

ECOLE D'INGENIEURS DE GENEVE
(EIHES-GE)

PompEnTu

V.1.0.2

User's Manual

Ingénieur de recherche et
réacteur:

Chef de projet :

Jorge Arpe (EIHES-GE)

Jean-E. Prénat (EIHES-GE)

Michel Dubas (HEVs)

CMEFE – Groupe de compétences en
mécanique des fluides et procédés
énergétiques – Laboratoire des Machines
Hydrauliques

Hes·so
Haute Ecole Spécialisée
de Suisse occidentale

CONTENTS

1. INTRODUCTION	3
2. STRUCTURE OF THE PROGRAM	3
2.1 Sheets of inputs data	3
2.1.2 Sheet: GeneralData	3
2.1.3 Sheet: RunnerGeometry	4
2.1.4 Sheet: CasingGeometry	5
2.1.5 Sheet: GapData	6
2.1.6 Sheet: RUN	7
2.2 Sheets of outputs data	8
2.2.1 Sheet: Hth-Q	8
2.2.2 Sheet: VolumetricLosses	8
2.2.3 Sheet: CasingLosses	9
2.2.4 Sheet: RunnerLosses	10
2.2.5 Sheet: SuddenLosses	11
2.2.6 Sheet: TotalLosses	11
2.2.7 Sheet: Results	12
3. TAKING THE PUMP GEOMETRY	13
3.1 Symbols used	16

1. INTRODUCTION

This program predicts the turbine performance of a pump operating as turbine. It is based in the modeling of hydraulic losses in pump operating with the help of pump geometry. The model has been experimentally verified with the pump characteristics given by the manufacturer. Then, the model of losses has been applied to calculate losses in turbine mode. A turbine characteristic can be drawn and the head at the best operating point can be predicted.

Because incidence losses off-design point in turbine operating can't be predicted by this method, so the flow rate at best operating point, the program uses the Chapallaz's curves to asses the optimum flow rate in turbine mode.

The program has been tested on four double volute pumps with different specific speed and dimensions. The results have been compared to experimental tests performed by manufacturers in test rig. The comparison of prediction and experiments shows a spread of results up to $\pm 5\%$.

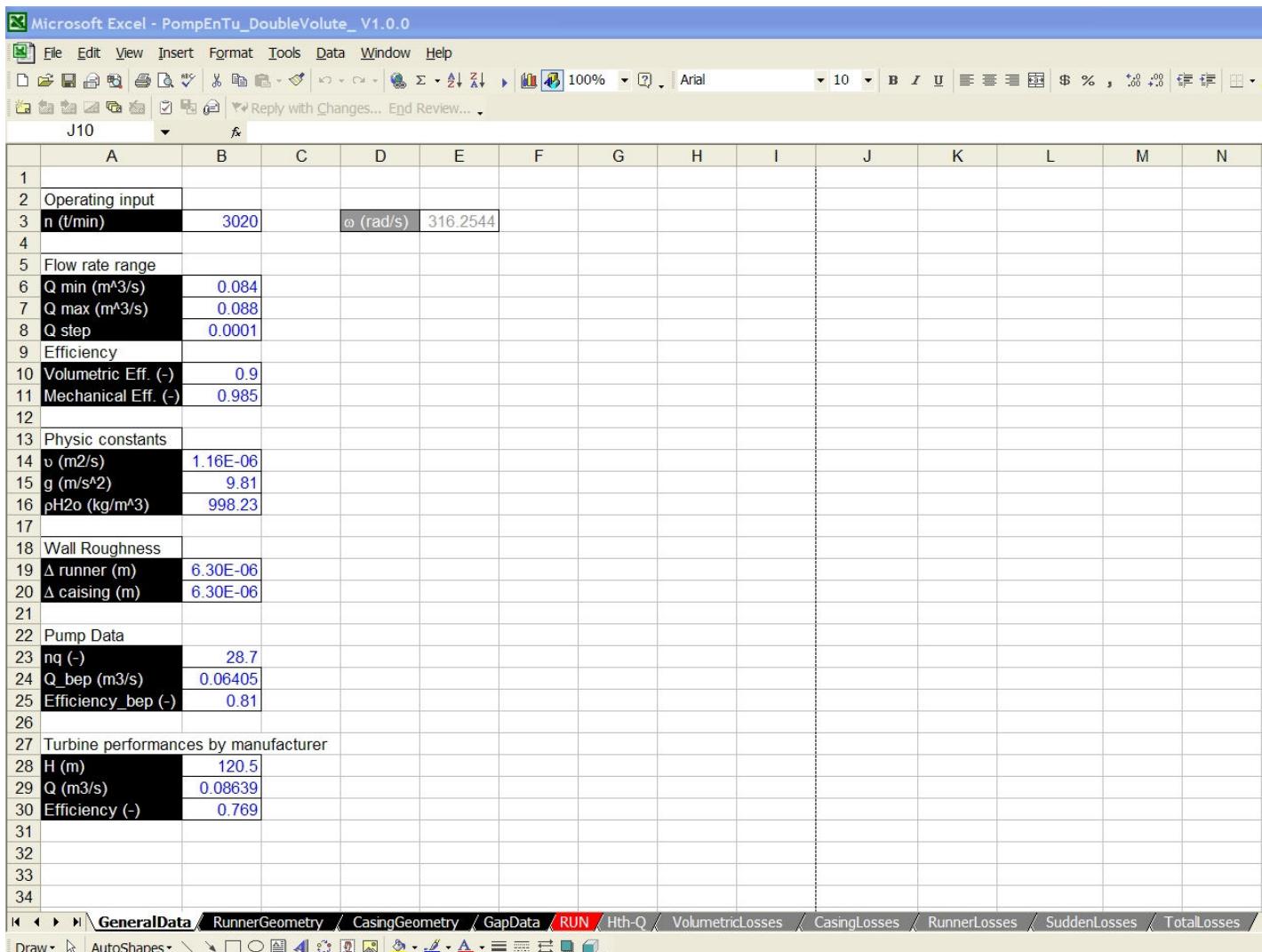
This program is mainly addressed to pump manufacturers who would like to propose to their customers the turbine prediction of their pumps for energy production applications and also for users who would want to verify the performances promised by the manufacturer.

