

Départmenet fédéral de l’environnement, des transports,
de l’énergie et de la communication DETEC

Ofiice fédéral de l’énergie OFEN

 D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Rapport final / Rapport annuel juin 2009

EasyPipes

2/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Mandant:
Office fédéral de l’énergie OFEN
Programme de recherche Energie dans les bâtiments
CH-3003 Berne
www.bfe.admin.ch

Cofinancement:
Institution AB, CH-6666 Lieu
Institution BC, CH-7777 Lieu

Mandataire:
CUEPE
Institut des Sciences de l’Environnement de l’Université de Genève
Université de Genève
7, Route de Drize, CH-1227 Carouge, Genève
www.cuepe.ch

Auteurs:
Peter Gallinelli, Université de Genève, peter.gallinelli@leea.ch
Pierre Hollmuller, Université de Lisbonne, pierre.hollmuller@fc.ul.pt
Pascal Thomann, Université de Genève, pascal.thomann@leea.ch
Willi Weber, Université de Genève, willi.weber@unige.ch

Responsable de domaine de l’OFEN: Andreas Eckmanns
Chef de programme de l’OFEN: Charles Filleux
Numéro du contrat et du projet de l’OFEN: 153000 / 102000

L’auteur de ce rapport porte seul la responsabilité de son contenu et de ses conclusions.

3/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

4/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Introduction

Contexte et état de l’art

Parmi les concepts alternatifs pour le chauffage et le rafraîchissement de bâtiments à faible
consommation d’énergie, il est de plus en plus fréquemment fait usage d’échangeurs air/sol
(puits canadiens), sans pour autant que les outils de dimensionnement appropriés soient à
disposition.

En effet, on rencontre dans la littérature toute une série d’algorithmes de calcul pour échan-
geurs air/sol, analytiques ou par éléments finis, avec des niveaux de finesse et complexités
très variés. Cependant, la plupart de ces outils n’ont pas fait l’objet de validations extensives
et ne sont généralement pas disponibles sous forme opérationnelle.

Dans ce contexte et déjà sous mandat de l’Office fédéral de l’énergie, le CUEPE a précé-
demment développé un algorithme de calcul par éléments finis (projet OFEN no 17'507),
qui:

– permet une description flexible de la géométrie (sols inhomogènes, plusieurs nappes de
tubes), prend en compte diverses conditions au bord (notamment le couplage avec le
bâtiment), intègre les échanges latents entre air et tube (évaporation et condensation), la
diffusion de chaleur en trois dimensions et les pertes de charge le long des tubes,

– a fait l’objet de validations extensives, avec d’une part une solution analytique complète
en géométrie simple (symétrie cylindrique, flux constant), d’autre part un ensemble de
mesures longues durées sur des systèmes réels (y compris échanges latents),

– est intégré dans une routine TRNSYS (Type 460), mise à disposition de la communauté
scientifique et des grands bureaux d’ingénieurs, permettant son intégration modulaire
dans la simulation dynamique de systèmes énergétiques.

Son utilisation généralisée souffre cependant du passage obligé par un fichier de paramétri-
sation, contenant le détail de la géométrie, dont l’édition manuelle reste complexe.

Objectifs et groupe cible

Fort des instruments de simulation et d’analyse précédemment acquis, ce projet propose de
développer un outil de dimensionnement pour échangeurs air/sol facile à l’emploi. Ce déve-
loppement, qui se fera en deux temps, donnera lieu aux deux produits spécifiques suivants :

– La mise à niveau de la routine TRNSYS (Type 460), avec génération automatique du
fichier de paramétrisation pour les géométries simples (tube unique ou nappe de tubes
unique, sol homogène), qui représentent la grande majorité des cas étudiés,

– Le développement d’une interface utilisateur graphique (GUI) qui intègre la routine
TRNSYS dans un environnement dédié, permettant au groupe d’utilisateurs cible de
s’affranchir de l’environnement TRNSYS et d’avoir accès à un outil de simulation et
d’analyse intégré.

L’un et l’autre de ces produits correspondent à une demande répétée des milieux concernés:
bureaux d’étude et architectes spécialisés confrontés au dimensionnement d’échangeurs
air/sol, ainsi que laboratoires de recherche en thermique du bâtiment et stockage de chaleur.

5/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Mise à niveau de la routine TRNSYS

La mise à jour de la routine TRNSYS (Type 460) avait pour objectif à la fois de simplifier son
usage dans le cadre de l’environnement TRNSYS, et de permettre son utilisation avec
l’interface Easypipes.

A cet effet, les modifications suivantes ont été apportées à la routine FORTRAN (qui compte
env. 3800 lignes de code).

