slip boundary conditions are not valid. However, we know for example that the diffusive
boundary condition at the molecular level (Cercignani 1975), provides a parameter free
description of such flows (to describe rough surfaces more advanced boundary conditions
might be needed, as for example see Cercignani & Lampis (1970)). The kinetic model
should not introduce new parameters as compared to a complete molecular description.
The slip velocity and analytical flow profiles for specific flow situations, known from the
asymptotic theory of the Boltzmann equation, can be used to validate the boundary
conditions in kinetic models of microflows.
• Correct description of non-hydrodynamic effects: Due to the subsonic nature of the

flow, Grad’s moment system in its linearized form becomes a good approximation for
the slow flows (Ma ≪ 1,Re ∼ 1) (Grad 1958). The behavior of hydrodynamic and non-
hydrodynamic modes for the Grad’s moment system is well understood (Gorban & Karlin
2004). We are interested in kinetic models, which exhibit similar features. It should be
noted, however, that Grad’s systems are inconvenient as a numerical tool, mainly because
of the ambiguity in the boundary conditions.

It has been shown by several groups that the entropic lattice Boltzmann model recov-
ers the slip flow regime correctly in simple flow geometries (Ansumali & Karlin 2002b;
Niu et al. 2003; Succi & Sbragaglia 2004; Ansumali et al. 2004). In order to understand
the domain of validity of the method and its relationship to the Boltzmann equation, it
is important to compare the model with Grad’s system.

In the present work, we will consider a two dimensional entropic lattice model with
nine discrete velocities (so-called D2Q9 lattice (Qian et al. 1992)). A parametric study
of the lid-driven cavity flow is performed in order to understand the interaction of com-
pressibility, rarefaction and boundary conditions. A spectral analysis of the flow at the
steady state is performed to represent the dynamics of the moments in terms of the
slow eigenfunctions. Such an analysis is a first step towards coarse-grained multi-scale
system level simulation for microdevices (see for example Theodoropoulos et al. (2004);
Kevrekidis et al. (2003)).

The work is organized as follows: In section 2, the discrete velocity model is presented.
In section 3, the dispersion relation for the present model is compared with that of Grad’s
10-moment system. In section 4, a brief review of the entropic lattice Boltzmann method
is given. In section 5, a parameteric study of the flow in a microcavity is presented. In
section 6, the stability analysis of the flow in a microcavity is presented.

2. Minimal Kinetic Model on D2Q9 Lattice

For the present model, the set of discrete velocities is:

cx = {0, 1, 0,−1, 0, 1− 1,−1, 1} , cy = {0, 0, 1, 0,−1, 1, 1,−1,−1} . (2.1)

The kinetic equation for the population, fi ≡ f(x, ci, t), as a function of the discrete
velocity ci, position x and time t, is written as (with Bhatnagar-Gross-Krook collision
model):

∂tfi + ci · ∂xfi = −1

τ
(fi − f eq

i (f)) . (2.2)

The right hand side of this equation represents collisional relaxation to the local equilib-
rium, f eq

i , on a time scale τ . The local equilibrium distribution f eq
i is the minimizer of
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the discrete H function (Karlin et al. 1999; Ansumali et al. 2003):
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under the constraints of the local hydrodynamic fields:

9
∑

i=1

f eq
i (f){1, cx i, cy i} = {ρ, jx, jy}, (2.4)

where ρ is the local mass density, and jα is the local momentum density of the model.
(It need to be reminded that the mass and the momentum densities of this model is not
the mass and momentum densities of a real fluid. We need to establish the connection
between the physically measurable densities and the densities appearing in the present
model. This will be done in the next section, where the model will be compared to the
Grad’s system.) The explicit expression for f eq

i is (Ansumali et al. 2003):

f eq
i = ρWi
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,

(2.5)

where uα = jα/ρ, and the speed of the sound is cs = 1/
√

3. In the hydrodynamic regime,
the model recovers the Navier-Stokes equation with the viscosity coefficient µ = pτ ,
where p = ρc2s is the pressure. For the boundary condition at the wall, a discrete form of
the diffusive boundary condition for the Boltzmann equation is used (Ansumali & Karlin
2002b).

3. Grad’s 10-moment System and the Minimal Kinetic Model

In this section, we consider the simple case of one-dimensional flow, and compare the
dispersion relation with that of the linearized Grad’s 10-moment system (because of the
absence of the energy conservation, it is more appropriate to compare the present model
with the 10-moment system, rather than with the 13-moment system).