The code source is open and can be modified in order to adapt to a particular machine.

2. STRUCTURE OF THE PROGRAM

The EXCEL program is divided in two parts:

- Sheets for input data (physics constants and pump geometry)
- Sheets for the output results


Sheets for input data have black tabs and the sheets of the output data have grey tabs. All formulas in the Worksheets have been locked to prevent modifications inadvertently.

2.1 Sheets of inputs data

2.1.2 Sheet: GeneralData

Write the main data in turbine operation.

- The turbine speed in RPM
- A range of flow rate around the BEP expected
- A first value of the leakage efficiency (to correct afterwards)
- An approximation of the mechanical efficiency
- The physics constants of water
- Roughness of the impeller and of the casing
- The pump data at the BEP: specific speed, flow rate and efficiency
- For the users: write the turbine performances promised by the manufacturer

GeneralData														
1	A	B	C	D	E	F	G	H	I	J	K	L	M	N
2	Operating input													
3	n (t/min)	3020		Ø (rad/s)	316.2544									
4														
5	Flow rate range													
6	Q min (m³/s)	0.084												
7	Q max (m³/s)	0.088												
8	Q step	0.0001												
9	Efficiency													
10	Volumetric Eff. (-)	0.9												
11	Mechanical Eff. (-)	0.985												
12														
13	Physic constants													
14	v (m²/s)	1.16E-06												
15	g (m/s²)	9.81												
16	pH2o (kg/m³)	998.23												
17														
18	Wall Roughness													
19	Δ runner (m)	6.30E-06												
20	Δ caising (m)	6.30E-06												
21														
22	Pump Data													
23	nq (-)	28.7												
24	Q_bep (m³/s)	0.06405												
25	Efficiency_bep (-)	0.81												
26														
27	Turbine performances by manufacturer													
28	H (m)	120.5												
29	Q (m³/s)	0.08639												
30	Efficiency (-)	0.769												
31														
32														
33														
34														

Figure 1: GeneralData sheet

2.1.3 Sheet: RunnerGeometry

Write the impeller geometry and some data of the interface between the casing and the runner (section 3).

- Number of vanes, dimensions of the low pressure side of the turbine (section 1), dimensions of the high pressure side (section 2) and dimensions of the section 3 related to the casing.

Figure 2: Impeller geometry and casing geometry

2.1.4 Sheet: CasingGeometry

Writing the data of the volute is the more tedious work and need careful treatment. Figure 3 shows the case of a double volute.

The volute is divided in several elements from the inlet (discharge section) to the exit (spiral part of the volute).

For each element, dimensions must be introduced in the Sheet, as for instance:

- The angle of the each bent element
- Top and bottom radius at the inlet and outlet section of each element.
- Surfaces and wet perimeters of the inlet and outlet sections of each element

The nomenclature of the elements of the volute shown in the Figure 3 must not be changed because those terms are used in the program. More elements can be added if needed but respecting the nomenclature proposed.

For a double volute:

Outer volute:

OuterDisch : discharge section (it is the inlet in turbine mode)

OSK : volute channel

OuterSpiral : spiral part of the volute

Inner Volute:

InnerDisch : discharge section (it is the inlet in turbine mode)

InnSpiral : spiral part of the volute

For a single volute:

Disch : sections discharge section (inlet in turbine mode)

Spiral : spiral part of the volute

Element	angle [°]	Rtop in (m)	Rbot in (m)	Rtop out (m)	Rbot out (m)	A in (m ²)	p* in (m)	A out (m ²)	p* out (m ²)	Ro average (m)	ΔL Average (m)	ΔU Average (m)	Dh in (m)	Dh out (m)
1 OuterDisch	15	0.330082	0.223459	0.330082	0.223459	0.017368	0.527118	0.014426	0.476388	0.276771	0.072458	0.501753	0.131798	0.121125
2 OuterDisch	24	0.210533	0.118961	0.210533	0.118961	0.014426	0.476388	0.010586	0.402261	0.164747	0.069009	0.439324	0.121125	0.105266
3 OuterDisch	15	0.331135	0.255046	0.210533	0.255046	0.010586	0.402261	0.010586	0.342613	0.262940	0.068838	0.372437	0.105266	0.123592
2 OSK	15	0.314700	0.245400	0.210533	0.263100	0.007673	0.342613	0.010586	0.331973	0.258433	0.067658	0.337293	0.089585	0.127553
4 OSK	15	0.314700	0.263100	0.326200	0.259700	0.007228	0.331973	0.007065	0.327473	0.290925	0.076164	0.329723	0.087097	0.086291
6 OSK	30	0.314700	0.259700	0.317200	0.252600	0.007065	0.327473	0.006741	0.318360	0.286050	0.149775	0.322916	0.088291	0.084693
8 OSK	30	0.314700	0.252600	0.308200	0.252600	0.006741	0.318360	0.006337	0.307142	0.282025	0.147668	0.312751	0.084693	0.082530
10 OSK	30	0.308200	0.245200	0.294900	0.252600	0.006337	0.307142	0.005472	0.287517	0.275225	0.144107	0.297329	0.082530	0.076131
11 OSK	30	0.294900	0.237800	0.273000	0.221600	0.005472	0.287517	0.004564	0.259605	0.256825	0.134473	0.273561	0.076131	0.070329
12 OuterSpiral	15	0.273000	0.237800	0.269400	0.198500	0.004564	0.287517	0.005860	0.221691	0.244675	0.064056	0.254604	0.063502	0.105725
13 OuterSpiral	15	0.269400	0.237800	0.265700	0.198500	0.005860	0.287517	0.005486	0.213248	0.242850	0.063578	0.250383	0.081520	0.102900
14 OuterSpiral	30	0.265700	0.237800	0.258200	0.198500	0.005486	0.287517	0.004738	0.195855	0.240050	0.125690	0.241686	0.076320	0.096762
15 OuterSpiral	30	0.258200	0.198500	0.250600	0.198500	0.004738	0.195855	0.004000	0.177782	0.226450	0.118569	0.186818	0.096762	0.089989
16 OuterSpiral	30	0.250600	0.198500	0.242800	0.198500	0.004000	0.177782	0.003293	0.159554	0.222600	0.116553	0.168668	0.089899	0.082552
17 OuterSpiral	30	0.242800	0.198500	0.234800	0.198500	0.003293	0.159554	0.002609	0.140587	0.218650	0.114485	0.150071	0.082552	0.074242
18 OuterSpiral	30	0.234800	0.198500	0.234800	0.198500	0.002609	0.140587	0.001919	0.120475	0.216650	0.113438	0.130531	0.074242	0.063705
20 OuterSpiral	30	0.226800	0.198500	0.234800	0.207000	0.001919	0.120475	0.000000	0.082117	0.216775	0.113503	0.101296	0.063705	0.000000
21 InnerDisch	15	0.218800	0.342145	0.234800	0.342145	0.010996	0.456262	0.008470	0.392942	0.284472	0.074472	0.424602	0.096398	0.086221
22 InnerDisch	24	0.281633	0.222619	0.281633	0.222619	0.008470	0.392942	0.004920	0.392942	0.252126	0.105610	0.392942	0.086221	0.050082
23 InnerDisch	15	0.381258	0.343428	0.381258	0.343428	0.004920	0.300034	0.003040	0.392942	0.362343	0.094861	0.346488	0.065590	0.030942
24 InnSpiral	15	0.233400	0.198500	0.251100	0.198500	0.003040	0.239200	0.004323	0.200375	0.220375	0.057694	0.219785	0.050829	0.086307
25 InnSpiral	15	0.251100	0.198500	0.247700	0.198500	0.004323	0.200375	0.003980	0.190806	0.223950	0.058630	0.195591	0.086307	0.083428
26 InnSpiral	30	0.247700	0.198500	0.240600	0.198500	0.003980	0.190806	0.003286	0.169988	0.221325	0.115885	0.180397	0.083428	0.077314
27 InnSpiral	30	0.247700	0.198500	0.233200	0.198500	0.003286	0.190806	0.002592	0.146230	0.219475	0.114917	0.168518	0.068878	0.070892
28 InnSpiral	30	0.247700	0.198500	0.226100	0.198500	0.002592	0.190806	0.001967	0.126684	0.217700	0.113987	0.158745	0.054330	0.062107
29 InnSpiral	30	0.226100	0.198500	0.213600	0.203855	0.001967	0.126684	0.000000	0.079450	0.210514	0.110225	0.103067	0.062107	0.000000
30														
31														
32														
33														
34														
35														
36														
37														