Géométrie : mode simplifié versus mode expert

Pour le cas de loin le plus fréquent d’une géométrie simple (sol homogène, tubes alignés,
condition de surface unique), et afin d’éviter l’édition fastidieuse du fichier paramètre,
l’activation d’un flag permet dorénavant de générer automatiquement la géométrie (notam-
ment le maillage), à partir des paramètres de base suivants :

– TypAir : type de flux d’air (volumique ou massique)

– NtubY : nombre de tubes en parallèle (axe y)

– NtubZ : nombre de tubes superposés (axe z)

– LsoilY : entre-axe entre tubes parallèles

– LsoilZ : entre-axe entre tubes superposés

– LsoilTop : épaisseur de sol superficielle (au dessus du premier tube)

– LsoilBot : épaisseur de sol inférieure (au dessous du dernier tube)

– LsoilSide : épaisseur de sol latérale (au dessous du dernier tube)

– Ltub :longueur des tubes

– Dtub : diamètre des tubes

– ThTub : épaisseur des tubes

– LamTub : conduction thermique tubes

– CvTub : capacité thermique tubes

– CtubFric : coefficient de frictiontubes

– LamSoil : conduction thermique sol

– CvSoil : capacité thermique sol

– TiniSoil : température initiale sol

– TypSurfTop : type de surface supérieure (input en température/puissance)

– RsurfTop : résistance de surface supérieure

– TypSurfTop : type de surface inférieure (input en température/puissance)

– RsurfTop : résistance de surface inférieure

La géométrie ainsi générée est transcrite dans un fichier de contrôle (qui peut le cas échéant
servir de base au fichier paramètre requis par le mode expert).

En alternative au mode simplifié, l’activation du mode expert (avec lecture de fichier paramè-
tre) reste disponible, notamment pour le cas de géométries plus complexes (sols inhomogè-
nes, tubes en quinconce, conditions de surface multiples).

6/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Input / Output

Outre la mise en place du mode de lecture simplifié décrit ci-dessus, la structure d’appel de
la routine a été modifiée de la façon suivante :

– Les unités physiques des variables ont été ramenées dans le système standard MKSA, à
l’exception des cas particulier suivant : temps (h) et débits (kg/h ou m3/h).

– En mode expert, par souci de cohérence, les paramètres à passer à la routine ont été
intégralement regroupés dans le fichier correspondant.

– Le nombre d’input/output est automatiquement adapté au nombre de surfaces données
par la définition géométrique, variable en mode expert, fixe en mode simplifié (une surface
supérieure, une surface inférieure).

Améliorations diverses

Parmi les diverses améliorations apportées, on nommera en particulier :

– La possibilité de choisir entre flux d’air volumétrique (m3/h) ou massique (kg/h).

– L’implémentation d’une température output pour le cas d’un débit d’air nul (température
d’air égalée à la température de tube en sortie du puits canadien).

– Le calcul automatique de l’échange convectif air/tube (formulation de Gnielinski), en
alternative à sa définition phénoménologique (forme linéarisée en fonction de la vitesse),
qui reste cependant possible en mode expert.

– La vérification de saisie et les messages d’erreurs associés ont été améliorés.

Bugs

Les bugs connus ont été corrigés :

– Calcul de la résistance de couche superficielle (Kbord) tenant correctement compte de la
résistance de surface (Rsurf).

– Calcul automatique du débit minimum (XairMin).

– Calcul des outputs optionnels de vitesse et débit d’air (Vair et Xair)

7/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Interface EasyPipes

L’interface graphique du logiciel se présente sous la forme d’un bureau avec une barre de
menus et d’outils. Une fenêtre de saisie, une console de dialogue logiciel et une fenêtre de
résultats s’affichent sur la zone de ‘bureau’.

Figure 1 : le bureau EasyPipes

L’utilisateur devra définir un modèle de simulation en renseignant successivement les on-
glets de saisie. La simulation qui dure plusieurs minutes est déclenchée par l’utilisateur. Au
terme des calculs, les résultats peuvent être affichés sous forme de graphiques synthétiques
annuels, mensuels et hebdomadaires.

S’adressant à un public international, l’anglais a été retenu comme langue d’interface.

Fenêtre de saisie (input)

L'interface de offre cinq onglets structurés par thèmes, présentés dans l’ordre de saisie et
d’exécution du projet de simulation :

– Climate : données climatiques extérieures et intérieures

– Boundaries : conditions de surface et prise d’air

– Pipes : caractéristiques et géométrie des tubes enterrés

– Air flow : débits de ventilation et caractéristiques de la régulation

– Simulation : paramètres de simulation, ‘RUN’ (exécution de la simulation) et notes de
projet

8/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Onglet ‘Climate’

Les données climatiques proviennent d’un fichier horaire au format ‘CSV’1.

L’altitude est requise pour déterminer les caractéristiques moyennes de l’atmosphère selon
le modèle d’atmosphère standard U.S. 1976.

Trois saisons sont définies par des ‘spinners’ :

– Saison de refroidissement (cool)

– Saison de chauffage (heat)

– Saison intermédiaire (mids)

Figure 2 : capture onglet ‘Climate’

Le climat intérieur (température) peut être défini au choix de trois manières :

– Température constante,

– Fonction simple (sinusoïdale été, hiver avec une période de transition par interpolation
linéaire),

1 Comma-separated values (CSV) est un format informatique ouvert représentant des données tabu-
laires sous forme de « valeurs séparées par des virgules ». Un fichier CSV est un fichier texte (par
opposition aux formats dit « binaires »). Chaque ligne correspond à une rangée du tableau et les cel-
lules d'une même rangée sont séparées par une virgule.

9/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

– Profil horaire défini par l’utilisation dans un fichier horaire au format ‘CSV’.

Un retour d’information par affichage direct des données de température, humidité et rayon-
nement sur l’année et par zoom mensuel et hebdomadaire permet un contrôle instantané
des données d’entrée.

