

Anhang zum Schlussbericht 2013

E-Scooter – Sozial- und naturwissenschaftliche Beiträge zur Förderung leichter Elektrofahrzeuge in der Schweiz

Inhaltsverzeichnis

Anha	ng zu Kapitel 1.3	4
Anha	ng zu Kapitel 3.4	9
	Leitfaden zur Befragung der E-Scooter-Händler	9
	Leitfaden zur Befragung der Motorrad-Händler	. 14
Anha	ng zu Kapitel 4.1: e-Motoren Einmaleins	. 21
Anha	ng zu Kapitel 4.2: Merkblatt für Bauherren	23
Anha	ng zu Kapitel 6.1.1	25
	Beispiel: Rollenprüfstand Messbericht für Quantya Evo1	25
	energieEtikette	30
	NewRide-Leistungsausweis	. 32
Anha	ng zu Kapitel 6.1.2: Formelsammlung	36
Anha	ng zu Kapitel 6.2.2	52
	Zusammensetzung eines Velos (ohne Trethilfe)	52
	Zusammensetzung eines E-Velos	53
	Zusammensetzung eines E-Scooters	54
Anha	ng zu Kapitel 6.2.3	. 55
	Zusammensetzung eines E-Velo Motors <500W	55
	Zusammensetzung eines E-Velo Motors <1000W	56
	Zusammensetzung eines E-Scooter Motors (< 80km/h und >100)	57
	Zusammensetzung eines E-PW Motors (>50kW)	58
	Zusammensetzung von Neodym-Eisen-Bor Permanentmagneten	59
Anha	ng zu Kapitel 6.2.4	60
	Zusammensetzung eines Controllers für E-Velos	60
	Zusammensetzung eines E-Scooter Wechselrichters (<10kW)	61
	Zusammensetzung eines E-Scooter Wechselrichters (<30kW)	62
	Zusammensetzung eines E-PW Wechselrichters (<100kW)	63
Anha	ng zu Kapitel 6.2.5	64
	Zusammensetzung eines E-Velo Ladegeräts	64
	Zusammensetzung eines E-Scooter Ladegeräts	65
	Zusammensetzung eines F-PW Ladegeräts	66

Anha	ng zu Kapitel 6.3.1: E-Scooter Umweltauswirkungen im Vergleich	67
Anha	ng zu Kapitel 6.4: Untersuchungen an Stromkostenmessgeräten	70
Anha	ng zu Kapitel 7.2: Fragebogen zur Nutzerbefragungng	72
Anha	ng zu Kapitel 7.3: Interview-Leitfaden zur Zweitbefragung	79
Anha	ng zu Kapiteln 7.4.1 bis 7.4.3	85
	Arbeitsblatt "Übersicht"	85
	Arbeitsblatt "Energie"	87
	Arbeitsblatt "Ereignisse"	88
Anha	ng zu Kapitel 7.4.4	89
	ES-Tagebücher Auswertung	89
	E-Scooter Ladungen	92
	Histogram von E-Scooter Fahrten	aз

Anhang zu Kapitel 1.3

Führerausweiskategorien

	М	G	F	A1	В1	A_li mit	Α	BE	В	C1 E	C1	CE	С	D1 E	D1	DE	D	
M																		Motorfahrräder
G	Χ																	Landw. Motorfahrzeuge ≤30km/h
F	х	Х																Motorfahrzeuge, ausgenommen Motorräder ≤45km/h
A1	Χ	Χ	X															Motorräder ≤11kW (≤125cc)
B1	Χ	Χ	X															Klein- und dreirädrige Motorfahrzeuge ≤3500kg
A_limit	Χ	Χ	X	Χ	Χ													Motorräder ≤25kW
Α	Χ	Χ	Χ	Х	Χ	Χ												Motorräder >25kW
BE										(x)				(x)		(x)		B und Anhänger
В	Χ	Χ	Χ		Χ													Motorwagen und dreirädrige Motorfahrzeuge
C1E								Χ						(x)		(x)		C1 und Anhänger
C1	Х	Χ	Χ		Χ				Χ						(x)			Motorwagen 3500-7500kg
CE								Χ		Х				(x)		(x)		C und Anhänger
С	Χ	Χ	Χ		Χ				Χ		Χ				(x)			Motorwagen >3500kg
D1E								Χ		Χ						(x)		D1 und Anhänger
D1	х	х	Х		Х				Х		Х			х				Motorwagen zum Personentransport (8-16 Plätze)
DE	Х	Χ	Х					Χ		Х			,	Х				D und Anhänger
D	Χ	Χ	Χ		Χ				Χ		Χ				Х			Motorwagen zum Personentransport (>8 Plätze)

Tabelle 1 Diese Ausweiskategorien dürfen auch die in ihrer Zeile angekreuzten Spalten fahren; (x) sofern im Besitz der Ausweiskategorie des Zugfahrzeugs

Die 3. EU-Führerscheinrichtlinie, gültig ab 19. Januar 2013, steht für einheitliche Standards und mehr Verkehrssicherheit in den EU Mitgliedstaaten. Ob die Schweiz die neuen Regelungen übernimmt, da nicht Teil der bilateralen Verträge, ist noch offen. Dies wird erst zum Zeitpunkt des Bundesratsbeschlusses (geplant 2014) definitiv feststehen.

Motorradführerschein A1

Die bisherige Definition – Krafträder mit einem Hubraum von bis zu 125 cm³ und einer Motorleistung von nicht mehr als 11 kW (15 PS) – wird ergänzt: Künftig muss auch ein Verhältnis von Leistung/Gewicht von höchstes 0,1 kW/kg (0,14 PS) eingehalten werden. Die bisherige 80 km/h- Begrenzung für 16- und 17-Jährige entfällt.

Motorradführerschein A2

Die leistungsbeschränkte Motorradklasse wird als Klasse A2 eine eigenständige Fahrberechtigung, die sich nicht mehr automatisch nach 2 Jahren zur unbeschränkten Klasse A erweitert. A2 wird künftig definiert mit einer Motorleistung von bis zu 35 kW (48 PS) und einem Verhältnis von Leistung/Gewicht von nicht mehr als 0,2 kW/kg. Inhaber der bisherigen Klasse A (beschränkt) dürfen seit 19.01.2013 Motorräder der neuen Klasse A2 und – nach Ablauf von zwei Jahren und ohne nochmalige Prüfung – Motorräder der unbeschränkten Klasse A fahren.

EU weite Einführung der neuen Motorradklasse AM

Die Klasse AM wird als neue Klasse für Kleinkrafträder eingeführt (Änderung mit 3. EU-Führerscheinrichtlinie, gültig ab 19. Januar 2013). Das Mindestalter beträgt 16 Jahre und kann auf 14 Jahre reduziert werden. Sie umfasst zwei- und dreirädrige Kleinkrafträder sowie vierrädrige Leichtkraftfahrzeuge (Quads), jeweils mit einer bauartbedingten Höchstgeschwindigkeit von bis zu 45 km/h

und 50 ccm Hubraum bzw. 4 kW Leistung. Diese Fahrzeuge fielen bisher in die Fahrerlaubnisklassen M und S.

Fahrzeugklassen und Führerausweiskategorien

Fahrzeug Ökoinventar	Fahrzeug Klasse				Führerausweis Kategorie					v_max	P_max	Gesamt- gewicht	Kategorien- einteilungs- gewicht (5)	Nutz- last (6)
	EU		СН	EU <u>CH</u>										
	Kat.	Bezeichnung	Bezeichnung	(D)	Ausweis	inkl.	Kategorie	Bezeichnung	[J]	[km/h]	[kW]	[kg]	[kg]	[kg]
Velo		Fahrräder	Fahrräder				keine	Fahrräder						
eBike25		Mofa 25km/h	Leicht-Motorfahrräder "Pedelec, eBike" bis 20km/h;mit Treten 25km/h	Mofa 25km/h	(M für 14j)		M für 14 bis 16, ab 16 keine	Leicht-Motorfahrräder	14-16	20(25)	0,5	200		
eBike45			Motorfahrräder "Töffli" bis 30km/h "eTöffli" mit Treten bis 45km/h	M Roller 45km/h	M	-	М	Motorfahrräder	>14	30(45)	1			
eScooter45		Zweirädriges Klein- kraftrad bis 45 km/h (<50 cm³; <4 kW)	Kleinmotorräder		A1	F, G, M	A1	Kleinmotorräder	>16	45	4	(1)	(1)	
	L2e		Dreirädrige Kleinmotorräder (7)				A1	Dreirädrige Kleinmotorräder (7)	>16	45	4		270 (4)	300
eScooter80		Zweirädriges Kraftrad >50 cm³ oder >45 km/h	Motorräder	A1 <80km/h			A1, wenn V _H max 50 cm ³	Motorräder ab 16j bis 4kW	>16		4	(1)	(1)	
eScooter100				A1			A1, wenn V _H max 125 cm ³	Motorräder ab 18j bis 11kW	>18		11			
				A beschr.	A beschränkt		A beschränkt (max. 0,16 kW/kg)	Motorräder ab 18j bis 25kW	>18		25			
				A	A	A_besc hr, A1, B1, F, G, M	A	Motorräder ab 20j über 25kW	>20-25					
	L4e	Zweirädriges Kraftrad mit Beiwagen; >50 cm³ oder >45 km/h	Motorräder mit Seiten- wagen				A	Motorräder mit Seiten- wagen	>20-25					

Fahrzeug Ökoinventar	Fahrzeug Klasse				Führerausweis Kategorie						P_max	Gesamt- gewicht	Kategorien- einteilungs- gewicht (5)	Nutz- last (6)
		EU	СН	EU CH										
	Kat.	Bezeichnung	Bezeichnung	(D)	Ausweis	inkl.	Kategorie	Bezeichnung	[J]	[km/h]	[kW]	[kg]	[kg]	[kg]
	L5e	Dreirädriges Fahr- zeug mit symmet- risch angeordneten Rädern; >50 cm³ oder >45 km/h	3-rädriges Motorfahr- zeug				A (3-rädr. mit m _{leer} max B1)	3-rädriges Motorfahr- zeug	>20-25				1000	300 oder 1500 (2)
		Vierrädriges Leicht- kraftfahrzeug; bis 350 kg (ohne Batterien); max.45 km/h; <50 cm³ oder 4 kW	Leichtmotorfahrzeuge mit 4 Rädern	S Quad 45km/h	F	G, M	F Fz. bis 45km/h	Klein- und 3-rädrige Motorfahrzeuge	>16	45	4		350	200
eQuad		Vierrädriges Kraft- fahrzeug; bis 400 kg (bis 550 kg für Güter) ohne Batterien; max.Nutzleistung 15 kW	Kleinmotorfahrzeuge mit 4 Rädern		B1	F, G, M	B1	Klein- und 3-rädrige Motorfahrzeuge	>18		15		400 oder 550 (2)	200 oder 1000 (2)
Auto BEV. PHEV, ICE	M1	Fahrzeuge zur Personen-beförderung; max.8 Plätze (ohne Fahrer) (PKW und Wohnmobile).	Leichte Motorwagen	В	В	B1, F, G, M	В	Leichte Motorwagen	>18			3500		
			Kleinbusse (bis 16 Plätze ohne Fahrer)	D1	D1	B, B1, C1, F, G, M	D1 (D1E mit Anhänger) 8 bis 16 Plätze	Motorwagen zum Perso- nen-transport bis 16 Plätze	>21			5000 (EG)		
Bus Diesel, Trolley	M3		Busse: Schwere Motorwagen	D	D	C1, D1,	D (DE mit Anhä- nger) > 8 Plätze	Motorwagen zum Perso- nen-transport über 8 Plätze	>21	100		(3)		
	N1	Fahrzeuge zur Gü- terbeförderung mit einer zulässigen Gesamtmasse bis zu			В	B1, F, G, M	В	Leichte Motorwagen	>18			3500		

Fahrzeug Ökoinventar	Fahrzeug Klasse			Führerausweis Kategorie					Alter	v_max	P_max	Gesamt- gewicht	Kategorien- einteilungs- gewicht (5)	Nutz- last (6)
		EU	СН	EU			<u>CH</u>							
	Kat.	Bezeichnung	Bezeichnung	(D)	Ausweis	inkl.	Kategorie	Bezeichnung	[J]	[km/h]	[kW]	[kg]	[kg]	[kg]
		3,5 Tonnen.												
	12t)	Fahrzeuge zur Gü- terbeförderung mit einer zulässigen Gesamtmasse von mehr als 3,5 Tonnen bis zu 12 Tonnen.	Motorwagen 3.5 - 7.5 t	C1		B, B1, D1, F, G, M	C1 (C1E mit Anhänger)	Motorwagen 3.5 - 7.5 t	>18			7500		
	(>13t)	Fahrzeuge zur Gü- terbeförderung mit einer zulässigen Gesamtmasse von mehr als 12 Tonnen.	Motorwagen >3.5 t	С	C	B, B1, C1, D1, F, G, M	C (CE mit Anhänger)	Motorwagen >3.5 t	>18					
	T1	Zugmaschinen bis 40 km/h, Spurweite min. 1'150 mm, Leermasse >600 kg, Bodenfreiheit <1'000 mm.	Landw. Motorfahrzeu- ge bis 30 km/h	L 32km/h	G	М	G	Landw. Motorfahrzeuge bis 30 km/h	>14	30				
	T2	Zugmaschinen bis 60 km/h; Spurweite min.1'150 mm, Leermasse >600 kg, Bodenfreiheit <600 mm	Matarfahrzauga augaar	T 60km/h	F	G, M	F Fz. bis 45km/h	Motorfahrzeuge ausser Motorräder bis 45 km/h	>16-18	45				

- (1) nicht beschränkt.
- (2) Erster Wert für Personentransport, zweiter Wert für Sachentransport. Gewicht ohne Treibstoff oder Batterie,
- (3) je nach Anzahl Achsen 18, 25, 26, 32, 40, jedoch maximal 40 t.
- (4) Artikel 152 Absatz 1 VTS beachten (Rückwärtsfahreinrichtung).
- (5) siehe Art. 136 Abs. 1 VTS (Leergewicht 75 kg Treibstoff evtl. Zusatzausrüstung). E-Antrieb: Akkugewicht wird nicht gezählt.
- (6) E-Antrieb: Akkugewicht wird nicht gezählt (Art.7 Abs.7 VTS).
- (7) Siehe auch Weisungen des ASTRA vom 20.6.2011: http://www.astra2.admin.ch/media/pdfpub/2011-06-20_2553_d.pdf

Anhang zu Kapitel 3.4

Leitfaden zur Befragung der E-Scooter-Händler

Leitfaden: Interview & Beobachtung

Wir sind vom Institut der Allgemeinen Ökologie der Universität Bern und führen eine Befragung zum Verkauf der Elektroscooter (ES) aus Händlersicht durch. Aus diesem Grund interessiert uns ihre Wissen und Ihre Erfahrungen zum Thema und wir haben uns dazu einige Fragen überlegt. Zu Beginn werden wir Ihnen ein paar allgemeine Fragen stellen und dann auf das Verkaufsgespräch, die Verkaufsförderung und weiterführende Fragen eingehen. Das Interview wird insgesamt etwa 45min dauern.

A) Allgemeine Daten

1	Name des Geschäfts			
2	Name des Besitzers			
3	Ort/Einzugsgebiet			
4	Verkaufsfläche			
5	Anzahl Mitarbeiter+ Beschäftigungsgrad (in %-Stellenanteil)			
6	Wie lange führen Sie bereits ES im Sortiment?			
7	Welche ES-Modelle verkaufen sie?			
8	Wie viele ES haben Sie bis jetzt pro Jahr verkauft?	2005: 2008:	2006: 2009:	2007: 2010:

B) Werbung

Beobachtungen zu ES im Geschäft und deren Präsentation im Internet.

1	Standort der ES im Laden	□ gut sichtbar (Schaufenster) □ mittelmässig (im Verkaufsraum) □ versteckt (in Garage)
2	Wie gut wird visuell auf ES aufmerksam gemacht?	□ Sehr gut (nicht übersehbar) □ gut (Plakate usw. weisen darauf hin, dass ES im Sortiment sind) □ mässig (Mit Anstrengung erkennt man, dass ES im Sortiment vorhanden sind) □ schlecht (Fast nicht ersichtlich, dass ES im Sortiment sind) □ gar nicht (Nichts weist darauf hin, das ES im Sortiment sind)
3	Sind ES von anderen Modellen zu unterscheiden?	□ ja □ nein
3.1	Wenn ja, wie?	□ Durch Zettel mit Produkteigenschaften □ Durch Werbeplakate □ Durch Abgrenzung □

4	Wie gut ist ES Werbematerial (Plakat, Broschüren) in den Ausstellungsräumen sichtbar?	□ Sehr gut (nicht übersehbar) □ gut (an einem zentralen Ort platziert) □ mässig (mit etwas suchen findet man es) □ schlecht (ist vorhanden jedoch fast nicht ersichtlich) □ nicht ersichtlich (Kein Werbematerial ersichtlich)
5	Verfügt das Geschäft über einen Internetauftritt?	□ ja □ nein
5.1	Wenn ja, wie gut wird auf ES aufmerksam gemacht?	□ Sehr gut (Auf der ersten Seite wird auf ES aufmerksam gemacht) □ gut (ES sind ersichtlich wenn man nach Produkten sucht) □ mässig (ES sind unter den Produkten aufgelistet, jedoch nicht speziell gekennzeichnet) □ schlecht (per Zufall erfährt man, dass Händler ES im Sortiment hat) □ nicht ersichtlich (Nichts auf der Internetseite weist darauf hin, dass Händler ES im Sortiment hat)

C) Der persönliche VerkaufDas Interview erfolgt nun nach dem theoretischen Ablauf eines persönlichen Verkaufs.

(1) Bestimmung der Kriterien für mögliche Käufer, Vorauswahl

())	stilling der kriterien far mognen	c radici, voiduowaiii
1.1	Welches sind aus Ihrer Sicht potentielle ES-Kunden?	
1.2	Suchen Sie aktiv nach ES-Kunden?	□ ja (weiter zu 1.2.1) □ nein (weiter zu 1.2.2)
1.2.1	Wenn ja, in welcher Form suchen Sie nach ES-Kunden?	(weiter zu 2.1)
1.2.2	Wenn nein, weshalb suchen Sie nicht aktiv nach ES-Kunden?	(weiter zu 3.1)

(2) Vorbereitung des Erstkontakts mit der/dem potentiellen Käuferln

<u>, ,</u>	<u> </u>	
2.1		G- □ ja (weiter zu 2.2.1) □ nein (weiter zu 2.2.2)
	Verkaufsgespräch vor?	
2.1.1	Wenn ja, wie?	
2.1.2	Wenn nein, weshalb nicht?	

(3) Der erste unmittelbare Kontakt mit der/dem potentiellen KäuferIn

3.1	Wie gehen Sie vor, wenn Sie das erste Mal direkt Kontakt mit einem	
	potentiellen Kunden haben?	
3.2	Auf Grund von welchen Kundeneigenschaften, entscheiden Sie sich, dem Kunden einen ES anzubieten?	

	Tu,	
3.3	Was denken Sie, wie viele Kunden entscheiden sich bereits bevor sie mit Ihnen Kontakt haben, was sie kaufen wollen? (Frage bezieht sich nicht nur auf ES Kunden!!)	
3.4	Wie stark versuchen Sie als Händler diese Entscheidung zu Gunsten eines ES zu beeinflussen?	
4) Pr	äsentation und Vorführung	
4.1	Wie gut kennen Sie sich nach eigener Einschätzung auf einer Skala von 1-10 mit ES aus? (technisch)	(1=gar nicht gut - 10=sehr gut)
4.2	Welche Vorteile/Nutzen haben ES aus ihrer Sicht für den Kunden?	
4.3	Welche Nachteile haben ES aus ihrer Sicht für den Kunden?	
4.4	Welche der genannten Vor- und Nachteile von ES erwähnen Sie im Verkaufsgespräch?	
4.5	Welche weiterführenden Informationen geben Sie den Kunden mit? (z.B. Broschüren, Internetadressen, Flyer) Beispiele erst erwähnen, wenn der Interviewpartner die Frage nicht versteht)	
Beoba	achtung	
4.6	Hat es ausgestellte ES?	□ ja □ nein
	Anzahl ES im Geschäft?	
4.6.1	Alizani ES ini Geschait!	
4.6.1		
4.6.2	Welche Modelle/ Marken sind ausgestellt?	1
4.6.2	Welche Modelle/ Marken sind	l □ ja (weiter zu 5.1.1) □ nein (weiter zu 5.1.2)
4.6.2 5) Ei	Welche Modelle/ Marken sind ausgestellt? nwände und Hindernisse ausräumer Wenn Einwände gegen die ES von den Kunden genannt werden, versuchen sie diese zu überwinden?	
4.6.2 5) Ei 5.1	Welche Modelle/ Marken sind ausgestellt? nwände und Hindernisse ausräumer Wenn Einwände gegen die ES von den Kunden genannt werden, versuchen sie diese zu überwinden? Wenn ja, wie?	
4.6.2 5) Ei 5.1 5.1.1	Welche Modelle/ Marken sind ausgestellt? nwände und Hindernisse ausräumer Wenn Einwände gegen die ES von den Kunden genannt werden, versuchen sie diese zu überwinden? Wenn ja, wie? Wenn nein, weshalb nicht?	
4.6.2 5) Ei 5.1 5.1.1	Welche Modelle/ Marken sind ausgestellt? nwände und Hindernisse ausräumer Wenn Einwände gegen die ES von den Kunden genannt werden, versuchen sie diese zu überwinden? Wenn ja, wie?	

6.1.2	Wenn nein, weshalb nicht?	
7) Na	chbetreuung	
7.1	Welche Art der Nachbetreuung bieten Sie einem (potentiellen) ES Kunden an? (z.B. Garantieleistung, Reparatur, Gespräch, Kundenkontakt per Mail)	
7.2	Können alle ihre ES in ihrem Geschäft repariert werden?	□ ja (weiter zu 7.2.1) □ nein (weiter zu 7.2.2) □ je nach Modell
7.2.1	Wie lange dauert eine ES-Reparatur im Durchschnitt und wie hoch sind die Kosten?	
7.2.2	Welche Lösungen bieten Sie an, wenn sie den ES nicht reparieren können?	

D) VerkaufsförderungFragen zu den Mitteln mit denen der Verkauf von ES gefördert werden kann.

1.1	Bieten Sie interessierten Kunden spezielle Rabatte oder Extras an, um einen ES zu verkaufen?	□ ja (weiter zu 1.1) □ nein (weiter zu 1.2)
1.1	Wenn ja, welche?	
1.2	Wenn nein, weshalb nicht?	
2	Welche Arten von ES-Subventionen können sie den Kunden aufzeigen?	
2.1	Wie hoch sind diese Subventionen und von wem werden sie Subventionen vergeben?	
2.2	Geben sie interessierten Kunden Formulare für die Subventionsbezüge ab oder verweisen sie nur auf die Homepage der Geldgeber?	□ Formulare □ Homepage □ anderes
3	Bieten Sie Probefahrten auf ES an?	□ ja (weiter zu 3.1) □ nein (weiter zu E) □ je nach Person und Modell
3.1	Welche Art von Probefahrten auf ES bieten Sie an (eine Fahrt/ mehrere Tage testen) und was kostet dies?	

E) Weiterführende Fragen

1	Wie motiviert sind Sie auf einer Skala von 1-10, ES zu verkaufen?	(1=gar nicht motiviert - 10=sehr motiviert)
1.2	Warum? (Begründung)	
2	Weshalb haben Sie ES im Sortiment?	

3	Welche Erfahrungen bezüglich	
	Kundenrückmeldungen haben Sie mit	
	verkauften ES bereits gemacht?	
4	4 Was braucht es ihrer Meinung nach,	
	damit Sie ihre aktuellen ES-Modelle	
	besser verkaufen können?	

- Gesprächsabschluss:

 Gelegenheit geben, noch was anzumerken ("Möchten Sie noch etwas zum Verkauf von ES sagen, das bisher noch nicht angesprochen worden ist?").

 Sich für das Gespräch bedanken.

 Evtl. fragen, ob der Interviewpartner an den Resultaten unserer Studie interessiert ist, ob er z.B. ein Exemplar der Arbeit zugestellt bekommen möchte.

Leitfaden zur Befragung der Motorrad-Händler

Forschungsprojekt "E-Scooter" IKAÖ Interfakultäre Koordinationsstelle für Allgemeine Ökologie Universität Bern, Schanzeneckstrasse 1, Postfach 8573, 3001 Bern

Fragebogen Nr:	
Ausgefüllt von:	
Datum:	

AP 2: Befragung Motorradhändler in der Deutschschweiz

Instruktionen Interviewer:

- Vorlesen der Aussagen möglichst genau wiedergeben.
- Interview wird in Schweizerdeutsch geführt.
- Adressenliste haben wir vom SFMGV Schweizerischer Fahrrad- und Motorrad-Gewerbe-Verband.
- Ziel ist, mit Chef sprechen zu können!
- Ihre Angaben werden anonym behandelt.
- Auswertungen werden im September veröffentlicht
- Rückfragen, wenn Antwort unrealistisch ist

Begrüssung / Einleitung:

- Guten Tag
- Vorname, Name, Uni Bern
- Ich arbeite für ein Projekt zum Thema "Elektro-Scooters".
- Darf ich Ihnen dazu ein paar Fragen stellen?
- Die Befragung dauert ca. 5 Min.
- Falls die Leute keine Zeit haben, nachfragen, ob und wann man ein anderes Mal telefonieren kann.

UNIVERSITÄT BERN

Sie verkaufen benzinbetriebene Motorräder und Roller. Welche Marken verkaufen Sie? (nicht vorlesen; Mehrfachnennungen möglich)

Adiva
Aprilia (zu Piaggo)
Benelli
BMW
Cagiva
Ducati
EVT
Fada
Gilera (zu Piaggo)
Harley-Davison
Honda
Kawasaki
KTM
Kymco
Laverda
Malaguti
Moto Guzzi
Noton
Peugeot
Pgo
Piaggio
Suzuki
Sym
Vespa
Winking
Yamaha
Quingqi
Scarabeo
Tomos
Weitere:

	Scooter	
2.	Stehen Sie mit Ihrem/ Ihren Importeur/en in einer Markenbindung? (d.h. sind Sie ein Vertragshändler?)	
	□ Ja □ Nein	
3.	Könnten Sie grundsätzlich Elektro-Scooters in Ihr Sortiment aufnehmen und verkaufen?	
	☐ Ja 3.1. Warum führen Sie aber keine Elektro-Scooter?	
	□ Nein 3.2.Aus welchem Grund nicht?	
_		
_		
	3	

4.	Nun möchten wir gerne wissen, wie Sie das Produkt "Elektro-Scooter" einschätzen.
	4.1. Welches sind aus Ihrer Sicht die Vorteile eines E-Scooters?
	4.2. Welches sind aus Ihrer Sicht die Nachteile eines Elektro-Scooters?
	4.3. Was braucht es ihrer Meinung nach, damit Sie Elektro-Scooter in Ihr Sortiment aufnehmen würden?
	4

5.	Würden Sie einen Weiterbildungskurs (Schulung, eintägiger Kurs) für den
	Verkauf von Elektro-Scooters (der nicht von Ihrem Anbieter organisiert wird)
	besuchen?