Figure 3: Complete casing geometry

2.1.5 Sheet: GapData

The leakage efficiency computation of the turbine needs to know the geometry of the wear ring, as for instance the diameter, the clearance and the length.

Leave empty the columns 2 and 3 if there is a single gap.

G11														
1	A	B	C	D	E	F	G	H	I	J	K	L	M	N
2	Constants													
3	ζEA (-)	1.1					Reu2=u2*r2/v	4572125.30						
4	ζK (-)	1.1					ysp	0.03031744299						
5	A	0.005					k	0.663971996						
6														
7	Gap Data						usp=ω*dsp/2	24.6678432						
8	No gap	1	2	3			Reu=2*s*usp/v	29771.53						
9	dsp (m)	0.156												
10	s (m)	0.0007												
11	Lsp (m)	0.02												
12														
13	Number of gap	1												
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33														
34														

Figure 4: sheet of the clearance data

Figure 5: sheet to predict performances at other speed and/or other runner diameter

2.1.6 Sheet: RUN

In that Sheet there is a button called RUN to launch and execute the VBA Excel macro. It is possible to add the command “Run Macro” in the toolbars of the Excel worksheet (blue arrow) as shown in Figure 5.

2.2 Sheets of outputs data

These sheets are used as monitors of the program and as controls and are useful for the code developers.

2.2.1 Sheet: Hth-Q

In this sheet (Figure 6) the theoretical curve H_{th} - Q is plotted and the assessment of the flow angle at the impeller entry (at section 2) is done.