Onglet ‘Boundary’

L’air à l’entrée des tubes peut provenir au choix :

– Des données climatiques défini au chapitre ‘Climate’

– D’un fichier horaire au format ‘CSV’

– Trois configurations de disposition des tubes par rapport au bâtiment sont possibles :

– Tubes en dehors du périmètre du bâtiment. Dans ce cas sont pris en compte la résistance
d’échange thermique superficiel et l’absorptivité du terrain, nécessaires pour évaluer une
température de surface équivalente,

– Tubes sous le bâtiment avec transfert de chaleur entre le bâtiment et le sol,

– Tubes enterrés sans transfert de chaleur avec la surface (adiabatique).

Figure 3 : capture onglet ‘Boudary’

10/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Onglet ‘Pipes’

L’onglet ‘Pipes’ définit :

– Les propriétés du terrain,

– Les propriétés physiques et dimensions des tubes,

– La géométrie du réseau de tubes

Un feed-back par 4 chiffres caractéristiques permet un contrôle de saisie.

Figure 4 : capture onglet ‘Pipes’

11/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Onglet ‘Air flow’

L’onglet ‘Air flow’ définit les caractéristiques de ventilation. Le débit de ventilation peut être
fixé de trois manières :

– Débit constant (m³/h),

– Horaire librement configurable (listes d’heures et de débits (m³/h),

– Par régulation (voir ci-dessous).

Un feed-back graphique offre un contrôle instantané des saisies.

Figure 5 : capture onglet ‘Air flow’

Régulation de la ventilation

La régulation tient compte de deux ou trois températures données par des sondes ou par
des préréglages (setpoints). Pour chaque cas, deux débits sont possibles :

– Condition remplie : débit-true (m³/h)

– Sinon : débit-false (m²/h)

Ci-dessous les huit configurations proposées par EasyPipes :

12/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Figure 6 : régulation sonde T ext. - T int.

Figure 7 : régulation sonde T sortie tubes – T int.

Figure 8 : régulation sonde T ext. – T setpoint

Figure 9 : régulation sonde T sortie tubes – T setpoint

13/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Figure 10 : régulation T int. – T setpoint

Figure 11 : régulation T ext. - T setpoint inf. – T setpoint sup.

Figure 12 : régulation T sortie tubes – T setpoint inf – T setpoint sup.

Figure 13 : régulation T int. – T setpoint inf – T setpoint sup.

14/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Onglet ‘Simulation’

Cet onglet définit les conditions cadre de la simulation :

– Section typique ou

– Modèle complet,

… et permet de démarrer la simulation.

Selon la complexité du modèle et les ressources matérielles de l’ordinateur, le temps de cal-
cul peut être d’une minute à une heure, environ. L’avancement de la simulation est matériali-
sé par une barre de progression.

Fenêtre ‘Console’

Figure 14 : capture fenêtre console

La console donne un feed-back sur les différentes opérations et fonctions utilisées par le
programme. Elles permettent à l’utilisateur de vérifier si les donnes saisies sont pertinentes
et correctement pris en compte par le programme.

15/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Fenêtre ‘Results’ (output)

Les résultats de la simulation sont enregistrés dans un fichier horaire pouvant être analysé à
la demande par l'utilisateur. L’interface graphique propose une analyse rapide qui donne un
feed-back de simulation immédiat:

Figure 15 : capture fenêtre résultats

La fenêtre de résultats est disponible dès que la simulation est terminée. Elle permet une
première analyse des résultats en affichant par intervalle d’une année, mois, semaine, les
valeurs horaires suivantes :

– Température et humidité relative de l’air à l’entrée de tubes (°C ; %)

– Température et humidité relative de l’air à la sortie des tubes (°C ; %)

– Flux de chaleur (puissances ; W) :
o Latente,
o Sensible
o Par la surface

– Débit d’air (m³/h)

Pour une analyse approfondie selon des critères individuels, l’utilisateur peut se référer à un
fichier de résultats au format ‘CSV’.

16/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Connexion avec le ‘Type 460’

Quand l’utilisateur demande l’exécution de la simulation, l’interface génère et met à jour
l’ensemble des données requis pour la simulation, écrit deux fichiers d’échange de données
et exécute la DLL TRNSYS de simulation précompilée.

Les paramètres qui décrivent le modèle sont enregistrés dans un fichier *.dck. C’est le fichier
requis par la routine précompilée de TRNSYS pour paramétrer la simulation. Les données
horaires requis pour la simulation sont stockées dans un fichier data au format ‘CSV’.

L’exécutable de simulation va générer un fichier de résultats horaire au format ‘CSV’. Le
contenu de ce fichier est affiché dans la fenêtre de résultats, directement à partir de
l’interface graphique.

Comme TRNSYS, les routines sont dépendantes du système d’exploitation MS Windows
(XP ou Vista).

Prérequis informatiques

– Plateforme MS Windows XP ou Vista

– Machine virtuelle JAVA

17/17

D:\DOC-WW\RECHCONF\easypipe\Easypipes_RapportFinal_OFEN.doc

Conclusions

Débuté fin 2007, ce projet a été mené conjointement par le CUEPE – Institut des Sciences
de l’Environnement de l’Université de Genève, et par l’Université de Lisbonne, du fait du
transfert de Pierre Hollmuller, responsable du module TRNSYS, dans cette Université.

Cette collaboration fructueuse a permis de mener à bien ce développement et de finaliser
une version β de EasyPipes.

Dans un premier temps la version β sera distribuée à un groupe d’utilisateurs confidentiels
pour tester son fonctionnement et son ergonomie.

