

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Eidgenössisches Departement für
Umwelt, Verkehr, Energie und Kommunikation UVEK
Bundesamt für Energie BFE

Schlussbericht Juni 2011

Life Cycle Assessment of Burning Different Solid Biomass Substrates

Auftraggeber:

Bundesamt für Energie BFE
Forschungsprogramm Forschung & Entwicklung
CH-3003 Bern
www.bfe.admin.ch

Auftragnehmer:

ESU-services Ltd.
fair consulting in sustainability
Kanzleistrasse 4
CH-8610 Uster
www.esu-services.ch

Autoren:

René Itten, ESU-services Ltd., itten@esu-services.ch
Matthias Stucki, ESU-services Ltd., stucki@esu-services.ch
Niels Jungbluth, ESU-services Ltd., jungbluth@esu-services.ch

BFE-Bereichsleiterin: Sandra Hermle

BFE-Programmleiterin: Sandra Hermle

BFE-Vertrags- und Projektnummer: 154347 / 103299

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren dieses Berichts verantwortlich

..

Imprint

Title	Life Cycle Assessment of Burning Different Solid Biomass Substrates
Authors	Rene Itten, Matthias Stucki, Niels Jungbluth ESU-services Ltd., fair consulting in sustainability Kanzleistr. 4, CH-8610 Uster www.esu-services.ch Phone 0041 44 940 61 38, Fax +41 44 940 61 94 itten@esu-services.ch
Commissioner	Bundesamt für Energie
About us	ESU-services Ltd. has been founded in 1998. Its core objectives are consulting, coaching, training and research in the fields of Life Cycle Assessment (LCA), carbon footprints, water footprint in the sectors energy, civil engineering, basic minerals, chemicals, packaging, telecommunication, food and lifestyles. Fairness, independence and transparency are substantial characteristics of our consulting philosophy. We work issue-related and accomplish our analyses without prejudice. We document our studies and work transparency and comprehensibly. We offer a fair and competent consultation, which makes it for the clients possible to control and continuously improve their environmental performance. The company worked and works for various national and international companies, associations and authorities. In some areas, team members of ESU-services performed pioneering work such as development and operation of web based LCA databases or quantifying environmental impacts of food and lifestyles.
Copyright	All content provided in this report is copyrighted, except when noted otherwise. Such information must not be copied or distributed, in whole or in part, without prior written consent of ESU-services Ltd. or the customer. This report is provided on the website www.esu-services.ch and the website of the customer. A provision of this report or of files and information from this report on other websites is not permitted. Any other means of distribution, even in altered forms, require the written consent. Any citation naming ESU-services Ltd. or the authors of this report shall be provided to the authors before publication for verification.
Liability Statement	Information contained herein have been compiled or arrived from sources believed to be reliable. Nevertheless, the authors or their organizations do not accept liability for any loss or damage arising from the use thereof. Using the given information is strictly your own responsibility.
Version	321-LCA-biomass-combustion-v3.3.docx, 05/07/2011 10:00:00

Table of contents

1. Introduction	1
2. Goal and scope of the LCA study	1
2.1. Key questions	1
2.2. Functional unit	2
2.3. Geographical boundaries	2
2.4. Overview of potential biomass substrates for combustion	2
2.4.1. Olive dry pomace	7
2.4.2. Bagasse	7
2.4.3. Coffee grounds	7
2.4.4. Horse dung	7
2.4.5. Grass and cereals	7
2.4.6. Poultry litter	8
2.4.7. Slurry solids	8
2.5. Selection of the biomass substrates	8
2.6. Properties of the substrates	9
2.7. Technical specifications of the furnace	11
3. Life cycle inventory: summary	12
3.1. Fuel-mixture preparation	12
3.1.1. Drying of the olive pomace	12
3.1.2. Pellet production	12
3.1.3. Preparation of the fuel-mixture	12
3.2. Combustion of the biomass substrates	12
3.2.1. Disposal ash from combustion	13
3.2.2. Particulate matter emissions	13
3.3. Heat generation	14
3.4. Disposal of the ashes	14
3.4.1. Landfarming	15
3.4.2. Municipal incineration	15
3.4.3. Sanitary landfill	16
3.5. Coffee grounds in municipal incineration	16
3.6. Data quality	17
3.6.1. Olive pomace	17
3.6.2. Coffee grounds	17
3.6.3. Poultry litter	17
3.6.4. Horse dung	17
3.6.5. Pig slurry solids	18
4. Life cycle impact assessment	19
4.1. Ecological Scarcity 2006	19
4.1.1. Emissions into air	22
4.1.2. Emissions into soil	25
4.2. Greenhouse gases	26
4.3. Scenario analysis	28
4.3.1. Coffee grounds in municipal incineration	28
4.3.2. Ash disposal	29
4.3.3. Pellet production	30
5. Interpretation	31
6. Conclusion and outlook	33
7. Appendix: life cycle inventory	34
7.1. Fuel-mixture preparation	34
7.1.1. Drying of the olive pomace	34
7.1.2. Pellet production	34
7.1.3. Preparation of the fuel-mixture	35
7.2. Combustion of the biomass substrates	35
7.2.1. Disposal ash from combustion	39