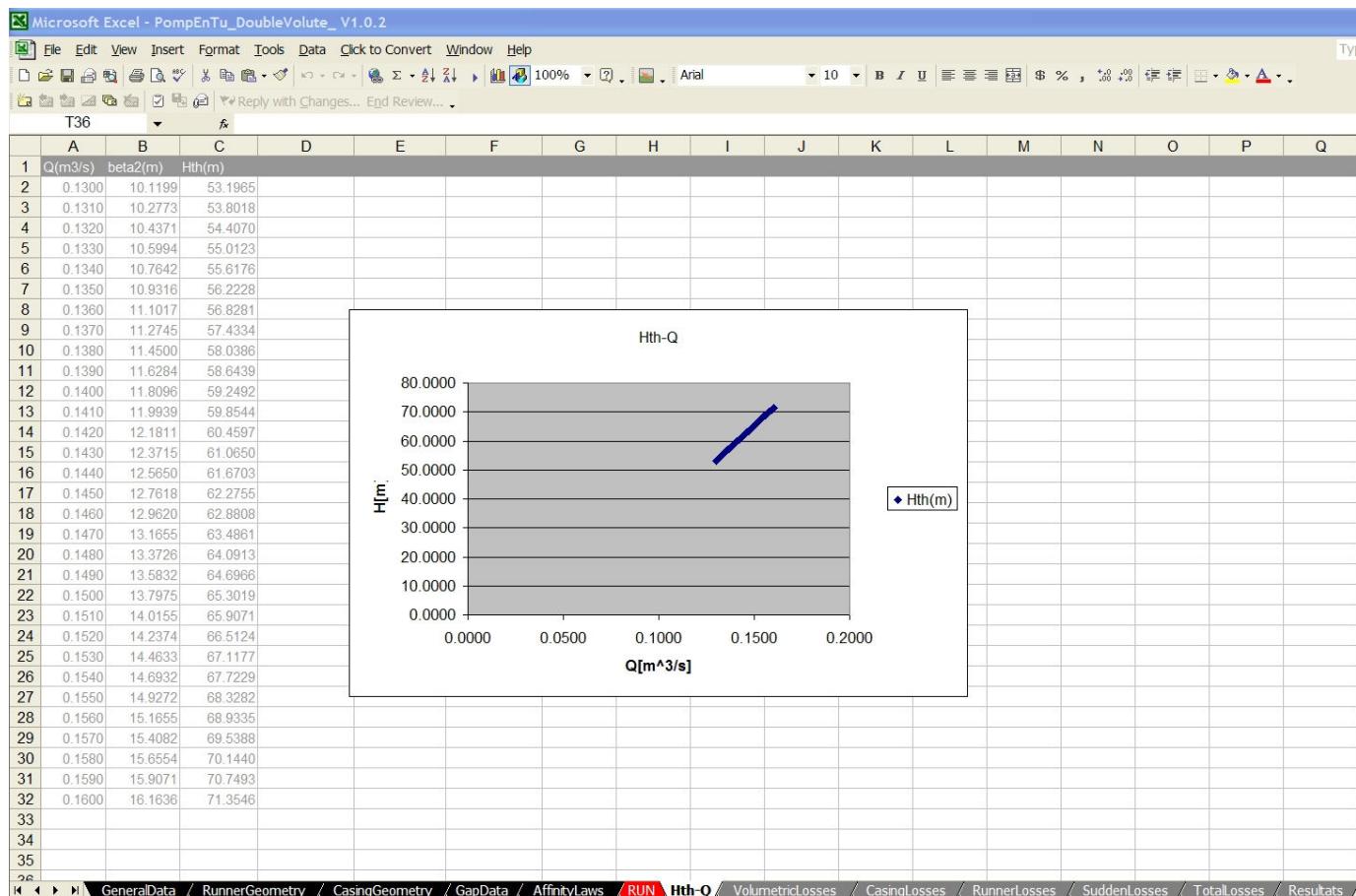


Figure 6: sheet showing the curve Hth-O

2.2.2 Sheet: Volumetric Losses

In this sheet (Figure 7), the graphic of the volumetric efficiency related to the flow rate Q can be observed, as well as the axial flow velocity at the clearance (C_{ax}) and so the flow rate (Q_{sp}).

If the volumetric efficiency value entered in the *GeneralData* sheet does not fit the results shown in the graphic of Figure 7, correct it until obtained similar values.

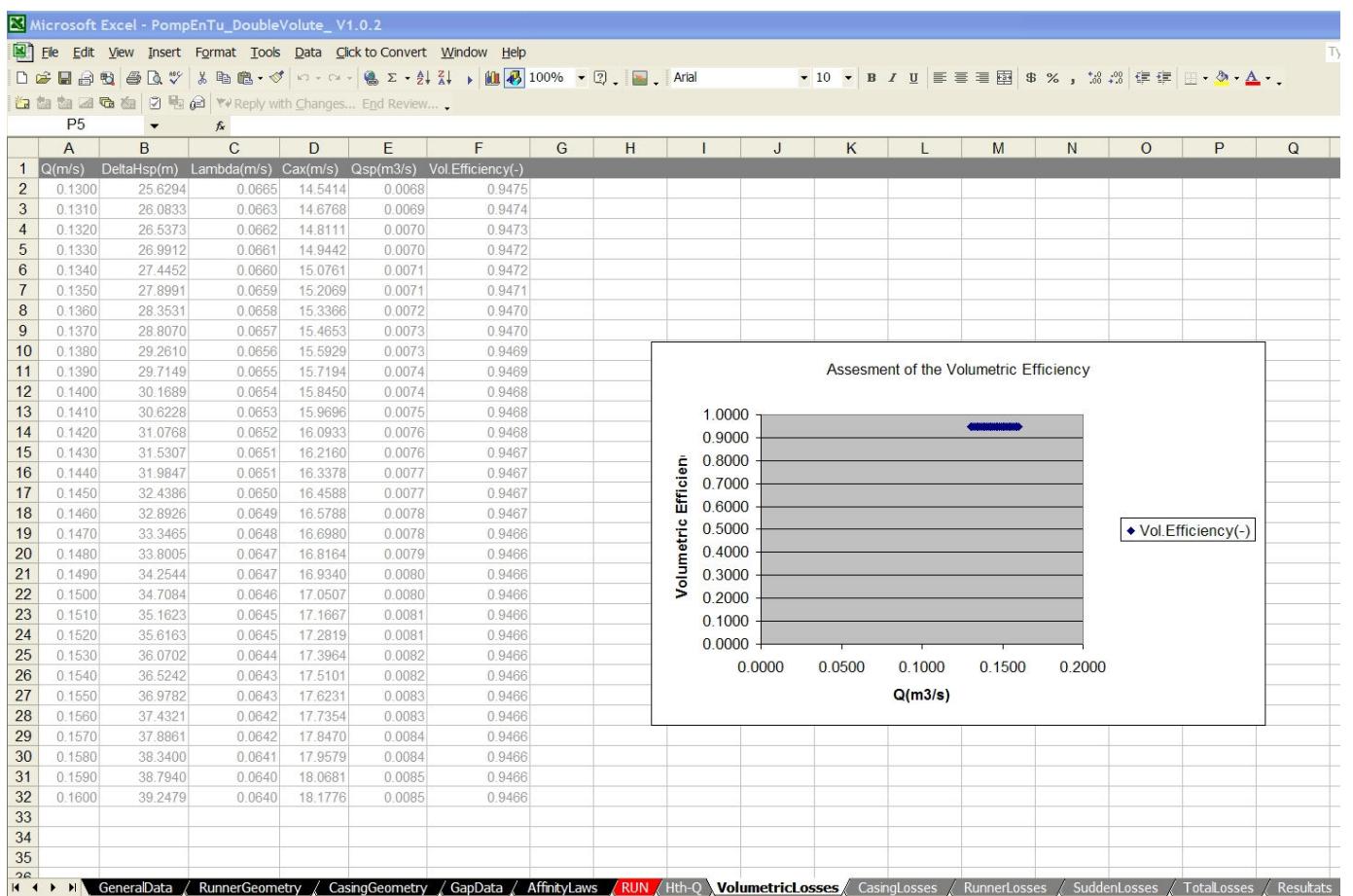


Figure 7: Sheet showing the Volumetric losses related to the flow rate

2.2.3 Sheet: CasingLosses

That sheet allows monitoring the losses according to the flow rate, through each part of the casing and in each leg of the volute (if double volute).

