Confédération suisse de I'énergie et de la communication DETEC
Confederazione Svizzera
Confederaziun svizra

g Schweizerische Eidgenossenschaft Départmenet fédéral de I'environnement, des transports,

Ofiice fédéral de I'énergie OFEN

Rapport final / Rapport annuel juin 2009

EasyPipes

Mandant:

Office fédéral de I'énergie OFEN

Programme de recherche Energie dans les batiments
CH-3003 Berne

www.bfe.admin.ch

Cofinancement:
Institution AB, CH-6666 Lieu
Institution BC, CH-7777 Lieu

Mandataire:

CUEPE

Institut des Sciences de I'Environnement de I'Université de Geneve
Université de Genéve

7, Route de Drize, CH-1227 Carouge, Geneve

www.cuepe.ch

Auteurs:

Peter Gallinelli, Université de Genéve, peter.gallinelli@leea.ch
Pierre Hollmuller, Université de Lisbonne, pierre.holimuller@fc.ul.pt
Pascal Thomann, Université de Geneve, pascal.thomann@leea.ch
Willi Weber, Université de Genéve, willi.weber@unige.ch

Responsable de domaine de 'TOFEN: Andreas Eckmanns
Chef de programme de 'OFEN: Charles Filleux
Numéro du contrat et du projet de TOFEN: 153000 / 102000

L’auteur de ce rapport porte seul la responsabilité de son contenu et de ses conclusions.

2/17

3/17

Introduction

Contexte et état de I'art

Parmi les concepts alternatifs pour le chauffage et le rafraichissement de béatiments a faible
consommation d’'énergie, il est de plus en plus fréquemment fait usage d’échangeurs air/sol
(puits canadiens), sans pour autant que les outils de dimensionnement appropriés soient a
disposition.

En effet, on rencontre dans la littérature toute une série d’algorithmes de calcul pour échan-
geurs air/sol, analytiques ou par éléments finis, avec des niveaux de finesse et complexités
treés variés. Cependant, la plupart de ces outils n’ont pas fait I'objet de validations extensives
et ne sont généralement pas disponibles sous forme opérationnelle.

Dans ce contexte et déja sous mandat de I'Office fédéral de I'énergie, le CUEPE a précé-
demment développé un algorithme de calcul par €léments finis (projet OFEN no 17'507),

qui:

— permet une description flexible de la géométrie (sols inhomogénes, plusieurs nappes de
tubes), prend en compte diverses conditions au bord (notamment le couplage avec le
batiment), intégre les échanges latents entre air et tube (évaporation et condensation), la
diffusion de chaleur en trois dimensions et les pertes de charge le long des tubes,

— a fait I'objet de validations extensives, avec d’une part une solution analytique compléte
en géometrie simple (symétrie cylindrique, flux constant), d’autre part un ensemble de
mesures longues durées sur des systémes réels (y compris échanges latents),

— est intégré dans une routine TRNSYS (Type 460), mise a disposition de la communauté
scientifique et des grands bureaux d’ingénieurs, permettant son intégration modulaire
dans la simulation dynamique de systemes énergétiques.

Son utilisation généralisée souffre cependant du passage obligé par un fichier de paramétri-
sation, contenant le détail de la géométrie, dont I'édition manuelle reste complexe.

Objectifs et groupe cible

Fort des instruments de simulation et d’analyse précédemment acquis, ce projet propose de
développer un outil de dimensionnement pour échangeurs air/sol facile a I'emploi. Ce déve-
loppement, qui se fera en deux temps, donnera lieu aux deux produits spécifiques suivants :

— La mise a niveau de la routine TRNSYS (Type 460), avec génération automatique du
fichier de paramétrisation pour les géométries simples (tube unique ou nappe de tubes
unigue, sol homogene), qui représentent la grande majorité des cas étudiés,

— Le développement d'une interface utilisateur graphique (GUI) qui intégre la routine
TRNSYS dans un environnement dédié, permettant au groupe d'utilisateurs cible de
s’affranchir de I'environnement TRNSYS et d’avoir accés a un outil de simulation et
d’analyse intégre.

L’'un et l'autre de ces produits correspondent a une demande répétée des milieux concernés:
bureaux d’étude et architectes spécialisés confrontés au dimensionnement d’échangeurs
air/sol, ainsi que laboratoires de recherche en thermique du batiment et stockage de chaleur.

4/17

Mise a niveau de la routine TRNSYS

La mise a jour de la routine TRNSYS (Type 460) avait pour objectif a la fois de simplifier son
usage dans le cadre de I'environnement TRNSYS, et de permettre son utilisation avec
l'interface Easypipes.

A cet effet, les modifications suivantes ont été apportées a la routine FORTRAN (qui compte
env. 3800 lignes de code).

Géomeétrie : mode simplifié versus mode expert

Pour le cas de loin le plus fréquent d’'une géométrie simple (sol homogéne, tubes alignés,
condition de surface unique), et afin d’éviter I'édition fastidieuse du fichier parametre,
I'activation d'un flag permet dorénavant de générer automatiquement la géométrie (notam-
ment le maillage), a partir des paramétres de base suivants :

— TypAir : type de flux d’air (volumique ou massique)

— NtubY : nombre de tubes en parallele (axe y)

— NtubZ : nombre de tubes superposés (axe z)

— LsoailY : entre-axe entre tubes paralléles

— LsoilZ : entre-axe entre tubes superposés

— LsoilTop : épaisseur de sol superficielle (au dessus du premier tube)
— LsoilBot : épaisseur de sol inférieure (au dessous du dernier tube)

— LsoilSide : épaisseur de sol latérale (au dessous du dernier tube)

— Ltub :longueur des tubes

— Dtub : diameétre des tubes

— ThTub : épaisseur des tubes

— LamTub : conduction thermique tubes

— CvTub : capacité thermique tubes

— CtubFric : coefficient de frictiontubes

— LamSoil : conduction thermique sol

— CvsSaoll : capacité thermique sol

— TiniSoil : température initiale sol

— TypSurfTop : type de surface supérieure (input en température/puissance)
— RsurfTop : résistance de surface supérieure

— TypSurfTop : type de surface inférieure (input en température/puissance)
— RsurfTop : résistance de surface inférieure

La géométrie ainsi générée est transcrite dans un fichier de contrdle (qui peut le cas échéant
servir de base au fichier paramétre requis par le mode expert).

En alternative au mode simplifié, l'activation du mode expert (avec lecture de fichier parame-
tre) reste disponible, notamment pour le cas de géométries plus complexes (sols inhomoge-
nes, tubes en quinconce, conditions de surface multiples).