□ Ja □ Nein

6. Welche Elektro-Scooter-Marken kennen Sie? (nicht vorlesen)

A2B
ELMOTO
E-max
E-spirit
E-Ton
E-Tricks
E-Tropolis
EVT
Global E-Scooter
Greenpony
Hero
lo-Scooter
Kyburz
Logomotion
Oxygen
PGO
Quantya
Sylent Wheels
Tante Paula
vRone
VespaVerde
Vespino
Vectrix
Zero Motorcycles
Weitere:
Keine

7. Über welche von diesen Elektro-Scooter Marken haben Sie gute/fundierte Kenntnisse? (nicht vorlesen)

A2B
ELMOTO
E-max
E-spirit
E-Ton
E-Tricks
E-Tropolis
EVT
Global E-Scooter
Greenpony
Hero
lo-Scooter
Kyburz
Logomotion
Oxygen
PGO
Quantya
Sylent Wheels
Tante Paula
vRone
VespaVerde
Vespino
Vectrix
Zero Motorcycles
Weitere:
Keine

→ ... und noch die letzte Frage:
8. Welche Elektro-Scooter Marken würden Sie heute am ehesten in Ihr Sortiment aufnehmen? (nicht vorlesen)

A2B
ELMOTO
E-max
E-spirit
E-Ton
E-Tricks
E-Tropolis
EVT
Global E-Scooter
Greenpony
Hero
Io-Scooter
Kyburz
Logomotion
Oxygen
PGO
Quantya
Sylent Wheels
Tante Paula
vRone
VespaVerde
Vespino
Vectrix
Zero Motorcycles
Weitere:
Keine
Keine Ahnung
 -

Möchten Sie zum Thema "E-Scooter" noch etwas anfügen?	
	_

Herzlichen Dank für das Gespräch! HH/ Juni2011

Anhang zu Kapitel 4.1: e-Motoren Einmaleins

Elektrische Maschinen funktionieren völlig anders als thermische wie z.B. Verbrennungsmotoren. Die ersten e-Motoren wurden bereits um 1830 entwickelt, aber es brauchte nochmals gut 50 Jahre Entwicklung, bis sie alltagstauglich waren. Nun wurden jedoch rasch alle unterschiedlichen Typen erfunden, welche heute noch in Gebrauch sind.

Alle nutzen sie das gleiche Prinzip, welches jeder aus Erfahrung kennt: zwei Magnete, genauer gesagt ihre Magnetfelder, üben Kräfte aufeinander aus - ziehen sich an oder stossen sich ab; dabei können dies Permanentmagnete (PM) und/oder Elektromagnete (stromdurchflossene Drahtspulen oder Wicklungen, welche einfach umgepolt werden können) sein. Damit lässt sich bei geschickter Anordnung ein kontinuierliches Drehmoment erzeugen! Man braucht dazu lediglich einen Rotor und einen Stator mit Magneten zu bestücken und diese im richtigen Moment umzupolen, damit der Rotor ständig dem Magentfeld des Stators im Kreis herum folgt. Die Energieumwandlung durch diese drehenden Magnetfelder, oder Drehfelder, geschieht dabei im Luftspalt zwischen Rotor und Stator völlig geräuschlos, verlust- und emissionsfrei.

Der wohl bemerkenswerteste Unterschied von elektrischen zu thermischen Maschinen ist, dass sie Energie in beide Richtungen wandeln können: beim Beschleunigen wird aus Strom Drehmoment und beim Entschleunigen wird aus Bremsmoment Strom, völlig symmetrisch ohne jeden Zusatzaufwand - jeder e-Motor ist demnach auch e-Generator d.h. er kann Strom erzeugen. Dass nach einer Passfahrt eine e-Töff Batterie nicht wieder voll ist, liegt daran, dass es das Perpetuum Mobile nicht gibt. Durch die kleine Masse ist der mögliche Rückgewinn an Energie auf der Talfahrt klein, nur enttäuschende ca. 5-10%, der Rest der Energie verpufft in Luftwirbeln, Gummiabrieb und anderen Reibungen - wofür der e-Motor natürlich nichts kann - im Gegenteil er ist sogar erstaunlich effizient: Bestwirkungsgrade von über 90% sind die Regel, daneben sind Verbrennungsmotoren mit ca. 30% (im schweizerischen Töffflottendurchscnitt sogar nur ca. 12%) eher bescheiden.

E-Motoren haben auch eine völlig andere Drehmomentcharakteristik: sie haben das grösste Drehmoment im Stillstand und es bleibt bei Konstantstrom unverändert hoch, unabhängig von der Drehzahl - ein mechanisches Getriebe wird damit überflüssig! Nicht nur getriebelos - der e-Motor hat auch nur ein einziges bewegtes Teil, den Rotor (Läufer). Und nicht zuletzt: heutige e-Maschinen z.B. in der Form von Modellflugmotoren, erreichen bereits Leistungsdichten von >3.5kW /kg (zum Vergleich KTM 450SX ca. 1.3kW/kg)

Es gibt viele e-Motoren Typen, die sich v.a durch ihre Bauformen unterscheiden. Meist sind Rotor und Stator zylindrisch ineinandergeschoben angeordnet - ist der Rotor innen, spricht man von Innenläufer sonst von Aussenläufer - sind Rotor und Stator scheibenförmig nebeneinander auf der Welle angebracht, spricht man von Scheibenläufern. Ist entweder der Rotor oder Stator mit Permanentmagneten bestückt, spricht man von Permanentmagnet- oder PM-Motor. Geschieht die Stromumkehr der Spulen, auch Kommutierung genannt, mechanisch über Schleifkontakte und Bürsten, entsteht Verschleiss und Wartungsbedarf, weshalb man heute lieber elektronisch kommutiert - man spricht dann von bürstenlosen e-Motoren. Anstatt einen Gleichstrom durch Umschalten umzupolen, kann man auch Wechselstrom verwenden. Dafür braucht es aber mehrere Phasen, d.h. auf dem Stator nachfolgende Wicklungen werden von getrennten und zeitlich verschobenen Wechselströmen durchflossen. Normalerweise verwendet man 3 Phasen, um damit ein Drehfeld zu erzeugen. Solche Maschinen nennt man im Unterschied zu Gleichstrom (DC)- eben Wechselstrom (AC) -motoren. Herr Tesla erfand vor bald 130Jahren eine weitere geniale Variante: mit einer geschickten Konstruktion kann der Rotor dem Statordrehfeld ganz ohne Permanentmagnete, Bürsten oder elektronische Kommutierung folgen; dies jedoch immer mit etwas Schlupf, ähnlich einer schleifenden Kupplung. Eine solche Maschine wird deswegen Asynchronmotor genannt.

Nebst dem e-Motor braucht es offensichtlich den richtigen Umrichter, welcher z.B. den Batteriegleichstrom in den benötigten Drehstrom umwandelt (dies ist im Regler Einmaleins zusammengefasst)

Ein Vergleich üblicher Motoren:

- DC Bürstenmotor: Rotor und Stator gewickelt > billig, wegen der Bürsten wartungsbedürftig und kurzlebig, leistungsdicht, einfacher Spannungswandler erforderlich (sog. PWM Chopper)
- PMDC Bürstenmotor: nur Rotor ist gewickelt > teurer wegen PM, kurzlebig, leistungsdichter, leichter als DC, einfacher Spannungswandler (PWM Chopper)
- PM Synchronmotor (wird manchmal auch BLDC ('BrushLess DC') genannt): umgekehrt gebaut wie PMDC d.h. nur Stator gewickelt, langlebig, leistungsdichter da leichter als PMDC, aufwändiger Frequenzumrichter nötig > teuerer als PWM Chopper
- Asynchronmotor oder Induktionsmotor: billiger da weder Rotorwicklung noch PM noch Bürsten nötig sind, langlebig, leistungsstark, schwer, aufwändiger Frequenzumrichter

Die heute leistungsdichtesten Motoren sind PM Synchronmotoren, um das Drehmoment zu erhöhen legt man sie als Aussen- oder Scheibenläufer aus. z.Z. verwenden aber die meisten erfolgreichen e-Töff Marken Lynch Motoren (nach dem Erfinder Frederic Lynch). Das sind PMDC Bürstenscheibenläufermotoren. Man würde lieber auf die Bürsten verzichten, aber z.Z. sind die nötigen Umrichter für die hohen Ströme (mit 400-1000A gewaltig im Vergleich zu den 10-16A in einem Haushalt) noch nicht billig erhältlich.

Anhang zu Kapitel 4.2: Merkblatt für Bauherren

Merkblatt

zur Installation von Steckdosen zum Nachladen von Elektro-Zweirädern

Dieses Merkblatt richtet sich an Schweizer Bauherren von Parkierungsanlagen für Zweiräder und an Liegenschaftsverwaltungen. Sie können mit geringem Aufwand einen wirksamen Beitrag zur Markteinführung von E-Bikes und E-Scooters leisten.

Elektro-Zweiräder sind im Vergleich zu Fahrzeugen mit einem Verbrennungsmotor sehr sparsam im Verbrauch, leise und sie verursachen keine Schadstoffemissionen im Betrieb. Die Nutzerinnen und Nutzer sind allerdings oft auf eine separate Ladeinfrastruktur angewiesen, weil bei einzelnen E-Bikes und bei den meisten E-Scooters die Batterien zum Nachladen nicht vom Fahrzeug getrennt werden können.

Ein naheliegender Ansatz ist die Installation von Steckdosen beim Neu- oder Umbau von Zweirad-Abstellplätzen. Die technischen Anforderungen sind gering:

- Die Schweizer Standardsteckdosen T13 (230 V, 10 A) reichen für die Standard-Ladegeräte der auf dem Schweizer Markt angebotenen E-Bikes und E-Scooters.
- Bei Anlagen im Freien und bei erhöhter mechanischer Gefährdung (Garagen, Abstellräume etc.) ist eine Steckdose mit Schutzklappe (Schutzart mindestens IP X4) zu verwenden:

Steckdose Typ T13 mit Klappdeckel

 Eine eigene Absicherung der Steckdose ist empfehlenswert, jedoch nicht unbedingt erforderlich, hingegen eine Fehlerstrom-Schutzeinrichtung (FI).

Falls die Steckdose in der Nähe von vorhandenen oder vorgesehenen Leitungen platziert werden kann, entstehen geringe Zusatzkosten für die Installation einer zusätzlichen Steckdose.

Der Strombezug pro Ladung beträgt je nach Fahrzeug 1 bis 4 kWh. Damit liegen die Stromkosten für eine Ladung je nach Stromtarif zwischen 10 Rappen und 1 Franken. Für Anlagen ohne öffentlichen Zutritt (Tiefgaragen von Wohnhäusern, abgeschlossenen Firmenarealen) wird eine Pauschalverrechnung in der Grössenordnung von 50 Franken pro Fahrzeug und Jahr empfohlen. Dies entspricht einer Jahresfahrleistung von 5'000 km, einem durchschnittlichen Verbrauch von 4 kWh/100 km und einem Stromtarif von 25 Rappen. Für E-Bikes (mit einem tieferen Verbrauch) reicht eine Pauschale von 20 Franken. Bei öffentlich zugänglichen Anlagen kann sich bei kostenloser Abgabe des Stroms ein Werbeeffekt z.B. für Firmen ergeben. Für einen umweltfreundlichen Betrieb der Elektrozweiräder sollten diese mit Ökostrom betankt werden. Weitere Informationen erhalten Sie bei Ihrem Energieversorger.

16. 2. 2011 / US www.newride.ch; info@newride.ch

Aide-mémoire

pour l'installation de prises de courant destinées à la recharge de deux-roues électriques

Cet aide-mémoire s'adresse aux responsables de l'aménagement d'infrastructures de stationnement pour deux-roues et aux régies immobilières, lesquels peuvent contribuer efficacement et sans grand investissement à l'introduction sur le marché des vélos et scooters électriques.

Comparés aux véhicules équipés d'un moteur à explosion, les deux-roues électriques consomment peu, sont silencieux et n'engendrent aucune émission polluante lors de leur utilisation. Leurs utilisateurs sont cependant souvent dépendants d'une infrastructure de recharge séparée, car les batteries de certains vélos électriques et de la plupart des scooters électriques ne peuvent pas être retirées du véhicule pour être rechargées.

Une solution consiste à installer des prises de courant lors de la construction ou la transformation de places de stationnement pour deux-roues. Les exigences techniques sont minimes :

- Les prises de courant suisses standard T13 (230V, 10A) suffisent pour recharger la plupart des vélos et scooters électriques vendus sur le marché suisse.
- Lors d'une installation en plein air ou dans des lieux présentant des risques mécaniques importants (garages, espaces de stockage, etc.), il convient de fournir des prises avec un couvercle de protection (indice de protection IP X4 au minimum):

Prise de type T13 avec couvercle rabattable

 Il est recommandé d'installer un fusible pour chaque prise même si ce n'est pas exigé, contrairement à un interrupteur automatique à courant différentiel résiduel (DI), qui est obligatoire.

Dans le cas où les prises peuvent être placées à proximité de lignes électriques existantes ou à venir, une centaine de francs supplémentaires suffit à leur installation.

L'utilisation de courant pour chaque installation est de 1 à 4 kWh par véhicule. Les coûts pour une recharge oscillent donc entre 10 centimes et 1 franc, selon les tarifs de l'électricité. Pour les installations sans accès public (garages souterrains d'immeubles, surfaces fermées d'entreprises), il est conseillé de facturer un forfait de l'ordre de 50 francs par an et par véhicule. Cela équivaut à 5'000 km parcourus annuellement, une consommation moyenne de 4 kWh/100 km et un tarif de 25 centimes par kWh. Pour les vélos électriques (dont la consommation est plus faible), un forfait de 20 francs suffit. Lorsque les infrastructures sont en libre accès, la gratuité du courant peut avoir un effet publicitaire, p. ex. pour faire connaître l'entreprise. Pour permettre le fonctionnement écologique des deux-roues électriques, celles-ci doivent être approvisionnées en courant vert. De plus amples informations sont disponibles auprès de votre fournisseur d'énergie.

16. 2. 2011 / US www.newride.ch; info@newride.ch

www.newnde.cn, info@newnde.cr

Anhang zu Kapitel 6.1.1

Beispiel: Rollenprüfstand Messbericht für Quantya Evo1

Untersuchung zur Bestimmung des energetischen Verbrauchs

Quantya Evo1

Research Report Nr. 20091217a

St. Gallen, 17. December 2008

EMPA, Abteilung "Technologie & Gesellschaft"

Author: Armin Fleischer

Project Leader Rolf Widmer
Project Manager Rolf Widmer
Data Interpretation Rolf Widmer

Marcel Gauch

Test Bench Measurements Peter Schlienger

Jan Stilli

Hintergrund

Ziel der Untersuchung war festzustellen, ob der standardisierte Rollenprüfstand für die Bestimmung des energetischen Verbrauchs und der Reichweite von E-Scootern geeignet ist. Die gefahrenen Testzyklen NEFZ (Neuer Europäischer Fahrzeugzyklus) und WMTC (World Motorbike Testing Cycle) sind Standartzyklen. Ensprechend den Spezifikationen der Quantya muss jeweils nur die erste Sektion des NEFZ bzw. Klasse 1 und Sektion 1 des WMTC gefahren werden (siehe "Testzyklen")

Testumfang

Mit der Quantya Evo1 wurden insgesamt fünf Zyklen auf dem Rollenprüfstand gefahren, ohne dazwischen die Batterie aufzuladen:

- · zwei mit dem Testzyklus NEFZ und
- drei mit dem Testzyklus WMTC.

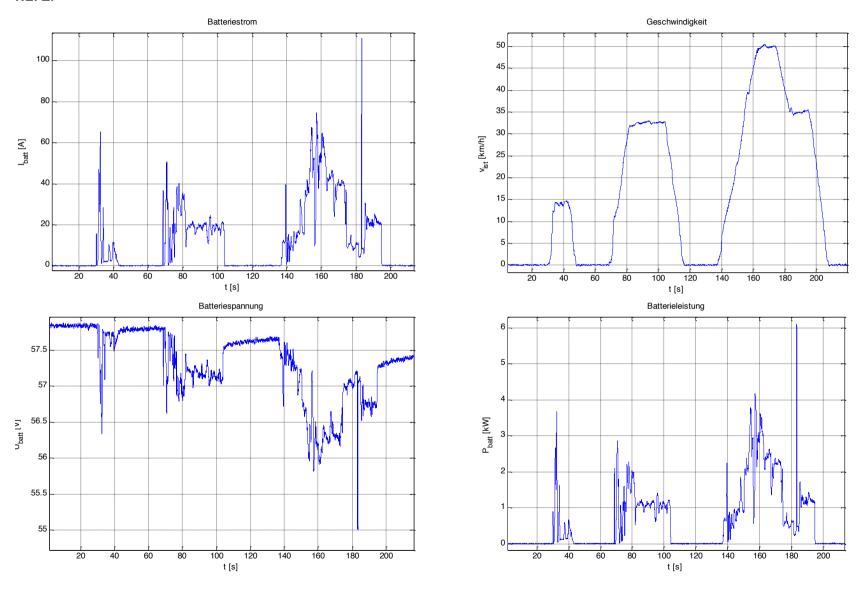
Gemessen wurden die Batteriespannung, der Batteriestrom, die Geschwindigkeit der Rolle sowie die Kraft an der Rolle mit 500 (NEFZ) bzw. 1000 (WMTC) Messungen pro Sekunde.

Resultate

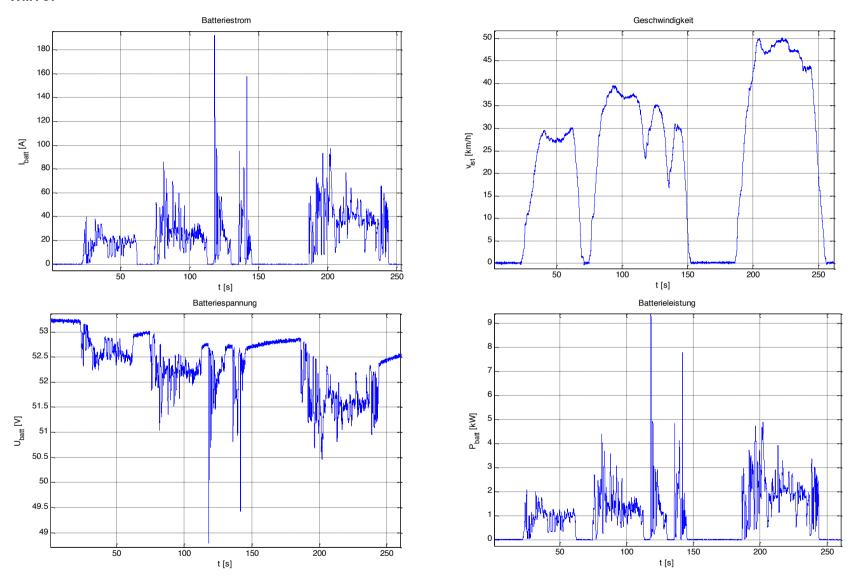
Der Energieverbrauch, der zurückgelegte Weg und der daraus folgende spezifische Energieverbrauch sind für die gefahrenen Zyklen in der folgenden Tabelle zusammengefasst.

Zyklus	Energieverbrauch [Wh]				r Weg	Spez. Energieverbrauch [Wh/km]			
	1	2	3	1	2	3	1	2	3
NEFZ	222.2	219.9	-	6.023	6.021	-	37.16	36.79	-
WMTC	143.4	143.4	140	3.868	3.890	3.884	37.08	36.86	36.05

Der Energieverbrauch wurde aus der Batterieleistung berechnet (Integration des Produktes von Spannung und Strom über die Fahrzeit). Der zurückgelegte Weg durch die Integration der Rollenumfangsgeschwindigkeit über die Fahrzeit.

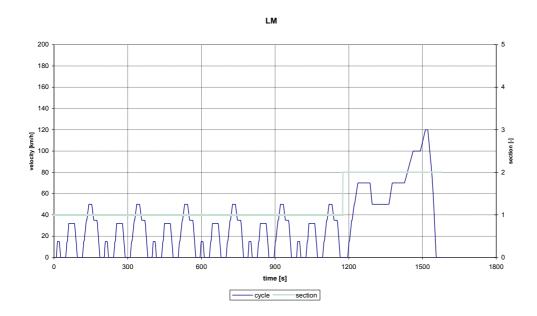

In den folgenden Diagrammen sind zur Illustration die Batteriespannung, der Batteriestrom, die Geschwindigkeit sowie die Batterieleistung über die ersten 200 Sekunden der 1. Messung des NEFZ

bzw. WMTC aufgezeichnet. Um höhere Frequenzen und Messrauschen zu eliminieren wurde ein gleitender Durchschnitt über 100 Messpunkte angewendet.

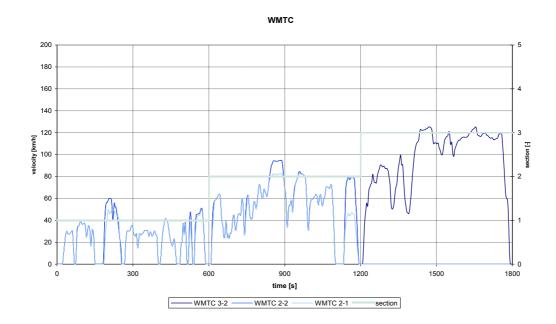

Dank

Wir bedanken uns herzlich dafür, dass Sie uns eine Quantya EVO 01 zur Verfügung gestellt haben. Über das Ergebnis der Untersuchung werden wir Sie zu einem späteren Zeitpunkt genauer informieren. Falls Sie detailliertere Informationen oder Daten zu den Tests wünschen, stellen wir Ihnen diese gerne zur Verfügung.

NEFZ:


WMTC:

Erklärungen zu den Testzyklen

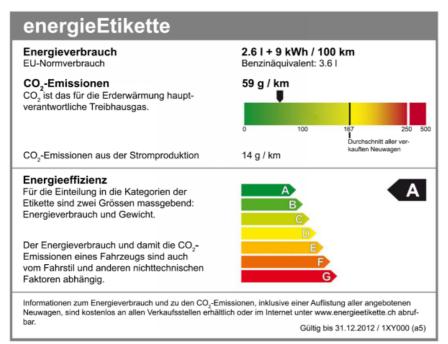

Mit dem Fahrzyklus NEFZ wir der Kraftstoffverbrauch von Kraftfahrzeugen in der Europäischen Union und in der Schweiz seit 1996 gemessen. Der Fahrzyklus WMTC ist speziell für Motorräder ausgelegt und seit 2007 in Anwendung. Die Geschwindigkeitsprofile der beiden Zyklen sind im Folgenden beschrieben. Ensprechend den Spezifikationen der Quantya EVO1 muss jeweils nur die erste Sektion des NEFZ bzw. Klasse 1 und Sektion 1 des WMTC gefahren werden.

NEFZ:

Sektion	Start Zeit	End Zeit	Dauer	Durchschnittsgeschwindigkeit	Distanz
[-]	[s]	[s]	[s]	[km/h]	[km]
1	1	1175	1175	18.6	6.1
2	1176	1575	400	62.6	6.9
3	-	-	-	-	-
Total	1	1575	1575	29.8	13.0

WMTC:

WMTC Klasse	Sektion	Start Zeit	End Zeit	Dauer	Durchschnittsgeschwindigkeit	Distanz
[-]	[-]	[s]	[s]	[s]	[km/h]	[km]
3-2	1	1	600	600	24.4	4.1
	2	601	1200	600	54.7	9.1
	3	1201	1800	600	94.4	15.7
	Total	1	1800	1800	57.8	28.9
2-2	1	1	600	600	24.4	4.1
	2	601	1200	600	54.7	9.1
	3	-	-	-	-	-
	Total	1	1200	1200	26.3	13.2
2-1	1	1	600	600	23.0	3.8
	2	601	1200	600	50.7	8.4
	3	-	-	-	-	-
	Total	1	1200	1200	24.6	12.2
1	1	1	600	600	23.0	3.8
	2	601	1200	600	23.0	3.8
	3	-	-	-	-	-
	Total	1	1200	1200	23.0	7.6


energieEtikette

In Europa bestimmt die energieEtikette¹ die Verbrauchsklasse von Personenwagen. In den USA werden "Fuel Economy Labels" für Elektrofahrzeuge von der US EPA gefördert.

¹ Die Grundlage zur energieEtikette in der Schweiz sind die Bestimmungen der EU. Die energieEtikette für z.B. grosse Haushaltgeräte in der EU ist 15 Jahre alt. In der EU gilt ab 19. Mai 2010 die neue 'Label-Direktive'. Der Fahrplan und die Ausgestaltung ist z.B. hier kurz erläutert:

[•] nach Ablauf der Übergangszeit ab Herbst 2011 obligatorisch.

[•] Die energieEtikette auf alle Produkte, die einen Einfluss auf den Energieverbrauch haben, (z.B. TV-Geräte, Fenster, Autoreifen, ...).

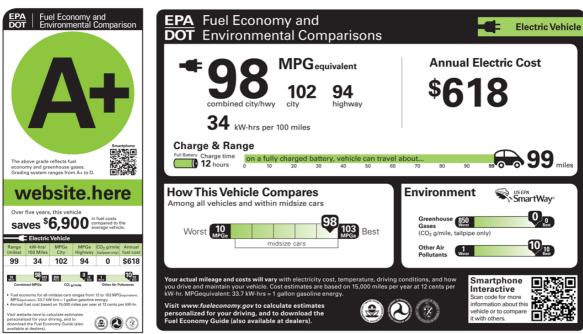


Abbildung 1: Europäische energie Etikette und US EPA "Fuel Economy Labels" für Elektrofahrzeuge.

Wie die Geschichte der verworfenen Umweltetikette zeigt, muss man es sich sehr gut überlegen, wo man von der energieEtikette abweichen darf und soll. Es ist lehrreich, u.a. beim TCS nachzulesen,

• Es soll nie mehr als 7 Effizienzklassen geben, zur Basis A - G sind aber drei weitere Stufen (A+, A++, A+++) möglich. Wenn mehr als ein Drittel der Produkte im Verkaufssortiment in den beiden besten Klassen A++ und A+++ sind, müssen die Anforderungen der Kriterien verschärft werden.

Es ist die Verantwortung des Lieferanten (Hersteller, Importeur) Etiketten und Datenblätter mitzuliefern, sowie alle nötigen Informationen bereitzustellen, um diese zu überprüfen.

In der CH ist der Energieartikel die gesetzliche Grundlage. Die neuen EU Regeln verursachen 'Bauchweh' aber werden sicherlich umgesetzt, zB "...Für Haushaltgeräte, elektronische Geräte und Elektromotoren gelten seit 1. Januar 2010 neue oder verschärfte Vorschriften zum Stromverbrauch. Aufgrund einer Übergangsbestimmung dürfen Händler und Hersteller ihre Lagerbestände, die vor Ende 2009 importiert oder in der Schweiz hergestellt wurden und den neuen Vorschriften noch nicht entsprechen, bis Ende 2010 verkaufen. Der Bundesrat hat nun entschieden, diese Übergangsbestimmung bis Ende 2011 zu verlängern. Die entsprechende Änderung der Energieverordnung tritt auf den 1.1.2011 in Kraft..."

was sie zur energieEtikette zu sagen haben, z.B. zuArtikel 8 al. 3 – CO2-Emissionen von Elektro-Fahrzeugen: Gemäss dem Bericht des BFE über den Strom-Mix ist es unmöglich, die Herkunft von rund einem Fünftel des in der Schweiz verbrauchten Stromes festzustellen. Die CO2-Emissionen eines Elektrofahrzeugs aufgrund eines so unzuverlässigen Indikators festzulegen ist wenig überzeugend. Diese umso weniger, als die Zahl der Elektrofahrzeuge gemäss einer deutschen Studie in den kommenden 20 Jahren deutlich zunehmen wird...