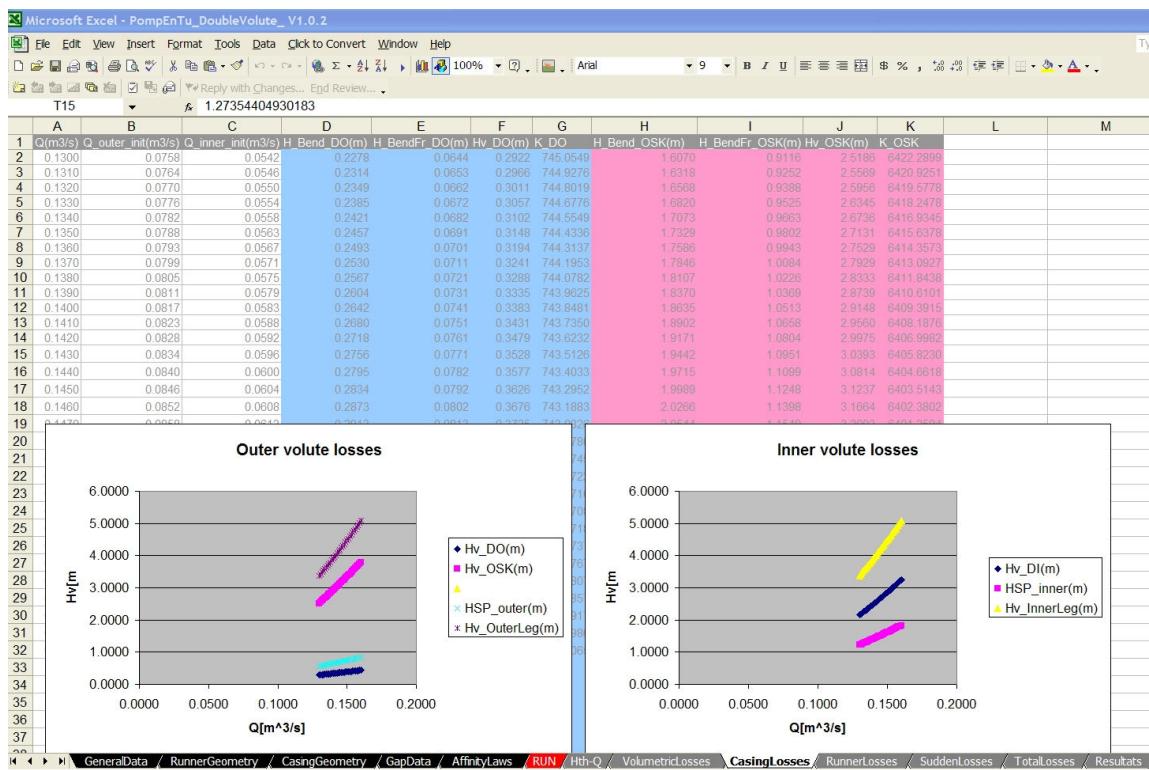


Figure 8: sheet showing the results of losses in the casing

2.2.4 Sheet: RunnerLosses

The graphic showing the total losses in the impeller related to the flow rate is shown in this sheet (Figure 9). The part of the local losses and the friction losses can also be observed.

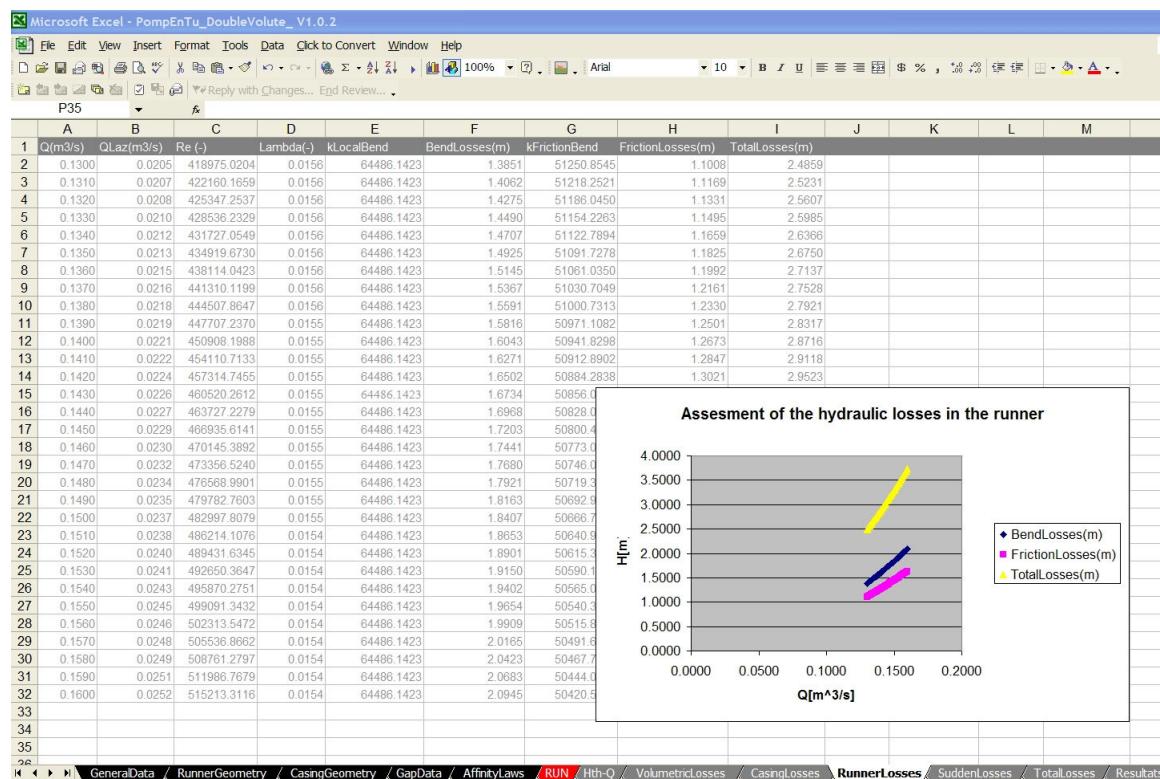


Figure 9: Sheet showing the losses in the runner

2.2.5 Sheet: SuddenLosses

The losses caused by the abrupt changes of section at the entry and exit of the impeller are shown in this sheet (Figure 10).