5/17

Input / Output

Outre la mise en place du mode de lecture simplifié décrit ci-dessus, la structure d’appel de
la routine a été modifiée de la fagon suivante :

Les unités physiques des variables ont été ramenées dans le systéme standard MKSA, a
I'exception des cas particulier suivant : temps (h) et débits (kg/h ou m3/h).

En mode expert, par souci de cohérence, les paramétres a passer a la routine ont été
intégralement regroupés dans le fichier correspondant.

Le nombre d’input/output est automatiquement adapté au nombre de surfaces données
par la définition géométrique, variable en mode expert, fixe en mode simplifié (une surface
supérieure, une surface inférieure).

Améliorations diverses

Parmi les diverses améliorations apportées, on nommera en particulier :

La possibilité de choisir entre flux d’air volumétrique (m3/h) ou massique (kg/h).

L'implémentation d’'une température output pour le cas d'un débit d’air nul (température
d’'air égalée a la température de tube en sortie du puits canadien).

Le calcul automatique de I'échange convectif air/tube (formulation de Gnielinski), en
alternative a sa définition phénoménologique (forme linéarisée en fonction de la vitesse),
qui reste cependant possible en mode expert.

La vérification de saisie et les messages d’erreurs associés ont été améliorés.

Bugs

Les bugs connus ont été corrigés :

— Calcul de la résistance de couche superficielle (Kbord) tenant correctement compte de la

résistance de surface (Rsurf).
Calcul automatique du débit minimum (XairMin).

Calcul des outputs optionnels de vitesse et débit d’air (Vair et Xair)

6/17

Interface EasyPipes

L'interface graphique du logiciel se présente sous la forme d’'un bureau avec une barre de
menus et d’outils. Une fenétre de saisie, une console de dialogue logiciel et une fenétre de
résultats s’affichent sur la zone de ‘bureau’.

B EasyRipesi2008 S Windo te/Eacypij e /j SV A/EASYPipes/dat t218pp)
File Project Simulation Help

n=(alx mmEm |-
e []
Climate | Boundary Fipes, Air flow | Simulation |
Weather Data
Hourly data file |ndows/D/projets/zasypines/java/EasyPipes/data/met_2007.mst ||
Altituide [500 [m above sea level] average pressure = L013[hPa]
Begins Ends
Cooling Seasan (summen) [25051 17081 tdaymonth]
Heating Season (winter) [0511 03031 [day.month]

Indoor Climate (uilding)
@ | Constant
Temperature [220 rel

) Simple Function

Mear

perature [z4.0 rer oo

Daily amplitude [0 ra o

oy File

Hourly tem perature data [

Feedback Climate Data (Te, Ti, HRe, Gy
Year (spaghetti)

f
e

il

Figure 1 : le bureau EasyPipes

L'utilisateur devra définir un modele de simulation en renseignant successivement les on-
glets de saisie. La simulation qui dure plusieurs minutes est déclenchée par I'utilisateur. Au
terme des calculs, les résultats peuvent étre affichés sous forme de graphiques synthétiques
annuels, mensuels et hebdomadaires.

S’adressant & un public international, I'anglais a été retenu comme langue d’interface.
Fenétre de saisie (input)

L'interface de offre cing onglets structurés par thémes, présentés dans l'ordre de saisie et
d’exécution du projet de simulation :

— Climate : données climatiques extérieures et intérieures

— Boundaries : conditions de surface et prise d’air

— Pipes : caractéristiques et géométrie des tubes enterrés

— Air flow : débits de ventilation et caractéristiques de la régulation

— Simulation : paramétres de simulation, ‘RUN’ (exécution de la simulation) et notes de
projet

7117

Onglet ‘Climate’
Les données climatiques proviennent d’un fichier horaire au format ‘CSV™.

L'altitude est requise pour déterminer les caractéristiques moyennes de I'atmosphere selon
le modéle d'atmosphére standard U.S. 1976.

Trois saisons sont définies par des ‘spinners’ :
— Saison de refroidissement (cool)
— Saison de chauffage (heat)

— Saison intermédiaire (mids)

Hame [

Climate Eaundary | Fipes | Air flow | Simulation |

Weather Data

Heourly data file]ndows,fD,fprojets,feasvpipesjjava,fEasyPipesjdata,’met_EDD?.met M

Altitude SO0 [m above sea level] average pressure = 1013[hPa]
Begins .. Ends ...

Cooling Season (summer) 25.05 l?.08|::| [day.month]

Heatinig Season (winter) E|8.11|_|_+-| D3.E'3E [day.manth]

Indoor Climate (building)

o Constant
Temperature 22.0 R
) Simple Function
summer Winter = :
= §
Mear temperature iz4.0 [Fc) 200 [°cj Offset i S i
.00 [K] r
Daily amplitude 6.0 8 R [*c] ST
~ File

L N

Hourly tem perature data J |

Feedback Climate Data (Te, Ti, HRe, Gh)
Year (spaghetti) @ Month) Week January

;b [ﬂILmIFL

Figure 2 : capture onglet ‘Climate’
Le climat intérieur (température) peut étre défini au choix de trois maniéres :
— Température constante,

— Fonction simple (sinusoidale été, hiver avec une période de transition par interpolation
linéaire),

! Comma-separated values (CSV) est un format informatique ouvert représentant des données tabu-
laires sous forme de « valeurs séparées par des virgules ». Un fichier CSV est un fichier texte (par
opposition aux formats dit « binaires »). Chaque ligne correspond a une rangée du tableau et les cel-

lules d'une méme rangée sont séparées par une virgule.
8/17

Profil horaire défini par I'utilisation dans un fichier horaire au format ‘CSV'.

Un retour d’information par affichage direct des données de température, humidité et rayon-
nement sur I'année et par zoom mensuel et hebdomadaire permet un contréle instantané
des données d’entrée.

Onglet ‘Boundary’

L

'air a I'entrée des tubes peut provenir au choix :
Des données climatiques défini au chapitre ‘Climate’
D’un fichier horaire au format ‘CSV’
Trois configurations de disposition des tubes par rapport au batiment sont possibles :

Tubes en dehors du périmétre du batiment. Dans ce cas sont pris en compte la résistance
d’échange thermique superficiel et I'absorptivité du terrain, nécessaires pour évaluer une
température de surface équivalente,

Tubes sous le batiment avec transfert de chaleur entre le batiment et le sol,

Tubes enterrés sans transfert de chaleur avec la surface (adiabatique).