Die Berechnungen zur energieEtikette ist erwartungsgemäss etwas kompliziert. Z.B. gibt es alle 2 Jahre eine sog. präzisierende UVEK-Verordnung über die Angaben auf der Energieetikette von neuen PWs (gültig ab 1.7.2010), diese sagt in Art. 3:

Die Energieeffizienz-Kategorie muss wie folgt angegeben werden:

Kat Bewertungszahl A < 24.72 B > 24.72 bis < 27.20 C > 27.20 bis < 29.68 D > 29.68 bis < 32.16 E > 32.16 bis < 34.64 F > 34.64 bis < 37.13 G > 37.13

Die Bewertungszahl wird nach der folgenden Formel berechnet, und auf die zweite Stelle nach dem Komma gerundet:

$$Bewertungszahl = k \cdot \frac{m_v}{m_0 + m_F \cdot e}$$

Wobei:

e: 0,9 k: 7267

m_v: Treibstoffverbrauch des Fahrzeugs in kg/100 km

m₀: Nullgewicht (600 kg)

m_F: Fahrzeugleergewicht in kg gemäss Artikel 7 Absatz 1 (VTS)

Für die Verbrauchs- und Leergewichtsdaten (m_v und m_F) ist die Typengenehmigung des entsprechenden Modells massgebend.

Gemäss der Formel für die Bewertungszahl bestimmt der Quotient von Verbrauch und Gewicht die Verbrauchsklasse, wodurch die Klasse verbessert werden kann, wenn man das Fahrzeug schwerer macht! Natürlich steigt dadurch auch der Verbrauch etwas, jedoch nicht im gleichen Mass.

NewRide-Leistungsausweis

Die von VirVe und Empa im Rahmen dieses Projektes entwickelte Messmethode (vgl. Kap. 6) benötigt zwar nicht zwingend eine bestimmte Testfahrweise, jedoch konvergiert die Parameteridentifikation rascher wenn der Werteraum der Dateneingabe weit 'gespannt und verteilt' ist. Daher wurde folgendes Rezept in Formularform entwickelt und den Testfahrern abgegeben:

iara (collection workshee	t			
rata (Conection workshee				
Ambien	t				
	Date :				
	Location	***************************************	***		
	Street, n°:				
	ZIP / City :				
	Altitude :	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	Pressure :	*	*****		
	Temperature :				
	Road pavement :	·			
	Road condition :	uspriare		dry/humid/wet	
	Road temperature :			ary, nama, wee	
	noda temperature i				
/ehicle				Current sensor placement	
	Manufacturer :			place 1 or 2	
	Model (year) :			Between Battery and motor controller	
	Nominal Battery Voltage :		V		
	Battery Chemistry :				
	Battery nominal capacity :		Ah		2
	,		kWh		
	Max current :		A		
	Curb weight :	***************************************	kg		
-	Motor(s) rated power (tot) :		kW		
	Nominal range :	***************************************	km		
	Max speed :		km/h		
	ivida specu .		KIII/II		
	/-la	.,	. :	test notes	
Rattery 1					
Battery		V	time	test notes	
Battery '	voltage at start :	V	time	test notes	
Battery	voltage at start : volage at end :	V	ume		
Battery	voltage at start :	V	time	30 min after test end	
	voltage at start : volage at end : Voltage at end, rested :	V	time		
	voltage at start : volage at end : Voltage at end, rested :				
	voltage at start : volage at end : Voltage at end, rested :	Time test	Time test	30 min after test end	
	voltage at start : volage at end : Voltage at end, rested : ings			30 min after test end test notes	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established :	Time test	Time test	30 min after test end test notes Contact VirVe to check connection	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) :	Time test	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 20 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 20 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 20 km/h : 30km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30km/h : 40 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 20 km/h : 40 km/h : 50 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30km/h : 40 km/h : 50 km/h : 60 km/h :	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start: volage at end: Voltage at end, rested: ings Connection established: Full accelleration (4x): Constant Speed 10 km/h: 30km/h: 40 km/h: 50 km/h: 60 km/h:	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Connection established: Full accelleration (4x): Constant Speed 10 km/h: 30 km/h: 40 km/h: 60 km/h: 100 km/h: 1100 km/h: 120 km/h:	Time test started	Time test	30 min after test end test notes Contact VirVe to check connection until max speed, then break. repeat 4 times	driver notes
	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: ings Connection established: Full accelleration (4x): Constant Speed 10 km/h: 20 km/h: 40 km/h: 50 km/h: 80 km/h: 100 km/h: 120 km/h: Vmax: XX km/h:	Time test started	Time test	and the state of t	driver notes
	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Connection established: Full accelleration (4x): Constant Speed 10 km/h: 30km/h: 40 km/h: 50 km/h: 60 km/h: 100 km/h: 120 km/h: Vmax: XX km/h: Vmax, ausrollen (4x):	Time test started	Time test	and the state of t	driver notes
	voltage at start : volage at end : Voltage at end, rested : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30km/h : 40 km/h : 50 km/h : 60 km/h : 100 km/h : 100 km/h : 100 km/h : Vmax XX km/h : Vmax, ausrollen (4x) : Regen smoothly :	Time test started	Time test	and the state of t	driver notes
	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Connection established: Full accelleration (4x): Constant Speed 10 km/h: 30km/h: 40 km/h: 50 km/h: 60 km/h: 100 km/h: 120 km/h: Vmax: XX km/h: Vmax, ausrollen (4x):	Time test started	Time test	and the state of t	driver notes
Fest tim	voltage at start : volage at end : Voltage at end, rested : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30km/h : 40 km/h : 50 km/h : 60 km/h : 100 km/h : 100 km/h : 100 km/h : Vmax XX km/h : Vmax, ausrollen (4x) : Regen smoothly :	Time test started	Time test	and the state of t	driver notes
Fest tim	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Full accelleration (4x): Constant Speed 10 km/h: 20 km/h: 40 km/h: 50 km/h: 60 km/h: 100 km/h: 120 km/h: Vmax: XX km/h: Vmax, ausrollen (4x): Regen smoothly: up/down free drive:	Time test started	Time test	and the state of t	driver notes
Fest tim Driver	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Connection established: Full accelleration (4x): Constant Speed 10 km/h: 30km/h: 40 km/h: 50 km/h: 60 km/h: 100 km/h: 100 km/h: vmax, xx km/h: Vmax, ausrollen (4x): Regen smoothly: up/down free drive: Name:	Time test started	Time test	and the state of t	driver notes
Fest tim	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30 km/h : 40 km/h : 50 km/h : 100 km/h : 110 km/h : 120 km/h : vmax : XX km/h : Vmax ausrollen (4x) : Regen smoothly : up/down free drive : Name :	Time test started	Time test	and the state of t	driver notes
Fest tim	voltage at start: volage at end: Voltage at end, rested: Voltage at end, rested: Full accelleration (ax): Constant Speed 10 km/h: 20 km/h: 40 km/h: 50 km/h: 60 km/h: 100 km/h: 120 km/h: vmax: XX km/h: Vmax; ausrollen (ax): Regen smoothly: up/down free drive: Name: Weight: Dress:	Time test started	Time test	as a special desired as a spec	driver notes
Fest tim	voltage at start : volage at end : Voltage at end, rested : ings Connection established : Full accelleration (4x) : Constant Speed 10 km/h : 30 km/h : 40 km/h : 50 km/h : 100 km/h : 110 km/h : 120 km/h : vmax : XX km/h : Vmax ausrollen (4x) : Regen smoothly : up/down free drive : Name :	Time test started	Time test	and the state of t	driver notes

Abbildung 2: Formular mit den Instruktionen zu den realen Testfahrten (VirVe)

Auf der folgenden Seite sind alle erstellten Leistungsausweise dargestellt (von oben links nach unten rechts: elmoto_HR2, E-sprit_Fury100, VirVe_vbm_E-sprit_Silenzio45, Logomotion_city_flizzer, Logomotion_easyRide, PGO_eWave, Quantya_EVO1Strada, Vectrix_VX1, Zero_ZeroS (der Hersteller war mit einer Publikation der Daten nicht einverstanden))

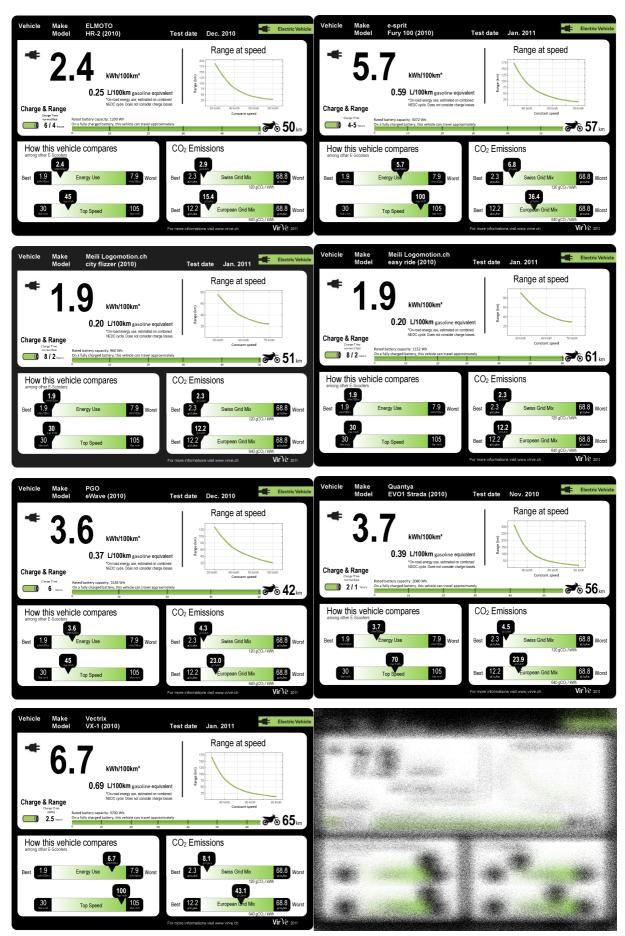


Abbildung 3: Sammlung der ausgestellten Leistungsausweise.

Motorräder unter Strom

Batteriebetriebene Roller sind umweltschonend - und fahren günstig

Wie weit kommt ein E-Scooter mit einer Batterieladung? Ein Test der Empa zeigt: Die Herstellerangaben sind nicht immer korrekt.

kurven in der Schweiz herum. Die Hälfte davon gehören der Post, Im Handel sind rund 50 verschiedene Modelle: vom Töffli. das 30 Stundenkilometer schnellen Überlandflitzen. der 100 km/h erreicht. Die Preismanne reicht von 5000 bis 14000 Franken.

Eretmals liesen nun für acht Fahrseuge überprüfte Werne zur Reichweite von (siehe Tabelle). Die Messomeen stammen von Spezialisten der Eidgenössischen Materialprüfungsund Forschungsanstalt (Empa) und der Firma Virve

100 Kilometer für weniger als 1 Franken

Die Empa-Fachleute stellten fest: Die Angaben der Hersteller sind sum Teil sehr optimistisch. So führt der Fury 100 gamāss Schweizer Importeur mit einer Batterleladung zwischen 50 und 100 Kilometer weit. Die Empa hatte die Roller auf einer ogemischten» Strecke getestet - in der Stadt und auf dem Land. Und unter diesen Umständen machte der Fury nach 57.2 Kilometern schlapp.

Gesicherte Angaben gibt es dank der Empa-Untersuchung auch zum tatsäch-

würde etwa der City Fliz-

zählt, sind aber die tatsächlichen Stromkosten: Sie sind aus der Tabelle

Model

Preis in Fr

Fahtzeug-Kategorie

Ladegerät eingebaut

Ladedauer für 100 %

Hitchstosschwindigkeit

Reichweite laut Hersteller

Reichweite nach Empe-Tost

Stromkosten in Fr. für 100 km 1 - 40

Angulti Sitre

Laboration of Patterio (- Loderwide)

Rund 4000 batterie- lichen Energieverbrauch. Umgesechnet in Benzin

ser (maximal 30 km/h) des Baslers Daniel Louis Meili für 100 Kilometer gerade mal 2 Desiliter benötigen. (km/h) fährt, bis zum Sogar der schwerste und schnellste Roller, der Vectrix VX 1, würde für die gleiche Strecke mit nur Deziliter Benzin auskommen. Ein verdeichbarer Benzin-Roller verbrennt dagegen für 100 Kilometer rund 4 Liter.

Was für den Käufer 100 Kilometer für weniger als 1 Franken.

ensichtlich. Schwächere Unter dem Strich haben Gauch: «E-Scooter produ-Fahrzeuge fahren rund die Batteric-Töffs gute Ökobilamen. Das bestä-

zieren 8-mal weniger Treibhauspase und sind 4-mal tigt Empa-Experte Marcel sauberer als ein VW Golf.

Entscheidend für die Reichweite ist die Batterie. Die Empa rät von E-Scootem mit Bleibatterie ab.

Die Berechnungen berücksichtigen alle wichtigen Faktoren bei Herstellung. Betrieb und Entsorgung,

E-Roller: Das Töffli Easy Ride und die Motomäder HR-2 und Fury 100 (v. l.) verursachen Strepnikosten zwischen Pr. -.50 und 1.45 pm 100 km.

peraturen Power.

Wichtig ist audem, dans der Roller über eine geraue Batterieladestands Amzeige werfügt. Sie sollte nicht nur die Spannung anzeigen. Sonst steht man plöndich still. Denken Sie daran, dass das Laden icweils mehrere Stunden dauent, wenn die Batterie leer ist. E-Scooner eignen sich aufgrund der beschränkten Reichweite vor allem für Fahrten in Städ-

Beim Kauf eines E-Scooters profitiert man in diversen Städten von Förderprogrammen. Es winken bis zu 1000 Franken Zuschuss (Details: www.new liche Strassenabgabe. Im Kanton Zürich sind das

Stromausbeute, Kapacität und Lebensdauer seien zu gering. Besser sind die teuseren Lithkum-Jonen-Batterien (Li-Ion). Bei einigen

Standard. Die Töffs von Logomotion und E-Sprit sind gar mir einer Lithium-Eisen-Phosphat-Botterie (Liffe PO4) ausgerüster. Sie liefert auch bei tiefen Tem-

Rollem sind sie bereits

Mehrere Stunden Ladedauer

ten und Agglomerationen.

ride.ch). Einzelne Kantone erlassen E-Rollern die jährnund 100 Erunken, Auch die Motoeradversicherungen gewähren teils Rabuste. Nachfrasen Johnt sich.

Tipp: Vor dem Kauf den Wunschroffer einige Tage mieten und ausgiebig

DAS NERVT!

Grundlos Rechnung verschickt

Telebilling im Intum: Die Masche der Firma: Telebilling ist bekannt: Sie treibt Geld ein bei Leuten, die im Internet oder auf dem Handy ineine kostenpflichtige Abo-Falle getappt sind! (siehe K-Tipp 1 und 4/2011).

Neu ist: Telebilling belangt auch Unbetelligte. Zuro Baismial Boson Bosonstial aug. Artikosii 214 Telebiling verlangte vom 88-Jährigen Fr. 99.90: für einen Internet-Dienst, Lauf Bechnung soll. Reservite are 2. Januar 2011 einen «Faceradar» aktiviert haben. Nur: Roserstiel hat weder Internetanechluss noch Handy. Telebilling hat zum-Vonwurf nicht Stellung genommen.

In der Schweiz doppelt so teuer

Teures Foto-Jahrbuch: Das ärgert vieler Kosk-Kunden: Deutsche Zeitschriften kostenin der Schweiz umgerechnet 40 bis 60 Prozent: mehr als in Deutschland, Aron Schmukle aus-Wallisellen ZH musste erfahren, dass es auch-100 Prozent sein können. Er kaufte am Klosk: das «Chip Foto-Video Digital Test-Jahrbuch». Der aufgedruckte Preis: € 7.95.

Als die Verkluderin Fr. 19.50 von ihm verlangte, dachte er, das sei ein intum. Zum damaligen: Eurokurs von Fr. 1.25 hätte das Heft umgerechnet Fr. 9.95 pekostet. Für Schmukle ist esu «unverschämt», dass er in der Schweiz doppelt so viel zahlen muss. Doch der Kioskoreis wirddurch die Verlage festgelegt. Der Burda-Verlags wolfte dazu nicht Stellung nehmen. (bw)

32 Franken pro Kilometer

die Engadiner Touristiker für die Schittelbahrs von Muottas Muragl hinunter nach Punt Muragi. Mit der Standseilbahn gehts auf 2456 m und mit dem Schillten wieder hinunter. Trotzdem verkauft die Bahn keine Einfachbillette.

Das ärgert K-Tipp-Leser Bernhard Küchenhoff aus Oatwil am See ZH. «Bei anderen Bahnen». sagt er, «kann man Berg- und Telfshrt gefrennt klasen. Alber hier, wo viele die Talfahrt gar nicht nutzen, geht das nicht.» Folge: Für zwei Erwachsene und ein Kind zahlte Küchenhoff inkl. Schilttenmiete 133 Franken, Das macht 32 Franken pro Kilometer Schittenfahrt.

Dieter Bogner von den Engadiner Bergbahnen: betont, wie gross der Aufwand für Unterhalt und Rettungsdenst sei. Das Retourbillett müsse diese Kosten decken, Übrigens: GA, Halbtax-Abor sowie Junior-Karte gelten nicht. Reka-Schecksworden auch nicht angenommen. Incbil

Acht E-Scooter im Empa-Test: Einer der teuersten fährt a uch am weitesten

Oly Flizzer

egomotion ch

4055 -

1500

Easter Flide

cecn -

LIFePO.

1500

Nein

1 bis 4 Std

30 km/3

25 km

30.3 km

Lopemetion.c

FLMoto

HR-2

500D -

Nein

Elmoto com

über 65 kr

62 km

-.60

E-sprit

4990 -

LEVED

Marin

5.3%

45 km/h

60 km

-,85

50-100 km

E-sgrit.ch

Über 1000

PGO

E-Wore

4220 -

Pgd.ph

Blei oder Li-lor

ti-los: 800

5 514

ASS how

41,5 km

-.90

Ž.	0		
	Quantya	E-sprit	
	Evet Strada	Ruy 100	
	13-860	7890	1
	Quantya.com	E-sprit.ch	100

	13 860	7890	12500
	Quantya.com	E-sprit.ch	Vectrix.ch
	A1	A1	A1
Ī	Li-lon	UFePO ₄	INI-MHoder Li-lon*
	Über 1000	Ober 1000	N-MH:1700
	Nelti .	-la	Ja
Ī	2 Std.	6 814	3,5 SM
	1	2	2
	70 km/h	190-100 km/h	100 km/h
	40 km	50-100 km	60-80 km
i	56 km	57,2 km	65 km
	- 93	1.43	1.68

-.48 1 Segen Autureis 2 Je rech Ledestrebritung 3 Start St. Gallen, Basispawer, Hechtoff Inkl. Noto- und Zählorkosten (25 Rp./Whit):

K-Tipp Nr. 6 23, Miles 2011

stripp Nr. 6 23: Milrz 2011

20

Anhang zu Kapitel 6.1.2: Formelsammlung

Modell der Fahrdynamik

Das Modell der dynamischen Kräfte ist in **Fehler! Verweisquelle konnte nicht gefunden werden.** wiedergegeben.

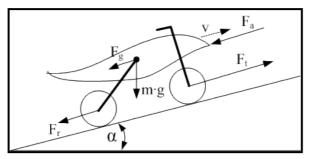


Abbildung 4 Relevante Kräfte und Wirkungslage an einem Motorrad

Die Bewegung des Massenpunktes ist durch den zeitabhängigen Ortsvektor $\mathbf{r}(t)$ oder, in parametrisierter Darstellung, durch den Ortsvektor $\mathbf{r}(s)$ und den Fahrplan $\mathbf{s}(t)$ gegeben (Differentialgeometrie der Bahn):

$$\mathbf{r}(s) = \mathbf{r}\left\{s(t)\right\}$$

$$\mathbf{\tau}(s) = \frac{d\mathbf{r}(s)}{ds}, \quad \frac{d\mathbf{\tau}}{ds} = \frac{\mathbf{n}(s)}{R(s)}$$

$$\mathbf{v}(t) = \frac{d\mathbf{r}(s)}{ds} \cdot \frac{ds(t)}{dt} = \mathbf{\tau}(s) \cdot v(t)$$

$$\mathbf{a}(t) = \frac{d}{dt}\mathbf{v}(t) = \mathbf{\tau}(s) \cdot \frac{dv(t)}{dt} + v^2(t) \cdot \frac{\mathbf{n}(s)}{R(s)} = \mathbf{a}_t(t) + \mathbf{a}_n(t)$$
Equ (1)

mit

- **r**(s) Ortsvektor der Fahrzeugbahn
- τ(s) Tangentenvektor der Bahn (Einheitsvektor)
- **n**(s) Bahnnormale (Einheitsvektor)
- R(s) Krümmungsradius
- s(t) Fahrplan auf der Bahn
- v(t) Geschwindigkeitsvektor
- $\mathbf{a}(t)$ Beschleunigungsvektor (zusätzlich aufgeteilt in Tangential- und Normalkomponente \mathbf{a}_t bzw. \mathbf{a}_n)

Die Zusammensetzung der Kräfte F (Vektoren), die auf das Motorrad wirken, ist:

$$\mathbf{p} = m_v \mathbf{k} = m_v \mathbf{a} = \mathbf{F}_{total}$$

$$0 = m_v \mathbf{a} - \mathbf{F}_{total}$$

$$\mathbf{F}_{total} = \sum_i \mathbf{F}_i = \mathbf{F}_t + \mathbf{F}_a + \mathbf{F}_r + \mathbf{F}_g + \mathbf{F}_s$$
(2)

mit

a=v'=x'' Fahrzeugbeschleunigung (Vektor)
 m_V Gesamtmasse (Fahrzeug+Fahrer)
 F_t Traktionskraft¹ am Rad (Antriebskraft F_a and Bremskraft F_b)
 F_r Rollreibungskraft
 F_a Aerodynamische Kraft (Luftwiderstand)
 F_g Gravitationskraft (Gewicht)
 F_s Störungskräfte (zB Wind, Schlupf auf glatter Fahrbahn, ...)

Aus der Dynamik ergibt sich mit den aufgeführten Kräften die Zusammensetzung der Energieverbräuche (Skalar):

$$dW = \mathbf{F}_{total} \cdot d\mathbf{r}$$

$$W = \int_{Fahrstrecke} \mathbf{F}_{total} \cdot d\mathbf{r} = \int_{s_1}^{s_2} \mathbf{F}_{total} \left\{ \mathbf{r}(s) \right\} \cdot d\mathbf{\tau}(s) \cdot ds$$
(3)

bzw. die momentane netto Leistung P(t) (ebenfalls Skalar):

$$P = V^{\otimes} = \mathbf{F} \cdot \mathbf{k} = \mathbf{F} \cdot \mathbf{v}$$

$$m_{v} \cdot \mathbf{k} \cdot \mathbf{v} = \sum_{t} (\mathbf{F} \cdot \mathbf{v}) = \sum_{t} P$$

$$\sum_{t} P = P_{t} - (P_{a} + P_{r} + P_{g} + P_{d})$$
(4)

Rollreibung

Die Rollreibung des Motorrads ist im Detail das Resultat von komplexen Zusammenhängen (CANU-DAS-DE-WIT Carlos et al. 2003; Cossalter n.d.). Sie ist z.B. nichtlinear abhängig von der Geschwindigkeit und vom Radsturzwinkel (für Definitionen siehe (Anon n.d.)). Die oft verwendete empirische 'Magische Formel' von Pacejka ist:

$$F(\sigma) = c_1 \cdot \sin\left(c_2 \cdot \arctan\left(c_3 \cdot \sigma - c_4 \cdot \left(c_3 \cdot \sigma - \arctan\left(c_3 \cdot \sigma\right)\right)\right)\right)$$

$$\sigma = \text{longitudinal or lateral slip}$$
(5)

mit c_1 , c_2 , c_3 und c_4 als experimentell bestimmte Konstanten.

Im einfachsten Fall reduziert sich die Rollreibung auf eine konstante Kraft proportional zur Normalkomponente des Gewichts in Bahnrichtung (d.h. kein lateraler Schlupf in Kurven bzw. Geradeausfahrt).

$$\begin{aligned}
\mathbf{F}_r &= -F_r \cdot \mathbf{\tau}(s) \\
F_r \Big|_{v>0} &= \mu \cdot F_n = \mu \cdot m_v \cdot \mathbf{g} \cdot \mathbf{n}(s) \\
&= \mu \cdot m_v \cdot g \cdot \sin(\alpha)
\end{aligned} \tag{6}$$

entsprechend ergibt sich eine Arbeit die, für Flache Bahnen, nur von der Weglänge abhängt

_

¹ historisch eher Zugkraft bzw. Schubkraft

$$dW_r = -\mathbf{F}_r \cdot \mathbf{\tau}(s) \cdot ds = F_r \cdot \mathbf{\tau}(s) \cdot \mathbf{\tau}(s) \cdot ds = F_r \cdot ds$$

$$W_r = \int_{s_1}^{s_2} F_r \cdot ds = F_r \cdot (s_2 - s_1)$$
(7)

Gravitationskraft

Die bei der Bewegung der Masse durch das projizierte Gewicht F_g bedingte Arbeit geht, wie bei Trägheitskräften, nicht verloren sondern kumuliert sich im Aufstieg als potentielle Energie und wird beim Abstieg wieder gewonnen (das Gravitationsfeld ist konservativ).

$$\mathbf{F}_{g} = F_{g} \cdot \mathbf{\tau}(s)$$

$$F_{g} = m_{v} \cdot \mathbf{g} \cdot \mathbf{\tau}(s) \qquad (8)$$

$$= m_{v} \cdot \mathbf{g} \cdot \cos(\alpha)$$

entsprechend ist diese Arbeit nur von der Höhendifferenz zwischen Bahnanfang und ende abhängig bzw. für einen geschlossenen Weg immer Null (z1=z2).

$$dW_{g} = \mathbf{F}_{g} \cdot \mathbf{\tau}(s) \cdot ds = m_{v} \cdot \mathbf{g} \cdot \mathbf{\tau}(s) \cdot \mathbf{\tau}(s) \cdot \mathbf{\tau}(s) \cdot ds = m_{v} \cdot \mathbf{g} \cdot \mathbf{\tau}(s) \cdot ds$$

$$W_{g} = m_{v} \cdot \mathbf{g} \cdot \int_{s_{1}}^{s_{2}} \cos(\alpha) \cdot ds = m_{v} \cdot \mathbf{g} \cdot \int_{z_{1}}^{z_{2}} dz = m_{v} \cdot \mathbf{g} \cdot \left(z_{2} - z_{1}\right)$$
(9)

Aerodynamische Kraft

noch zu beschreiben:

$$F_l(t) = \frac{1}{2} \cdot \rho_a \cdot A_f \cdot c_d \cdot v^2 = \alpha \cdot v^2 \quad (10)$$

Polynom der äusseren Kräfte

Aus Sicht des Models bzw. der Parameteridentifkation, ist der Zusammenhang mit der Fahrgeschwindigkeit v relevant. Dieser lässt sich als ein Polynom des Geschwindigkeitsbetrags ausdrücken:

$$P_{V_{trans}} = \sum \mathbf{F}_{V} \cdot \mathbf{v} = k_{0} \cdot \left| \mathbf{v} \right|^{0} + k_{1} \cdot \left| \mathbf{v} \right|^{1} + k_{2} \cdot \left| \mathbf{v} \right|^{2} + k_{3} \cdot \left| \mathbf{v} \right|^{3} + \dots$$
 (11)

wobei die einzelnen Parameter (Bewegungsverluste) durch die physikalischen Eigenschaften bestimmt werden:

k1 Rollreibung, ...

k2 kommt nicht vor?

k3 Luftreibung

Modell des Antriebstrangs

Die Traktionskraft am Rad F_t ergibt sich aus dem Traktionsmoment M_t am Antriebsrad und dessen Radius r_{Rad} . Das Traktionsmoment M_t setzt sich vereinfachend aus dem Antriebsmoment M_a und dem Bremsmoment M_b zusammen, wobei je nach Betrieb das Bremsmoment dissipativ und/oder konservativ sein kann, je nachdem ob der Motor durch Rekuperation oder die Bremsanlage über Reibung bremst.