Après un « nettoyage » et quelques améliorations suggérées par ces essais, EasyPipes sera
distribué, suivi et adapté de manière continue pour répondre aux besoins des milieux aca-
démiques et professionnels.

Annexe

Documentation Routine Trnsys

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

core

Class DMpro

java.lang.Object
 core.DMpro

public class DMpro
extends java.lang.Object

This class contains all project data and methods to calculate h/h schedules, get and set
methods

Constructor Summary
DMpro()
 Default constructor

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

DMpro

public DMpro()

Default constructor

Method Detail

refreshData

public int refreshData()

This method updates all project and simulation data and loads hourly data it into
the data[][] variable

Returns:
int result: -1 if error

setData

public void setData(double[] dat,
 int column)

Load h/h data in dat into data array

Columns:
[0] : time [hour of year: 1...8760]
[1] : season [0 = heat; 1 = mids; 2 = cool] [2] : T air ext [°C]
[3] : HR air ext [%]
[4] : P atmospheric pressure [Pa]
[5] : Gh [W/m²]
[6] : T inside building [°C]
[7] : T boundary [°C]
[8] : T input pipe [°C]
[9] : HR input pipe [%]
[10] : airflow pipe [m³/h]
[11] : airflow controlled high [m³/h]
[12] : airflow controlled low [m³/h]
[13] : control setpoint up [°C]
[14] : control setpoint down [°C]
[15] : control hysteresis [K]

Parameters:
dat - double[]: hourly data
column - int: datta array target column

getVar

public double getVar(java.lang.String varName,
 double value)

This method gets the double value 'varName'

Parameters:
varName - String: variable name
value - double: a random double value to identify type

getVar

public int getVar(java.lang.String varName,
 int value)

This method gets the int value 'varName'

Parameters:
varName - String: variable name
value - int: a random int value to identify type

getVar

public java.lang.String getVar(java.lang.String varName,
 java.lang.String value)

This method gets the String 'varName'

Parameters:
varName - String: variable name
value - String: a random string to identify type

setVar

public void setVar(java.lang.String varName,
 java.lang.String value)

This method sets the variable 'varName' to the String 'value'

Parameters:
varName - String: variable name
value - String: String

setVar

public void setVar(java.lang.String varName,
 double value)

This method sets the variable 'varName' to the double 'value'

Parameters:
varName - String: variable name
value - double: double value

setVar

public void setVar(java.lang.String varName,
 float value)

This method sets the variable 'varName' to the float 'value'

Parameters:
varName - String: variable name
value - float: float value

setVar

public void setVar(java.lang.String varName,
 int value)

This method sets the variable 'varName' to the integer 'value'

Parameters:
varName - String: variable name
value - int: integer value

setVar

public void setVar(java.lang.String varName,
 long value)

This method sets the variable 'varName' to the long 'value'

Parameters:
varName - String: variable name
value - long: double value

setVar

public void setVar(java.lang.String varName,
 java.lang.Object value)

This method sets the variable 'varName' to the Object 'value'

Parameters:
varName - String: variable name
value - Object: object containing a String, Double or Integer

boundary

public double[] boundary()

This method returns h/h equivalent boundary temperature
Formula: Tb[hh] = T ext[hh] + alpha * R * Gh[hh]

Returns:
Tb double[]: equiv Temp [°C]

pipeIntake

public double[][] pipeIntake()

This method returns h/h Temp[°C] and RH[%] for pipe air intake from climate data or
file depending on pipeFlag.

Returns:
result double[][]: result >> [0] = temperature [°C], [1] = HR [%]

flowYearSchedule

public double[] flowYearSchedule()

This method evaluates air flow through pipes with fixed schedule for whole year

Returns:
double[] flowYear: array containing 8760 hourly flow values [m³/h]

listToArray

public double[] listToArray(java.lang.String list)

This method converts a comma separated list into double[]

Parameters:
list - String: e.g. "0,6,12,14,18"

Returns:
result double[]: array containing converted double values

getPipeFlow

public double[] getPipeFlow()

This method returns h/h flow through buried pipes for whole year

Returns:
pipeFlow double[]: flow [m³/h]

flowYearControl

public double[] flowYearControl()

This method evaluates air flow through pipes with controller regulation for whole
year

Returns:
double[] flowYear: array containing 8760 hourly flow values [m³/h]

flowController

public double flowController(int controlFlag,
 double tSet0,
 double tSet1,
 double Flow0,
 double Flow1,
 double Hyst,
 int hh)

This is the controller for air flow through pipes: returns air flow depending on
controller input for selected hour of year

Parameters:
controlFlag - int: control type [0...7]
tSet0 - double: setpoint temperature 1 [°C]
tSet1 - double: setpoint temperature 2 [°C]
Flow0 - double: flow if condition = true [m³/h]
Flow1 - double: flow if condition = false [m³/h]
Hyst - double: hysteresis [°C]
hh - int: hour of year -1

Returns:
flow double: airflow [m³/h] (HIGH ou LOW)

getControlFlow

public double[][] getControlFlow()

This function returns h/h controlFlow

Returns:
double[][]: controlFlow (hh)(0/1) [m³/h]

getControlSetpoint

public double[][] getControlSetpoint()

This fuction returns h/h control setpoints

Returns:
double[][]: controlsetpoint (hh)(0/1) [°C]

getControlHysteresis

public double[] getControlHysteresis()