Nam e | |

Climate Boundary Pipes Air flow | Simulation |

Buried pipe air intake

(®) Outside air (weather data)

) Other ifile)

Indoor Climate (uilding)

() External buried pipes {7} Buried pipes below building () Adiabatic (no exchangs)

Surface thermal resistance 0.15 B [m2E W]
Solar absorbtivity Jl alpha [0...1]

Figure 3 : capture onglet ‘Boudary’

9/17

Onglet ‘Pipes’

L’'onglet ‘Pipes’ définit :

— Les propriétés du terrain,

— Les propriétés physiques et dimensions des tubes,

— La géométrie du réseau de tubes

Un feed-back par 4 chiffres caractéristiques permet un contrdle de saisie.

Mame | |

‘Boundary R Air flaw]

Ground properties

Lambda |1.9[J [W/E.m]

Capacity 1200 [kl E.m3]

Pipe properties

External diameter 0,400 [m]
Wall thickness 0.040 [m]
Wall lambda 10.00 [W/E.m]

Wall capacity |1SDU [k /K.m3]

Array layout

Pipes [layer Distance between pipes 1.00 dyr[m]

Mumber of layers | ZE Distance between layers 0.50 dZn[m]

Depth of upper layer 0.50 z0 [m]

Length of array |1E|.DIJ L{m]

Total number of pipes |8 [r]

Total length of pipes 80.00 [m]

Total surface of pipes 100.5 [m2]

Estimated air flow |U.D [m2/h]

Figure 4 : capture onglet ‘Pipes’

10/17

Onglet ‘Air flow’

L’'onglet ‘Air flow’ définit les caractéristiques de ventilation. Le débit de ventilation peut étre

fixé de trois manieres :

— Débit constant (m?3/h),

— Horaire librement configurable (listes d’heures et de débits (m?¥h),
— Par régulation (voir ci-dessous).

Un feed-back graphique offre un contréle instantané des saisies.

Mame |
Clim ate] Eoundary Fipes Adr flow Simulation |
Buried pipes
) [Constant flow @ Regulated i File qu
[Coaoling season | Mid-season i’Heating SEASON
() Fixed schedule ® Sensor
Sensor control
|Dutside temp Building temp |v|
Flowwhile FE n:in

Hysteresis 0.0

Flow while |D.0 [m2/h]

[K]

Feedback air flow data (Te, Ti, Fp)

Year ® Month () Week

January

Figure 5 : capture onglet ‘Air flow’

Régulation de la ventilation

La régulation tient compte de deux ou trois températures données par des sondes ou par

des préréglages (setpoints). Pour chaque cas, deux débits sont possibles :

— Condition remplie : débit-true (m3/h)
— Sinon : débit-false (mz2/h)
Ci-dessous les huit configurations proposées par EasyPipes :

11/17

Figure 8 : régulation sonde T ext. — T setpoint

e

Figure 9 : régulation sonde T sortie tubes — T setpoint

12/17

C
--..-..--..-----------. Tsat

Figure 10 : régulation T int. — T setpoint

: o et
:". Testo

Figure 11 : régulation T ext. - T setpoint inf. — T setpoint sup.

Figure 12 : régulation T sortie tubes — T setpoint inf — T setpoint sup.

-l Test
"""""""""" Do

Figure 13 : régulation T int. — T setpoint inf — T setpoint sup.

13/17

Onglet ‘Simulation’

Cet onglet définit les conditions cadre de la simulation :
— Section typique ou

— Modéle complet,

... et permet de démarrer la simulation.

Selon la complexité du modéle et les ressources matérielles de I'ordinateur, le temps de cal-
cul peut étre d'une minute a une heure, environ. L’avancement de la simulation est matériali-
sé par une barre de progression.

Fenétre ‘Console’

EJ Konsole x|

' DONE

DOMNE

Figure 14 : capture fenétre console

La console donne un feed-back sur les différentes opérations et fonctions utilisées par le
programme. Elles permettent a l'utilisateur de vérifier si les donnes saisies sont pertinentes
et correctement pris en compte par le programme.

14/17

Fenétre ‘Results’ (output)

Les résultats de la simulation sont enregistrés dans un fichier horaire pouvant étre analysé a
la demande par l'utilisateur. L'interface graphique propose une analyse rapide qui donne un
feed-back de simulation immédiat:

B3| Eacypipes output £l

Temperature | Year) Manth) Week Whole year

Humidity

Power

g)

N nu\h_i' hmu.lllmlnm nIH I |IM||||| "I\I‘Im.lnhn||lh} H ||||||||\ MHHII|| ‘||||IJ|]|||| W g

b A AL SR LR

b LR '||'Iul|||'|||‘|rr||||| 11 |‘|ﬂ| ' "‘|I|III'||I] |||'|'I|I|| B LR R LR A4

Psurface] | GG = - AT

Figure 15 : capture fenétre résultats

La fenétre de résultats est disponible dés que la simulation est terminée. Elle permet une
premiére analyse des résultats en affichant par intervalle d'une année, mois, semaine, les
valeurs horaires suivantes :

Température et humidité relative de I'air & I'entrée de tubes (T ; %)

Température et humidité relative de I'air a la sortie des tubes (T ; %)

Flux de chaleur (puissances ; W) :
0 Latente,
o Sensible
o Par la surface

— Débit d’air (m3/h)

Pour une analyse approfondie selon des critéres individuels, I'utilisateur peut se référer a un
fichier de résultats au format ‘CSV'.

15/17

Connexion avec le ‘Type 460’

Quand l'utilisateur demande I'exécution de la simulation, l'interface génere et met a jour
'ensemble des données requis pour la simulation, écrit deux fichiers d’échange de données
et exécute la DLL TRNSYS de simulation précompilée.

Les parameétres qui décrivent le modele sont enregistrés dans un fichier *.dck. C’est le fichier
requis par la routine précompilée de TRNSYS pour paramétrer la simulation. Les données
horaires requis pour la simulation sont stockées dans un fichier data au format ‘CSV".

L’exécutable de simulation va générer un fichier de résultats horaire au format ‘CSV’. Le
contenu de ce fichier est affiché dans la fenétre de résultats, directement a partir de
l'interface graphique.

Comme TRNSYS, les routines sont dépendantes du systéme d’exploitation MS Windows
(XP ou Vista).

Prérequis informatiques

— Plateforme MS Windows XP ou Vista
— Machine virtuelle JAVA

16/17

Conclusions

Débuté fin 2007, ce projet a été mené conjointement par le CUEPE - Institut des Sciences
de I'Environnement de I'Université de Geneve, et par I'Université de Lisbonne, du fait du
transfert de Pierre Hollmuller, responsable du module TRNSYS, dans cette Université.

Cette collaboration fructueuse a permis de mener a bien ce développement et de finaliser
une version B de EasyPipes.

Dans un premier temps la version 3 sera distribuée a un groupe d'utilisateurs confidentiels
pour tester son fonctionnement et son ergonomie.