Wesentlich ist die Modellierung des elektromechanischen Wandlers (in diesem Fall ein BLDC PM Motor und des zughörigen Leistungsstellers/Regler) sowie des elektrochemischen Wandlers (in diesem Falle eine Li-lonen Batterie mit BMS). Die gesamte Wirkungskette ist in der folgenden **Fehler!** Verweisquelle konnte nicht gefunden werden. dargestellt:

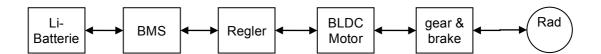
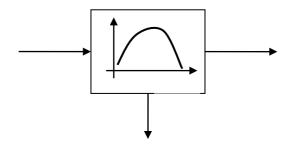



Abbildung 5 Blockdiagramm der relevanten Komponenten, die jede durch ihren Wirkungsgrad P_{out}/P_{in} definiert ist. Der Leistungsfluss ist bidirektional, d.h. die Bremsleistung kann rekuperiert werden oder wird über Bremsen absorbiert (mech. oder elektrische Bremsen)

Ziel ist es, eine erste gute Näherung der Fahrdynamik zu finden, in dem die relevanten Systemkomponenten der Wirkungskette durch ihren Wirkungsgrad als Funktion ihres Leistungsdurchsatzes dargestellt werden kann.

Die Traktionsleistung am Rad ist:

$$P_{t}(t) = \mathbf{v}(t) \cdot \mathbf{F}_{t}(t)$$

$$= \mathbf{v}(t) \cdot \left(\mathbf{F}_{a}(t) - \mathbf{F}_{b}(t)\right)$$

$$= M_{t}(t) \cdot \omega(t) = \omega(t) \cdot \left(M_{el}(t) - \mathbf{J} \cdot \mathcal{B}(t) - \sum \mathbf{M}_{V}(t)\right)$$
(12)

mit

ω Drehzahl (mittlere)

J Summe der Trägheitsmomente aller rotierenden Massen

M_v alle Verlustmomente (inkl. der Bremsmomente der Bremsen!)

Mel Antriebsmoment des el. Motors

 \mathbf{F}_{t} lässt sich nunmehr in Formel 2 integrieren. Drehzahl und Geschwindigkeit sind über den Radumfang verknüpft.

Damit lässt sich das obige Polynom um innere Verluste erweitern:

k0 el. Widerstand, ...

k1 Rollreibung, Bremsreibung, ...

k2 kommt nicht vor?

k3 Luftreibung, Ventilationsverluste, ...

Sie ergibt sich durch Multiplikation der Batterieleistung $P_{Bat}(t)$ und den (in erster Näherung) leistungsabhängigen Wirkungsgraden $0 \le \eta(P) < 1$.

$$P_T(t) = P_{in}(t) \cdot \prod_k \eta_k$$
 (13)

Bremskraft

(umrechnen aus Bremsmoment)

$$F_d(t) = ???$$
 (14)

zu beachten: Die Bremsleistung ist zu behandeln wie eine Störfunktion!!

Elektrische Maschine

Für e-Scooter werden heute häufig bürstenlose permanent erregte blockkommutierte Gleichstrommaschinen verwendet. Die sind heute leistungsdicht und relativ günstig zu haben und ihre Regelung ist ebenfalls verhältnismässig einfach.

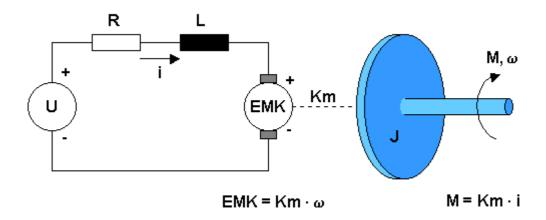


Abbildung 6 Ersatzschaltbild des BLDC Motors (Anon n.d.)

$$L \cdot \frac{di(t)}{dt} = U - R \cdot i - EMK$$

$$u_{ind} = EMK = K_M \cdot \omega$$
(1)

und

$$J_{Mot} \cdot \frac{d\omega(t)}{dt} = M_{el} - M_{Loss} - M_{M}$$

$$M_{el} = K_{M} \cdot i$$
(2)

mit:

U angelegte Spannung (Batteriespannung)

u_{ind} induzierte Spannung (EMK historisch: **E**lektro- **M**otorische **K**raft)

R Ohmscher Widerstand (Cu, Kontakte, ... 1.3-1.5-1.8 R_{Wicklung})

L Wicklungsinduktivität

K_M Motorkonstante [Nm/A]

J_{Mot} Trägheitsmoment (aller drehenden Massen)

M_{el} elektrisches Moment

M_{Loss} Bremsmomente aus Verluste wie Eigenreibung, Eisenverluste etc.

im stationären Zustand ist:

$$\frac{di(t)}{dt} = \frac{d\omega(t)}{dt} = 0$$

damit wird:

$$I = \frac{U - K_M \cdot \omega}{R} = \frac{U}{R} - \frac{K_M}{R} \cdot \omega$$

$$\omega = \left(\frac{U}{R} - I\right) \cdot \frac{R}{K_M}$$
(3)

ist zudem (mit K_L in [Nms])

$$M_{Loss} = K_L \cdot \omega$$

wird:

$$M_{M} = M_{el} - M_{Loss} = M_{el} - K_{L} \cdot \omega$$

$$= K_{M} \cdot I - U \cdot \frac{K_{L}}{K_{M}} + R \cdot \frac{K_{L}}{K_{M}} \cdot I$$
(4)

$$M_{M} = K_{O} \cdot I - U \cdot \frac{K_{L}}{K_{M}}$$

$$K_{O} = K_{M} + R \cdot \frac{K_{L}}{K_{M}} = \frac{K_{M}^{2} + R \cdot K_{L}}{K_{M}}$$
(5)

Die Motoren-Eingangsleistung ist dann:

$$P_{el} = U \cdot I$$

$$= U \cdot \left[\frac{U}{R} - \frac{K_M}{R} \cdot \omega \right]$$

$$= I_K^2 \cdot R - I_K \cdot K_M \cdot \omega$$
(6)

Die Motoren-Ausgangsleistung ist:

$$P_{M} = M_{M} \cdot \omega$$

$$= K_{M} \cdot \frac{U}{R} \cdot \omega - \left(\frac{K_{M}^{2}}{R} + K_{L}\right) \cdot \omega^{2}$$

$$= (I - I_{0}) \cdot (I_{K} - I) \cdot R$$

$$(7)$$

mit:

I₀ Leerlaufstrom

I_K Kurzschlussstrom

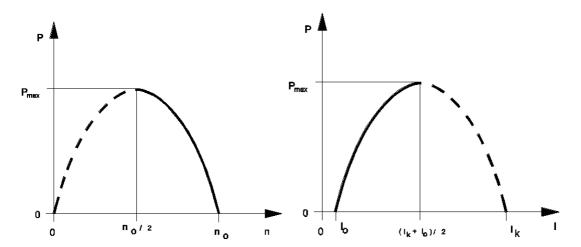


Abbildung 7: P vs n , P vs I

$$P_{M_{\text{max}}} = \frac{1}{4} \cdot \frac{U^2}{R} \cdot \frac{K_M^2}{K_M^2 + R \cdot K_L^2}$$

$$= \frac{1}{4} \cdot R \cdot (I_k - I_0)^2$$
(8)

Wirkungsgrad n

Der Wirkungsgrad ist das Verhältnis von (Abgabe-) Leistung zu aufgenommener Leistung. Als Funktion des Stroms ergibt sich:

$$\eta = \frac{P_{M}}{P_{el}} = \frac{(I - I_{0}) \cdot (I_{K} - I) \cdot R}{I_{K}^{2} \cdot R - I_{K} \cdot K_{M} \cdot \omega} = \frac{(I - I_{0}) \cdot (I_{K} - I)}{I_{K} \cdot \left(I_{K} - \frac{K_{M}}{R} \cdot \omega\right)} = \frac{(I - I_{0}) \cdot (I_{K} - I)}{I_{K} \cdot I}$$

$$= 1 + \frac{I_{0}}{I_{K}} - \frac{I}{I_{K}} - \frac{I_{0}}{I} = 1 + \frac{I_{0}}{I_{K}} - \frac{I}{I_{K}} - \frac{I_{0}}{I_{K}} \cdot \frac{1}{I_{K}} = 1 + \frac{I_{0}}{I_{K}} - \overline{I} - \frac{I_{0}}{I_{K}} \cdot \frac{1}{\overline{I}}$$
(9)

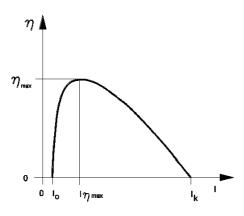


Abbildung 8: Eta vs I

Nullstellen

$$\overline{I}\Big|_{\eta=0} = 1, \quad \frac{I_0}{I_K} = b$$

Maximum

$$\eta_{\text{max}} = \left(1 - \sqrt{\frac{I_0}{I_K}}\right)^2 = \left(1 - \sqrt{\frac{R \cdot K_L}{K_M^2 + R \cdot K_L}}\right)^2$$

Maximum wird erreicht bei Strom, Drehzahl und Leistung:

$$\begin{split} I \big|_{\eta = \eta_{\text{max}}} &= \sqrt{I_K \cdot I_0} \\ \omega \big|_{\eta = \eta_{\text{max}}} &= \frac{U}{K_M} \cdot \left(1 - \sqrt{\frac{R \cdot K_L}{K_M^2 + R \cdot K_L}} \right) \\ P \big|_{\eta = \eta_{\text{max}}} &= R \cdot \sqrt{I_k \cdot I_0} \cdot \left(I_k + I_0 - 2 \cdot \sqrt{I_k \cdot I_0} \right) \end{split}$$

Für $K_L = 0$ (keine Reibungs-, Eisenverluste etc.) ist auch der Leerlaufstrom $I_0 = 0$. Die Gl. (9) vereinfacht sich dann zu

$$\eta = 1 - \frac{I}{I_K}$$

Diese Gleichung stellt aber in einem Diagramm mit den Achsen η und I/I_k die Diagonale η = 1 -> I/I_k = 1 dar.

Da der Wirkungsgrad eines realen Motors immer schlechter als der eines (halb-)idealen ist, bedeutet dies, daß die Wirkungsgradkurve immer unterhalb der Diagonalen verlaufen muß.

Insbesondere ist damit z.B. im Punkt der maximalen Leistung ($I/I_k = 0.5$) der Wirkungsgrad stets kleiner als 50%.

Eine entsprechende Grenze kann man auch für die Auftragung η über n/n₀ -also über dem Verhältnis Drehzahl/Leerlaufdrehzahl- herleiten:

$$\frac{I}{I_K} = 1 - \frac{K_M}{U} \cdot \omega = 1 - \frac{K_M^2}{K_M^2 + R \cdot K_L} \cdot \omega / \omega_0 = 1 - a \cdot \omega / \omega_0$$

$$\overline{I} = 1 - a \cdot \overline{\omega}$$
(10)

damit lässt sich GI 9 transformieren zu:

$$\begin{split} \eta &= 1 + \frac{I_0}{I_K} - \overline{I} - \frac{I_0}{I_K} \cdot \frac{1}{\overline{I}} \\ &= 1 + b - (1 - a \cdot \overline{\omega}) - b \cdot \frac{1}{1 - a \cdot \overline{\omega}} \\ &= b + a \cdot \overline{\omega} - \frac{b}{1 - a \cdot \overline{\omega}} = \frac{1 - ba\overline{\omega} + a \cdot \overline{\omega} - (a \cdot \overline{\omega})^2 - 1}{1 - a \cdot \overline{\omega}} = \frac{a \cdot \overline{\omega} (1 - b - a \cdot \overline{\omega})}{1 - a \cdot \overline{\omega}} \end{split}$$

Nullstellen

$$|\overline{\omega}|_{\eta=0} = 0, \quad \frac{1-b}{a} = \frac{1 - \frac{I_0}{I_K}}{\frac{K_M^2}{K_M^2 + R \cdot K_L}}$$

Maximum

$$\eta_{\text{max}} =$$

Maximum wird erreicht bei Strom, Drehzahl und Leistung:

$$I\Big|_{\eta=\eta_{\text{max}}} =$$

$$\omega\Big|_{\eta=\eta_{\text{max}}} =$$

$$P\Big|_{n=n} =$$

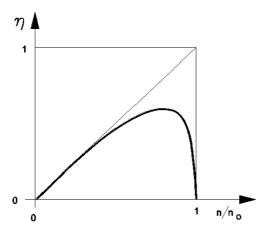


Abbildung 10: Eta vs n/n0

Hier ist die Diagonale vom Nullpunkt zum Punkt 1,1 die Grenze, welche die Wirkungsgradkurve nicht überschreiten kann.

Die Wirkungsgradkurve muß immer unterhalb dieser Diagonalen liegen. Beispielsweise kann bei einer Drehzahl von 80% der Leerlaufdrehzahl der Wirkungsgrad nicht höher als 80% sein. Da der reale Motor aber Verluste aufweist, wird der Wirkungsgrad noch um ein paar Prozentpunkte darunter liegen.

Wird in irgendwelchen Diagrammen oder Datenangaben diese Grenze überschritten, so ist dies ein sicheres Zeichen dafür, daß Messfehler passiert sind oder "geschummelt" wurde.

Eine weitere Folge dieser Grenze ist, daß bei hohen maximalen Wirkungsgraden die Kurve in den Zwickel im rechten oberen Eck "passen" muß. Hohe maximale Wirkungsgrade sind damit automatisch "spitz" und liegen bei Drehzahlen nahe der Leerlaufdrehzahl; damit geht auch die Abgabeleistung zurück. Dies erschwert das Ausnützen des hohen maximalen Wirkungsgrads.

Der "O-Punkt"

Als Letztes soll noch der sog. "Optimalpunkt" (OP) erklärt werden. Er ist ein weiterer wichtiger Punkt auf den Betriebskennlinien. Er ist an sich nur wenig bekannt, andererseits wird die zu ihm gehörende Drehzahl häufig genannt.

Zur Erläuterung nochmals das Leistungsdiagramm, in dem der Verlauf von Eingangs- und Ausgangsleistung über der Drehzahl dargestellt sind. Beide Kurven sollen auf ihre Maximalwerte bezogen sein und haben damit beide den Maximalwert 1.

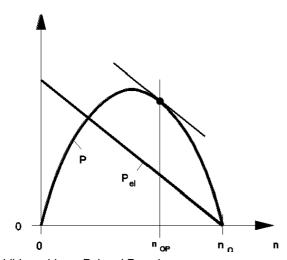


Abbildung 11: Pel and Pmech vs n

Wird –vom Leerlaufpunkt n_0 ausgehend- die Drehzahl verringert, dann wächst die relative Eingangsleistung P_{el} gleichförmig an. Die relative Ausgangsleistung wächst zunächst wesentlich stärker an. Wird die Drehzahl weiter verringert, dann wird die Zunahme der Ausgangsleistung als Folge der gekrümmten Kurve immer geringer, während die Zunahme der Eingangsleistung gleich bleibt.

Bei weiterer Reduzierung der Drehzahl kommt man schließlich zu einem Punkt, in dem die relative Zunahme von Eingangs- und Ausgangsleistung gleich groß sind. Dies wird im Bild durch die Parallele zur P_{el} -Linie verdeutlicht; beide Kurven haben bei dieser Drehzahl n_{OP} dann dieselbe Steigung.

In diesem Punkt sollte man mit der Drehzahl-Verringerung aufhören! Es ist zwar möglich, die Ausgangs-leistung noch etwas weiter zu steigern, aber bei Drehzahlen unterhalb von n_{OP} wird das teuer erkauft: Die relative Ausgangsleistung wächst jetzt immer weniger, während die relative Eingangsleistung weiter zunimmt.

Im Leistungsmaximum schließlich wächst dann die Ausgangsleistung trotz weiter steigender Eingangsleistung nicht mehr weiter. Bei noch weiter sinkender Drehzahl wird die Ausgangsleistung sogar wieder kleiner, und aus dem Motor wird ein Heizofen.

Berechnet man die Lage des O-Punktes, dann erhält man ein etwas überraschendes Ergebnis. Die zugehörige Drehzahl n_{OP} ist unabhängig von allen anderen Motordaten und gilt grundsätzlich für alle Motoren! Sie liegt stets bei 5/8 = 62,5% der Leerlaufdrehzahl.

$$n_{OP} = 0.625 \cdot n_0$$

Die Drehzahl n_{OP} ist die niedrigste Drehzahl, bei der ein Motor von "Leistungsbewußten" noch sinnvoll zu betreiben ist. Bei Hochleistungsmotoren kann es vorkommen, daß bei n_{OP} der Strom immer noch höher als der zulässige Maximalstrom ist; in diesem Fall kann der Motor nur kurzzeitig (einige Sekunden) bei dieser Drehzahl betrieben werden.

Der gesamte nutzbare Drehzahlbereich

Das letzte Bild zeigt nochmal den nutzbaren Drehzahlbereich im Zusammenhang.

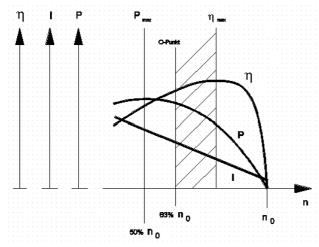


Abbildung 12: Eta vs n/n0

Nur in dem schraffierten Bereich zwischen den Drehzahlen des O-Punktes und des besten Wirkungsgrads ist der Motor sinnvoll zu betreiben. Wenn die Motorparameter k_e , k_L und R sowie die Betriebsspannung bekannt sind, können mit den angegebenen Formeln diese Drehzahlen, die zugehörigen Ströme usw. berechnet werden.

$$\eta = \frac{K_M \cdot \frac{U}{R} \cdot \omega - \left(\frac{K_M^2}{R} + K_L\right) \cdot \omega^2}{U \cdot \left[\frac{U}{R} - \frac{K_M}{R} \cdot \omega\right]}$$

Rotierende Massen und Bremsen (gear&brake)

Die Dynamik aller drehenden Teile des Fahrzeugs ist charakterisiert durch ein zusammenfassendes Trägheitsmoment J sowie von verschiedenen Verlusten M_V

$$J \cdot \frac{d\omega(t)}{dt} = M_b - \sum M_V$$

Regler

Der Umrichter / Leistungssteller wird als

$$P_{V_{rot}} = \sum M_V \cdot \omega = k_1 \cdot \omega^1 + k_2 \cdot \omega^2 + k_3 \cdot \omega^3 + \dots$$

Batterie Management System

In diesem Falle

Batterie

Die Batterie wird durch eine gesteuerte Spannungsquelle mit Innenwiderstand und zwei RC Glieder (für die Phänomene des Doppelkondensators und der Diffusion) abgebildet.

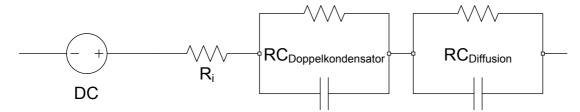


Abbildung 13 Ersatzschaltbild Batterie (Anon n.d.)(Anon n.d.)

M_T Antriebsmomente am Rad

$$P_{T} = \left(M_{el} - J\frac{d\omega(t)}{dt} - \sum M_{V}\right) \cdot \omega(t)$$

$$P_{V_{rot}} = \sum M_{V} \cdot \omega = k_{1} \cdot \omega^{1} + k_{2} \cdot \omega^{2} + k_{3} \cdot \omega^{3} + \dots$$

$$(11)$$

mit:

k1 Bremsen, Lagerreibung, Hystereseverluste in Fe, ...

k2 Wirbelstromverluste in Fe, Cu, ...

k3 Ventilationsverluste

mit k1>>k2,k3 wird

$$P_{V_{rot}} = k_1 \cdot \omega$$

Vereinfachungen

Es kann angenommen werden, dass die Fahrdynamik nicht wesentlich vom horizontalen Fahrbahnverlauf abhängt, d.h. dass Kurvenfahrten den Energieverbrauch nicht verändern. Daher kann man sich die projizierte Bahn auf eine Gerade gestreckt vorstellen.

$$ds = \sqrt{dx^2 + dy^2 + dz^2}$$

$$ds = \sqrt{dl^2 + dz^2}$$
(7)

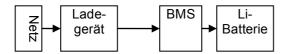
Die Koten der Bahn bleiben erhalten

Identifizierte Grössen

Motorverluste

$$P_{mot}(t) = \frac{r}{K^2} \cdot \left[\alpha \cdot v(t)^2 + \mu \cdot F_L(t) + m_v \frac{d}{dt} v(t) \right]$$
 (9)

Reibungsverluste


$$P_{v}(t) = v(t) \cdot \left[\alpha \cdot v(t)^{2} + \mu \cdot F_{I}(t)\right] \tag{10}$$

Leistungsrückgewinn aus Rekuperation

$$P_r(t) = \min \begin{cases} m_v \frac{d}{dt} v(t) \cdot v(t) \\ \frac{v(t)^2 \cdot K^2}{4 \cdot r} \end{cases}$$
 (11)

Modell der Ladeeinheit

Die Ladung der Batterie wird massgeblich mit Energie aus dem Netz erhalten. Dies geschieht mit einem Ladegerät mit einem leistungsabhängigen Wirkungsgrad $\eta(P)$, $0 < \eta < 1$

$$E_{L+} = \int_{t} P_L(t) \cdot \eta(P) \tag{6}$$

Analytische Lösungen

The reason why cr have a solution is due to the homogenous nature of the modeling equation. Homogenous polynomials have the characteristics of having non trivial solution. Take for example the homogenous polynomial x + y = 0. You would see that x = 1 and y = -1 is a solution so is x = 2 and y = -2. Actually a scale multiple of x = 1 and y = -1 can be a solution to that polynomial.

So in our case, we find that after solving it algebraically, we obtain the equation $(m_v, c_areo, m_v^*c_r, eta) = k^*v_4 = k^*(v_4,1, v_4,2, v_4,3, v_4,4)$. You would see that m_v, a_cero and eta would be a scale multiple of the elements of v_4 by a constant k and k is arbitrary. However if you divide $m_v^*c_r$ by m_v , that is $v_4,3$ by $v_4,1$, you would see that you will get an absolute value of c_r as the k cancelled off due to the division.

$$m_v \cdot \dot{v}(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$
 (1)

The equation of motion for the electric motorcycle as described by Equation Equ (1) can be solved analytically as homogenous polynomials in parameters m_v , C_{aero} , and η . This means that if (m_v, C_{aero}, η) is a solution to Equation (1), then $k \cdot (m_v, C_{aero}, \eta)$ is a solution as well, where $k \in \Re$. This means that of all the four unknown parameters, we can only obtain a unique solution for the rolling resistance coefficient c_r analytically. To de-homogenize Equation (1), additional measurement data is required. An example would be to measure the vehicle mass m_v to determine the k value.

Die Bewegungsgleichung (2) des e-Motorrads kann analytisch als homogene Polynome mit den Parametern mv, Caero, and η gelöst werden. Das bedeutet dass falls (m_v, C_{aero}, η) eine Lösung von (2) ist sind alle $k \cdot (m_v, C_{aero}, \eta)$ mit $k \in \mathbb{R}$ ebenfalls Lösungen. Das bedeutet, dass wir von allen vier unbekannten Parametern nur für den Rollreibungswiderstands-koeffizienten eine eindeutige analytische Lösung findet. Um (2) zu de-homogenisieren sind zusätzliche Messdaten nötig zB könnte die Fahrzeugnasse gemessen werden um daraus k zu bestimmen.

1 a homogeneous polynomial (or algebraic form, or simply form) is a polynomial whose monomials with nonzero coefficients all have the same total degree

Um das System nach den unbekannten Parametern aufzulösen schreiben wir (2)-(6) in Normalform

$$h_{\theta}(x) = x_0 + x_1\theta_1 + x_2\theta_2 + x_3\theta_3 + x_4\theta_4 \tag{7}$$

wobei die Monome θ_i die unbekannten Parameter der Form:

$$\theta_1 = m_{v}$$

$$\theta_2 = C_{aero},$$

$$\theta_3 = m_{\nu}c_{\nu},$$
(8)

$$\theta_4 = \eta$$
,

sind und die Koeffizienten x_i Funktionen der gemessenen Datasets $(v, \dot{v}, \alpha, P_{el})$

$$x_0 = 0$$

$$x_1 = \Re v + g \cdot v \cdot \sin(\alpha)$$
,

$$x_2 = v^3, (9)$$

$$x_3 = g \cdot v \cdot \cos(\alpha)$$
,

$$x_4 = -P_{el}$$

Angenommen wir hätten m > 4 Datasets gesammelt, dann hätten wir folgendes Gleichungssystem:

$$h_{\theta}\big(\vec{x}^{(1)}\big) = 0$$

$$h_{\theta}(\vec{x}^{(2)}) = 0$$

:

$$h_{\theta}(\vec{x}^{(m)}) = 0$$

The normal equation method strives to minimize the cost function in Equation 11 which is a normalized way of re-writing Equation 6 (Manocha & Krishnan 1996).

$$J(\theta_0, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
 (11)

for i = 1,..., m and in our case $y^{(i)} = 0$

The solution to Equation (11) can be solved using singular value decomposition. We first rewrite the system of equations (Equation ?) in the matrix form

$$[X]\theta = 0. (12)$$

Now pre-multiply Equation (9) by the transpose of the design matrix [X] to obtain

$$[X]^{T}[X]\vec{\theta} = [A]\vec{\theta} = \vec{0}. \tag{13}$$

Next, decompose the matrix [A] using singular value decomposition to obtain

$$[A] = [U][\Sigma][V]. \tag{14}$$

[U] and [V] are 4 x 4 orthogonal matrices, and $[\Sigma]$ is a 4 x 4 diagonal matrix of the form $[\Sigma] = diag(\sigma_1, \cdots, \sigma_4)$ with $\sigma_1 \ge \cdots \ge \sigma_4 \ge 0$. The $\sigma_{i'}$'s are called the singular values and columns of [U] and [V], denoted as ui's and vi's are known as the left and right singular vectors respectively.