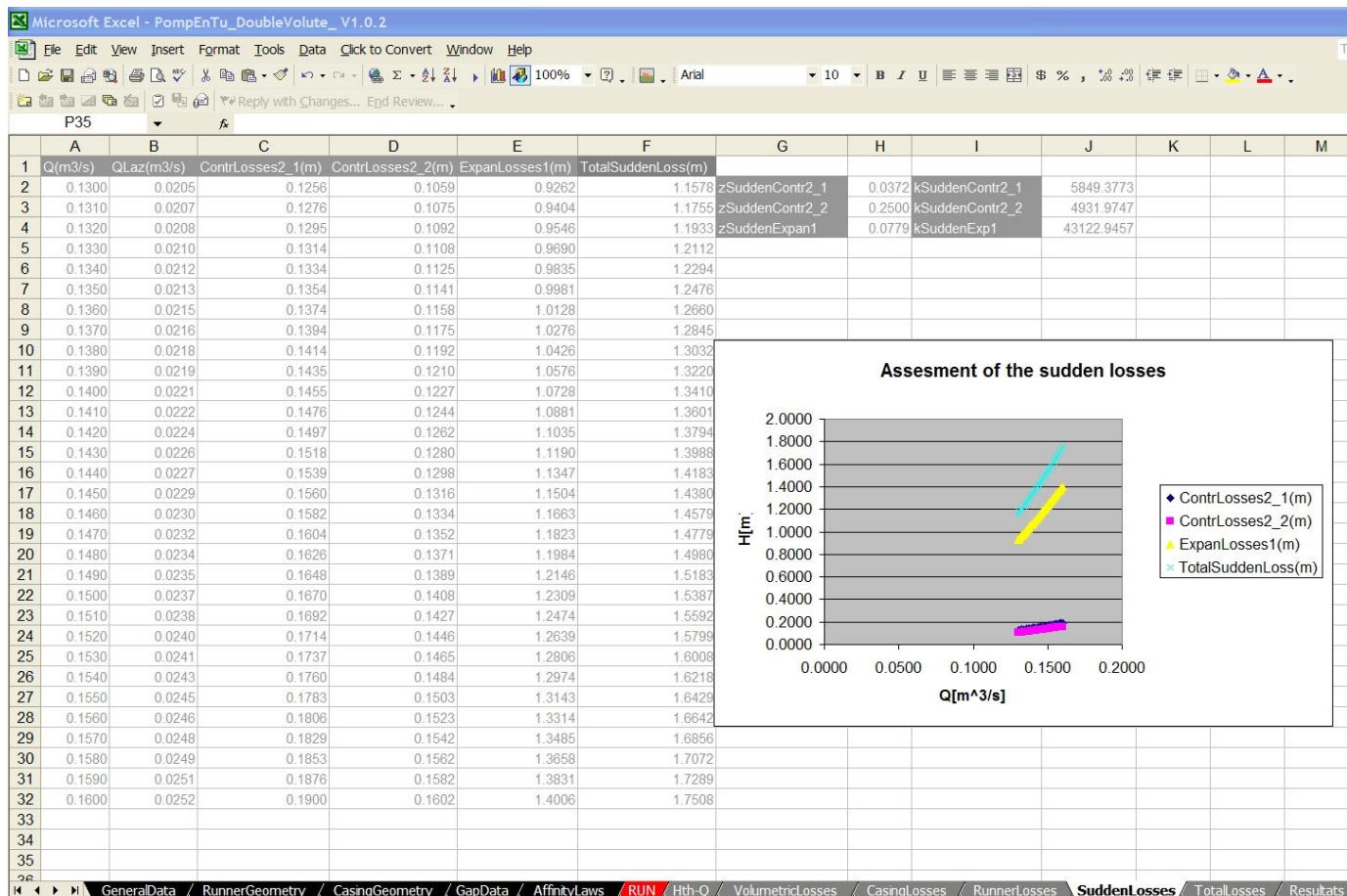


Figure 10: sheet showing the sudden losses at the inlet and runner outlet.

2.2.6 Sheet: TotalLosses

That sheet (Figure 11) shows a summary of all results observed in the output data sheets, as for instance, the part of the impeller losses, the part of the volute losses and the part of the abrupt losses. The total losses in the turbine are then obtained by the sum of all these losses.

There is also a graphic showing the determination of the predicted curve around the BEP which is obtained by the sum of the theoretical curve Hth-Q and the predicted losses curve.