Apres un « nettoyage » et quelques améliorations suggérées par ces essais, EasyPipes sera
distribué, suivi et adapté de maniére continue pour répondre aux besoins des milieux aca-
démiques et professionnels.

17/17

Annexe

Documentation Routine Trnsys

Overview Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

core

Class DMpro

java.lang.0Object
L core.DMpro

public class DMpro
extends java.lang.Object

This class contains all project data and methods to calculate h/h schedules, get and set

methods

Constructor Summary

DMpro()

Default constructor

Method Summary

double[]

atmosphere (double Alt)
This method computes air -temperature, -pressure and -desity

for given altitude
according to U.S. 1976 Standard Atmosphere model

double[]

boundary ()
This method returns h/h equivalent boundary temperature

Formula: Tb[hh] = T exthh] + alpha * R * Gh[hh]

java.lang.String

composeFileString(java.lang.String txt,
java.lang.String cTag)

This method composes and appends project data to the string
required to save user data to file.

double

flowController (int controlFlag, double tSet®, double tSetl,
double Flow@, double Flowl, double Hyst, int hh)

This is the controller for air flow through pipes: returns air flow
depending on controller input for selected hour of year

double[]

flowYearControl ()
This method evaluates air flow through pipes with controller
regulation for whole year

double[]

flowYearSchedule()
This method evaluates air flow through pipes with fixed
schedule for whole year

double[][]

getControlFlow ()
This function returns h/h controlFlow

double[]

getControlHysteresis ()
This function returns h/h controlHysteresis

double[][]

getControlSetpoint()
This fuction returns h/h control setpoints

int

getCool (int be)
Returns the hour of the year of the biginning or the ending of

the cooling season.

double[]

getCoolMFFlowByArray ()
Returns the list of the hours of the cooling season, monday to
friday.

int[]

getCoolMFTimeByArray()
Returns the list of the hours of the cooling season, monday to
friday.

double[]

getCoolSSFlowByArray ()
Returns the list of the hours of the cooling season, saturday
and sunday.

int[]

getCoolSSTimeByArray()
Returns the list of the hours of the cooling season, saturday

and sunday.

double[][]

getData()
Returns data content.

double[][]

getData(int[][] col)
Returns data content.

java.lang.String[]

getdFormat ()
Return dFormat content.

double

getEstimatedAirFlowThroughPipes ()
Returns the estimated air flow through the pipes

int

getHeat (int be)
Returns the hour of the year of the biginning or the ending of

the heating season.

double[]

getHeatMFFlowByArray ()
Returns the list of the hours of the heating season, monday to
friday.

int[]

getHeatMFTimeByArray ()
Returns the list of the hours of the heating season, monday to
friday.

double[]

getHeatSSFlowByArray ()
Returns the list of the hours of the heating season, saturday
and sunday.

int[]

getHeatSSTimeByArray ()
Returns the list of the hours of the heating season, saturday
and sunday.

int

getHourOfYear (java.lang.0Object object)
Returns the hour of the year of "date".

double[]

getIndoorTemp ()
This method returns h/h building indoor temperature profile

double[]

getMidsMFFlowByArray ()
Returns the list of the hours of the mid-season, monday to
friday.

int[]

getMidsMFTimeByArray ()
Returns the list of the hours of the mid-season, monday to
friday.

double[]

getMidsSSFlowByArray ()
Returns the list of the hours of the mid-season, saturday and
sunday.

int[]

getMidsSSTimeByArray ()
Returns the list of the hours of the mid-season, saturday and
sunday.

int

getNumberOfPipes ()
Returns the number of the pipes.

double[]

getPipeFlow()
This method returns h/h flow through buried pipes for whole

year

int[]

getSeason()
This function returns h/h season flag

int[]

getSeasons ()

double

getTotalLengthOfPipes ()
Returns the total length of the pipes.

double

getTotalSurfaceOfPipes ()
Returns the total boundary of the pipes.

double

getVar (java.lang.String varName, double value)
This method gets the double value 'varName'

int

getVar (java.lang.String varName, int value)
This method gets the int value 'varName'

java.lang.String

getVar (java.lang.String varName, java.lang.String value)
This method gets the String 'varName'

double[] [listToArray(java.lang.String 1list)
This method converts a comma separated list into double[]
void|{loadProjectData(java.util.Properties properties)
This method reads user project file and loads data into
variables
double[]l[] |pipelIntake ()

This method returns h/h Temp[°C] and RH[%] for pipe air intake
from climate data or file depending on pipeFlag.

int

refreshData()
This method updates all project and simulation data and loads
hourly data it into the datal[][] variable

void[setCool (int be, int hourOfDay)
Sets the hour of the year of the biginning or the ending of the
cooling season.

void[setCool (int be, java.lang.Object date)
Sets the hour of the year of the biginning or the ending of the
cooling season.

voidsetData(double[] dat, int column)
Load h/h data in datinto data array

Columns:

[0] : time [hour of year: 1...8760]
[1] : season [0 = heat; 1 = mids; 2 = cool] [2]: T air ext[°C]
[3]: HR air ext [%]

[4] : P atmospheric pressure [Pa]
[5]: Gh [W/m?]

[6]: T inside building [°C]

[7]: T boundary [°C]

[8]: T input pipe [°C]

[9] : HR input pipe [%]

[10] : airflow pipe [m3/h]

[11] : airflow controlled high [m3h]
[12] : airflow controlled low [m?/h]
[13] : control setpointup [°C]

[14] : control setpoint down [°C]
[15] : control hysteresis [K]

void|setHeat (int be, int hourOfDay)
Sets the hour of the year of the biginning or the ending of the
heating season.

void|setHeat (int be, java.lang.Object date)
Sets the hour of the year of the biginning or the ending of the
heating season.

void|setVar (java.lang.String varName, double value)
This method sets the variable 'varName' to the double 'value'

void|setVar (java.lang.String varName, float value)
This method sets the variable 'varName' to the float 'value'

void|setVar (java.lang.String varName, int value)
This method sets the variable 'varName' to the integer 'value'

void|setVar (java.lang.String varName, long value)
This method sets the variable 'varName' to the long 'value'

void|setVar (java.lang.String varName, java.lang.Object value)
This method sets the variable 'varName' to the Object 'value'

void|setVar(java.lang.String varName, java.lang.String value)
This method sets the variable 'varName' to the String 'value'

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

DMpro
public DMpro ()

Default constructor

Method Detail

refreshData
public int refreshData()

This method updates all project and simulation data and loads hourly data itinto
the data[][] variable

Returns:
int result: -1 if error

setData

public void setData(double[] dat,
int column)

Load h/h data in datinto data array

Columns:

[0]: time [hour of year: 1...8760]
[1]: season [0 = heat; 1 = mids; 2 = cool] [2]: T air ext[°C]
[3]: HR air ext [%]

[4] : P atmospheric pressure [Pa]
[5]: Gh [W/m?]