The solution to the Equation (11) turns out to be the right singular value of [A] that corresponds to the smallest singular value. Therefore, we can solve for the four parameters using

The result of this analytical solution method is that a unique solution may only be obtained for the rolling resistance coefficient or due to the physics of the problem. The other three parameters are linearly dependent on one another and hence multiple least-cost solutions will always exist. A unique solution can be obtained should one parameter be fixed using a simplifying assumption.

Bibliografie

Anon, fahrdynamik_merkblaetter.pdf. Available at: http://www.uni-due.de/imperia/md/content/mechatronik/fahrdynamik_merkblaetter.pdf [Accessed February 27, 2010a].

Anon, projekt-battery-model-andre.pdf. Available at: http://www.mdt.tu-berlin.de/fileadmin/fg184/Lehre/Projekte/projekt-battery-model-andre.pdf [Accessed February 14, 2010b].

Anon, Regelungstechnik - RN-Wissen. Available at: http://www.rn-wissen.de/index.php/Regelungstechnik [Accessed February 13, 2010c].

Bicker, M., 2011. ScooterAnalyst. Diplomarbeit. ZBW St.Gallen.

C4, 2013. C4 Max the ultimate tracking smartbox for CANbus and J1708 - Mobile Devices. Available at: http://www.mobile-devices.com/our-products/c4-max-smartbox/ [Accessed September 9, 2013].

CANUDAS-DE-WIT Carlos et al., 2003. *Dynamic friction models for road/tire longitudinal interaction*, Colchester, ROYAUME-UNI: Taylor & Dynamic friction models for road/tire longitudinal interaction.

Cossalter, V., Motorcycle Dynamics,

Creola, M., 2011. Simulation einer Elektromotorradfahrt: Modellbildung und Implementierung in Android. Bachelorarbeit im Fach Informatik. Universität Zürich, Institut für Informatik.

H4, 2013. Mobile Devices H4, the multi-purpose I/O hub for CANbus tracking - Mobile Devices. Available at: http://www.mobile-devices.com/our-products/h4-hub/ [Accessed September 9, 2013].

Jaggi, D., 2011. ktipp.ch - Beitrag Detail - Motorraeder unter Strom. *Themen Tests Service Forum Abonnemente Buch-Shop Hilfe Über uns Motorräder unter Strom.* Available at: http://www.ktipp.ch/themen/beitrag/1058526/Motorraeder unter Strom [Accessed May 10, 2011].

Manocha, D. & Krishnan, S., 1996. Solving Algebraic Systems using Matrix Computations. *ACM SIG-SAM Bulletin*, 30(4).

MaxQData, 2013. MaxQData. Available at: http://www.maxqdata.com/index.html [Accessed May 7, 2011].

R. Widmer, M. Gauch & P. Schlienger, 2009. Developing a simple test method to compare the mileage of e-scooters. In *Proceedings of the EVS24*. EVS24. Stavanger, Norway.

Stevens, J.W. & Corey, G.P., 1996. A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design. In , *Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference*, 1996. , Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 1996. pp. 1485–1488.

Wilhelm, E. et al., 2012. Electric Vehicle Parameter Identification. In EVS26. Los Angeles, p. 10.

Wilhelm, E. et al., 2011. Parameteridentifikation E-Sscooters,

Wilhelm, E. & Bornatico, R., 2012. Schlussbericht zur Begleituntersuchung 2-/3-Rad-Fahrzeugen. AP 3-5: Energieverbrauch und Fahrprofil, VirVe.

how to use the Equation Editor in Word http://ist.uwaterloo.ca/ec/equations/equation.html

Anhang zu Kapitel 6.2.2

Zusammensetzung eines Velos (ohne Trethilfe)

#Bicycle, at regional storage, cut-off/RER/I U	1 p	Europe
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
		(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss,
Chromium steel 18/8, at plant/RER U	1.59 kg	original value 1.59
		(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss,
Steel, low-alloyed, at plant/RER U	4.9025 kg	original value 4.9025
Synthetic rubber, at plant/RER U	0.5625 kg	(2,1,1,1,1,3); Literature, Schwalbe
Polyethylene, HDPE, granulate, at plant/RER U	1.9575 kg	(2,1,1,1,1,3); Literature, Shimano/Selle Italia
Polyurethane, flexible foam, at plant/RER U	0.03 kg	(2,1,1,1,1,3); Literature, Selle Italia
Aluminium, production mix, at plant/RER U	7.5325 kg	(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss
Section bar extrusion, aluminium/RER U	3.7663 kg	(4,1,1,4,3); Assumption for pipe drawing
Wire drawing, steel/RER U	0.3375 kg	(4,1,1,4,3); Assumption
Turning, chromium steel, conventional, average/RER U	0.159 kg	(4,1,1,4,3); Assumption
Injection moulding/RER U	1.9575 kg	(4,1,1,4,3); Assumption
		(4,1,1,1,4,3); Assumption: pipe diameter: 4cm> 0.125 m per joint, 6 joints
Welding, arc, aluminium/RER U	0.75 m	per bike
Powder coating, aluminium sheet/RER U	0.35 m2	(4,1,1,4,3); Assumption: pipe diamter: 4cm, pipe length: 3m
Natural gas, burned in industrial furnace >100kW/RER U	14.295 MJ	(4.4.2.1.4.4); Extrapolation from passenger car manufacture; weight ratio
•		(4,4,2,1,4,4); Extrapolation from passenger car manufacture using weight
Electricity, medium voltage, at grid/CN U	6.8902 kWh	ratio, thereof 25% (4,4,2,1,4,4); Extrapolation from passenger car manufacture using weight
Light fuel oil, burned in industrial furnace 1MW, non-modulating/RER U	0.20284 MJ	ratio, thereof 25%
	0.20201 1110	(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 1488 liters waste
Tap water, at user/RER U	0.744 kg	water for all production phases (incl. Battery manufacturing> 50%)
Transport, transoceanic freight ship/OCE U	221 tkm	(4,5,na,na,na,na); Assumption for Asia> Europe: 13000km
Transport various and in significantly 202 0	22. 00	(1,0,114,114,114,1,16041111101110111011101111111111
Transport, lorry >16t, fleet average/RER U	17 tkm	(4,5,na,na,na,na); Assumption Rotterdam/Genoa> assembly site: 1000km
Road vehicle plant/RER/I U	9.3693E-10 p	(2,1,1,1,1,3); Extrapolation for bicycle plant 25% of weight ratio
Emissions to air		
Name	Sub-compartment Amount	Comment
Heat, waste	24.805 MJ	(2,4,1,1,1,5);
Known outputs to technosphere. Waste and emissions to treatment		
Name	Amount Unit	Comment
		(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 1488 liters waste
Treatment, sewage, to wastewater treatment, class 3/CH U	0.000744 m3	water for all production phases (incl. Battery manufacturing> 50%)
		(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 4.5 kg solid waste
Disposal, municipal solid waste, 22.9% water, to municipal incineration/CH	U 4.5 kg	per bicycle

Zusammensetzung eines E-Velos

#Electric Bicycle, at regional storage, cut-off/RER/I U	1 p	Europe
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
		(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss,
Chromium steel 18/8, at plant/RER U	1.59 kg	original value 1.59
		(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss,
Steel, low-alloyed, at plant/RER U	4.9025 kg	original value 4.9025
Synthetic rubber, at plant/RER U	0.5625 kg	(2,1,1,1,1,3); Literature, Schwalbe
Polyethylene, HDPE, granulate, at plant/RER U	1.9575 kg	(2,1,1,1,1,3); Literature, Shimano/Selle Italia
Polyurethane, flexible foam, at plant/RER U	0.03 kg	(2,1,1,1,1,3); Literature, Selle Italia
Aluminium, production mix, at plant/RER U	7.5325 kg	(2,1,1,1,1,3); Factsheets Bicycle parts manufacturere: Shimano, DT Swiss
Section bar extrusion, aluminium/RER U	3.7663 kg	(4,1,1,4,3); Assumption for pipe drawing
Wire drawing, steel/RER U	0.3375 kg	(4,1,1,4,3); Assumption
Turning, chromium steel, conventional, average/RER U	0.159 kg	(4,1,1,4,3); Assumption
Injection moulding/RER U	1.9575 kg	(4,1,1,4,3); Assumption
		(4,1,1,4,3); Assumption: pipe diameter: 4cm> 0.125 m per joint, 6 joints
Welding, arc, aluminium/RER U	0.75 m	per bike
Powder coating, aluminium sheet/RER U	0.35 m2	(4,1,1,4,3); Assumption: pipe diamter: 4cm, pipe length: 3m
#Electric motor for eBike, 0.5kW, cut-off	1 p	
#Controller, electric bicycle, cut-off	1 p	
Lithium-ion battery 2009/RER U	2.6 kg	
#Charger for eBike, cut-off	1 p	
Natural gas, burned in industrial furnace >100kW/RER U	14.295 MJ	(4,4,2,1,4,4); Extrapolation from passenger car manufacture; weight ratio (4,4,2,1,4,4); Extrapolation from passenger car manufacture using weight
Electricity, medium voltage, at grid/CN U	6.8902 kWh	ratio, thereof 25%
,		(4,4,2,1,4,4); Extrapolation from passenger car manufacture using weight
Light fuel oil, burned in industrial furnace 1MW, non-modulating/F	0.20284 MJ	ratio, thereof 25%
		(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 1488 liters waste
Tap water, at user/RER U	0.744 kg	water for all production phases (incl. Battery manufacturing> 50%)
Transport, transoceanic freight ship/OCE U	295.165 tkm	(4,5,na,na,na,na); Assumption for Asia> Europe: 13000km
Transport, lorry >16t, fleet average/RER U	22.705 tkm	(4,5,na,na,na); Assumption Rotterdam/Genoa> assembly site: 1000km
Road vehicle plant/RER/I U	1.3227E-09 p	(2,1,1,1,3); Extrapolation for bicycle plant 25% of weight ratio
Emissions to air		
Name 5	ub-compartment Amou	int Max
Heat, waste	24.805 MJ	
Known outputs to technosphere. Waste and emissions to treatmen	t	
Name	Amount Unit	Comment
Treatment, sewage, to wastewater treatment, class 3/CH U	0.000744 m3	(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 1488 liters waste water for all production phases (incl. Battery manufacturing> 50%)
Disposal, municipal solid waste, 22.9% water, to municipal incine	4.5 kg	(2,3,1,1,1,4); Assumption based on: Cherry, C.R. 2009, 4.5 kg solid waste per bicycle

Zusammensetzung eines E-Scooters

#Electric scooter, at regional storage, cut-of	1 p	Europe
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Steel, low-alloyed, at plant/RER U	6.6245 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Reinforcing steel, at plant/RER U	44.55 kg	(4,3,1,1,3,5); 5% of passenger car
Sheet rolling, steel/RER U	27.05 kg	(4,3,1,1,3,5); 5% of passenger car
Section bar rolling, steel/RER U	13.584 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Wire drawing, copper/RER U	0.67584 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Copper, at regional storage/RER U	0.67584 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Chromium, at regional storage/RER U	0.16059 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Nickel, 99.5%, at plant/GLO U	0.09368 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Aluminium, production mix, at plant/RER U	15 kg	(4,3,2,3,4,3); 15 kg
Polyethylene, HDPE, granulate, at plant/RER U	15.3 kg	(4,3,1,1,3,5); 15% of passenger car
Polypropylene, granulate, at plant/RER U	7.35 kg	(4,3,1,1,3,5); 15% of passenger car
Polyvinylchloride, at regional storage/RER U	2.4 kg	(4,3,1,1,3,5); 15% of passenger car
Injection moulding/RER U	15.3 kg	(4,3,2,3,4,3); All HDPE
Synthetic rubber, at plant/RER U	2.9509 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Alkyd paint, white, 60% in solvent, at plant/RER U	•	(4,3,2,3,4,3); weight ratio scooter:passenger car
Zinc, primary, at regional storage/RER U	0.39413 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Natural gas, burned in industrial furnace >100kW/	•	(4,3,1,1,3,3); 50% of Environmental report Honda, 2008
		, , , , , , , , , , , , , , , , , , , ,
Electricity, medium voltage, at grid/JP U	18 kWh	(4,3,1,1,3,3); 50% of Environmental report Honda, 2008
Light fuel oil, burned in industrial furnace 1MW, no	4.02 MJ	(4,3,1,1,3,3); 50% of Environmental report Honda, 2008
Tap water, at user/RER U	215.46 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Ethylene, average, at plant/RER U	1.2379 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Lithium-ion battery 2009/RER U	32 kg	(1,2,1,1,3,3); Factsheet Vespino Sky Evolution 2009; Modified, new Li-Ion battery (1,2,1,1,3,3); Factsheet Vespino Sky Evolution 2009; Modified, based on Marcel Gauchs
#Electric motor for eScooter, 4kW, cut-off	1 p	Messungen. The controller model was developed as a unit (1p) for a bicycle motor and weighted 0.405 kg.
#Controller, electric scooter, cut-off	1 p	This is used as the logic base. The power part is modelled through 3 IGBTs
#Charger for eScooter, cut-off	1 p	
Transport, lorry >16t, fleet average/RER U	5.7761 tkm	(4,5,na,na,na,na); weight ratio scooter:passenger car
Transport, transoceanic freight ship/OCE U	1870.1 tkm	(4,5,na,na,na,na); Transport from Asia to Europe: 13000km
Transport, freight, rail/CH U	57.761 tkm	(4,5,na,na,na,na); weight ratio scooter:passenger car
Road vehicle plant/RER/I U	1.9472E-08 p	(4,3,2,3,4,3); weight ratio scooter:passenger car
(Insert line here)		
Known inputs from technosphere (electricity/heat)		
Name	Amount Unit	Comment
(Insert line here)	Sin Oin	
Outputs		
Outputs		
Emissions to air		
	Sub-compartment Amount	Comment
NMVOC, non-methane volatile organic compound		(4,3,2,3,4,3); weight ratio scooter:passenger car
Heat, waste	64.8 MJ	(4,3,2,3,4,3); weight ratio scooler:passenger car
(Insert line here)		
Emissions to water		
Name	Sub-compartment Amount	Comment
COD, Chemical Oxygen Demand	0.012914 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
BOD5, Biological Oxygen Demand	0.0017398 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car
Phosphate	0.000066914 kg	(4,3,2,3,4,3); weight ratio scooter:passenger car

Anhang zu Kapitel 6.2.3

Zusammensetzung eines E-Velo Motors <500W

Electric Motor Designation Sicycle Hub-Motor Sicycle Hub-Motor Sicycle Hub-Motor Sicycle Hub-Motor Sicycle Hub-Motor O.25 kW const. 7 km 36V Sicycle Hub-Motor O.25 kW const. 7 km 3 km											
Nm cont/max (air/watercooled) Nm cont/max (air/watercooled	Electric Motor					used in study		typical bicycle)		
Nm cont/max (air/watercooled) Volt range approx. total weight kg 2.7	Motor Designation							Bicycle Hub-	Motor		
Volt range approx. total weight Kg S2.7	kW_cont./max (air/waterco	oled)						0.25 kW cons	t.		
approx. total weight kg 2.7	Nm cont/max (air/watercoo	led)						? Nm			
Composition	Volt range							36V			
Composition	approx. total weight						kg		2.7		
Dynamo-Blech Steel, low-alloyed, at plant kg 10.0% 0.270 1.250 0.338 Cu										factor	amount
Cu copper, at regional storage kg 13.3% 0.359 1.250 0.449 Kunststoff Polyphenylene sulfide, at plant/GLO U kg 1.1% 0.030 1.100 0.033 AI Aluminium, production mix, at plant/RER U kg 29.5% 0.797 1.250 0.996 Stahl steel, low-alloyed, at plant kg 41.4% 1.118 1.250 0.900 Messing Ms steel, low-alloyed, at plant kg 0.0% 0.000 1.250 0.000 Magnete Neodym-Eisen-Bor see below for composition kg 4.7% 0.127 1.100 0.140 TOTAL mount waste ecoinvent composition kg 1.3% 0.034 1.100 0.140 Nd 144.24 2 288.48 26.68% neodymium oxide, at plant kg 1.3% 0.034 1.100 0.037 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.011 B <td>Composition</td> <td></td> <td></td> <td></td> <td></td> <td>ecoinvent composition</td> <td>Unit</td> <td>%</td> <td>kg</td> <td>waste</td> <td>ecoinvent</td>	Composition					ecoinvent composition	Unit	%	kg	waste	ecoinvent
Polyphenylene sulfide, at plant/GLO U kg 1.1% 0.030 1.100 0.033 Al	Dynamo-Blech					steel, low-alloyed, at plant	kg	10.0%	0.270	1.250	0.338
All Aluminium, production mix, at plant/RER U kg 29.5% 0.797 1.250 0.996	Cu					copper, at regional storage	kg	13.3%	0.359	1.250	0.449
Stahl	Kunststoff					Polyphenylene sulfide, at plant/GLO U	kg	1.1%	0.030	1.100	0.033
Messing Ms kg 0.0% 0.000 1.250 0.000 Magnete Neodym-Eisen-Bor see below for composition kg 4.7% 0.127 1.100 0.140 TOTAL kg 100.0% 2.7 3.352 Nd2Fe14B Neodymium r g/mol mol g wt% ecoinvent composition kg 100.0% 2.7 3.352 Nd2Fe14B Neodymium r g/mol g wt% ecoinvent composition kg 100.0% 2.7 3.352 Nd2Fe14B Neodymium r g/mol g/mol g wt% ecoinvent composition g kg 1.3% 0.034 1.100 0.037 0.037 1.00 0.037 1.00 0.034 1.100 0.037 1.00 0.101 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.100 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 0.001 0.001 0.001 0.001	Al					Aluminium, production mix, at plant/RER U		29.5%	0.797	1.250	0.996
Magnete Neodym-Eisen-Bor See below for composition Rg 4.7% 0.127 1.100 0.140	Stahl					steel, low-alloyed, at plant	kg	41.4%	1.118	1.250	1.397
See below for composition kg 4.7% 0.127 1.100 0.140	Messing Ms							0.0%	0.000	1.250	0.000
Nd2Fe₁4B Neodymium n g/mol mol g wt% ecoinvent composition % kg factor waste amount ecoinvent Nd 144.24 2 288.48 26.68% neodymium oxide, at plant kg 1.3% 0.034 1.100 0.037 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.101 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.001 1.100 0.001 Local Density: 7.4 - 7.5 g/cm3 1081.19 100.00% kg 4.7% 0.127 0.140 Energy for Production ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	Magnete Neodym-Eisen-	Bor				see below for composition		4.7%	0.127	1.100	0.140
Nd2 Fe 14B Neodymium n g/mol mol g wt% ecoinvent composition % kg waste ecoinvent Nd 144.24 2 288.48 26.68% neodymium oxide, at plant kg 1.3% 0.034 1.100 0.037 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.101 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.001 1.100 0.001 total 1081.19 100.00% kg 4.7% 0.127 0.140 Density: 7.4 - 7.5 g/cm3 Energy for Production Unit kg ecoinvent ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	TOTAL						kg	100.0%	2.7		3.352
Nd2 Fe 14B Neodymium n g/mol mol g wt% ecoinvent composition % kg waste ecoinvent Nd 144.24 2 288.48 26.68% neodymium oxide, at plant kg 1.3% 0.034 1.100 0.037 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.101 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.001 1.100 0.001 total 1 1081.19 100.00% kg 4.7% 0.127 0.140 Density: 7.4 - 7.5 g/cm3 Energy for Production Energy for Production ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889											
Nd										factor	amount
Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.101 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.001 1.100 0.001 total 1081.19 100.00% kg 4.7% 0.127 0.140 Density: 7.4 - 7.5 g/cm3 ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	Nd ₂ Fe ₁₄ B Neodymium n	g/mol	mol	g	wt%	ecoinvent composition		%	kg	waste	ecoinvent
Fe 55.85 14 781.9 72.32% ferrite, at plant kg 3.4% 0.092 1.100 0.101 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.001 1.100 0.001 total 1081.19 100.00% kg 4.7% 0.127 0.140 Density: 7.4 - 7.5 g/cm3 ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	Nd	144.24	2	288.48	26.68%	neodymium oxide, at plant	kg	1.3%	0.034	1.100	0.037
total 1081.19 100.00% kg 4.7% 0.127 0.140 Density: 7.4 - 7.5 g/cm3 Unit kg energy factor amount ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	Fe	55.85	14	781.9	72.32%	ferrite, at plant		3.4%	0.092	1.100	0.101
Density: 7.4 - 7.5 g/cm3 Energy for Production Electricity demand (Steel 4 kWh/kg) Electricity demand (Steel 4 kWh/kg) Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	В	10.81	1	10.81	1.00%	boron carbide, at plant	kg	0.0%	0.001	1.100	0.001
Energy for Production ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	total			1081.19	100.00%		kg	4.7%	0.127		0.140
Energy for Productionecoinvent compositionUnitkgenergyecoinventElectricity demand (Steel 4 kWh/kg)Electricity, medium voltage, production UCTE, a kWh1.3884.0005.551Electricity demand (Al+Cu+Ms 2.5 kWh/100km)Electricity, medium voltage, production UCTE, a kWh1.1562.5002.889	Density: 7.4 - 7.5 g/cm3										
Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 1.388 4.000 5.551 Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889										factor	amount
Electricity demand (Al+Cu+Ms 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 1.156 2.500 2.889	Energy for Production					ecoinvent composition	Unit		kg	energy	ecoinvent
	Electricity demand (Stee	I 4 kWh/kg)			Electricity, medium voltage, production UCTE, a	kWh		1.388	4.000	5.551
Heat demand (Steel, Al, Cu, Ms 7 MJ/kg) Heat, natural gas, at industrial furnace >100kW MJ 2.543 7.000 17.804	Electricity demand (AI+Cu+Ms 2.5 kWh/100km)		Electricity, medium voltage, production UCTE, a	akWh 1.156 2.500		2.500	2.889				
	Heat demand (Steel, Al,	Cu, Ms 7 M	J/kg)			Heat, natural gas, at industrial furnace >100kW.	MJ		2.543	7.000	17.804

Zusammensetzung eines E-Velo Motors <1000W

Electric Motor					used in study		typical bicycl			
Motor Designation							Moped Hub-	Motor 30	- 45 km/h	class
kW_cont./max (air/watercoo	oled)						1 kW const.			
Nm cont/max (air/watercoole	ed)						? Nm			
Volt range							48V			
approx. total weight						kg		6.54		
									factor	amount
Composition					ecoinvent composition	Unit	%	kg	waste	ecoinvent
Dynamo-Blech					steel, low-alloyed, at plant	kg	17.3%	1.132	1.250	1.415
Cu					copper, at regional storage	kg	16.2%	1.057	1.250	1.321
Kunststoff					Polyphenylene sulfide, at plant/GLO U	kg	0.0%	0.000	1.100	0.000
Al					Aluminium, production mix, at plant/RER U	kg	29.5%	1.929	1.250	2.412
Stahl					steel, low-alloyed, at plant	kg	31.8%	2.082	1.250	2.603
Messing Ms						kg	0.0%	0.000	1.250	0.000
Magnete Neodym-Eisen-B	Bor				see below for composition	kg	5.2%	0.340	1.100	0.374
TOTAL						kg	100.0%	6.54		8.124
								ĺ		
									factor	amount
Nd ₂ Fe ₁₄ B Neodymium m	g/mol	mol	g	wt%	ecoinvent composition		%	kg	waste	ecoinvent
Nd	144.24	2	288.48	26.68%	neodymium oxide, at plant	kg	1.4%	0.091	1.100	0.100
Fe	55.85	14	781.9	72.32%	ferrite, at plant	kg	3.8%	0.246	1.100	0.270
В	10.81	1	10.81	1.00%	boron carbide, at plant	kg	0.1%	0.003	1.100	0.004
total	ĺ		1081.19	100.00%		kg	5.2%	0.340		0.374
Density: 7.4 - 7.5 g/cm3										
									factor	amount
Energy for Production					ecoinvent composition	Unit		kg	energy	ecoinvent
Electricity demand (Steel	4 kWh/kg)				Electricity, medium voltage, production UCTE, a	kWh		3.214	4.000	12.856
Electricity demand (AI+Cu	ı+Ms 2.5 k\	Wh/100ki	m)		Electricity, medium voltage, production UCTE, a	kWh	İ	2.986	2.500	7.465
Heat demand (Steel, Al, C	Cu, Ms 7 M	J/kg)	•		Heat, natural gas, at industrial furnace >100kW/		i i	6.200	7.000	43.401
. , ,	•				• •					

Zusammensetzung eines E-Scooter Motors (< 80km/h und >100)

Electric Motor	used in study		typical scoot	er			typical motor	bike		
Motor Designation			Perm PMS	100			Perm PMS	120		
kW_cont./max (air/watercooled)			2.7 kW cons	t.			7 kW const.			
Nm cont/max (air/watercooled)			4.3 Nm				20 Nm			
Volt range			48V				72/96Volt			
approx. total weight		kg		5.8				12.3		
					factor	amount			factor	amount
	ecoinvent composition	Unit	%	kg	waste	ecoinvent		kg	waste	ecoinvent
Dynamo-Blech	steel, low-alloyed, at plant	kg	39.0%	2.262	1.250	2.828		5.289	1.250	6.611
Cu	copper, at regional storage	kg	14.0%	0.812	1.250	1.015		1.968	1.250	2.460
	Polyphenylene sulfide, at plant/GLO U	kg	3.0%	0.174	1.100	0.191	3.0%	0.369	1.100	0.406
Al	Aluminium, production mix, at plant/RER U	kg	33.0%	1.914	1.250	2.393		3.690	1.250	4.613
	steel, low-alloyed, at plant	kg	6.0%	0.348	1.250	0.435		0.492	1.250	0.615
Messing Ms		kg	0.0%	0.000	1.250	0.000		0.000	1.250	0.000
Magnete Neodym-Eisen-Bor	see below for composition	kg	5.0%	0.290	1.100	0.319	4.0%	0.492	1.100	0.541
TOTAL		kg	100.0%	5.8		7.180	100.0%	12.3		15.246
					factor	amount			factor	amount
Nd ₂ Fe ₁₄ B Neodymium m g/mol mol g wt%	ecoinvent composition		%	kg	waste	ecoinvent	%	kg	waste	ecoinvent
Nd 144.24 2 288.48 26.68%	neodymium oxide, at plant	kg	1.3%	0.077	1.100	0.085	1.1%	0.131	1.100	0.144
	ferrite, at plant	kg	3.6%	0.210	1.100	0.231		0.356	1.100	0.391
B 10.81 1 10.81 1.00%	boron carbide, at plant	kg	0.0%	0.003	1.100	0.003	0.0%	0.005	1.100	0.005
total 1081.19 100.00%		kg	5.0%	0.290		0.319	4.0%	0.492		0.541
Density: 7.4 - 7.5 g/cm3										
					factor	amount			factor	amount
Energy for Production	ecoinvent composition	Unit		kg	energy	ecoinvent		kg	energy	ecoinvent
Electricity demand (Steel 4 kWh/kg)	Electricity, medium voltage, production UCTE, a	kWh		2.610	4.000	10.440		5.781	4.000	23.124
Electricity demand (Al+Cu+Ms 2.5 kWh/100km)		kWh		2.726	2.500	6.815		5.658	2.500	14.145
Heat demand (Steel, Al, Cu, Ms 7 MJ/kg)	Heat, natural gas, at industrial furnace >100kW	MJ		5.336	7.000	37.352		11.439	7.000	80.073