3.1. The Linearized Moment System

It proves useful to represent the discrete velocity model as a moment system. For simplic-
ity, we will consider the linearized version of the model. In the present model, linearization
is required only for the collision term, this is at variance with Grad’s moment systems
where the advection term is also nonlinear. We choose the following nine moments (in
non-dimensional form) as independent variables:

M =

{

γρ

ρ0

,

√
γjx

ρ0cs
,

√
γjy

ρ0cs
,
γP

ρ0c2s
,
γN

ρ0c2s
,
γPxy

ρ0c2s
,
γ3/2qx
2ρ0c3s

,
γ3/2qy
2ρ0c3s

,
γ2ψ

2ρ0c4s

}

, (3.1)

where

ψ = Ryyyy +Rxxxx − 2Rxxyy (3.2)

is a scalar obtained from 4th-order moments (Rαβγθ =
∑9

i=1 ficαicβicγicθi), quantity

N =
∑9

i=1 fi(c
2
xi − c2yi)/2 ≡ (Pxx − Pyy)/2 is the difference of the normal stresses, and

qα =
∑9

i=1 ficαic
2
i is the contraction of the third order moment Qαβγ =

∑9

i=1 ficαicβicγi.
The choice of a particular set of moments to represent the dynamics is arbitrary and is
immaterial as long as set of linearly independent moments are chosen. Current choice
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of moment is motivated from the Grad’s 13- moment system. Time and space are made
non-dimensional in such a way that for a fixed system size they can be measured in the
units of mean free time and mean free length, respectively : x′ = x/(LKn), t′ = t/τ ,
where Kn = τcs/(

√
γL). The linearized equations for these non-dimensional moments

(from now on we use the the same notation for the non-dimensional variables) read:

∂tρ+ γ ∂xjx + γ ∂yjy = 0,

∂tjx + ∂x (P +N) + ∂yPxy = 0,

∂tjy + ∂xPxy + ∂y (P −N) = 0,

∂tP + ∂xqx + ∂yqy = (ρ− P ) ,

∂tN + ∂x (qx −Qxyy) − ∂y (qy −Qyxx) = −N,
∂tPxy + ∂xQyxx + ∂yQyyx = −Pxy,

∂tqx + ∂xRxxαα + ∂yRxyαα = (2γjx − qx) ,

∂tqy + ∂xRxyαα + ∂yRyyαα = (2γjy − qy) ,

∂tψ + ∂x

(

γ2jx − γqx
)

+ ∂y

(

γ2jy − γqy
)

= (2ργ − ψ) .

(3.3)

Furthermore, the lattice construction implies the following relations:

Qxyy = 2qx − 3γjx, Qyxx = 2qy − 3γjy, (3.4)

Rxyαα = 3γPxy, Rxxαα = 3γ

(

P +
1

2
N

)

− 1

2
ψ, Ryyαα = 3γ

(

P − 1

2
N

)

− 1

2
ψ. (3.5)

Apart from the lack of conservation of the energy and linearity of advection, the model
is similar to Grad’s 13-moment system. However, in the present case a particular com-
ponent of the 4th-order moment is also included as a variable. In other words, Grad’s
non-linear closure for the 4th-order moment is replaced by an evolution equation with a
linear advection term. We note here that while the formulation of boundary conditions
for Grad’s moment system remains an open problem, the boundary conditions for the ex-
tended moment system (system 3.3,3.4, and 3.5 ) are well established (Ansumali & Karlin
2002b). One may conjecture that the fourth-order moment closure will deviate from
Grad’s closure only near the boundary. We also note that like any other Grad’s sys-
tem the present model reproduces the Navier-Stokes equation in the hydrodynamic limit
(Karlin et al. 1999; Ansumali et al. 2003).

The moment system written in the present form also reveal the meaning of the densities
appearing in model. The present moment system indicate that the dimensionless density
of the moment system is dimensionless pressure of the real fluid in the low Mach number
limit. Further, the momentum density should be identified with velocity in this limit of
incompressible fluid. With this identification of the variables, we will compare the present
moment system with Grad’s system.