[6]: T inside building [°C]

[7]: T boundary [°C]

[8]: Tinput pipe [°C]

[9]: HR input pipe [%]

[10] : airflow pipe [m3/h]

[11]: airflow controlled high [m?®h]
[12] : airflow controlled low [m?¥/h]
[13] : control setpoint up [°C]

[14] : control setpoint down [°C]
[15] : control hysteresis [K]

Parameters:
dat - double[]: hourly data
column - int: datta array target column

getVar

public double getVar (java.lang.String varName,
double value)

This method gets the double value 'varName'

Parameters:
varName - String: variable name
value - double: a random double value to identify type

getVar

public int getVar (java.lang.String varName,
int value)

This method gets the int value 'varName'

Parameters:
varName - String: variable name
value - int: a random int value to identify type

getVar

public java.lang.String getVar (java.lang.String varName,
java.lang.String value)

This method gets the String 'varName'

Parameters:
varName - String: variable name
value - String: a random string to identify type

setVar

public void setVar (java.lang.String varName,
java.lang.String value)

This method sets the variable 'varName' to the String 'value'

Parameters:
varName - String: variable name
value - String: String

setVar

public void setVar (java.lang.String varName,
double value)

This method sets the variable 'varName' to the double 'value'

Parameters:
varName - String: variable name
value - double: double value

setVar

public void setVar (java.lang.String varName,
float value)

This method sets the variable 'varName' to the float 'value'

Parameters:
varName - String: variable name
value - float; float value

setVar

public void setVar (java.lang.String varName,
int value)

This method sets the variable 'varName' to the integer 'value’

Parameters:
varName - String: variable name
value - int: integer value

setVar

public void setVar (java.lang.String varName,
long value)

This method sets the variable 'varName' to the long 'value'

Parameters:
varName - String: variable name
value - long: double value

setVar

public void setVar (java.lang.String varName,
java.lang.Object value)

This method sets the variable 'varName' to the Object 'value'

Parameters:
varName - String: variable name
value - Object: object containing a String, Double or Integer

boundary
public double[] boundary ()

This method returns h/h equivalent boundary temperature
Formula: Tb[hh] =T exthh] + alpha * R * Gh[hh]

Returns:
Tb doublel]: equiv Temp [°C]

pipelntake
public double[][] pipeIntake()

This method returns h/h Temp[°C] and RH[%] for pipe air intake from climate data or
file depending on pipeFlag.

Returns:
result double(][]: result >> [0] = temperature [°C], [1] = HR [%]

flowYearSchedule
public double[] flowYearSchedule()
This method evaluates air flow through pipes with fixed schedule for whole year

Returns:
double[] flowYear: array containing 8760 hourly flow values [m?3/h]

listToArray
public double[] 1istToArray(java.lang.String list)
This method converts a comma separated list into double|]
Parameters:
list - String: e.g."0,6,12,14,18"

Returns:
result double[]: array containing converted double values

getPipeFlow
public double[] getPipeFlow()
This method returns h/h flow through buried pipes for whole year

Returns:
pipeFlow double[]: flow [m?¥h]

flowYearControl
public double[] flowYearControl()

This method evaluates air flow through pipes with controller regulation for whole
year

Returns:
double[] flowYear: array containing 8760 hourly flow values [m?/h]

flowController

public double flowController (int controlFlag,
double tSetO,
double tSetl,
double Flow®,
double Flowl,
double Hyst,
int hh)

This is the controller for air flow through pipes: returns air flow depending on
controller input for selected hour of year

Parameters:
controlFlag - int: control type [0...7]
tSetO - double: setpointtemperature 1 [°C]
tSetl - double: setpointtemperature 2 [°C]
Flow® - double: flow if condition = true [m3/h]
Flowl - double: flow if condition = false [m3/h]
Hyst - double: hysteresis [°C]
hh - int: hour of year -1

Returns:
flow double: airflow [m3*/h] (HIGH ou LOW)

getControlFlow
public double[][] getControlFlow()
This function returns h/h controlFlow

Returns:
double[][]: controlFlow (hh)(0/1) [m3/h]

getControlSetpoint
public double[][] getControlSetpoint ()
This fuction returns h/h control setpoints

Returns:
double[][]: controlsetpoint (hh)(0/1) [°C]

getControlHysteresis
public double[] getControlHysteresis()
This function returns h/h controlHysteresis

Returns:
double[]: hysteresis (hh) [°C]

getSeason
public int[] getSeason()
This function returns h/h season flag

Returns:
doublel]: season [0 = heat; 1 = mids; 2 = cool]

getindoorTemp
public double[] getIndoorTemp ()
This method returns h/h building indoor temperature profile

Returns:
double[]: temperature (hh) [°C]

atmosphere
public double[] atmosphere (double Alt)

This method computes air -temperature, -pressure and -desity for given altitude
according to U.S. 1976 Standard Atmosphere model

Parameters:
Alt - double: altitude [m] above sea level (range from 0 to 84000m)
Returns:
double[]: result >> [0] = temperature [°C], [1] = pressure [Pa], [2] = density
[kg/m?]
getCool

public int getCool (int be)
Returns the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int;

¢ 0: Beginning of the cooling season
¢ 1: Ending of the cooling season
Returns:
int: Hour of the year

setCool

public void setCool (int be,
int hourOfDay)

Sets the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int:
¢ 0: Beginning of the cooling season
¢ 1: Ending of the cooling season
hourOfDay - int: Hour of the year

setCool

public void setCool (int be,
java.lang.0Object date)

Sets the hour of the year of the biginning or the ending of the cooling season.

Parameters:
be - int:
¢ 0: Beginning of the cooling season
¢ 1: Ending of the cooling season
date - Object: Hour of the year

getHeat
public int getHeat (int be)
Returns the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
¢ 0: Beginning of the heating season
¢ 1: Ending of the heating season
Returns:
int: Hour of the year

setHeat

public void setHeat (int be,
int hourOfDay)

Sets the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
¢ 0: Beginning of the heating season
¢ 1: Ending of the heating season
hourOfDay - int: Hour of the year

setHeat

public void setHeat (int be,
java.lang.Object date)

Sets the hour of the year of the biginning or the ending of the heating season.

Parameters:
be - int:
e 0: Beginning of the heating season
¢ 1: Ending of the heating season
date - Object: Hour of the year

getNumberOfPipes
public int getNumberOfPipes()
Returns the number of the pipes.