This function returns h/h controlHysteresis

Returns:
double[]: hysteresis (hh) [°C]

getSeason

public int[] getSeason()

This function returns h/h season flag

Returns:
double[]: season [0 = heat; 1 = mids; 2 = cool]

getIndoorTemp

public double[] getIndoorTemp()

This method returns h/h building indoor temperature profile

Returns:
double[]: temperature (hh) [°C]

atmosphere

public double[] atmosphere(double Alt)

This method computes air -temperature, -pressure and -desity for given altitude
according to U.S. 1976 Standard Atmosphere model

Parameters:
Alt - double: altitude [m] above sea level (range from 0 to 84000m)

Returns:
double[]: result >> [0] = temperature [°C], [1] = pressure [Pa], [2] = density
[kg/m³]

getCool

public int getCool(int be)

Returns the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int:

0: Beginning of the cooling season
1: Ending of the cooling season

Returns:
int: Hour of the year

setCool

public void setCool(int be,
 int hourOfDay)

Sets the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int:
0: Beginning of the cooling season
1: Ending of the cooling season
hourOfDay - int: Hour of the year

setCool

public void setCool(int be,
 java.lang.Object date)

Sets the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int:
0: Beginning of the cooling season
1: Ending of the cooling season
date - Object: Hour of the year

getHeat

public int getHeat(int be)

Returns the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
0: Beginning of the heating season
1: Ending of the heating season

Returns:
int: Hour of the year

setHeat

public void setHeat(int be,
 int hourOfDay)

Sets the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
0: Beginning of the heating season
1: Ending of the heating season
hourOfDay - int: Hour of the year

setHeat

public void setHeat(int be,
 java.lang.Object date)

Sets the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
0: Beginning of the heating season
1: Ending of the heating season
date - Object: Hour of the year

getNumberOfPipes

public int getNumberOfPipes()

Returns the number of the pipes.

Returns:
int: Number of the pipes [n]

getTotalLengthOfPipes

public double getTotalLengthOfPipes()

Returns the total length of the pipes.

Returns:
double: Total length of the pipes [m]

getTotalSurfaceOfPipes

public double getTotalSurfaceOfPipes()

Returns the total boundary of the pipes.

Returns:
double: Total boundary of the pipes [m²]

getEstimatedAirFlowThroughPipes

public double getEstimatedAirFlowThroughPipes()

Returns the estimated air flow through the pipes

Returns:
double: Estimated air flow through pipes [m³/h]

getCoolMFTimeByArray

public int[] getCoolMFTimeByArray()

Returns the list of the hours of the cooling season, monday to friday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolMFFlowByArray

public double[] getCoolMFFlowByArray()

Returns the list of the hours of the cooling season, monday to friday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolSSTimeByArray

public int[] getCoolSSTimeByArray()

Returns the list of the hours of the cooling season, saturday and sunday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolSSFlowByArray

public double[] getCoolSSFlowByArray()

Returns the list of the hours of the cooling season, saturday and sunday.

Returns:
int[]: Array of the hours of the cooling season.

getMidsMFTimeByArray

public int[] getMidsMFTimeByArray()

Returns the list of the hours of the mid-season, monday to friday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsMFFlowByArray

public double[] getMidsMFFlowByArray()

Returns the list of the hours of the mid-season, monday to friday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsSSTimeByArray

public int[] getMidsSSTimeByArray()

Returns the list of the hours of the mid-season, saturday and sunday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsSSFlowByArray

public double[] getMidsSSFlowByArray()

Returns the list of the hours of the mid-season, saturday and sunday.

Returns:
int[]: Array of the hours of the mid-season.

getHeatMFTimeByArray

public int[] getHeatMFTimeByArray()

Returns the list of the hours of the heating season, monday to friday.

Returns:
int[]: Array of the hours of the heating season.

getHeatMFFlowByArray

public double[] getHeatMFFlowByArray()

Returns the list of the hours of the heating season, monday to friday.

Returns:
int[]: Array of the hours of the heating season.

getHeatSSTimeByArray

public int[] getHeatSSTimeByArray()

Returns the list of the hours of the heating season, saturday and sunday.

Returns:
int[]: Array of the hours of the heating season.

getHeatSSFlowByArray

public double[] getHeatSSFlowByArray()

Returns the list of the hours of the heating season, saturday and sunday.

Returns:
int[]: Array of the hours of the heating season.

getHourOfYear

public int getHourOfYear(java.lang.Object object)

Returns the hour of the year of "date".

Parameters:
date - Date: Date to be converted to hour of year.

Returns:
int: Hour of the year of the "date".

getSeasons

public int[] getSeasons()

getData

public double[][] getData()

Returns data content.

Returns:
double[][]: Data content.

getdFormat

public java.lang.String[] getdFormat()

Return dFormat content.

Returns:
String[]: dFormat content.

getData

public double[][] getData(int[][] col)

Returns data content.

Parameters:
col - int[][]: Source and target column number(s) to read (maximum 10):

Nr. of source column Nr. of target column

Nr. of source column Nr. of target column

... ...

Returns:
double[][]: Data content.

loadProjectData

public void loadProjectData(java.util.Properties properties)

This method reads user project file and loads data into variables

Parameters:
properties -

composeFileString

public java.lang.String composeFileString(java.lang.String txt,
 java.lang.String cTag)

This method composes and appends project data to the string required to save user
data to file.