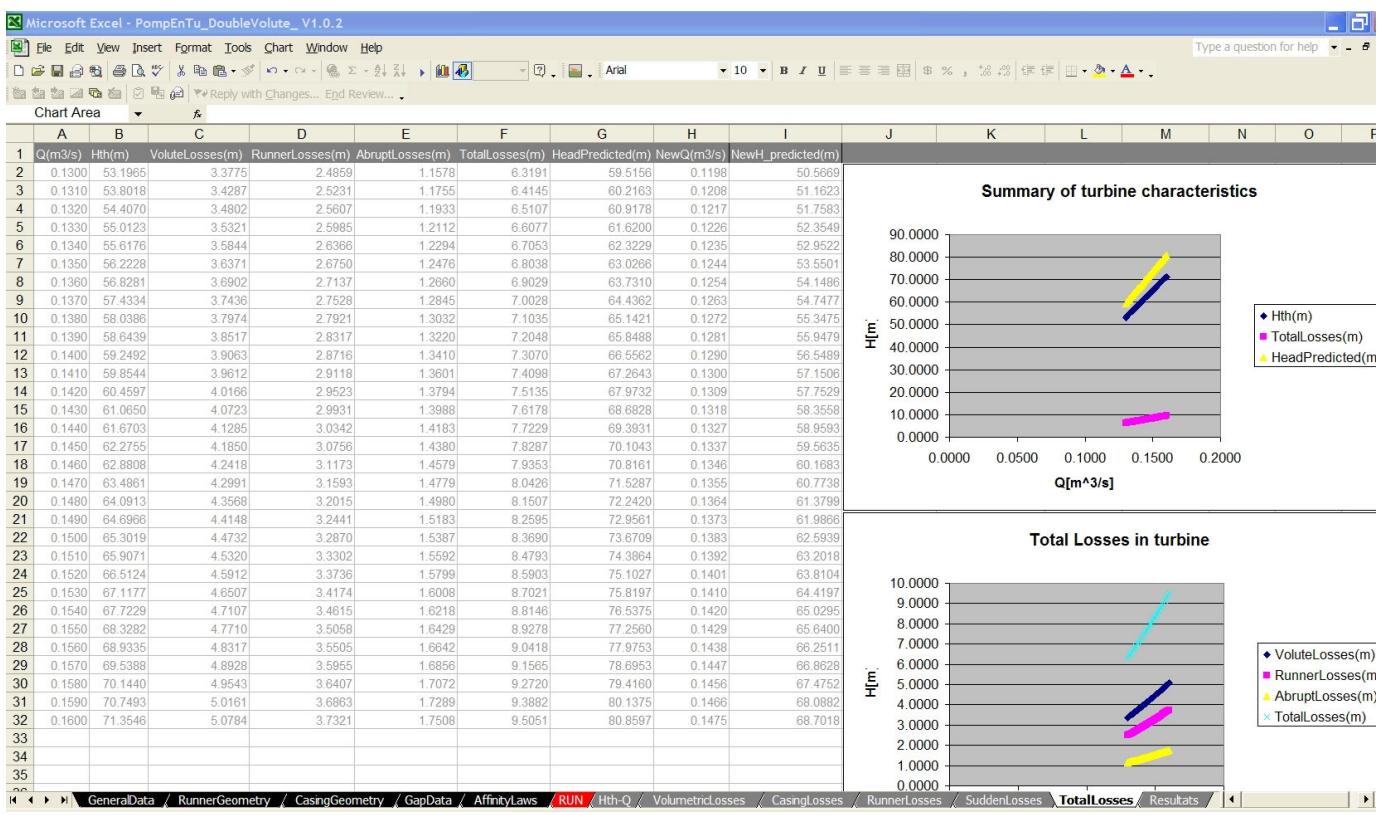


Figure 11: sheet summarizing all results and showing a small table comparing the prediction and the manufacturer data

2.2.7 Sheet: Results

In this sheet (Figure 12) comparisons are done between the prediction and the performances given by the manufacturer.

The figure shows a Microsoft Excel spreadsheet titled "Microsoft Excel - PompEnTu_DoubleVolute_V1.0.2". The table has columns for Predicted, Manufacturer, and Shift(%). The first five rows show data for Head (H(m)), Flow (Q(m)), Efficiency, Power out (kW), and Head (H(m)) again. The last three rows are empty.

	A	B	C	D	E
1		Predicted	Manufacturer	Shift(%)	
2	H(m)	69.7429	68.0000	-2.3000	
3	Q(m)	0.1491	0.1445	-3.2102	
4	Efficiency(-)	0.8231	0.7819	-5.2644	
5	Power out (kW)	60.0000	62.3664	1.9000	
6					
7					
8					

Figure 12: sheet with the final results of the prediction

3. TAKING THE PUMP GEOMETRY

Figure 13 and 14 show the dimensions to take from a pump drawing (impeller and casing) to use in the program PompEntu.

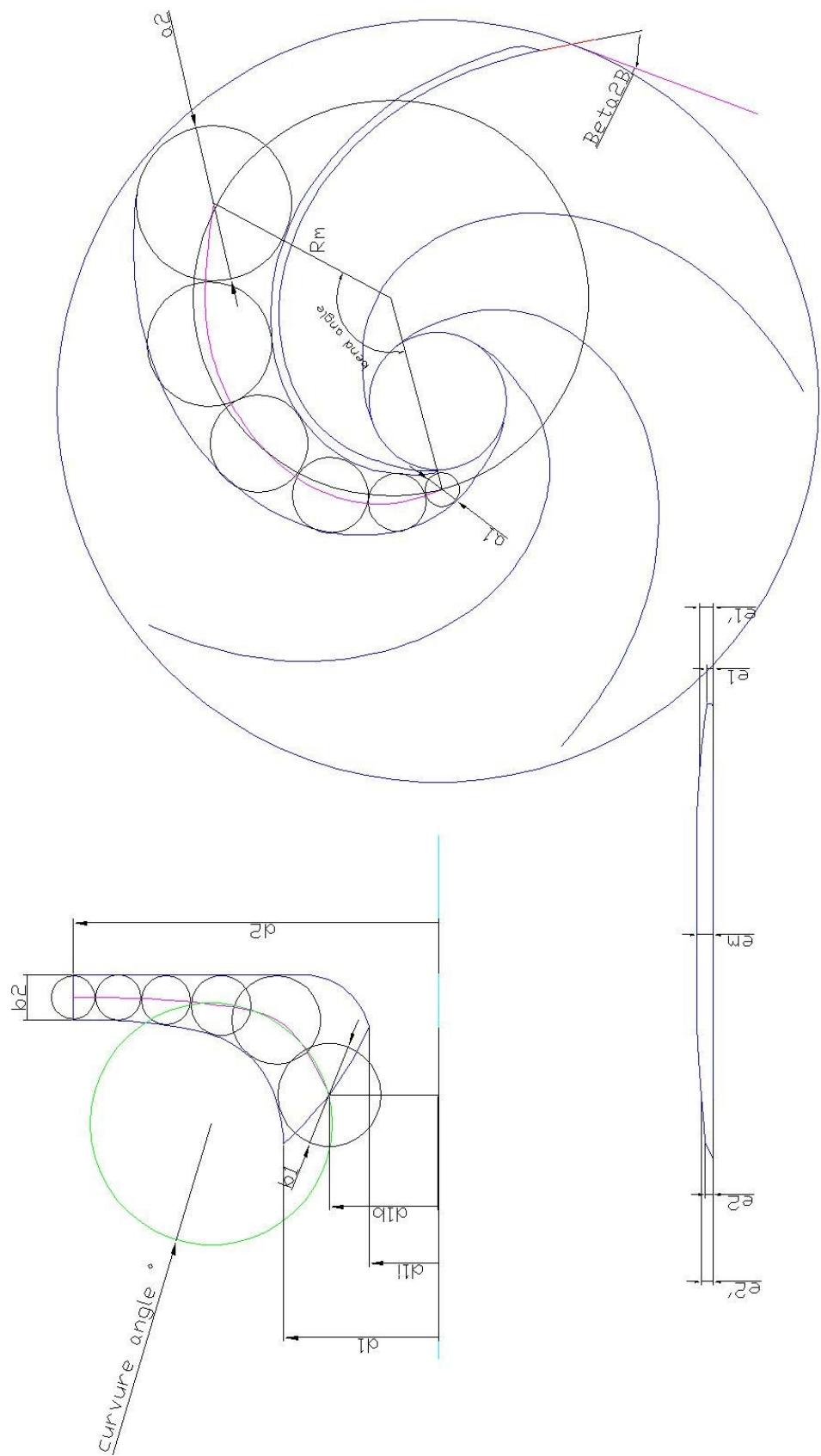


Figure 13: symbols of the impeller dimensions needed for the VBA Excel macro PumpsAsTurbines