Returns:
int: Number of the pipes [n]

getTotalLengthOfPipes
public double getTotalLengthOfPipes()
Returns the total length of the pipes.

Returns:
double: Total length of the pipes [m]

getTotalSurfaceOfPipes

public double getTotalSurfaceOfPipes()
Returns the total boundary of the pipes.

Returns:
double: Total boundary of the pipes [m?]

getEstimatedAirFlowThroughPipes
public double getEstimatedAirFlowThroughPipes()
Returns the estimated air flow through the pipes

Returns:
double: Estimated air flow through pipes [m3/h]

getCoolMFTimeByArray
public int[] getCoolMFTimeByArray()
Returns the list of the hours of the cooling season, monday to friday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolMFFlowByArray
public double[] getCoolMFFlowByArray()
Returns the list of the hours of the cooling season, monday to friday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolSSTimeByArray
public int[] getCoolSSTimeByArray()
Returns the list of the hours of the cooling season, saturday and sunday.

Returns:
int[]: Array of the hours of the cooling season.

getCoolSSFlowByArray
public double[] getCoolSSFlowByArray()
Returns the list of the hours of the cooling season, saturday and sunday.

Returns:
int[]: Array of the hours of the cooling season.

getMidsMFTimeByArray

public int[] getMidsMFTimeByArray()

Returns the list of the hours of the mid-season, monday to friday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsMFFlowByArray
public double[] getMidsMFFlowByArray ()
Returns the list of the hours of the mid-season, monday to friday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsSSTimeByArray
public int[] getMidsSSTimeByArray ()
Returns the list of the hours of the mid-season, saturday and sunday.

Returns:
int[]: Array of the hours of the mid-season.

getMidsSSFlowByArray
public double[] getMidsSSFlowByArray ()
Returns the list of the hours of the mid-season, saturday and sunday.

Returns:
int[]: Array of the hours of the mid-season.

getHeatMFTimeByArray
public int[] getHeatMFTimeByArray()
Returns the list of the hours of the heating season, monday to friday.

Returns:
int[]: Array of the hours of the heating season.

getHeatMFFlowByArray
public double[] getHeatMFFlowByArray ()
Returns the list of the hours of the heating season, monday to friday.

Returns:
int[]: Array of the hours of the heating season.

getHeatSSTimeByArray
public int[] getHeatSSTimeByArray()

Returns the list of the hours of the heating season, saturday and sunday.

Returns:
int[]: Array of the hours of the heating season.

getHeatSSFlowByArray
public double[] getHeatSSFlowByArray ()

Returns the list of the hours of the heating season, saturday and sunday.

Returns:
int[]: Array of the hours of the heating season.

getHourOfYear

public int getHourOfYear (java.lang.0Object object)
Returns the hour of the year of "date".

Parameters:

date - Date: Date to be converted to hour of year.
Returns:
int: Hour of the year of the "date".

getSeasons

public int[] getSeasons ()

getData
public double[][] getData()
Returns data content.

Returns:
doublel][]: Data content.

getdFormat

public java.lang.String[] getdFormat ()

Return dFormat content.

Returns:
String[]: dFormat content.

getData
public double[][] getData(int[][] col)
Returns data content.

Parameters:
col - int[][]: Source and target column number(s) to read (maximum 10):

|Nr. of source column |Nr. of target column

INr. of source column |Nr. of target column

Returns:
doublel][]: Data content.

loadProjectData
public void loadProjectData(java.util.Properties properties)

This method reads user project file and loads data into variables

Parameters:
properties -

composeFileString

public java.lang.String composeFileString(java.lang.String txt,
java.lang.String cTag)

This method composes and appends project data to the string required to save user
data to file.

Parameters:

txt - String: String with text to append to

cTag - String: tag used for comments ('#' recommended)
Returns:

txt String

Overview Package Class Tree Deprecated Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Annexe

Documentation EasyPipes (Java)

TYPE 460 : AIR-SOIL HEAT EXCHANGER

TYPE 460: AIR-SOIL HEAT EXCHANGER

General Description

This component models an air--soil heat exchangerccounts for sensible as well as latent
exchanges between airflow and pipes, diffusion istwrounding soil, frictional losses and
possible water infiltration into the pipes. Dirextiof airflow can be reversed (stratification in
case of heat storage) and flexible geometry allawsnhomogenous soils as well as diverse
border conditions.

This type can be used in standard or expert mode.

In standard mode, which covers most of the sitnatigarray of circular pipes within a
homogeneous soil, adiabatic lateral conditions,litmited number of parameters are defined as
routine as arguments. In expert mode, which alldwasdling of complex situations (non
homogeneous soils) as well as for definition ofiapl outputs, the parameters are read from a
parameter definition file, which has to be editeghomally.

Mathematical Description

Hypothesis
Following hypothesis have been adopted:

* So as to be flexible, the orthogonal meshing alléovsvariable node widths in all three
dimensions. Circular tubes are represented by Wagoivalent square sections, lateral
exchange surface being computed by way of an atkegoarective factor.

 Thermal heat diffusion is fully three dimensiongboil characteristics may be
inhomogeneous but are constant in time.

» Border conditions, which may be various on the séme, are either adiabatic or driven
by a transient input. Latter can be defined in tewh temperature or heat load, with
possibility to include an additional surface remiste.

* As for most other model and coherent with analyteaproach developed in parallel
(Hollmuller 2003), air temperature and velocity aansidered to be uniform within a
pipe section. Heat exchange with pipe is treatethbgins of an overall convective which
depends on velocity, but not on temperature.

» The thermal effect of the charge losses, computddriction of a friction factor, the tube
surface and the air velocity, is evenly distribu@dng the tubes. Eventual singular
charge losses have to be treated apart.

» Transient water infiltration, if any, occurs on i@gefined part of the tubes, where it adds
to possible condensed water.

Algorithm
The model's kernel bases on the energy and massmeges between the airflow and the pipe.

They are computed iteratively for each pipe nodenfair inlet to outlet, and comprise following
iterms.