Zusammensetzung eines E-PW Motors (>50kW)

RW_cont/max (air/watercooled) RW_cont/max (air/watercooled											
RW_cont./max (air/watercooled) Electric Motor					used in study		typical car				
Nm cont/max (air/watercooled) S5/223 Nm approx. 320V	Motor Designation							BRUSA HSN	16.17.12		
Volt range approx. total weight kg approx. 320V Composition ecoinvent composition Unit % kg factor amount waste ecoinvent Dynamo-Blech Fe steel, low-alloyed, at plant kg 50.0% 26.950 1.250 33.688 Kunststoff Polyphenylene sulfide, at plant/GLO U kg kg 0.9% 0.485 1.100 0.534 Al Aluminium, production mix, at plant/RER U steel, low-alloyed, at plant kg 19.1% 10.267 1.250 12.834 Stahl St steel, low-alloyed, at plant kg 19.9% 6.949 1.250 12.834 Messing Ms steel, low-alloyed, at plant kg 19.9% 6.949 1.250 0.324 Magnete Neodym-Eisen-Bor see below for composition kg 3.3% 1.800 1.100 1.980 TOTAL mol waste ecoinvent composition kg 0.9% 0.480 1.100 1.980 Nd 144.24 2 28.84 26.68% neodymium oxide, at plant kg 0.9% <td>kW_cont./max (air/watercoo</td> <td>led)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40/82 kW, 5</td> <td>5kW const</td> <td></td> <td></td>	kW_cont./max (air/watercoo	led)						40/82 kW, 5	5kW const		
approx. total weight Ectricity demand (Steel 4 kWh/kg) Electricity medium voltage, production UCTE, a kWh 17,417 2,550 43,686 damount steep.	Nm cont/max (air/watercoole	ed)						85/223 Nm			
Composition Dynamo-Blech Fe Steel, low-alloyed, at plant kg 50.0% 26.950 1.250 33.688	Volt range							approx. 320\	/		
Composition	approx. total weight						kg		53.86		
Dynamo-Blech Fe										factor	amount
Cu copper, at regional storage kg 13.3% 7.150 1.250 8.938 Kunststoff Polyphenylene sulfide, at plant/GLO U kg 0.9% 0.485 1.100 0.534 Al Aluminium, production mix, at plant/RER U kg 19.1% 10.267 1.250 12.834 Stahl St Stahl St Steel, low-alloyed, at plant kg 12.9% 6.949 1.250 8.686 Messing Ms Steel, low-alloyed, at plant kg 12.50 8.686 6.686 Messing Ms Steel, low-alloyed, at plant kg 1.250 8.686 6.686 Messing Ms Steel, low-alloyed, at plant kg 1.250 8.686 6.686 6.942 Magnete Neodymium Eisen-Bor Steel, low-alloyed, at plant kg 1.000 53.86 6.6982 Md2Fe14B Neodymium m g/mol mol g wt% ecoinvent composition kg 0.9% 0.480 1.100 0.528 Fe 55.85 14 781.9 772.32% fe	Composition					ecoinvent composition	Unit	%	kg	waste	ecoinvent
Polyphenylene sulfide, at plant/GLO U Rg 0.9% 0.485 1.100 0.534	Dynamo-Blech Fe					steel, low-alloyed, at plant	kg	50.0%	26.950	1.250	33.688
Aluminium, production mix, at plant/RER U kg 19.1% 10.267 1.250 12.834	Cu					copper, at regional storage	kg	13.3%	7.150	1.250	8.938
Stahl St Stahl St Steel, low-alloyed, at plant Kg 12.9% 6.949 1.250 8.686	Kunststoff					Polyphenylene sulfide, at plant/GLO U	kg	0.9%	0.485	1.100	0.534
Messing Ms	Al					Aluminium, production mix, at plant/RER U	kg	19.1%	10.267	1.250	12.834
Magnete Neodym-Eisen-Bor See below for composition kg 3.3% 1.800 1.100 1.980	Stahl St					steel, low-alloyed, at plant	kg	12.9%	6.949	1.250	8.686
Nd2Fe14B Neodymium rr g/mol mol g wt% ecoinvent composition waste ecoinvent ecoinvent mol mol mol g wt% ecoinvent mol mol mol mol g wt% ecoinvent mol g wt% ecoinvent mol	Messing Ms							0.5%	0.259	1.250	0.324
Nd2Fe14B Neodymium n g/mol mol g wt% ecoinvent composition % kg waste ecoinvent ecoinvent Nd 144.24 2 288.48 26.68% neodymium oxide, at plant kg 0.9% 0.480 1.100 0.528 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 2.4% 1.302 1.100 1.432 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.018 1.100 0.020 total 1081.19 100.00% kg 3.3% 1.800 1.980 Density: 7.4 - 7.5 g/cm3 ecoinvent composition Unit kg ecoinvent ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, at kWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, at kWh 17.417 2.500 43.543	Magnete Neodym-Eisen-B	or				see below for composition	kg	3.3%	1.800	1.100	1.980
Nd₂ Fe₁₄B Neodymium n g/mol mol g wt% ecoinvent composition % kg waste ecoinvent node, at plant kg 0.9% 0.480 1.100 0.528 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 2.4% 1.302 1.100 1.432 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.018 1.100 0.020 total 1081.19 100.00% kg 3.3% 1.800 1.980 Density: 7.4 - 7.5 g/cm3 ecoinvent composition Unit kg energy energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, at kWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, at kWh 17.417 2.500 43.543	TOTAL						kg	100.0%	53.86		66.982
Nd₂ Fe₁₄B Neodymium n g/mol mol g wt% ecoinvent composition % kg waste ecoinvent node, at plant kg 0.9% 0.480 1.100 0.528 Fe 55.85 14 781.9 72.32% ferrite, at plant kg 2.4% 1.302 1.100 1.432 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.018 1.100 0.020 total 1081.19 100.00% kg 3.3% 1.800 1.980 Density: 7.4 - 7.5 g/cm3 ecoinvent composition Unit kg energy energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, at kWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, at kWh 17.417 2.500 43.543											
Nd										factor	amount
Fe 55.85 14 781.9 72.32% ferrite, at plant kg 2.4% 1.302 1.100 1.432 B 10.81 1 10.81 1.00% boron carbide, at plant kg 0.0% 0.018 1.100 0.020 total 1081.19 100.00% kg 3.3% 1.800 1.980 Density: 7.4 - 7.5 g/cm3 2 4	Nd₂Fe ₁₄ B Neodymium m	g/mol	mol	g	wt%	ecoinvent composition		%	kg	waste	ecoinvent
B	Nd	144.24	2	288.48	26.68%	neodymium oxide, at plant	kg	0.9%	0.480	1.100	0.528
total 1081.19 100.00% kg 3.3% 1.800 1.980 Density: 7.4 - 7.5 g/cm3 Energy for Production ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 17.417 2.500 43.543	Fe	55.85	14	781.9	72.32%	ferrite, at plant	kg	2.4%	1.302	1.100	1.432
Density: 7.4 - 7.5 g/cm3 Energy for Production Electricity demand (Steel 4 kWh/kg) Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh Electricity, medium voltage, production UCTE, a kWh 17.417 2.500 43.543	В	10.81	1	10.81	1.00%	boron carbide, at plant	kg	0.0%	0.018	1.100	0.020
Energy for Production ecoinvent composition Unit kg energy ecoinvent Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, a kWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 17.417 2.500 43.543	total			1081.19	100.00%		kg	3.3%	1.800		1.980
Energy for Productionecoinvent compositionUnitkgenergyecoinventElectricity demand (Steel 4 kWh/kg)Electricity, medium voltage, production UCTE, a kWh33.8994.000135.596Electricity demand (Al+Cu 2.5 kWh/100km)Electricity, medium voltage, production UCTE, a kWh17.4172.50043.543	Density: 7.4 - 7.5 g/cm3										
Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, akWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, akWh 17.417 2.500 43.543										factor	amount
Electricity demand (Steel 4 kWh/kg) Electricity, medium voltage, production UCTE, akWh 33.899 4.000 135.596 Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, akWh 17.417 2.500 43.543	Energy for Production					ecoinvent composition	Unit		kg	energy	ecoinvent
Electricity demand (Al+Cu 2.5 kWh/100km) Electricity, medium voltage, production UCTE, a kWh 17.417 2.500 43.543	Electricity demand (Steel 4 kWh/kg)			Electricity, medium voltage, production UCTE, a	kWh			Ο,	135.596		
						1	17.417	2.500	43.543		
Heat demand (Steel, Al, Cu 7 MJ/kg) Heat, natural gas, at industrial furnace > 100kW MJ 51.575 7.000 361.025	Heat demand (Steel, Al, C	u 7 MJ/kg)			Heat, natural gas, at industrial furnace >100kW	MJ		51.575	7.000	361.025

Zusammensetzung von Neodym-Eisen-Bor Permanentmagneten

Herstellung der Neodym-Eisen-Bor Legierung

NdFeB Alloy	1 kg	Nd2 Fe14 B1 alloy. Mix of about 72% (14mol) iron, 27% (2mol) Rare Earth and 1% (1mol) boron. Percentages may vary slightly (e.g. 66% Fe, 29% Nd, 3% Dy, 1% B). Substitutability of the Rare Earths within a NdFeB magnet: common metals, such as cobalt, niobium, aluminium and gallium can be added to fine-tune the properties of the magnets. Dysprosium in place of neodymium improves coercivity (resistance of a ferromagnetic material to becoming demagnetized) and therefore temperature tolerance. For a 200°C temp. tolerance, NdFeB magnets may have 10wt% addition of dysprosium. If supply were no object, terbium would probably be the additive of choice, as it has a stronger influence on coercivity with a lesser impact on remanence (magnetization left after an external magnetic field is removed). Praseodymium improves the corrosive resistance of the magnet alloys. To some extent it can directly substitute for neodymium, without too severe an impact on properties.
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Neodymium oxide, at plant/CN U	280 g	2 mol Nd
Pig iron, at plant/GLO U	651 g	14 mol Fe
Boric oxide, at plant/GLO U	29 g	1 mol B
Lanthanum oxide, at plant/CN U	14 g	Proxy for Dysprosium oxide (temp.resistance)
Lanthanum oxide, at plant/CN U	16 g	Proxy for Praeseodymium oxide (corrosion resistance)
Aluminium oxide, at plant/RER U	10 g	Substitute for Nd

Produktion des fertigen Neodym-Eisen-Bor Magneten aus der Legierung

Nation Downson and Manager	4 1	New desires Manusch and and adverted New desires land Day Alley Day desires to the desires and effects
NdFeB Permanent Magnet	1 kg	Neodymium Magnet, produced out of NeodymiumIronBor Alloy. Production technologies and efforts
		(electric and thermal energy) have been considered (grinding, sintering, magnetization, coating).
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
NdFeB Alloy	1 kg	Input Material to produce the final magnet
Electricity, high voltage, production RER, at grid/RER U	1.458 MJ	Melting heat
Electricity, high voltage, production RER, at grid/RER U	1.166 MJ	Sintering heat 1
Electricity, high voltage, production RER, at grid/RER U	0.95 MJ	Sintering heat 2
Electricity, high voltage, production RER, at grid/RER U	0.1 kWh	Melting furnace vacuum production
Electricity, high voltage, production RER, at grid/RER U	0.01 kWh	Strip caster consumption
Electricity, high voltage, production RER, at grid/RER U	0.04 kWh	Crushing and pulverizing consumption
Electricity, high voltage, production RER, at grid/RER U	0.3 kWh	compacting
Electricity, high voltage, production RER, at grid/RER U	0.01 kWh	grinding and slicing
Electricity, high voltage, production RER, at grid/RER U	0.01 kWh	coating
Electricity, high voltage, production RER, at grid/RER U	0.02 kWh	solenoid charging
Water for PUR A	120 kg	cooling water for melting furnace
Water for PUR A	120 kg	cooling water for sintering 1
Water for PUR A	120 kg	cooling water for sintering 2

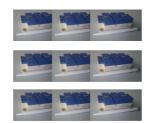
Anhang zu Kapitel 6.2.4

Zusammensetzung eines Controllers für E-Velos

#Controller, electric bicycle, cut-off	1 p	Ebike controller, approx. 500W, example Golden Motor, weight 345g (most Al, 90g electronics):
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Aluminium, production mix, at plant/RER U	0.255 kg	Case
Aluminium product manufacturing, average metal working/RER U	0.255 kg	
Printed wiring board, through-hole, lead-free surface, at plant/GLO U	0.00642 m2	
Mounting, through-hole technology, Pb-free solder/GLO U	0.00642 m2	
Capacitor, electrolyte type, < 2cm height, at plant/GLO U	0.01475 kg	
Production efforts, capacitors/GLO U	0.01475 kg	
Capacitor, film, through-hole mounting, at plant/GLO U	0.0014 kg	
Capacitor, SMD type, surface-mounting, at plant/GLO U	0.00172 kg	
Production efforts, capacitors/GLO U	0.00312 kg	
Cable, ribbon cable, 20-pin, with plugs, at plant/GLO U	0.06 kg	
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.00262 kg	
Diode, glass-, through-hole mounting, at plant/GLO U	0.000576 kg	
Production efforts, diodes/GLO U	0.000576 kg	
Resistor, wirewound, through-hole mounting, at plant/GLO U	0.003 kg	
Production efforts, resistors/GLO U	0.003 kg	
Resistor, SMD type, surface mounting, at plant/GLO U	0.000686 kg	
Production efforts, resistors/GLO U	0.000686 kg	
Inductor, ring core choke type, at plant/GLO U	0.002 kg	
Production efforts, inductor/GLO U	0.002 kg	
Transistor, wired, big size, through-hole mounting, at plant/GLO U	0.02 kg	
Transistor, wired, small size, through-hole mounting, at plant/GLO U	0.000818 kg	
Transistor, SMD type, surface mounting, at plant/GLO U	0.005 kg	
Production efforts, transistors/GLO U	0.025818 kg	
Copper, at regional storage/RER U	0.001287 kg	Large metallic pins
Transformer, low voltage use, at plant/GLO U	0.01 kg	
Copper, at regional storage/RER U	0.0019668 kg	
Polyethylene, HDPE, granulate, at plant/RER U	0.005 kg	Plastic plugs
Synthetic rubber, at plant/RER U	0.002 kg	Circuit protection
Transport, transoceanic freight ship/OCE U	3.094 tkm	
Transport, lorry >16t, fleet average/RER U	0.238 tkm	
Known outputs to technosphere. Waste and emissions to treatment		
Name	Amount Unit	
#Disposal, Controller eBike, Golden Motor, to WEEE treatment, cut-off/CH U	0.405 kg	

Zusammensetzung eines E-Scooter Wechselrichters (<10kW)

der Leistungsbereich bis ca. 10 kW wird durch den Einsatz 3 IGBT-Leistungshalbleiter angenähert.



#Controller, electric scooter, cut-off	1 p	Controller for eScooters, around 1.4kg, capable of about 15kW. Virtually assembled: Advanced controlling logics (from real eBike controller) coupled with power electronics capable of up to100V 300A_peak. (3 real Power FETs/IGBTs).
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Aluminium, production mix, at plant/RER U	0.255*2 kg	Case 2 x heavier than standard
Aluminium product manufacturing, average metal working/RER U	0.255*2 kg	
Printed wiring board, through-hole, lead-free surface, at plant/GLO U	0.00642 m2	
Mounting, through-hole technology, Pb-free solder/GLO U	0.00642 m2	
Capacitor, electrolyte type, > 2cm height, at plant/GLO U	0.1475*2 kg	2 x more of the big capacitors
Production efforts, capacitors/GLO U	0.1475*2 kg	
Capacitor, film, through-hole mounting, at plant/GLO U	0.0014 kg	
Capacitor, SMD type, surface-mounting, at plant/GLO U	0.00172 kg	
Production efforts, capacitors/GLO U	0.00312 kg	
Cable, ribbon cable, 20-pin, with plugs, at plant/GLO U	0.06 kg	
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.00262 kg	
Diode, glass-, through-hole mounting, at plant/GLO U	0.000576 kg	
Production efforts, diodes/GLO U	0.000576 kg	
Resistor, wirewound, through-hole mounting, at plant/GLO U	0.003 kg	
Production efforts, resistors/GLO U	0.003 kg	
Resistor, SMD type, surface mounting, at plant/GLO U	0.000686 kg	
Production efforts, resistors/GLO U	0.000686 kg	
Inductor, ring core choke type, at plant/GLO U	0.002 kg	
Production efforts, inductor/GLO U	0.002 kg	
Transistor, wired, small size, through-hole mounting, at plant/GLO U	0.000818 kg	
Transistor, SMD type, surface mounting, at plant/GLO U	0.005 kg	
Production efforts, transistors/GLO U	0.025818 kg	
Copper, at regional storage/RER U	0.001287 kg	Large mettalic pins
Transformer, low voltage use, at plant/GLO U	0.01 kg	
Copper, at regional storage/RER U	0.0019668 kg	
Polyethylene, HDPE, granulate, at plant/RER U	0.005 kg	Plastic plugs
Synthetic rubber, at plant/RER U	0.002 kg	Circuit protection
#IGBT, F300, cut-off	3 p	Power FETs resp. IGBTs
Transport, transoceanic freight ship/OCE U	3.094 tkm	
Transport, lorry >16t, fleet average/RER U	0.238 tkm	
Known outputs to technosphere. Waste and emissions to treatment		
Name	Amount Unit	
#Disposal, Controller eScooter, Golden Motor, to WEEE treatment, cut-off/CH U	1.27 kg	

Zusammensetzung eines E-Scooter Wechselrichters (<30kW)

der Leistungsbereich bis ca. 30 kW wird durch den Einsatz von 9 IGBT-Leistungshalbleiter angenähert.

#Controller, small electric car, cut-off	1 p	Controller for a small eCar, around 4 kg, capable of about 30kW. Virtually assembled: Advanced controlling logics (from real eBike controller) coupled with power electronics capable of up to 400V 300A_peak. (3x3 real IGBTs).
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Aluminium, production mix, at plant/RER U	0.255*5 = 1.27 kg	Case 5 x heavier than standard
Aluminium product manufacturing, average metal working/RER U	0.255*5 = 1.27 kg	
Printed wiring board, through-hole, lead-free surface, at plant/GLO U	0.00642 m2	
Mounting, through-hole technology, Pb-free solder/GLO U	0.00642 m2	
Capacitor, electrolyte type, > 2cm height, at plant/GLO U	0.1475*5 = 0.737 kg	5 x more of the big capacitors
Production efforts, capacitors/GLO U	0.1475*5 = 0.737 kg	
Capacitor, film, through-hole mounting, at plant/GLO U	0.0014 kg	
Capacitor, SMD type, surface-mounting, at plant/GLO U	0.00172 kg	
Production efforts, capacitors/GLO U	0.00312 kg	
Cable, ribbon cable, 20-pin, with plugs, at plant/GLO U	0.06 kg	
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.00262 kg	
Diode, glass-, through-hole mounting, at plant/GLO U	0.000576 kg	
Production efforts, diodes/GLO U	0.000576 kg	
Resistor, wirewound, through-hole mounting, at plant/GLO U	0.003 kg	
Production efforts, resistors/GLO U	0.003 kg	
Resistor, SMD type, surface mounting, at plant/GLO U	0.000686 kg	
Production efforts, resistors/GLO U	0.000686 kg	
Inductor, ring core choke type, at plant/GLO U	0.002 kg	
Production efforts, inductor/GLO U	0.002 kg	
Transistor, wired, small size, through-hole mounting, at plant/GLO U	0.000818 kg	
Transistor, SMD type, surface mounting, at plant/GLO U	0.005 kg	
Production efforts, transistors/GLO U	0.025818 kg	
Copper, at regional storage/RER U	0.001287 kg	Large mettalic pins
Transformer, low voltage use, at plant/GLO U	0.01 kg	
Copper, at regional storage/RER U	0.0019668 kg	
Polyethylene, HDPE, granulate, at plant/RER U	•	Plastic plugs
Synthetic rubber, at plant/RER U	0.002 kg	Circuit protection
#IGBT, F300, cut-off	3*3 = 9 p	3 parallel Power FETs resp. IGBTs
Transport, transoceanic freight ship/OCE U	3.094 tkm	
Transport, lorry >16t, fleet average/RER U	0.238 tkm	
Known outputs to technosphere. Waste and emissions to treatment		
Name	Amount Unit	
#Disposal, Controller eScooter, Golden Motor, to WEEE treatment, cut-off/CH U	4 kg	

Zusammensetzung eines E-PW Wechselrichters (<100kW)

der Leistungsbereich bis ca. 1000kW wird gemäss einem BRUSA Gerät inventarisiert.

#Controller, electric car, cut-off	1 p	Modern high quality inverter (Brusa DMC524) for up to 100kW. Production of inverter including waste factors
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Aluminium, production mix, at plant/RER U	0.0506 kg	
Aluminium, production mix, wrought alloy, at plant/RER U	6.255 kg	
Printed wiring board, surface mounted, unspec., solder mix, at plant/GLO U	0.681 kg	
Printed wiring board, through-hole, at plant/GLO U	0.02283 m2	
Capacitor, film, through-hole mounting, at plant/GLO U	0.892 kg	
Production efforts, resistors/GLO U	0.028 kg	ceramics
Aluminium oxide, at plant/RER U	0.02828 kg	ceramics
Brass, at plant/CH U	0.3262 kg	
Polyester resin, unsaturated, at plant/RER U	0.2427 kg	
Silicone product, at plant/RER U	0.00404 kg	
Steel, low-alloyed, at plant/RER U	0.405 kg	
Selective coating, aluminium sheet, nickel pigmented aluminium oxide/SK U	0.002815 m2	
Sheet rolling, aluminium/RER U	6.306 kg	
Sheet rolling, steel/RER U	0.405 kg	
Wire drawing, copper/RER U	1.45 kg	
The daming, sopport at the		
Ferrite, at plant/GLO U	0.304 kg	
Copper, at regional storage/RER U	1.45 kg	
Polyethylene, LDPE, granulate, at plant/RER U	0.02424 kg	
Polystyrene, high impact, HIPS, at plant/RER U	0.2 kg	
Known inputs from technosphere (electricity/heat)		
Name	Amount Unit	Comment
Electricity, low voltage, at grid/CH U	0.1184 kWh	confidential information!
Heat, wood pellets, at furnace 50kW/CH U	319.6 MJ	confidential information!
meat, wood pelies, atturnate bukwon o	319.0 IVIJ	COMINGENIAL INDITIALION:

Anhang zu Kapitel 6.2.5

Zusammensetzung eines E-Velo Ladegeräts

#Charger for eBike, cut-off	1 p	eBike charger example: (e.g. 36V/5A or 48V/3A)
Known inputs from technosphere (materials/fuels)		
Name	Amount Unit	Comment
Cable, connector for computer, without plugs, at plant/GLO U	1.8 m	(1,4,1,3,1,5,3)
Chromium steel 18/8, at plant/RER U	0.1785 kg	(1,4,1,3,1,5,3)
Copper, at regional storage/RER U	0.05355 kg	(1,4,1,3,1,5,3)
Electricity, medium voltage, production UCTE, at grid/UCTE U	0.27778 kWh	(1,4,1,3,1,4,2)
Extrusion, plastic pipes/RER U	0.12495 kg	(1,4,1,3,1,5,3)
Plugs, inlet and outlet, for computer cable, at plant/GLO U	1 p	(1,4,1,3,1,5,3)
Polystyrene, high impact, HIPS, at plant/RER U	0.08925 kg	(1,4,1,3,1,5,3)
Polyvinylchloride, at regional storage/RER U	0.0357 kg	(1,4,1,3,1,5,3)
Printed wiring board mounting plant/GLO/I U	7.4256E-08 p	(1,4,1,3,3,5,9)
Sheet rolling, steel/RER U	0.1785 kg	(1,4,1,3,1,5,3)
Transport, freight, rail/RER U	0.10622 tkm	(2,4,1,3,3,5,5)
Transport, lorry >16t, fleet average/RER U	0.05231 tkm	(2,4,1,3,3,5,5)
Wire drawing, copper/RER U	0.05355 kg	(1,4,1,3,1,5,3)
Known outputs to technosphere. Waste and emissions to treatment		
Name	Amount Unit	Comment
#Disposal, power adapter, external, for eBike, to WEEE treatment, cut-off/CH U	0.531 kg	(1,4,1,3,3,5,6)

Zusammensetzung eines E-Scooter Ladegeräts

#Charger for eScooter, cut-off	1 p	1 kW charger example: (e.g. 58V/20A or 84V/12A)				
Known inputs from technosphere (materials/fuels)						
Name	Amount Unit	Comment				
Cable, connector for computer, without plugs, at plant/GLO U	1.85+2.3 = 4.15 m	Connector from the power line to the charger and from the ch				
Plugs, inlet and outlet, for computer cable, at plant/GLO U	3 p	1 for the mains cable and 2 for the connection to the battery (
Polyethylene, HDPE, granulate, at plant/RER S	0.408 kg	Plastic cover				
Printed wiring board, surface mount, lead-free surface, at plant/GLO U	0.00584 m2	PWB of LED panel				
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.0004816 kg	Logic of PWB Led				
Diode, glass-, through-hole mounting, at plant/GLO U	0.000596 kg					
Light emitting diode, LED, at plant/GLO U	0.00105 kg					
LCD module, at plant/GLO U	0.01 kg	Dispay				
Plugs, inlet and outlet, for network cable, at plant/GLO U	2.5 p	For the two connections on the chip (A lager one and a small				
Cable, printer cable, without plugs, at plant/GLO U	0.2 m					
Switch, toggle type, at plant/GLO U	0.01 kg	2 switches for modelling a switch and a button				
Resistor, SMD type, surface mounting, at plant/GLO U	0.000294 kg	30 SMD resistors				
Capacitor, SMD type, surface-mounting, at plant/GLO U	0.00043 kg					
Transistor, SMD type, surface mounting, at plant/GLO U	0.002965 kg					
Inductor, miniature RF chip type, MRFI, at plant/GLO U	0.0000168 kg					
Potentiometer, unspecified, at plant/GLO U	0.0061 kg					
Printed wiring board, through-hole, lead-free surface, at plant/GLO U	0.03495 m2					
Fan, at plant/GLO U	0.08 kg					
Capacitor, electrolyte type, > 2cm height, at plant/GLO U	0.101 kg					
Transformer, high voltage use, at plant/GLO U	0.5 kg					
Inductor, ring core choke type, at plant/GLO U	0.327 kg					
Capacitor, film, through-hole mounting, at plant/GLO U	0.12 kg					
Capacitor, electrolyte type, < 2cm height, at plant/GLO U	0.00645 kg					
Resistor, metal film type, through-hole mounting, at plant/GLO U	0.0144 kg					
Diode, glass-, through-hole mounting, at plant/GLO U	0.001192 kg					
Transistor, wired, big size, through-hole mounting, at plant/GLO U	0.01268 kg					
Potentiometer, unspecified, at plant/GLO U	0.0061 kg					
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.0004852 kg					
Switch, toggle type, at plant/GLO U	0.0058 kg					
Plugs, inlet and outlet, for network cable, at plant/GLO U	2 p					
Copper, at regional storage/RER U	0.00049 kg	connection pins				
Printed wiring board, through-hole, lead-free surface, at plant/GLO U	0.00224 m2	Vertical PWB				
Transformer, low voltage use, at plant/GLO U	0.03 kg					
Capacitor, electrolyte type, < 2cm height, at plant/GLO U	0.00387 kg					
Capacitor, film, through-hole mounting, at plant/GLO U	0.0035 kg					
Transistor, wired, small size, through-hole mounting, at plant/GLO U	0.000818 kg					
Integrated circuit, IC, logic type, at plant/GLO U (corrected by mle)	0.0003235 kg					
Resistor, metal film type, through-hole mounting, at plant/GLO U	0.00384 kg					
Diode, glass-, through-hole mounting, at plant/GLO U	0.001788 kg					
Aluminium, production mix, at plant/RER U	0.5 kg					
Known outputs to technosphere. Waste and emissions to treatment						
Name	Amount Unit	Comment				
#Disposal, Charger eScooter, Quantya, to WEEE treatment, cut-off/CH U	3.025 kg					

Zusammensetzung eines E-PW Ladegeräts

#Charger, Brusa, cut-off	1 p	Charger 3.7kW for electric cars (Brusa NLG5xx)				
		including waste factors				
Known inputs from technosphere (materials/fuels)						
Name	Amount Unit	Comment				
Aluminium, production mix, at plant/RER U	4.62E-01 kg					
Aluminium, production mix, wrought alloy, at plant/RER U	3.35E+00 kg					
Brass, at plant/CH U	9.98E-02 kg					
Capacitor, film, through-hole mounting, at plant/GLO U	3.45E-01 kg					
Chromium steel 18/8, at plant/RER U	2.38E-01 kg					
Copper, at regional storage/RER U	7.27E-01 kg					
Ferrite, at plant/GLO U	7.63E-01 kg					
Polyester resin, unsaturated, at plant/RER U	1.68E-01 kg					
Polystyrene, high impact, HIPS, at plant/RER U	8.93E-02 kg					
Printed wiring board, surface mounted, unspec., solder mix, at plant/GLO U	1.64E-01 kg					
Printed wiring board, through-hole, at plant/GLO U	2.63E-01 m2					
Silicone product, at plant/RER U	4.04E-03 kg					
Steel, low-alloyed, at plant/RER U	4.14E-01 kg					
Aluminium oxide, at plant/RER U	6.06E-03 kg	ceramics				
Selective coating, aluminium sheet, nickel pigmented aluminium oxide/SK U	3.96E-04 m2					
Zinc coating, coils/RER U	1.63E-02 m2					
Production efforts, resistors/GLO U	6.00E-03 kg	ceramics				
Sheet rolling, steel/RER U	7.33E-01 kg					
Wire drawing, copper/RER U	7.55E-01 kg					
Sheet rolling, aluminium/RER U	3.45E+00 kg					
(Insert line here)						
Known inputs from technosphere (electricity/heat)						
Name	Amount Unit	Comment				
Electricity, low voltage, at grid/CH U	2.69E-02 kWh	confidential information!				
Heat, wood pellets, at furnace 50kW/CH U	7.27E+01 MJ	confidential information!				