Parameters:
txt - String: String with text to append to
cTag - String: tag used for comments ('#' recommended)

Returns:
txt String

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Annexe

Documentation EasyPipes (Java)

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 1

TYPE 460: AIR-SOIL HEAT EXCHANGER

General Description

This component models an air--soil heat exchanger. It accounts for sensible as well as latent
exchanges between airflow and pipes, diffusion into surrounding soil, frictional losses and
possible water infiltration into the pipes. Direction of airflow can be reversed (stratification in
case of heat storage) and flexible geometry allows for inhomogenous soils as well as diverse
border conditions.

This type can be used in standard or expert mode.

In standard mode, which covers most of the situations (array of circular pipes within a
homogeneous soil, adiabatic lateral conditions), the limited number of parameters are defined as
routine as arguments. In expert mode, which allows handling of complex situations (non
homogeneous soils) as well as for definition of optional outputs, the parameters are read from a
parameter definition file, which has to be edited manually.

Mathematical Description

Hypothesis
Following hypothesis have been adopted:

• So as to be flexible, the orthogonal meshing allows for variable node widths in all three
dimensions. Circular tubes are represented by way of equivalent square sections, lateral
exchange surface being computed by way of an adequate corrective factor.

• Thermal heat diffusion is fully three dimensional. Soil characteristics may be
inhomogeneous but are constant in time.

• Border conditions, which may be various on the same face, are either adiabatic or driven
by a transient input. Latter can be defined in terms of temperature or heat load, with
possibility to include an additional surface resistance.

• As for most other model and coherent with analytical approach developed in parallel
(Hollmuller 2003), air temperature and velocity are considered to be uniform within a
pipe section. Heat exchange with pipe is treated by means of an overall convective which
depends on velocity, but not on temperature.

• The thermal effect of the charge losses, computed in function of a friction factor, the tube
surface and the air velocity, is evenly distributed along the tubes. Eventual singular
charge losses have to be treated apart.

• Transient water infiltration, if any, occurs on a predefined part of the tubes, where it adds
to possible condensed water.

Algorithm
The model’s kernel bases on the energy and mass exchanges between the airflow and the pipe.
They are computed iteratively for each pipe node, from air inlet to outlet, and comprise following
iterms.

The sensible heat lost by the airflow:

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 2

()tubairtubsbl TThSP −⋅⋅=

The latent heat, determined by the Lewis analogy, which actually considers former sensible heat
to result from a convective air exchange between the flow and a superficial layer at pipe’s
temperature, the analogy implying following convective air exchange rate:

()tubairair

sbl
conv TTc

P
m

−⋅
=&

Considering the air layer to be saturated in humidity, this air exchange also induces a water vapor
exchange, which is determined by the difference in humidity ratios of main flow and superficial
layer:

() convtubairlat mWWm && ⋅−=

where, according to perfect gases:

()

()
W

H T M

M

W
T M

M

air

sat air wat

air air

tub

sat tub wat

air air

=
⋅ ⋅

⋅

=
⋅ ⋅

⋅

Pr

Pr

Pr

Pr

100%

When positive, this vapor transfer corresponds to condensation, when negative to evaporation. In
latter case it is further limited by the free water content in the considered node, as well as by the
maximum humidity (saturation pressure) which can be absorbed by the airflow. With these
definitions, the associated latent heat finally writes as:
P c mlat lat lat= ⋅ &

The heat diffusion from the 4 lateral soil nodes and the 2 preceding and following pipe nodes:

() ()∑∑ −+−= −−
tube

tubtitubii
soil

tubtisoiliidiff TTkSTTkSP 1,,1,,

The saturation pressure being non-linear in terms of temperature, the value of Ttub as well as
preceding heat rates are being determined by iterative resolution of the energy balance:

()P P P Pint sbl lat diff− + + = 0

where the capacitive gains of the pipe and the free water are given by:

() ()
t

TTmcmc
P ttubtubtwatwattubtub

int ∆
−⋅⋅+⋅

= −− 1,1,

The associated hydric balance on its turn allows to determine the new water content of the node:

()m m m m twat wat t lat= + − ⋅−, & &1 inf ∆

Charge losses are taken in account by way of a friction coefficient f, for which typical values are
to be found on a Moody diagram (ASHRAE, Ch.2, 1989):

2

2
air

airfric

v

d

l
fmP ⋅⋅⋅= &

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 3

Finally, preceding energy and mass balances yield the air input conditions of the next pipe node:

() airairvapair

sblfric

airiair mWcc

PP
TT

&⋅⋅+
−

+=,

where computation repeats in the same manner.

After completing this calculation for all tube nodes, computation treats diffusion of heat into soil
nodes, taking into account user-specified border conditions.