The sensible heat lost by the airflow:

TYPE 460 : AIR-SOIL HEAT EXCHANGER

P = S [h [(Tair _Ttub)

The latent heat, determined by the Lewis analodychvactually considers former sensible heat
to result from a convective air exchange between ftlbw and a superficial layer at pipe’s
temperature, the analogy implying following conweetair exchange rate:
¥ F)'sbl
mconv s

Cair |:qTair _Ttub)
Considering the air layer to be saturated in hutyidhis air exchange also induces a water vapor
exchange, which is determined by the differenclbumidity ratios of main flow and superficial
layer:
rﬁlat = (Wair _Vvtub) [mconv

where, according to perfect gases:

HPr(Ta) My
ar Prair Dvlair

_ 100%P1 (o) M
w Pr;, (M,

When positive, this vapor transfer correspondsotmensation, when negative to evaporation. In
latter case it is further limited by the free watentent in the considered node, as well as by the
maximum humidity (saturation pressure) which canabsorbed by the airflow. With these
definitions, the associated latent heat finallytegias:

Pat = Gar [My

The heat diffusion from the 4 lateral soil noded #re 2 preceding and following pipe nodes:

Par = Zskl (Tsoil,i,t—l _Ttub)+ Z Sk (Ttub,i,t—l _Ttub)

soil tube

The saturation pressure being non-linear in terfmemperature, the value of Ttub as well as
preceding heat rates are being determined byiiteregsolution of the energy balance:

Pt _(Psbl + R+ Rjiﬁ) =0
where the capacitive gains of the pipe and theirger are given by:
P = (Ctub [mub + C'wat [rnvvat,t—l)[(Ttub _Ttub,t—l)
int —
At

The associated hydric balance on its turn allondetermine the new water content of the node:

Myar = m/vatt—1+(my - nllu)m t
Charge losses are taken in account by way of adnicoefficient f, for which typical values are
to be found on a Moody diagram (ASHRAE, Ch.2, 1989)
| V2
P = My, OF B0
malr d 2

fric

TYPE 460 : AIR-SOIL HEAT EXCHANGER

Finally, preceding energy and mass balances yidir input conditions of the next pipe node:

Pfric - Psbl

T = Tair +

air i .
(Cair + Cvap Nvair)mnair

where computation repeats in the same manner.

After completing this calculation for all tube nadeomputation treats diffusion of heat into soil

nodes, taking into account user-specified bordaditimns.

Component Configuration
Standard Mode
Parameters

Number Symbol

1 Igeo

2 IfileLog

3 TypAir

4 NtubY

5 NtubZ

6 LsoilY

7 LsoilZz

8 LsoilTop

9 LsoilBot

10 LsoilSide

11 Ltub

12 Dtub

13 ThTub

14 LamTub

15 CvTub

16 CtubFric

17 LamSoil

18 CvSoil

19 TiniSoil

2C TypSurf(1

21 Rsurf(1

22 TypSurf(2)

23 Rsurf(2)
Inputs

Number Symbol

1 XairTot

2 Tairln

Definition and unit

geometry type [-]

parameter log file [-]

airflow type [-]

number of pipes per lay[y axig] [-]
number of superposed pipe lay{z axig] [-]
pipe- pipe inter axial distare, y axis[m]
pipe- pipe inter axial distance, z ay[m]
top surface- first pipe laye [m]

last pipe laye- bottom surfac{m]
lateral surface - first pipe [m]

pipe length [m]

pipe diameter [m]

pipe thickness [m]

pipe conductivity [W/K.m]

pipe capacity [kJ/K.m3]

pipe friction coefficien|-]

soil conductivity[W/K.m]

soil capacity[kJ/K.mZ]

soil initial temperature [C

surface type, to[-]

surface resistance, t(K.m2/W]
surface type, bottom [-]

surface resistance, bottom [K.m2/W]

Definition and unit
Airflow, total over all pipes [m3/hr or kg/h]
inlet temperature [(

1)

2)

3)

4)
5)
4)
5)

2)6)

TYPE 460 : AIR-SOIL HEAT EXCHANGER

3 Hrelln inlet relative humidity [pcen

4 PrAir inlet air pressure [F

5 MwatInfTo water infiltration, total over apipes [kg/l]

6 Xeurf(1) surfaceinput, top [C or kJ/hi 4)

7 Xsurf{2) surfaceinput, botton [C or kJ/hr] 4)

Outputs

Number Symbol Definition and unit

1 TairOut outlet temperature [C]

2 HrelOut outlet relative humidity [pcent]

3 PsblTot sensible energy rate lost by airflow, total ovépgbes
[W]

4 PlatTot latent energy rate lost by airflow, total overjes
W]

5 Xbord(1) surface output, top [C W] 4)

6 Xbord(2) surface outpy, botton [C or W] 4)

Explanatory notes for preceeding tables

1)

2)

3)
4)

5)

6)

Igeo specifies the type of geometry to be simulated:

0: no pipes (only heat diffusion in relation withptbottom surface input)

1: typical pipe module (one pipe per layer, withabdtic conditions at inter-axial distance),
disregarding lateral border effects.

2. entire pipe array, including lateral border effe Beware that this setting can be very
more time consuming.

ParameteilypeAirspecifies the type of airflow:

0: XairTotis a volumetric flow [m3/h]

1: XairTotis a mass flow [kg/h]

Typical value of friction coefficient is 0.01 - @(-].

For each surface, surface type is one of the fotigw

0 : inputXsurf is surface temperature, outptliordis corresponding inflowing energy rate.
1 : input Xsurf is inflowing energy rate, outpu¢bord is corresponding equivalent border
temperature (first soil layer)

A negative value oRsurfindicates an adiabatic surface. In this case spomdingTypSurf
should be set to 0.

So as to avoid oscillations of air temperature gltdme tube, airflow should not exceed a
minimum value XirMin, which is written to the parameter log file. Amflmw smaller than
this minmum value will be set to zero.

Expert Mode

Parameters

Number Symbol Definition and unit
1 IfileDef parameter definition file [-]
2 IfileLog parameter log file [-]

Inputs

TYPE 460 : AIR-SOIL HEAT EXCHANGER

Number Symbol Definition and unit

1 XairTot airflow, total over all pipe [m3/ht or kg/f]

2 Tairln inlet temperature [C

3 Hrelln inlet relative humidity [pcen

4 PrAir inlet air pressure [P

5 MwatInfTot water infiltration, total over all pipes [kg/h]

6 Xsurf(1) surface input, first [C or W]

5+Nsurf Xsurf(Nsurf) surface input, last [C or W]

Outputs

Number Symbol Definition and unit

1 TairOut outlet temperature [(

2 HrelOut outlet relative humidity [pcnt]

3 PsbiTot sensible energy rate lost by airflow, total ovémpgbes
[W]

4 PlatTot latent energy rate lost by airflow, total overes
W]

5 Xbord(1) surface output, first [C or W]

4+Nsurf Xbord(Nsurf) surface output, last [C or W]

4+Nsurf+1 Xopt(1) optional output, first

4+Nsurf Xopt(Nopt) optional output, last

+Nopt

Parameter definition file

Each data set hereafter is written on one linegption forTypSoilarrays, which takdlK or
NK+2 lines). Data within one dataset is separatecoloymas or blanks. Comments can be
entered by using an asterix (*) in first column.