Anhang zu Kapitel 6.3.1: E-Scooter Umweltauswirkungen im Vergleich

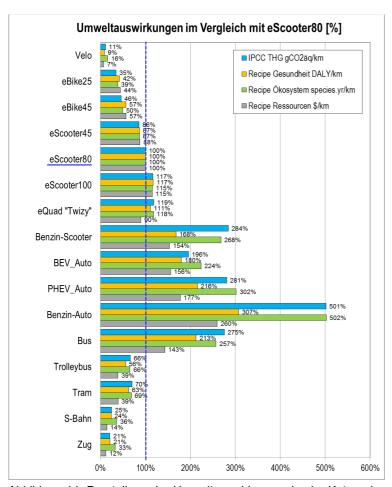


Abbildung 14: Darstellung der Umweltauswirkungen in vier Kategorien von verschiedenen Fahrzeugen relativ zu einem eScooter80

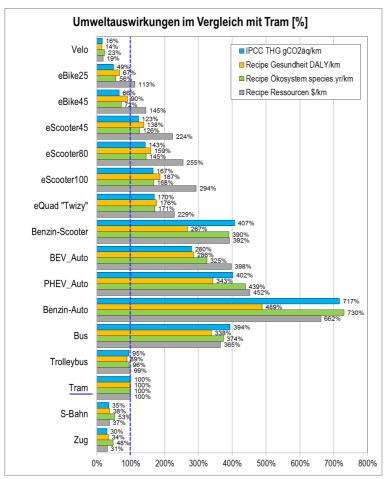


Abbildung 15: Darstellung der Umweltauswirkungen in vier Kategorien von verschiedenen Fahrzeugen relativ zu einem Tram

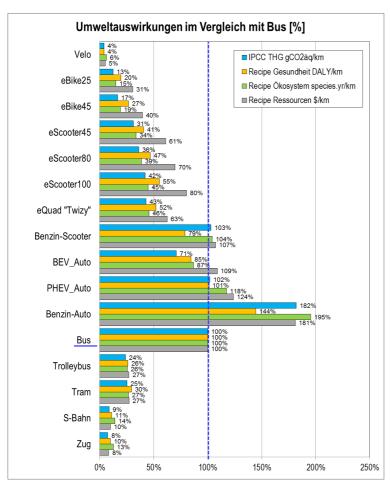


Abbildung 16: Darstellung der Umweltauswirkungen in vier Kategorien von verschiedenen Fahrzeugen relativ zu einem Dieselbus

Anhang zu Kapitel 6.4: Untersuchungen an Stromkostenmessgeräten

Folgende Geräte wurden untersucht:

• Migros DO IT: Power Monitor

ArtNr 6120.499, CATII, Typ: MP-A084SW1 230VAC 50Hz, max. 10A / 2300W. Misst A, W, VA, V, kWh, h, Hz, PF. Keine techn. Angaben gefunden. Der Mess-Chip ist hochintegriert und bedient auch das HMI (Tasten + LCD)

Tchibo: TCM

ArtNr. 234775, CATII, 220-240VAC 50Hz, max. 10A. Misst Uhrzeit und Stromkosten (nach Eingabe), V, A, A max, W, W max, W overload, kWh, Betriebszeit

• Interdiscount: Brennenstuhl PM230

ArtNr 1 50621 2, 230VAC 50Hz, max. 10A / 2300W. Misst V, Hz, A, cos phi, W, Wmax, t (Wmax), t, kWh(total), kWh(Tarif1), kWh(Tarif2), h, CHF, CHF/kWh.

Coop: Stromkostenmessgerät PM30

(wie Brennenstuhl, scheint die gleiche Hardware zu enthalten)

• EMU 1.24 (alt)

Misst V, A, W, kWh

• EMU 1.28K (neu)

Misst V, A, W, VA, kWh, kVAh, Hz, PF

SAIA: ALD1D5F10KA3A00

(nicht in die Versuche integriert, da die Geräte ausschliesslich für Schaltschrankeinbau zu nutzen sind)

Folgende Last und Messgeräte wurden verwendet:

· Ladegerät Quantya:

Das Ladegerät zeigt die Ladespannung, abgegebene Ah, kWh und Ladezeit an. Es verfügt über einen Controller der den Ladevorgang steuert.

Batterie Quantya:

Eigenproduktion mit Kokam LiPo Zellen (14s) und einem integrierten BMS. Die max. Kapazität beträgt etwa 2kWh.

• Ref Messgerät ZES LMG500:

(ZES Zimmer Electronic Systems) Mehrkanal Leistungsmessgerät

• Stromzange F65:

Chauvin Arnoux (True RMS mit wählbarem Filter für Harmonische)

• Multimeter Digitec DT 80000:

Multimeter mit 10A AC/DC Messeingang, es ist nicht klar, ob dies trms misst oder nicht

Abbildung 17: Messeinrichtung mit der verwendeten Last (Quantya Ladegerät und Batterie) sowie den, in Serie geschalteten Stromkostenmessgeräten und dem Referenzmessgerät ZES LMG500.

Bemerkun- gen / Zeit	Messgrös	ssen	Refe- Testgeräte renz					Refe- renz	Messgrös- sen	Lade- gerät		
			ZES LMG500 Ein- gang	EMU 1.28K	Coop PM30	Interdiscount Brennenstuhl PM230	Tchibo TCM 234775	EMU 1.24	Migros Do-It Powermonitor 6120.499	ZES LMG500 Aus- gang		Quantya S.P.E. CBHF-2
Batterie	Strom	I [A]	6.93	6.9	3.7	3.83	3.28	6.9	6.97	6.91	[A]	20
laden nach				5	6			5				
ca. 23 min	Spannung	U [V]	223.5	224	222	229	227	222	227	222.2	[V]	47.4
	Leistung	Р	1.068	1.0	0.4	0.445	0.19	1.0 5	1.07	1.05	[h]	0.4
		[kW]		6	15		4 / 0.68 0	5				
	Blindleis-	Q	1.122							1.12	[Ah]	9
	tung	[kvar]										
	Schein-	S	1.55	1.5						1.54	[kWh]	0.6
	leistung	[kVA		5								
	Danier]	0.00	0.0	0.5	0.54			0.07	0.00	D D0	0.040
	Powerfac- tor cos phi	PF [-]	0.69	0.6 9	0.5	0.51			0.67	0.68	P_DC [V*A=W]	0.948
	Frequenz	f		50	50	50			49.9		eta [-]	90.3
		[Hz]										

Tabelle 2: Messergebnisse der Untersuchungen an den ausgewählten Stromkostenmessgeräten

Anhang zu Kapitel 7.2: Fragebogen zur Nutzerbefragungng

UNIVERSITÄT BERN

Interfakultäre Koordinationsstelle für Allgemeine Ökologie (IKAÖ)

Bern, im Januar 2012

Befragung der Nutzerinnen und Nutzer von E-Scooter (Private Nutzer)

Beachten Sie bitte folgende Punkte:

- Bitte füllen Sie als hauptsächlicher Nutzer oder hauptsächliche Nutzerin diesen Fragebogen aus. Dabei ist zu beachten: Der Nutzer oder die Nutzerin muss nicht unbedingt dieselbe Person wie der Käufer oder die Käuferin sein.
- Bitte achten Sie darauf, dass Sie den Fragebogen möglichst vollständig ausfüllen.
- Die Daten werden anonym und streng vertraulich behandelt. Für die Auswertungen werden die Angaben im Fragebogen zusammengefasst. Wir ziehen keine Rückschlüsse auf einzelne Personen.
- Bei Fragen stehe ich (Heidi Hofmann) Ihnen gerne zur Verfügung: Telefon 031 631 39 25 oder hofmann@ikaoe.unibe.ch.
- Bitte senden Sie den ausgefüllten Fragebogen an Universität Bern, IKAÖ, H. Hofmann, Schanzeneckstrasse 1, PF 8573, 3001 Bern.

Heidi Hofmann Wissenschaftliche Mitarbeiterin Schanzeneckstrasse 1, PF 8573 CH-3001 Bern Tel. +41 (0)31 631 39 25 Fax +41 (0)31 631 87 33 hofmann@ikaoe.unibe.ch www.ikaoe.unibe.ch

_		
Δ	Angahan zum	Mobilitätsverhalten

1.	Name und Vorname	
	Strasse Nr.	
	PLZ, Wohnort	
	Marke, Typ des E-Scooters	
	Seit wann benutzen Sie den E-Sco	ooter? (Bitte Datum angeben)

2. Zuerst einige Angaben zu konkreten E-Scooter-Fahrten, die Sie unternommen haben. Bitte geben Sie die letzten sechs E-Scooter-Fahrten an:

		Fahrt 1	Fahrt 2	Fahrt 3	Fahrt 4	Fahrt 5	Fahrt 6
Datum	Tag/Monat/Jahr						
Gefahrene Distanz	Km						
Zeit	Min						
Zweck	1=Arbeits-/Ausbildungsweg						
(bitte nur 1 Zweck	2=Einkauf						
pro Fahrt angeben!)	3=Geschäftlich						
	4=Freizeit						

3. Nun interessiert uns: Hätten Sie diese Fahrten (siehe Frage 2) auch ohne E-Scooter unternommen? Bitte nur Hauptverkehrsmittel für diesen Weg nennen (Kategorie 1 Auto - 6 sonstiges).

		Fahrt 1	Fahrt 2	Fahrt 3	Fahrt 4	Fahrt 5	Fahrt 6
Ja, mit	1=Auto 2=Motorrad/Roller 3= ÖV(Bus/Bahn/Tram) 4=E-Bike 5=Fahrrad 6=sonstiges						
Nein, aber eine kürzere Fahrt mit	1=Auto 2=Motorrad/Roller 3= ÖV(Bus/Bahn/Tram) 4=E-Bike 5=Fahrrad						
	6=sonstiges						
Nein, aber eine etwa gleich lange Fahrt mit	1=Auto 2=Motorrad/Roller 3= ÖV(Bus/Bahn/Tram) 4=E-Bike						
ranit mit	5=Fahrrad 6=sonstiges						
Nein, aber eine längere Fahrt mit	1=Auto 2=Motorrad/Roller 3= ÖV(Bus/Bahn/Tram) 4=E-Bike 5=Fahrrad 6=sonstiges						
Nein,	keine Fahrt unternommen						

Seite 2/7

A Wissister Kilometer Issuer Oissuer Manack double should		F Ot-		.0
4. Wie viele Kilometer legen Sie pro Monat durchschnittl G Sommerhalbjahr:km	ich mit ini	em E-Scoole	r zuruck	
☐ Winterhalbjahr:				
				
5. Wie viele Kilometer legen weitere Personen pro Mona	t durchscl	nnittlich mit Ih	rem E-S	Scooter
zurück (Schätzung genügt)?				
☐ Sommerhalbjahr: km				
☐ Winterhalbjahr: km				
O Mile sind Ois im Observation and State to		O:- f-1	F	
6. Wie sind Sie im Strassenverkehr unterwegs? Bitte be	immer		selten	nie
Ich schalte das Licht auch tagsüber ein.	mmer	gelegentlich	seiten	ille
Ich beharre auf meinen Vortritt.				
Ich suche den Blickkontakt mit anderen Verkehrsteilnehmern.				
Ich rechne damit, dass Fussgänger plötzlich die Fahrbahn betreten.				
Ich trage Kleider, in denen ich für andere gut sichtbar bin.				
Ich trage einen gut angepassten Helm.				
Ich trage spezielle Motorradkleidung, z.B. schützende Bekleidung				
(Schutz vor Flattern oder Aufprall), hohe Stiefeln, Handschuhe.				
7 Frankon sieh durch des Fehlen des Meterseräusehes	gefährlich	ne Situatione	n mit Fu	ssgän-
7. Ergeben sich durch das Fehlen des Motorgeräusches gern oder anderen Verkehrsteilnehmenden?☐ immer ☐ gelegentlich ☐ selten	□ nie			
gern oder anderen Verkehrsteilnehmenden? ☐ immer ☐ gelegentlich ☐ selten				
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Sco			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe.			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe.			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie
gern oder anderen Verkehrsteilnehmenden? immer gelegentlich selten 8. Aus welchen Gründen haben Sie sich für einen E-Scohöchstens zwei Gründe. Umwelt Schnelligkeit Grössere Mobilität Geräuschlosigkeit Fahrspass Image Aktion / finanzielle Unterstützung			en nenne	en Sie

 9. Hat Ihr E-Scooter ein anderes Fahrzeug in Ihrem Haushalt ersetzt oder planen Sie in n\u00e4herrer Zukunft, ein Fahrzeug aus Ihrem Haushalt zu ersetzen, bzw. zu verkaufen? \u00c4 Nein
☐ Ja, welches? ☐ ein Auto
ein Motorrad/Roller
-
10. Wieviel teurer darf ein E-Scooter gegenüber einem konventionellen Benzin-Motorrad/Roller für Sie sein?
Fr
11. Haben Sie ein Abonnement des öffentlichen Verkehrs nicht mehr erneuert aufgrund Ihres E-Scooter-Kaufs oder planen Sie dies?
☐ Ja, welches Abonnement?☐ Ja, aber nur während dem Sommerhalbjahr, nämlich folgendes
Abonnement
3 Neill
12. Hätten Sie in absehbarer Zukunft ein zusätzliches Fahrzeug gekauft, wenn es keinen E- Scooter gäbe?
☐ Ja, ich hätte ☐ ein Auto gekauft
☐ ein Motorrad/ einen Roller gekauft ☐ Nein
D Neill
13. Sind Sie mit dem Fahrzeug im Allgemeinen
sehr zufriedenzufrieden
nicht zufriedengar nicht zufrieden
3 gar mon zamodon
Seite 4/7

14. Möglid	cherweise s	teht anderen Pe	ersonen in Ihrem Haushalt aufg	rund Ihrer E-Scooter-
Nutzu	ng vermehr	t ein Auto oder	ein Motorrad zur Verfügung. W	erden aus diesem Grund
verme	ehrt Auto-/M	lotorradkilomete	r zurückgelegt? (Vermehrte Au	tonutzungen aus anderer
Gründ	den bitte au	sklammern.)		
	□ Nein,	trifft nicht zu		
			eidenem Ausmass	
	☐ Ja, in	erheblichem Au	ısmass	
в а				
	iigabeii z	um Nutzer u	nd Haushalt	
		, , ,	n Ihrem Haushalt leben	
		, , ,	n Ihrem Haushalt leben Person, inkl. Sie, eine Zeile au	
		, , ,		usfüllen): Erwerbstätigkeit:
16 . Angal	oen zum Ha	ushalt (bitte pro	Person, inkl. Sie, eine Zeile au	usfüllen): Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig
16. Angal	oen zum Ha	Führerschein der Kategorie	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B	usfüllen): Erwerbstätigkeit: 1=Voll erwerbstätig
16. Angab Personen im Haus-	oen zum Ha	Führerschein der Kategorie A1 (Motorräder mit	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
16. Angab Personen im Haus-	oen zum Ha	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen)	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Telizeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät
16. Angab Personen im Haus-	oen zum Ha	Führerschein der Kategorie A1 (Motorräder mit	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
16. Angat Personen im Haus- halt	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW) □ ja □ nein	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
16. Angat Personen im Haus- halt	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
Personen im Haus-halt	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW) ja nein	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
Personen im Haus-halt	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
Personen im Haushalt Person 1 Person 2	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung nach 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein nein ja, Fahrprüfung nach 2003 nein nein	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstät 5=in Ausbildung
Personen im Haushalt Person 1 Person 2	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW) ja nein	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstäti 5=in Ausbildung
Personen im Haushalt Person 1 Person 2 Person 3	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung nach 2003 nein nein	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstäti 5=in Ausbildung
Personen im Haushalt Person 1 Person 2 Person 3	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW) ja nein ja nein	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 200	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstäti 5=in Ausbildung
Personen im Haushalt Person 1 Person 2 Person 3 Person 4	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW) ja nein ja nein ja nein ja nein ja nein	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstäti 5=in Ausbildung
Person 1 Person 2 Person 3	Jahrgang	Führerschein der Kategorie A1 (Motorräder mit max. 11 kW)	Person, inkl. Sie, eine Zeile au Führerschein der Kategorie B (Personenwagen) ja, Fahrprüfung vor 2003 ja, Fahrprüfung nach 2003 nein ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 2003 nein ja, Fahrprüfung vor 2003 ja, Fahrprüfung vor 200	Erwerbstätigkeit: 1=Voll erwerbstätig 2=Teilzeit erwerbstätig 3=Haushalt 4=zur Zeit nicht erwerbstätisnicht und stellt nicht erwerbstätisnicht erwerbstätisn

Seite 5/7

Motorrad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnemente (GA)			
Anzahl Fahrzeuge im Haushalt Mutorad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement(Perbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge im Haushalt Mutorad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement(Verbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge im Haushalt Mutorad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement(Perbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge im Haushalt Mutorad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement(Perbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge im Haushalt Mutorad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement(Perbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge im Haushalt Auto Motorrad (Benzin) Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement (1/2-Tax) Streckenabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Anzahl Fahrzeuge Im Haushalt Auto	17. Wie viele Fahrzeuge der	folgenden Kategorie besitzen:	Sie in Ihrem Haushalt heute
Auto Motorrad (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnement(GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
Motorrad (Benzin) Mota E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnement (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Fahrzeugtyp	Anzahl Fahrzeuge im Haushalt	
Roller (Benzin) Mofa E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement Verbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Auto		
Belike Fahrrad mit gültiger Velonummer Weitere			
E-Bike Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Roller (Benzin)		
Fahrrad mit gültiger Velonummer Weitere 18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja Nein 19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) StreckenabonnementVerbundsabonnement Generalabonnement (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja			
18. Sind die in den letzten 5 Jahren regelmässig Roller/Motorrad gefahren? Ja			
19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ	vveilere		
19. Wie viele Abonnemente des öffentlichen Verkehrs besitzt Ihr Haushalt heute? Abonnements-Typ			
Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation?	18. Sind die in den letzten 5	Jahren regelmässig Roller/Mot	orrad gefahren?
Abonnements-Typ Anzahl Abonnemente im Haushalt Halbpreisabonnement (1/2-Tax) Streckenabonnement/Verbundsabonnement Generalabonnement (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation?			
Streckenabonnement/Verbundsabonnement Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Abonnements-Typ	Anzahl Abonnemente im	Haushalt
Andere 20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Halbpreisabonnement (1/2-Tax)		
20. Sind Sie Mitglied einer Car-Sharing-Organisation? Ja Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
□ Ja □ Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Streckenabonnement/Verbundsabo		
□ Ja □ Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule)			
□ Ja □ Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Streckenabonnement/Verbundsabo Generalabonnemente (GA)		
 □ Nein 21. Welche Ausbildung haben Sie zuletzt abgeschlossen? □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule) 	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere	nnement	
21. Welche Ausbildung haben Sie zuletzt abgeschlossen? ☐ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) ☐ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) ☐ Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement	
 □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule) 	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C ☐ Ja	nnement	
 □ Obligatorische Schule (Primar-, Real-, Sekundar-, Bezirkschule) □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule) 	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C Ja	nnement	
 □ Berufslehre (Gymnasium, Berufsmittelschule, ehemaliges Lehrerseminar) □ Hochschule (Universität, Fachhochschule, pädagogische Hochschule) 	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C ☐ Ja	nnement	
☐ Hochschule (Universität, Fachhochschule, pädagogische Hochschule)	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	ar-Sharing-Organisation?	
	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
Seite 6/7	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina
	Streckenabonnement/Verbundsabo Generalabonnemente (GA) Andere 20. Sind Sie Mitglied einer C	nnement ar-Sharing-Organisation? n Sie zuletzt abgeschlossen? e Schule (Primar-, Real-, Seku	e, ehemaliges Lehrersemina

22. Wie hoch ist das gesamte Brutto-Monatseinkommen in Ihrem Haushalt 2012?	
unter Fr. 2'000	
zwischen Fr. 2'000 und Fr. 4'000zwischen Fr. 4'001 und Fr. 6'000	
zwischen Fr. 6'001 und Fr. 8'000	
zwischen Fr. 8'001 und Fr. 10'000	
zwischen Fr. 10'001 und Fr. 12'000zwischen Fr. 12'001 und Fr 14'000	
☐ höher als Fr. 14'000	
23. Haben Sie weitere Bemerkungen?	
Vielen Dank für Ihre wertvolle Mitarbeit!	
Seite 7/7	

Anhang zu Kapitel 7.3: Interview-Leitfaden zur Zweitbefragung

2. Leitfaden Interview

Zeitumfang: ca. 60 Minuten

Befragung: Einzelinterviews zu Gründen für Umstieg vom Motorrad auf den E-Scooter

Definition: Im folgenden Interview verstehen wir unter "Motorrad" (MR) jedes benzinbetriebene Zweirad.

Einleitung (Mobilität allgemein):

Mit welchen Verkehrsmitteln waren Sie heute bisher unterwegs?

- Erzählen Sie, wozu Sie diese/s Verkehrsmittel im Allgemeinen verwenden.
 Welche weiteren Verkehrsmittel verwenden Sie und wozu?
 Welches Fahrzeug nutzen Sie normalerweise für die Verkehrszwecke Arbeit,
 Einkauf, Freizeit, geschäftliche Tätigkeiten, Service und Begleitung?
- 2. Welche Distanzen (*wie viele Kilometer*) legen sie mit den jeweiligen Verkehrsmitteln pro Woche (*werktags und am Wochenende*) zurück?
- 3. Welche der Verkehrsmittel verwenden Sie gerne? Weshalb? (persönliche Präferenzen)

Motorrad und E-Scooter ("Wissen"):

Motorrad (Erwerb, Nutzung)

 Was für ein Motorrad (*Marke, Modell, Jg, Kubik, Anschaffungspreis*) haben Sie vor dem ES-Kauf genutzt? Weshalb hatten Sie sich für dieses Motorrad entschieden? (*Neuheit* → *Werbung, Bekannte; Ankauf von Occasion, Familie*)

- 2. Aus welchem Grund sind Sie Motorrad gefahren? Für welche Fahrzwecke (*Arbeit, Einkauf...*) haben Sie es hauptsächlich genutzt?
- 3. Seit wie vielen Jahren fahren Sie Motorrad? Haben Sie es im Winter und im Sommer jeweils unterschiedlich genutzt?

E-Scooter (Kennenlernen, Prozess bis zum Erwerb)

- Wie und wann haben Sie das erste Mal etwas über E-Scooters erfahren? Seit wie vielen Jahren ist Ihnen bekannt, dass es E-Scooters gibt? (Kommunikationskanäle)
- 2. Wie haben Sie sich über den E-Scooter informiert? (*Fachpersonen, Medien, Bekannte, etc.*)
- 3. Erzählen Sie uns vom ersten Kontakt mit E-Scooters.
- 4. Konnten Sie den E-Scooter vor dem Kauf testen? Können Sie uns von Ihren Testerfahrungen erzählen?
- 5. Wie ist bzw. war der Kontakt zu Ihrem E-Scooter-Händler?
- 6. Welche Gründe haben Sie schliesslich dazu bewogen, einen E-Scooter zu kaufen?

Bewertung und Vergleich MR und ES insgesamt

- 1. Was gefällt Ihnen bzw. was fasziniert Sie am E-Scooter und was gefällt Ihnen beim MR? (Technik, innovatives Produkt, Bedienung und Beherrschung der Technik etc.)
- 2. Gibt es etwas, das Ihnen am E-Scooter-Fahren bzw. am MR-Fahren nicht gefällt? Können Sie dies ausführen?

- 3. Was verbinden Sie gefühlsmässig mit dem E-Scooter-Fahren, bzw. MR-Fahren? Wie fühlt sich das ES-Fahren und MR-Fahren an?
- 4. Worin bestehen die Vor- und Nachteile des E-Scooters im Gegensatz zum Motorrad? Können Sie dies anhand von konkreten Beispielen ausführen?