3.2. One dimensional Grad’s 10-moment system

For one-dimensional flows, Grad’s 10-moment system (in non-dimensional form) can be
written as (Gorban & Karlin 2004):

∂tp+ γ∂xux = 0, ∂tux + ∂xPxx = 0, ∂tPxx + 3∂xux = − (Pxx − p) , (3.6)

where γ is the ratio of the specific heats of the fluid, and γ = (D + 2)/D for a D-
dimensional dilute gas. This model can be described in terms of its dispersion relation,
which upon substitution of the solution in the form ∼ exp (ωt+ ikx) reads:

ω3 + ω2 + 3k2ω + γk2 = 0. (3.7)
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Figure 1. Real part of the solutions of the dispersion relation (equation (3.9)). Roots ω2,3 and
ω1 correspond to Grad’s subsystem (equation (3.6)). The real-valued root ω6 and the complex
conjugate roots ω2,3 are extended hydrodynamic modes.

Eq. 3.7 provides the simplest instance of the invariance condition which can be used to
study the effectiveness of different approximations to construct invariant manifolds (see
for details Gorban & Karlin (2004); Karlin & Gorban (2002)). As the time and space are
measured in the unit of mean-free time and length respectively, the low wave-number
asymptotic represents the dynamics happening at large scale (continuum scale of Kn ≪
1), while the high-wave number limit represent the molecular scales quantified by Kn ≫ 1.
The low wave-number (Kn ≪ 1) asymptotic, ωl, and the large wave-number (Kn ≫ 1)
asymptotic, ωh, are:

ωl =

{

(−3 + γ)

2
k2 ± i

√
γk, −1 − (−3 + γ)k2

}

, ωh =

{

(−3 + γ)

6
± i

√
3k, −γ

3

}

.

(3.8)

The two complex conjugated modes (acoustic modes) of the O(k2) dynamics, are given by
first two roots of ωl, and represent the continuum hydrodynamics limit (Navier-Stokes
approximation) of the model. The third root in this limit is real and negative, which
shows the relaxational behavior of the non-hydrodynamic variable (stress), in particular
dominant contribution −1 is rate of relaxation towards equilibrium value, while the next
correction depict the slaving of of viscous forces, which amounts to the constitutive
relation for stress ((−3 + γ)/2k2 ). Further more, the k2 dependence of the relaxation
term justifies the assumption of scale-separation (higher the wave-number, faster is the
relaxation). The real part of high wave-number solution ωh is independent of k, which
shows that the relaxation at very high Knudsen number (Knudsen gas limit) is same for
all wavenumber. Thus, the assumption of scale-separation is not valid for high Knudsen
number dynamics.

3.3. Dispersion Relation for Model Moment System

The dispersion relation for the one-dimensional version of the moment system (3.3) (i.e.
neglecting all derivatives in the y-direction) is:

(ω3 + ω23k2 + ω + k2)(ω3 + 2ω2 + (3k2 + 1)ω + k2)(1 + ω)((1 + ω2) + 2k2) = 0. (3.9)

The real parts of the solutions of this polynomial equation (attenuation rates) are plotted
in Figure 3.3.

It is clear that for one-dimensional flows, the dynamics of three of the moments are
decoupled from the rest and follow those of the one dimensional Grad’s 10-moment
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system. The coupling of the six higher order moments with the first three moments is
unidirectional. As a consistency check, the eigen-spectrum of the collision is recovered at
k = 0, i.e., three of the modes relax with ω = 0, while the other six relaxes with ω = −1.
We remind that the three modes with ω = 0 at k = 0 are hydrodynamic modes, while
the other six modes are kinetic modes.

The similarity between Grad’s approximation and the present model is an important
fingerprint of the relaxational or kinetic nature of the model. It should be remarked here,
that in the case of two-dimensional flows, the agreement between the present model
and Grad’s system is only qualitative. The present moment system is isotropic only
up to O(k2). Thus, the dispersion relation of the model on D2Q9 lattice is expected
to match the one of Grad’s system only up to the same order. In the hydrodynamic
and slip-flow regime, this isotropy is sufficient, while in the transition-flow regime more
detailed entropic lattice Boltzmann models like the model on D2Q16 lattice should be
used (Ansumali et al. 2003).

In the presence of boundaries or non-linearity, it is more convenient to use numerical
simulation. Before highlighting the simulation results, we briefly describe the entropic
lattice Boltzmann model.