Component Configuration

Standard Mode

Parameters

Number Symbol Definition and unit

1 Igeo geometry type [-] 1)

2 IfileLog parameter log file [-]

3 TypAir airflow type [-] 2)

4 NtubY number of pipes per layer [y axis] [-]

5 NtubZ number of superposed pipe layers [z axis] [-]

6 LsoilY pipe - pipe inter axial distance, y axis [m]

7 LsoilZ pipe - pipe inter axial distance, z axis [m]

8 LsoilTop top surface - first pipe layer [m]

9 LsoilBot last pipe layer - bottom surface [m]

10 LsoilSide lateral surface - first pipe [m]

11 Ltub pipe length [m]

12 Dtub pipe diameter [m]

13 ThTub pipe thickness [m]

14 LamTub pipe conductivity [W/K.m]

15 CvTub pipe capacity [kJ/K.m3]

16 CtubFric pipe friction coefficient [-] 3)

17 LamSoil soil conductivity [W/K.m]

18 CvSoil soil capacity [kJ/K.m3]

19 TiniSoil soil initial temperature [C]

20 TypSurf(1) surface type, top [-] 4)

21 Rsurf(1) surface resistance, top [K.m2/W] 5)

22 TypSurf(2) surface type, bottom [-] 4)

23 Rsurf(2) surface resistance, bottom [K.m2/W] 5)

Inputs

Number Symbol Definition and unit

1 XairTot Airflow, total over all pipes [m3/hr or kg/h] 2) 6)

2 TairIn inlet temperature [C]

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 4

3 HrelIn inlet relative humidity [pcent]

4 PrAir inlet air pressure [Pa]

5 MwatInfTot water infiltration, total over all pipes [kg/h]

6 Xsurf(1) surface input, top [C or kJ/hr] 4)

7 Xsurf(2) surface input, bottom [C or kJ/hr] 4)

Outputs

Number Symbol Definition and unit

1 TairOut outlet temperature [C]

2 HrelOut outlet relative humidity [pcent]

3 PsblTot sensible energy rate lost by airflow, total over all pipes
[W]

4 PlatTot latent energy rate lost by airflow, total over all pipes
[W]

5 Xbord(1) surface output, top [C or W] 4)

6 Xbord(2) surface output, bottom [C or W] 4)

Explanatory notes for preceeding tables
1) Igeo specifies the type of geometry to be simulated:

0: no pipes (only heat diffusion in relation with top/bottom surface input)
1: typical pipe module (one pipe per layer, with adiabatic conditions at inter-axial distance),
disregarding lateral border effects.
2: entire pipe array, including lateral border effects. Beware that this setting can be very
more time consuming.

2) Parameter TypeAir specifies the type of airflow:
0: XairTot is a volumetric flow [m3/h]
1: XairTot is a mass flow [kg/h]

3) Typical value of friction coefficient is 0.01 - 0.02 [-].
4) For each surface, surface type is one of the following :

0 : input Xsurf is surface temperature, output Xbord is corresponding inflowing energy rate.
1 : input Xsurf is inflowing energy rate, output Xbord is corresponding equivalent border
temperature (first soil layer)

5) A negative value of Rsurf indicates an adiabatic surface. In this case corresponding TypSurf
should be set to 0.

6) So as to avoid oscillations of air temperature along the tube, airflow should not exceed a
minimum value XairMin, which is written to the parameter log file. An airflow smaller than
this minmum value will be set to zero.

Expert Mode

Parameters

Number Symbol Definition and unit

1 IfileDef parameter definition file [-]

2 IfileLog parameter log file [-]

Inputs

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 5

Number Symbol Definition and unit

1 XairTot airflow, total over all pipes [m3/hr or kg/h]

2 TairIn inlet temperature [C]

3 HrelIn inlet relative humidity [pcent]

4 PrAir inlet air pressure [Pa]

5 MwatInfTot water infiltration, total over all pipes [kg/h]

6 Xsurf(1) surface input, first [C or W]

… … …

5+Nsurf Xsurf(Nsurf) surface input, last [C or W]

Outputs

Number Symbol Definition and unit

1 TairOut outlet temperature [C]

2 HrelOut outlet relative humidity [pcent]

3 PsblTot sensible energy rate lost by airflow, total over all pipes
[W]

4 PlatTot latent energy rate lost by airflow, total over all pipes
[W]

5 Xbord(1) surface output, first [C or W]

… … …

4+Nsurf Xbord(Nsurf) surface output, last [C or W]

4+Nsurf+1 Xopt(1) optional output, first

… … …

4+Nsurf
+Nopt

Xopt(Nopt) optional output, last

Parameter definition file
Each data set hereafter is written on one line (exception for TypSoil arrays, which take NK or
NK+2 lines). Data within one dataset is separated by commas or blanks. Comments can be
entered by using an asterix (*) in first column.

Symbol Definition and unit

TypAir airflow type [-]

Dt, XairTotMin, TtubErr internal timestep [h], minimum airflow [m3/h or kg/h],
tolerance on tube temperature [C]

Nmod,Nsec,Nsoil,Nsurf,NI,NJ,
NK

number of : modules, cross-sections, surfaces, nodes
along x-axis, nodes along y-axis, nodes along z-axis [-]

DX (1:NI) node width along x-axis [m]

DY (1:NJ) node width along y-axis [m]

DZ (1:NK) node width along z-axis [m]

TypSec(1:NI) type of used cross-sections along x-axis [-]

TypSoil (1:NJ,1:NK) type of surfaces on frontal cross-section [-]

TypSoil (0:NJ+1,0:NK+1) type of soils/surfaces for typical cross-section in y-z
plane [-]

TypSoil (1:NJ,1:NK) type of surfaces on rear cross-section [-]

TypSurf, Rsurf surface type [-] and resistance [K.m2/W]

PosInf position of water infiltration [-]

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 6

Kair0, Kair1 air-tube exchange coefficients
[W/K.m2] and [W/K.m2 per m/s]