Symbol Definition and unit
TypAir airflow type [-]
Dt, XairTotMin, TtubErr internal timestep [h], minimum airflow [m3/h or kg/

tolerance on tube temperature [C]
Nmod,Nsec,Nsoil,Nsurf,NI,NJ, number of : modules, cross-sections, surfaces,snode

NK along »-axis, nodes along-axis, nodes alonc-axis |-]

DX (1:NI) node width along -axis [m]

DY (1:NJ) node width along -axis [m]

DZ (1:NK) node width along -axis [m]

TypSec(1:N type of used cro-sections along-axis |-]

TypSoil (1:NJ,1:NK) type of surfaces on frontal cross-section [-]

TypSoil (0:NJ+1,0:NK+1) type of soils/surfaces for typical cross-sectioy-in
plane [-]

TypSoil (1:NJ,1:NK) type of surfaces on rear cross-section [-]

TypSurf, Rsurf surface type [-] and resistance [K.m2/W]

Posinf position of water infiltration [-]

TYPE 460 : AIR-SOIL HEAT EXCHANGER

Kair0, Kairl air-tube exchange coefficients
[W/K.m2] and [W/K.m2 per mj]

LamSaoil, CvSo soil conductivity [W/K.m] and capacity [kJ/m3]

LamTub, CvTu tube conductivity [W/K.m] and capacity [kJ/m3]

ThTub, CtubCor, CtubFric tube thickness [m], circumference correction fa¢tpr
and friction coefficient-]

TypWatFlow (-1:1) type of water flow [-]

Vwat (-1:1) velocity of water flow [m/h]

NiniSoil, Niniwat number of initial conditions (soil temperatures and
waterthicknesses) [-]

TiniSoil, PosIniSoil (1:6) initial temperature [C] and corresponding node
position [-]

ThiniWat, PosIniWat (1:6) initial waterthickness [m] and corresponding node
position]

Nopt number of optional outpu

TypOpt, PosOpt (1:6) type of optional output [-] and corresponding node
position]

Parameter log file
After formatted copy of the parameter definitiole fifollowing data is written at the end of the
file.

Symbol Definition and unit

Ntub number of pipes (per module) [-]

Iflowlni node index of tube start along x-axis [-]

IflowENnd node index of tube end alon~axis |-]

PosTub(1:2 node incex of tube position along- and :-axis |-]

LX arraylength, x axi [m]

LY array width, y axi (total over modules) [n

LZ depth of hypocaust [r

Ltub length ofpipes [m]

SairTot pipe cross-section area, total over all pipes and
modules [m2]

StubTot pube surface, total over all pipes and modules [m2]

DtubTot hydraulic diameter of equivalent unique pipe [m]

SinfTot water infiltration surface, total over all modul@s2]

Sbord border area, total over all modules [m2]

Kbord equivalent bordr conduction coefficient [W/km2]

NnodeOg number of nodes concerned by otional oL

Dt Internal timestejused in simulation [h

XairToiMin Minimum airflow used in simulation [m3/l or kg/t]

Explanatory notes for optional outputs

For each one of theffiypOptspecifies the type of optional output and takesalae from one of
the three following tablesPosOptfinally defines the rectangular node cluster fdmiah the
optional output is to be considered.

Optional outputs for tube nodes :
[Type Symbol Definition and unit

TYPE 460 : AIR-SOIL HEAT EXCHANGER

1 Tair Air temperatureC] *

2 Hrel Air relative humidity [pcent] *

3 Habs Air absolute humidity [Pa] *

4 Hrat Air humidity ratio [kg vapor/kg air] *

5 Mwat Free water in node [m3] *

6 MwatLat/Dt Water condensing (>0) or evaporating (<0) [kg/h]

7 Mwatin/Dt ~ Water flowing into node [kg/h] *

8 MwatInf/Dt Water infiltrating into node [kg/h])

9 MwatOut/D* Water flowing out of node [kg] *x

1C Tsoil Tube temperatureC] **

11 Psb Sensible errgy rate from air to tubew] *x

12 Plat Latent enrgy rate from air to tube [Y] **

13 Pwai Enercy rate lost by free water [] **

14 Pfric Energy rite from frictional losses [\] **

15 Psoil(0) Energy rate diffused from all 6 neighbor nodes [W] **

16 Psoil(1) Energy rate diffused from previous neighbor node **
along x-axis (from surface if border node) [W]

17 Psoil(2) Energy rate diffused from next neighbor node abong™*
axis (from surface if border node) [W]

18 Psoil(3) Energy rate diffused from previous neighbor node **
alongy-axis (rom surface if border node) []

19 Psoil(4) Energy rate diffused from next neighbor node alpng™*
axis (fom surface if border node) ||

20 Psoil(5) Energy rate diffused from previous neighbor node **
along axis (from surface if border noc [W]

21 Psoil(6) Energy rate diffused from next neighbor node albng™
axis (from surface if border node) [W]

22 Pint Energy rate of internal gains [W] ’

23 Xair Air flowrate [m3/h or kg/h] *

24 Vair Air velocity [m/s] *

* averaged over node cluster
** integrated over node cluster and multiplied hymber of modules

Optional outputs for soil nodes :

Type
101
10z
103
104
105
106
107

108

Symbol
Tsoil

Psoil(0)
Psoil(1)
Psoil(2)
Psoil(3)
Psoil(4)
Psoil(5)

Psoil(6)

Definition and unit

Soil temperature [C] *
Energy rate diffused from| 6 neighbor nodes [**
Energy rate diffused from previous neighbor node **
along »axis (frcm surface if border node) []

Energy rate diffused from next neighbor node abong™
axis (flom surface if border node) []

Energy rate diffused from previous neighbor node **
along y-axis (from surface if border node) [W]
Energy rate diffused from next neighbor node alpng*
axis (from surface if border node) [W]

Energy rate diffused from previous neighbor node **
along z-axis (from surface if border node) [W]
Energy rate diffused from next neighbor node albng*
axis (from surface if border node) [W]

**

TYPE 460 : AIR-SOIL HEAT EXCHANGER

[10¢ Pint Energy rate of internal gains || **

* averaged over node cluster
** integrated over node cluster and multiplied mymber of modules

Miscellaneous data for optional output :

Type Symbol Definition and unit
201 PsurfTot Total inflowing energy rate through surfaces (oakr
modules) [kJ/hr]

202 PwatTot Total energy loss of free water (over all modules)
[kd/hr]

203 PfricTot Total frictional losses (over all modules) [kJ/hr]

204 PintTot Total tube and soil capacitive gains (over all medu
[kJ/hr]