4. The Entropic Lattice Boltzmann Discretization

The time stepping in this discretization scheme is performed through an over-relaxation
collisional process and linear convection. The monotonicity constraint on the H function
is imposed through the following procedure: In the first step, populations are changed
in the direction of the collision in such a way that the H function remains constant
(Karlin et al. 1999; Boghosian et al. 2001). In the second step, dissipation is introduced
and the magnitude of the H function decreases. Thus,

fi(x, δt) = fi(x − ciδt, 0) + αβ

[

f eq
i (x − ciδt, 0) − fi(x − ciδt, 0)

]

, (4.1)

were β is the discrete form of the relaxation frequency related to τ , and α is obtained by
solving a non-linear equation, which is derived from the discrete-time H-theorem:

β =
δt

2 τ + δt
, H (f) = H ((1 − α)f + αf eq) . (4.2)

Close to local equilibrium, α is equal to 2. The local adjustments of the relaxation
time (via the parameter α), as dictated by compliance with the H theorem, guarantee
positivity of the distribution function also for the case of discrete time steps, thereby
ensuring the non-linear stability of the numerical scheme.

5. Flow in a driven microcavity

The two-dimensional flow in a lid-driven cavity is simulated with ELBM over a range
of Knudsen numbers defined as Kn = Ma/Re. In the simulations, the Mach number is
fixed at Ma = 0.01 and the Reynolds number, Re is varied. Here, we present results
for Kn=0.001, 0.01, and 0.1. Initially, the fluid in the cavity is at rest and the upper
wall of the domain is impulsively set to motion with ulid = cs ∗ Ma =

√
3 ∗ Ma. The

diffusive boundary conditions are imposed at the walls (Ansumali & Karlin 2002b), and
the domain was discretized using 151 points in each spatial direction. Time integration
is continued till the steady state is established. A typical simulation time for 50, 000 time
steps on a Pentium 4 2.4 GHz is around 3 hr.
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Figure 2. Flow in a micro-cavity for Kn = 0.1 and Ma = 0.14: (a) DSMC simulation
(Jiang et al. 2003), (b) velocity vector plot and density isolines from ELBM (solid lines) with
the DSMC density isolines (dashed lines) superimposed.

5.1. Validation with DSMC simulation of microcavity

As the present model does not conserve energy, it is expected to give physically rele-
vant results only when the isothermal assumption is justified. This restricts the domain
of validity to the hydrodynamic and the slip-flow regimes (but it still covers a wide
domain of fluid dynamics for continuum hydrodynamics and microflows). In the hydro-
dynamic regime, the model was validated using results available from continuum simu-
lations (Ansumali & Karlin 2002a). For higher Kn ∼ 0.01, we compared our results with
the DSMC simulation of (Jiang et al. 2003). The good agreement between the DSMC
simulation and the ELBM results can be seen in figure 2. It can be concluded, that even
for finite Knudsen number, the present model provides semi-quantitative agreement, as
far as flow profile is concerned. We remind here again, that the dimensionless density in
the present model is dimensionless pressure of a real fluid, so for quantitative compari-
sion, the density of ELBM model should be compared with the pressure computed from
DSMC.

5.2. A parametric study of flow in a microcavity

Figure 3 shows the dimensionless density profiles with the streamlines superimposed for
Kn = 0.001, 0.01, 0.1. For Kn = 0.001 (Re = 10), the behavior expected from continuum
simulations with a large central vortex and two smaller recirculation zones close to the
lower corners can be observed. As the Knudsen number is increased, the lower corner
vortices shrink and eventually disappear. The superimposed streamlines show that the
flow becomes simpler as Kn increases and the streamlines tend to align themselves with
the walls. Contrary to the results of Nie et al. (Nie et al. 2002) obtained with bounce-
back boundary conditions, we did not observe the movement of the center of the large
vortex towards the lid with increasing Kn. This movement may be an artifact of the
boundary conditions used.

The density profiles, as a function of Kn, demonstrate that the assumption of incom-
pressibility is well justified only in the continuum regime, where the density is essentially
constant away from the corners. This observation is consistent with the conjecture that
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(a) (b) (c)

Figure 3. Density isocontours for (a) Kn=0.001, (b) Kn=0.01 , and (c) Kn=0.1
(0.995≤ ρ ≤ 1.005). Superimposed are the streamlines.

incompressibility requires smallness of Mach as well as Knudsen number. In hydrody-
namic theory, the density waves decay exponentially fast (with the rate of relaxation
proportional to Kn for a dilute gas) leading effectively to incompressibility. Thus, it is
expected that the onset of incompressibility will be delayed as the Knudsen number
increases, i.e. incompressibility is a feature of the Navier-Stokes limit of the kinetic equa-
tion. Further, as Kn increases, Re decreases and viscosity is not sufficient to smoothen
out discontinuities in density and the discontinuity at the corners of the cavity spreads
over the rest of the domain along the diagonals. These results clearly indicate that for
finite Knudsen number flows, incorporation of correct thermohydrodynamics is necessary
to obtain quantitatively correct results.