LamSoil, CvSoil soil conductivity [W/K.m] and capacity [kJ/K.m3]

LamTub, CvTub tube conductivity [W/K.m] and capacity [kJ/K.m3]

ThTub, CtubCor, CtubFric tube thickness [m], circumference correction factor [-]
and friction coefficient [-]

TypWatFlow (-1:1) type of water flow [-]

Vwat (-1:1) velocity of water flow [m/h]

NiniSoil, NiniWat number of initial conditions (soil temperatures and
waterthicknesses) [-]

TiniSoil, PosIniSoil (1:6) initial temperature [C] and corresponding node
position [-]

ThIniWat, PosIniWat (1:6) initial waterthickness [m] and corresponding node
position [-]

Nopt number of optional outputs

TypOpt, PosOpt (1:6) type of optional output [-] and corresponding node
position [-]

Parameter log file
After formatted copy of the parameter definition file, following data is written at the end of the
file.

Symbol Definition and unit

Ntub number of pipes (per module) [-]

IflowIni node index of tube start along x-axis [-]

IflowEnd node index of tube end along x-axis [-]

PosTub(1:2) node index of tube position along y- and z-axis [-]

LX array length, x axis [m]

LY array width, y axis (total over modules) [m]

LZ depth of hypocaust [m]

Ltub length of pipes [m]

SairTot pipe cross-section area, total over all pipes and
modules [m2]

StubTot pube surface, total over all pipes and modules [m2]

DtubTot hydraulic diameter of equivalent unique pipe [m]

SinfTot water infiltration surface, total over all modules [m2]

Sbord border area, total over all modules [m2]

Kbord equivalent border conduction coefficient [W/K.m2]

NnodeOpt number of nodes concerned by otional output

Dt Internal timestep used in simulation [hr]

XairTotMin Minimum airflow used in simulation [m3/hr or kg/h]

Explanatory notes for optional outputs
For each one of them TypOpt specifies the type of optional output and takes a value from one of
the three following tables. PosOpt finally defines the rectangular node cluster for which the
optional output is to be considered.

Optional outputs for tube nodes :
Type Symbol Definition and unit

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 7

1 Tair Air temperature [C] *
2 Hrel Air relative humidity [pcent] *
3 Habs Air absolute humidity [Pa] *
4 Hrat Air humidity ratio [kg vapor/kg air] *
5 Mwat Free water in node [m3] **
6 MwatLat/Dt Water condensing (>0) or evaporating (<0) [kg/h] **
7 MwatIn/Dt Water flowing into node [kg/h] **
8 MwatInf/Dt Water infiltrating into node [kg/h] **
9 MwatOut/Dt Water flowing out of node [kg/h] **
10 Tsoil Tube temperature [C] **
11 Psbl Sensible energy rate from air to tube [W] **
12 Plat Latent energy rate from air to tube [W] **
13 Pwat Energy rate lost by free water [W] **
14 Pfric Energy rate from frictional losses [W] **
15 Psoil(0) Energy rate diffused from all 6 neighbor nodes [W] **
16 Psoil(1) Energy rate diffused from previous neighbor node

along x-axis (from surface if border node) [W]
**

17 Psoil(2) Energy rate diffused from next neighbor node along x-
axis (from surface if border node) [W]

**

18 Psoil(3) Energy rate diffused from previous neighbor node
along y-axis (from surface if border node) [W]

**

19 Psoil(4) Energy rate diffused from next neighbor node along y-
axis (from surface if border node) [W]

**

20 Psoil(5) Energy rate diffused from previous neighbor node
along z-axis (from surface if border node) [W]

**

21 Psoil(6) Energy rate diffused from next neighbor node along z-
axis (from surface if border node) [W]

**

22 Pint Energy rate of internal gains [W] **
23 Xair Air flowrate [m3/h or kg/h] *
24 Vair Air velocity [m/s] *
* averaged over node cluster
** integrated over node cluster and multiplied by number of modules

Optional outputs for soil nodes :
Type Symbol Definition and unit
101 Tsoil Soil temperature [C] *
102 Psoil(0) Energy rate diffused from all 6 neighbor nodes [W] **
103 Psoil(1) Energy rate diffused from previous neighbor node

along x-axis (from surface if border node) [W]
**

104 Psoil(2) Energy rate diffused from next neighbor node along x-
axis (from surface if border node) [W]

**

105 Psoil(3) Energy rate diffused from previous neighbor node
along y-axis (from surface if border node) [W]

**

106 Psoil(4) Energy rate diffused from next neighbor node along y-
axis (from surface if border node) [W]

**

107 Psoil(5) Energy rate diffused from previous neighbor node
along z-axis (from surface if border node) [W]

**

108 Psoil(6) Energy rate diffused from next neighbor node along z-
axis (from surface if border node) [W]

**

TYPE 460 : AIR-SOIL HEAT EXCHANGER

 8

109 Pint Energy rate of internal gains [W] **
* averaged over node cluster
** integrated over node cluster and multiplied by number of modules

Miscellaneous data for optional output :
Type Symbol Definition and unit
201 PsurfTot Total inflowing energy rate through surfaces (over all

modules) [kJ/hr]

202 PwatTot Total energy loss of free water (over all modules)
[kJ/hr]

203 PfricTot Total frictional losses (over all modules) [kJ/hr]
204 PintTot Total tube and soil capacitive gains (over all modules)

[kJ/hr]