Persönliche Bedürfnisse:

1. Welche Bedürfnisse müssen durch ein Verkehrsmittel für Sie persönlich abgedeckt werden?

(Unter Bedürfnisse verstehen wir z.B.: Sicherheit, Schnelligkeit, Zuverlässigkeit, Bequemlichkeit, Abschalten/Relaxen, Grenzerfahrungen, persönliche Erlebnisse, Naturerfahrung, Unabhängigkeit, Bewunderung/Prestige, Image, umweltschonende Eigenschaften, Lärm vermeiden)

- 2. Kann der ES diese Bedürfnisse abdecken?
 Und im Vergleich dazu: Konnte das MR diese Bedürfnisse abdecken?
- 3. Welche Bedürfnisse werden vom ES bzw. MR nicht abgedeckt?
- 4. Inwiefern unterscheiden sich MR und ES in Bezug auf:
 - Bequemlichkeit
 - Zuverlässigkeit
 - Schnelligkeit
 - Sicherheit im Strassenverkehr
 - Fahrerlebnis ("Kick" → Flow, Unsicherheit, Sensations-Seeking etc.)
 - Ästhetik/Schönheit der Maschine
- 5. Wie bewerten Sie die Geräuschlosigkeit des E-Scooters? Worin bestehen Ihrer Meinung nach die Vor- und Nachteile des niedrigen Geräusches? War die Geräuschlosigkeit ein wichtiger Faktor (positiv oder negativ) beim Kaufentscheid?

VI

Hatten Sie bereits einmal Probleme oder eine heikle Situation wegen der Geräuschlosigkeit?

- 6. Wie bewerten Sie die Eigenschaft des E-Scooters, dass er während dem Einsatz kein CO₂ ausstösst? War diese Eigenschaft ein wichtiger Faktor (positiv oder negativ) beim Kaufentscheid?
- 7. Nutzen Sie den E-Scooter für andere Dinge als das Motorrad? Haben sich Ihre Bedürfnisse durch den Umstieg verändert?

Erfahrungen/Umfeld

- Haben Sie besonders positive oder negative Erfahrungen durch den Besitz/die Nutzung eines E-Scooters gemacht? Können Sie davon erzählen? (neue Bekanntschaften, soziale Kontakte, positives Feedback wie Bewunderung oder Negatives wie Unfälle etc.)
- 2. Wie ist es für Sie, eine/r der ganz wenigen E-Scooter-Nutzer/innen in der Schweiz zu sein? (soziale Distinktion Konrad/Scholl)
- 3. Wie wird der E-Scooter in ihrem Umfeld aufgenommen? Welche Reaktionen sind bereits erfolgt?
- 4. Gibt es in ihrem Bekanntenkreis Leute, welche ebenfalls vom Motorrad auf den E-Scooter umgestiegen sind oder dies gerne tun möchten?
- 5. Wurden Sie allenfalls durch ihren Bekanntenkreis beeinflusst beim Kauf Ihres E-Scooters? Erzählen Sie.
- 6. Nutzen Sie allenfalls noch immer ein Motorrad, neben dem Gebrauch vom E-Scooter? Wenn ja, können Sie begründen, weshalb?

VII

Infrastruktur:

- 1. Wo laden Sie Ihren E-Scooter? (öffentliche Ladestationen, Zuhause; über Nacht, während der Arbeit etc.)
- 2. Wie beurteilen Sie die Situation mit den Ladestationen? Sind genügend Stationen vorhanden und wie beurteilen sie diese in der Handhabung?
- 3. Hat sich durch die Art der Aufladung Ihr Verkehrsverhalten verändert? Inwiefern (z.B. durch längere Wartezeiten)?
- 4. Spielte für Sie diese Art von "Energietanken" eine Rolle beim Kaufentscheid? (zunächst hinderlich, da es viel Zeit braucht, ev. umständlicher ist; egal, nimmt man gerne in Kauf)

Preisfrage

Wie beurteilen Sie den ES im Vergleich zum MR bezüglich der Kosten?

- 1. Wie bewerten Sie die einzelnen Kosten Ihres E-Scooters?
 - a. Anschaffung
 - b. Wartung / Servicekosten
 - c. Versicherung
 - d. Zubehör
 - e. Zusammenfassend: Wie hoch sind die Kosten für Ihren E-Scooter pro Jahr (exklusive Anschaffungskosten)
- 2. Wie stehen diese (Kosten) im Verhältnis zu den Kosten eines vergleichbaren Motorrades? Wo gibt es Unterschiede?
- 3. Haben sie im Vorfeld des ES-Kaufs die Kosten beider Fahrzeuge verglichen?

VIII

- 4. Hat es für Sie kostenmässig Überraschungen gegeben mit dem E-Scooter?
- 5. Wie relevant waren die Kosten/der Preis des ES für den Kaufentscheid?

Abschliessende Fragen:

- 1. Welche zuletzt abgeschlossene Ausbildung haben Sie absolviert? Was machen sie beruflich? Wie alt sind Sie?
- 2. Können Sie einen Umstieg vom Motorrad auf den E-Scooter empfehlen? Wie würden Sie dies begründen?
- 3. Würden Sie persönlich wieder einen E-Scooter kaufen?

Anhang zu Kapiteln 7.4.1 bis 7.4.3

Das E-Scooter-Tagebuch v2.0 besteht aus mehreren MS-Excel Arbeitsblättern wobei lediglich das Blatt "Übersicht", "Energie" und "Ereignisse" erklärungsbedürftig sind die weiteren Blätter sind entweder Beispiele oder Informationstexte.

Arbeitsblatt "Übersicht"

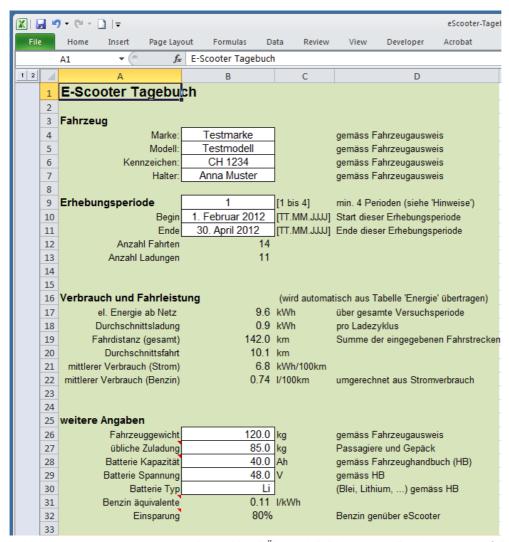


Abbildung 18: Ausschnitt aus dem Arbeitsblatt " Übersicht". Die weissen Felder sind auszufüllen. Alle anderen sind gesperrt aber nicht (passwort)geschützt.

Erläuterungen zu einzelnen Werten:

Verbrauch & Fahrleistung:

alle Werte werden aus dem Arbeitsblatt "Energie" kopiert

Batterie Kapazität:

Die Batteriekapazität wird meist in Amperestunden [Ah] angegeben. Werden Ah mit der nominalen Batteriespannung multipliziert erhält man die gespeicherte Energie in Wattstunden [Whbzw. kWh]

Bsp: 50V und 40Ah ergibt 50x40=2000Wh oder 2kWh

Benzin äquivalente:

dieser Wert ergibt sich aus dem thermischen Energieinhalt von Benzin ausgedrückt in Liter pro Kilowattstunden

Einsparung:

dieser Wert ergibt sich aus dem Vergleich des Gesamtwirkungsgrades dieses e-Scooters und einem äguivalenten ICE-Scooter, d.h. einer mit Verbrennungsmotor.

Beim Elektrofahrzeug ist die Energiebedarfs-Reduktion ca. 80%, da der Antrieb um diesen Faktor effizienter ist. Als Beispiel: ein sparsamer Benzinscooter verbraucht etwa 3 l_Benzin/100km, was ca. 30 kWh/100km entspricht (11 Benzin enthält ca. 9.1kWh therm. Energie). Ein ähnlicher E-Scooter braucht etwa 5.5 kWh/100km el. Energie ab Steckdose, was etwa 0.61 l_Benzin/100km entspricht und was rechnerisch eine Energiebedarfs-Reduktion von ca. 80% ergibt.

CO2 Reduktion:

Der ICE-Scooter mit einem Verbrauch von 3 I_Benzin/100km stösst ca. 68gCO2/km aus (Annahme: 3 kg_CO2/kg_Benzin werden bei der Verbrennung frei gesetzt). Der E-Scooter CO2-Ausstoss hängt vom Strommix ab und beträgt bei einem Verbrauch von 5.5kWh/100km für:

- CH-Strommix (134gCO2äq/kWh) ca. 7 g_CO2äq/km; CO2-Reduktion -90%
- Europa-Strommix (593gCO2äq/kWh) ca. 48 g_CO2äq/km; CO2-Reduktion -30%
- Kohle-Strom (ca. 1'100gCO2äg/kWh) ergibt 90 g CO2äg/km; CO2-Anstieg +30%

Die der rot hinterlegten Teile des Arbeitsblattes sind fakultativ und wurden kaum und seit Version 2, wo die Zellen 'versteckt' sind, nie ausgefüllt.

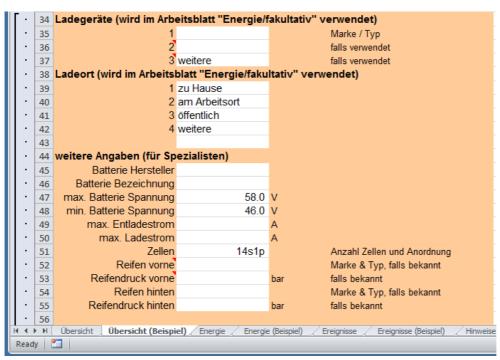


Abbildung 19: Ausschnitt aus dem Arbeitsblatt "Übersicht"; der rot hinterlegte Teil sind fakultativ - die weissen Felder können ausgefüllt werden. Alle anderen sind gesperrt aber nicht (passwort)geschützt.

Erläuterungen zu einzelnen Werten:

Ladegeräte:

zB falls der Hersteller weitere Ladegeräte anbietet (interne, externe) oder falls DC-Ladestationen verwendet werden etc.

weitere Angaben:

hier interessieren vor allem technische Details zu den verwendeten Batterien aber auch zu den Reifen. Diese Daten wären nützlich für die Validierung detailreicher Simulationen.

Arbeitsblatt "Energie"

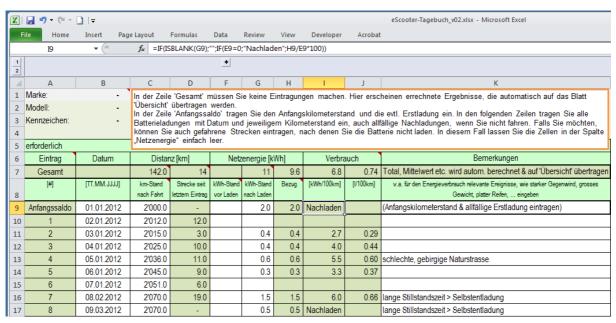


Abbildung 20: grüner Teil aus dem Arbeitsblatt "Energie".

Erläuterungen zu einzelnen Werten:

In der Zeile 'Anfangssaldo' wird der Anfangskilometerstand und evtl. eine Erstladung eingetragen.

In der Zeile 'Gesamt' sind keine Eintragungen zu machen. Hier erscheinen errechnete Ergebnisse, die automatisch auf das Blatt 'Übersicht' übertragen werden:

Gesamtdistanz (Ref C7 {=SUM (D10:D375)} ist die Summe aller berechneten Einzelfahrten.

Gesamtanzahl Fahrten (Ref D7 {=COUNTIF (D9:D375; ">0")} ist die Anzahl aller Einträge mit Fahrten >0

Gesamtanzahl Ladungen (Ref G7 {=COUNT (G9:G375)} ist die Anzahl aller Einträge

Gesamtnetzenergiebezug (Ref H7 { =SUM (H9: H375)} ist die Summe aller berechneten Einzelladungen

Verbrauch (Ref I7 $\{=IF(C7>0;H7/C7*100;0)\}$ ist der berechnete spezifische Verbrauch in [kWh/100km]

(Ref J7 {=I7*Übersicht!\$B\$31} ist der berechnete spezifische Verbrauch in [l/100km] wobei der Wert für die 'Benzinäquivalente' aus dem Arbeitsblatt "Übersicht" importiert werden.

In den folgenden Zeilen (Zeilen 10-375) werden alle Batterieladungen mit Datum und jeweiligem Kilometerstand, auch allfällige Nachladungen, wenn nicht gefahren wurde oder gefahrene Strecken, ohne dass die Batterie danach geladen wurde¹, eingetragen.

Auch hier ist der rot hinterlegte Teil des Arbeitsblattes fakultativ und wurde manchmal, seit Version 2, wo diese Zellen 'versteckt' sind, jedoch nie ausgefüllt.

¹ In diesem Fall werden die Zellen in der Spalte "Netzenergie" einfach leer gelassen. In der Verbrauchsberechnung erscheint dann "Nachladen"

^{{=}IF(ISBLANK(G17);"";IF(E17=0;"Nachladen";H17/E17*100))}

Abbildung 21: roter, fakultativer Teil aus dem Arbeitsblatt "Energie".

Erläuterungen zu einzelnen Werten:

Ladeinfrastruktur Typ & Ort:

bei der Benutzung verschiedener Ladegeräte an verschiednen Orten wird die entsprechende Nummer aus 'Übersicht' eintragen.

Batterie: (Anzeige, Ladung, Spannung):

Falls das Fahrzeug über entsprechende Anzeigen verfügt, können hier entsprechende Ablasewerte eingegeben werden.

Arbeitsblatt "Ereignisse"

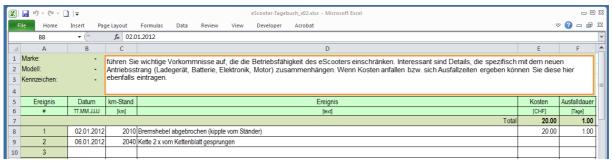


Abbildung 22: grüner Teil aus dem Arbeitsblatt "Ereignisse".

Hier werden wichtige Vorkommnisse aufgeführt, die die Betriebsfähigkeit des eScooters einschränken. Interessant sind Details, die spezifisch mit dem neuen Antriebsstrang (Ladegerät, Batterie, Elektronik, Motor) zusammenhängen. Wenn Kosten anfallen bzw. sich Ausfallzeiten ergeben können Sie diese hier ebenfalls eintragen.

Anhang zu Kapitel 7.4.4

ES-Tagebücher Auswertung

Die Daten der einzelnen Tagebücher werden in einer MS-Excel Liste datenbankartig verwaltet und ausgewertet.

X) = (ºI ·	- 🗋 =				alldata.xls	x - Microsoft	Excel							
Fil	le	Home	Insert Page Layout Formu	as Data F	Review Vi	ew D	eveloper A	Acrobat								
		C6	▼ 🌕 ∱ Bemerkung	en												
1			,													
2																
4	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P
2							recke [km]			energieb					tsverbrauc	_
3			Zusammenfassung >>>		53'083.5	#Fahrte 2'141	Mittel 24.8	Abw. 18.0	kWh gesa 3'569.3	#Lagun 1'577	Mittel 2.26	Abw. 1.42	Strom 6.72	8. [l/100km 0.74	Mittel 7.67	Abw. 5.94
					33063.3	2141	24.0	10.0	3 309.3	13//	2.20	1.42	0.72	0.74	1'537	
4	4			Datum	Distanz [km	Nishaaa	:- U-VA/I-1	Distance floor	-1	Nistra	DAM	Manhaari	ch [kWh/10		1537	Lac
5	_					kWh-	· · ·	Distanz [kn	S^2	_	<u> </u>					Fhz
				[TT.MM.JJJJ]	km-Stand		kWh-Stand	Strecke S		Bezug	E^2	ı -	Bezug B			
		<u></u>			nach Fahrt		nach Laden	seit letztem		E beim		seit	seit		[l/100km]	Klasse
		Ĕ				vor		Eintrag		letzten		letztem	letzter	hV		
	J.T	Teilnehmer 4		_		Laden				Eintrag		Laden	Fahrt	[kWh/10		
	ΨT		Bemerkungen -	40.07.0040	407.0	7	~	~	~		~	~	*	0km →	~	~
7	-	2		13.07.2010	407.0			75.0	-	-	-	75.0	-	sips		2
8	-	2		16.07.2010	482.0			75.0	5'625.0	-	-	75.0	-	trips		2
9	\rightarrow	2		19.07.2010	542.0			60.0	3'600.0	-	-	135.0	-	trips		2
10	\rightarrow	2		20.07.2010	580.0			38.0	1'444.0	-	-	173.0	-	trips		2
11	-	2		22.07.2010	643.0			63.0	3'969.0	-	-	236.0	-	trips		2
12	\rightarrow	2		27.07.2010	673.0			30.0	900.0	-	-	266.0	-	trips		2
13	\rightarrow	2		28.07.2010	724.0			51.0	2'601.0	-	-	317.0	-	trips		2
14	\dashv	2		29.07.2010	740.0			16.0	256.0	-	-	333.0	-	trips		2
15	\dashv	2		30.07.2010	791.0			51.0	2'601.0	-	-	384.0	-	trips		2
16	\dashv	2		31.07.2010	817.0			26.0	676.0	-	-	410.0	-	trips		2
17	\dashv	2		04.08.2010	847.0			30.0	900.0	-	-	440.0	-	trips		2
18	_	2		05.08.2010	883.0			36.0	1'296.0		-	476.0	-	trips		2
19	_	2		06.08.2010	883.0			-	-	-	-	476.0	-	trips		2
20		2		08.08.2010	930.0			47.0	2'209.0	-	-	523.0	-	trips		2
	\rightarrow	_														

Abbildung 23: Ausschnitt aus Arbeitsblatt "Data".

Die Daten der einzelnen Tagebücher werden hierher, in leicht geänderter Spaltenfolge, kopiert. Jeder Eintrag erhält zusätzlich die ID-Nummer des Teilnehmers und einen Eintrag über die Gültigkeit des Datensatzes. Berechnet werden, ausser den Resultaten in den Tagebüchern noch einige weitere Kenngrössen bzw. Zwischenresultate. auch wird die Fahrzeugklasse mit einer 'lookup' Funktion aus dem Arbeitsblatt 'Fahrzeuge' ausgelesen.

Die Liste kann mehrere zehntausend Einträge enthalten und ist so angelegt, dass bestimmte Abfragen über die Auto-Filterfunktion gemacht werden können. Die Excel-Funktion 'Subtotal' erlaubt verschiedene Berechnungen über gefilterte Datensätze auszuführen, jedoch ist der Funktionsumfang ziemlich beschränkt.

Erläuterungen zu einzelnen Kennzahlen, die jeweils aus einem gefilterten Set ermittelt werden:

- Fahrstrecke [km]: ('km_gesamt', Ref E3 {=SUBTOTAL(9;H7:H2325)} ist die Summe aller berechneten Einzelfahrten.
- Gesamtanzahl Fahrten: ('#Fahrten', Ref F3 {=SUMPRODUCT(SUBTOTAL(2;OFFSET(H7:H2325;ROW(H7:H2325)-ROW(H7);0;1));--(H7:H2325>0))} ist die Anzahl aller Einträge mit Fahrten >0km ('xl-hack')
- Durchschnittliche Fahrt ('Mittel', Ref G3 { =E3/F3}
- Standardabweichung der durchschnittlichen Fahrt: ('Abw.', Ref H3 {=SQRT(SUBTOTAL(9;17:12325)/F3-G3^2)}
- Netzenergiebezug [kWh] ('kWh_gesamt', Ref I3 { =SUBTOTAL (9; J7: J2325)}

- Gesamtanzahl Ladungen: ('#Ladungen', Ref J3 {=SUMPRODUCT (=SUMPRODUCT (SUBTOTAL (2;OFFSET (J7:J2325;ROW (J7:J2325) ROW (J7);0;1));--(J7:J2325>0))} ist die Anzahl aller Einträge mit Fahrten >0km ('xl-hack')
- Durchschnittliche Ladung: ('Mittel', Ref K3 {=I3/J3})
- Standardabweichung der durchschnittlichen Ladung: 'Abw.', Ref L3 {=SQRT(SUBTOTAL(9;K7:K2325)/J3-K3^2)}
- Durchschnittsverbrauch [kWh/100km]: 'Strom', Ref M3 {=IF (E3>0; I3/E3*100; 0)}
- Durchschnittsverbrauch [I/100km]: 'Benzin', Ref N3 {=M3*Benzin äq }
- Mittlerer Verbrauch: ('Mittel', Ref O3 {=SUBTOTAL (1; N7:N2325)}
- Standardabweichung der durchschnittlichen Ladung: 'Abw.', Ref L3 {=SQRT(SUBTOTAL(9; K7: K2325)/J3-K3^2)}

In den folgenden Zeilen (Zeilen 7-65'000) werden alle Datensätze kopiert und daraus Resultate berechnet:

Strecke S seit letztem Eintrag Ref H8ff {=IF (ISBLANK (E8);0;E8-E7)}

S^2 Ref I8ff {=H8*H8}, Zwischenresultat für Standardabwei-

chung

Bezug E beim letzten Eintrag Ref J8ff {=G8-F8}, Netzenergiebezug seit letzter Able-

sung

E^2 Ref K8ff {=J8*J8}, Zwischenresultat für Standardabwei-

chung

 $\begin{tabular}{ll} Weg W seit letztem Laden \\ \begin{tabular}{ll} Ref L8ff {=} IF (ISNUMBER (N7); H8; L7+H8)}, zurückge-\\ \end{tabular}$

legte Strecke seit letztem Laden (addiert mehrere Fahr-

ten ohne Zwischenladung)

Bezug B seit letzter Fahrt Ref M8ff {=IF(ISNUMBER(N7); J8; M7+J8)}, Gesamt-

ladung seit letzter Fahrt (addiert mehrere Ladungen ohne

Fahrten)

Verbrauch V el [kWh/100km] Ref N8ff

{=IF(L8>0;IF(M8>0;M8/L8*100;"trips");"sips")}, berechnet den spezifischen Verbrauch oder zeigt "sips" (keine Fahrten zwischen zwei Ladungen) oder "trips" (keine Ladungen zwischen zwei Fahrten) an

Verbrauch V_be [I/100km]
Ref O8ff {=IF(ISNUMBER(N8); N8*Benzin_äq;"")}

Fhz Klasse Ref P8ff {=VLOOKUP (B8; IDtable; 3)}

Der Durchschnittsverbrauch wird auf zwei unterschiedliche Arten berechnet. Die Erste ist der Gesamtverbrauch durch die Gesamtstrecke des gefilterten Sets. Diese hat den Nachteil, dass alle Informationen über momentane Verbräuche verloren gehen...

Deshalb berechnet die zweite Methode zuerst den spez. Verbrauch jeder Fahrt und daraus den Durchschnittsverbrauch aller Fahrten. Die Schwierigkeit hier ist, dass nicht immer nach jeder Fahrt geladen und auch nicht nach jeder Ladung gefahren wird. Das XL-Blatt berechnet daher den Verbrauch aus der Summe aller Ladungen zwischen zwei Fahrten bzw. aller Fahrten zwischen zwei Ladungen.

Folgende Grafik zeigt vereinfacht das Rechenverfahren:

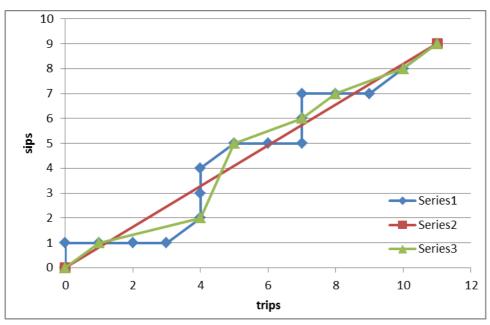
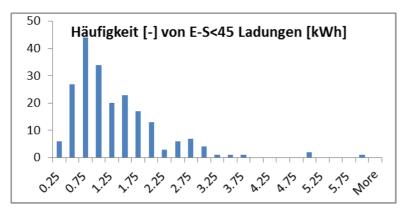
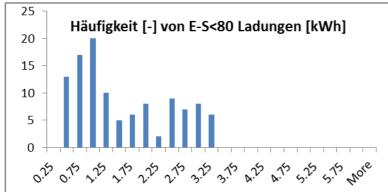




Abbildung 24: Series 1 (blau) zeigt kumuliert einen Versuchsverlauf, bei dem in jedem Schritt entweder eine Einheit geladen (=1 sip) oder eine Einheit gefahren (= 1 trip) oder Beides, wird. Series 2 (grün) zeigt für den gleichen Verlauf nur diejenigen Punkte, bei welchen erstmals wieder ein Durchschnittsverbrauch gerechnet werden kann. Series 3 (rot) zeigt schliesslich den Gesamtdurchschnitt. Die drei Kurvenverläufe zeigen deutlich, wie unterschiedlich die Momentanverbräuche (=Steigungen) sind.

E-Scooter Ladungen

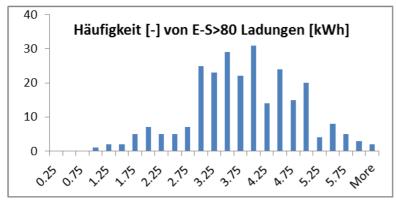
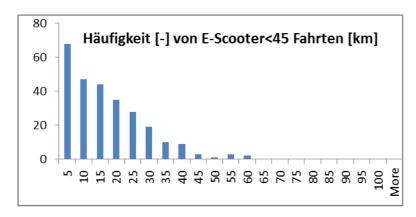
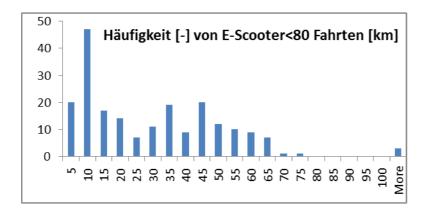




Abbildung 25: Häufigkeiten der Ladungen aufgeteilt nach den drei E-Scooter Klassen. Erwartungsgemäss zeigt sich, dass die Klasse <45 am Häufigsten sehr kleine Energiebezüge (0.75kWh) hat; die Klasse <80 zwei deutliche Maxima (1.0 und 2.5kWh) hat; die Klasse >80 wiederum ein undeutliches Maximum bei 4kWh aufweist. Die Erklärungen decken sich mit denen aus Abbildung 26.

Histogram von E-Scooter Fahrten



Abbildung 26: Häufigkeiten der zurückgelegten Fahrten aufgeteilt nach den drei E-Scooter Klassen. Es zeigt sich, dass die Klasse <45 am Häufigsten sehr kurze Distanzen (<5km) zurücklegt; die Klasse <80 zwei deutliche Maxima (10 und 45km) zurücklegt; die Klasse >80 wiederum ein deutliches Maximum bei 40km aufweist. Das überrascht kaum, da die langsamen E-Scooter optimal für den Nahverkehr ausgelegt sind und die schnellen Typen für zB den typischen Pendelverkehr (CH-Durchschnitt 22km/Weg) genutzt werden. Die mittlere Klasse scheint sich aus Fahrzeugen die einerseits eher der langsamen andererseits der schnellen zuzuordnen sind - also eher kein 'eigenständiges' Verhalten zeigen.