The maximum (dimensionless) x-velocity component of the fluid on the lid is 0.99, 0.9,
and 0.35 for the three cases considered, a result of the increasing slip with Kn. Figure 4
compares the isocontours of σxy = −τc2s(∂yjx+∂xjy) (upper row) with Pxy−P eq

xy , the non-
equilibrium part of the corresponding moment (lower row). The differences observed for
Re . 0.1 result from deviations from the Navier-Stokes behavior. Away from the walls,
the hydrodynamics is described well in terms of the first correction from equilibrium
obtained from the Chapman-Enskog expansion.

Figure 5 shows a scatter plot of the xy component of the stress tensor (σxy = µ(∂v/∂x+
∂u/∂x)) with the non-equilibrium part of the corresponding component of the moment
vector M for all points in the domain. The dashed straight line of slope equal to one
corresponds to Navier-Stokes behavior. For low Kn, most points lie along this line. As Kn
is increased, the behavior becomes non-hydrodynamic for more and more points, which
are now located also in the bulk. For Kn=0.1, almost all points show non-hydrodynamic
behavior. An indication of the location of the points is shown in figure 5(c), where the
lines starting at A-E connect points at equal y. The line starting from A corresponds to
the points on the moving lid, while lines from B-E to points lying 1-4 y-isolines below
the it (yA=1.0, yB=0.933, yC=0.987, yD=0.98, yE=0.973). The starting points A-E are
located on the right wall.

6. Stability analysis

The ELBM code was coupled with ARPACK (Lehoucq et al. 1998) to compute the
leading eigenvalues and the corresponding eigenvectors of the Jacobian of the map defined
by equation (4.1) at the computed steady states. In all cases,the eigenvalues are within
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Figure 4. Stress component σxy (upper row) and Pxy − P eq

xy (lower row) for Kn = 0.001 (a–d),
Kn = 0.01 (b–e), and Kn = 0.1 (c–f), respectively.

the unit circle. The leading one is always equal to one (reflecting mass conservation), and
the corresponding eigenvector captures most of the structure of the steady state.

Furthermore, in the hydrodynamic regime (Kn < 0.001), the accuracy of reconstruction
of moments from the leading eigenvector is essentially independent of Knudsen number.
This is in agreement with the understanding that in this regime molecular details (i,e,
the rate of the decay of density wave in this limit of low Knudsen and low Mach flows)
should not play any role. As the Knudsen number increases (Kn < 0.1), the accuracy of
reconstruction decreases, suggesting that in the slip- and transitional-flow regime more
and more eigendirections get excited. Adding a few more eigendirections does not reduce
the difference between the moments computed directly and from the eigenfunction ex-
pansion. Our conjecture is that this happens because when the Knudsen number is small
the incompressibility assumption is a good approximation, and can be captured by the
leading eigendirections.

As Knudsen number decreases, eigenvalues tend to get clustered close to the unit circle
(Figure 6), and more slowly decaying modes appear.

7. Conclusion

The entropic lattice Boltzmann model can be used as an efficieent computational tool
for the simulation of flow in microdevices. The dispersion relation of the one-dimensional
model was compared with that of Grad’s 10-moment system. The close relationship be-
tween the two models was highlighted, showing that Grad’s moment approximation can
be recovered as a special case. The model was used for the simulation of the flow in
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(a) (b)

(c) (d)

Figure 5. Deviation from hydrodynamic behavior (straight dashed line): Pxy − P eq

xy plotted as
a function of the stress component σxy for (a) Kn = 0.0001, (b) Kn = 0.001, (c) Kn = 0.01 (see
text for letters A-E) (d), Kn = 0.1.
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Figure 6. Leading eigenvalues of the map defined by equation (4.1)

a microcavity over a range of Knudsen numbers, showing good agreement with DSMC
results from the literature. The available results show that the present model is capable
of describing microflows in the slip-flow regime. Furthermore, the assumption of incom-
pressibility is questionable for microflows. A more detailed analysis using the thermal
entropic lattice Boltzmann model is a subject of future studies.
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