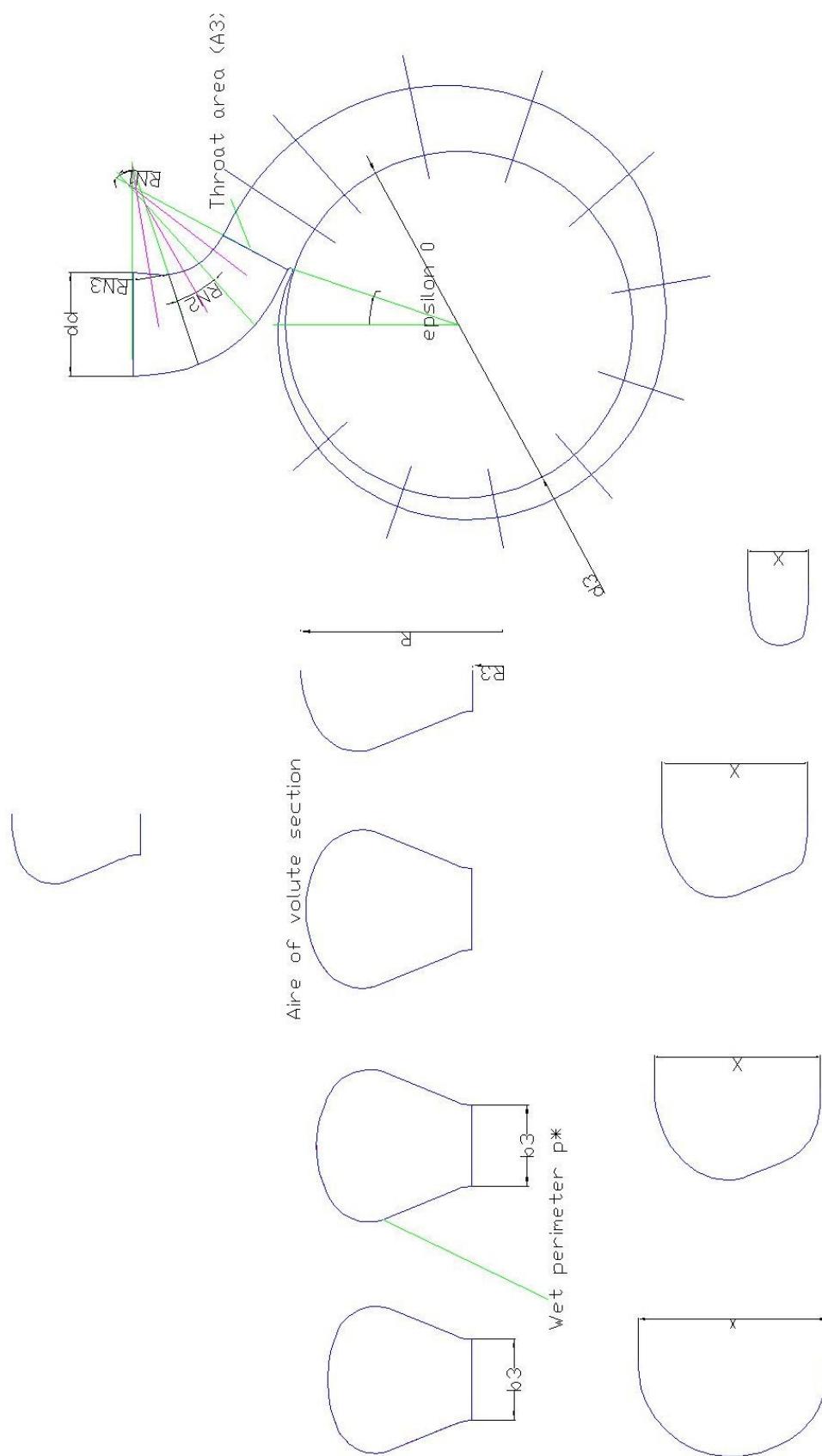


Figure 14: symbols of the volute elements needed for the VBA Excel macro PumpsAsTurbines

3.1 Symbols used

A	area, cross section
A ₃	throat area
a	distance between vanes
b	width of vane
b ₂	impeller outlet width
D, d	diameter
d_{sp}	gap diameter
d_d	discharge nozzle diameter
d_b	arithmetic average of diameters at impeller or diffuser e.g. $d_{1b} = 0.5(d_1 + d_{1i})$; defined such that: $A1 = \pi d_{1b} b_1$
d_m	geometric average of diameters at impeller or diffuser, e.g. $d_{1m} = \sqrt{0.5(d_{1a}^2 + d_{1i}^2)}$
e	vane thickness
H	head
L	length
L_{sp}	gap length
n	rotational speed (revolutions per minute)
n_q	specific speed
p^*	wet perimeter
Q	flow rate, volumetric flow
R_N	bend radius
r	radius
s	gap width
Z_{La}	number of impeller blades
Z_{Le}	number of diffuser vanes (volute: number of cutwaters)
θ	angle used for the law section of the spiral casing
λ_{La}	angle between vanes and side disks (impeller or diffuser)
β_{2B}	blade angle at the pump outlet
ε_o	angular position of the cutwater
$\Delta_{runner,volute}$	roughness of the runner and volute

Subscripts

1	impeller blade leading edge (low pressure)
2	impeller blade trailing edge (high pressure)
3	diffuser vane leading edge or volute cutwater
La	impeller
Le	diffuser
opt	operation at maximum efficiency (BEP)
sp	gap, leakage flow