7.2.2. Particulate matter emissions.....	39
7.3. Heat generation.....	39
7.4. Disposal of the ashes.....	40
7.4.1. Landfarming.....	41
7.4.2. Municipal incineration.....	44
7.4.3. Sanitary landfill.....	44
7.5. Coffee grounds in municipal incineration	44
7.6. Meta information to the unit process raw data	44
7.7. Data quality	49
7.7.1. Olive pomace.....	49
7.7.2. Coffee grounds	49
7.7.3. Poultry litter.....	49
7.7.4. Horse dung	49
7.7.5. Pig slurry solids.....	50
8. References	51

Abstract

Biomass from agriculture, crop residues, forestry, landscape management, and wastes from industry and households can be used for energy recovery. In order to obtain useful energy carriers from the different biomass substrates, they can be fermented for a conversion into biogas, they can be converted into biofuels or they can be burnt directly in order to receive heat or to generate electricity.

In this project a life cycle assessment (LCA) of the direct combustion of different non-wood biomass substrates is performed. For that purpose the life cycle inventory (LCI) data are collected and modelled according to the present guidelines of ecoinvent data v2.2. The final product is useful heat provided by the combustion process.

A survey of the potential biomass substrates for direct combustion mentioned in literature was conducted, which gave an overview of these substrates covering pomaces, kernels, shells, by-products from industry, oil from oil seeds, and other products and wastes.

Based on the overview of potential biomass substrates for combustion and the availability of data, life cycle inventory data for burning the following five substrates are collected:

- Olive dry pomace
- Coffee ground pellets
- Horse dung & wood chips co-combustion
- Poultry litter pellets
- Slurry solids & wood chips co-combustion

The life cycle impact assessment shows that the combustion of the biomass substrates has the highest environmental impact, followed by the disposal of the ash generated by the combustion process. In general the biomass substrates perform worse compared to the combustion of wood from an environmental point of view. The burning of biomass substrates generates higher particulate and nitrogen oxide emissions than the combustion of wood or wood pellets. The combustion of coffee ground pellets, poultry litter pellets and horse dung mixed with wood chips show similar environmental impacts as the combustion of wood logs in a small furnace.

The study shows the improvement potentials regarding reduction of air emissions and disposal routes for ashes. These have to be further evaluated and measurements on key pollutants are necessary in order to finally judge about the possibilities and environmental impacts of using biomass wastes in direct combustion processes.

Abbreviations

C	Carbon
CH	Switzerland
CH ₄	Methane
CO	Carbon monoxide
CO ₂	Carbon dioxide
GWP	Global warming potential
H	Hydrogen
IPCC	Intergovernmental panel on climate change
kW	Kilo watt
LCA	Life cycle assessment
LCI	Life cycle inventory
LCIA	Life cycle impact assessment
LHV	Lower heating value
MJ	Mega joule
MSWI	Municipal solid waste incineration
MW	Mega watt
N ₂ O	Dinitrogen monoxide
NMVOC	Non-methane volatile organic carbon
NO _x	Nitrogen oxides
O	Oxygen
PM	Particulate matter
S	Sulphur
SO _x	Sulphur oxides
TSP	Total suspended solids
UHV	Upper heating value
VOC	Volatile organic carbon

Life Cycle Assessment of Burning Different Solid Biomass Substrates

1. Introduction

Biomass from agriculture, crop residues, forestry, landscape management, and wastes from industry and households can be used for energy recovery. In order to obtain useful energy carriers from the different biomass substrates, they can be fermented for a conversion into biogas, they can be converted into biofuels or they can be burnt directly in order to receive heat or to generate electricity. Detailed life cycle assessments (LCA) of the use of wood as energy source have been carried out by Bauer (2007), whereas the direct combustion of other biomass substrates has not yet been evaluated for the ecoinvent database. Hence, in this project an LCA of the direct combustion of different non-wood biomass substrates is performed. For that purpose the life cycle inventory (LCI) data are collected and modelled according to the ecoinvent guidelines (Frischknecht et al. 2007; Jungbluth et al. 2007a).

2. Goal and scope of the LCA study

2.1. Key questions

The combustion of different types of biomass is assessed within the study. The analysis focuses on the following points.

- What are the environmental impacts of biomass combustion?
- How can these impacts be compared to other types of heat provision also from fossil resources?
- What are the main emissions and impacts from an environmental point of view?
- Which influence has the type of substrate and the combustion technology?

The data investigated in this project should facilitate others works on LCA. Examples are the labelling of renewable energy with the naturemade star label (Jungbluth et al. 2010) and a comparison of different disposal routes of such biomass wastes.

Furthermore, with this evaluation we also would like to highlight possible further research questions for the investigation of such biomass substrates.

In order to assess the environmental performance of burning different biomass substrates, data about different types of technology and biomass substrates are necessary. Data regarding production of the biomass substrates, heat generation, as well as regarding emissions from the combustion process have to be collected and modelled in a LCI.

If the purpose of the substrate production is the generation of heat from burning the biomass, the full production process has to be allocated to the environmental impact of burning the biomass substrate. However, substrates are often by-products of multi-output processes. In such processes, the environmental impact of the production process is allocated using the price of the different products as allocation factor. If burning biomass substrates that are wastes with no economic value, no environmental impacts from the substrate production need to be allocated to the generated heat.

The disposal of the ashes generated by the combustion of the biomass substrates is completely allocated to the combustion processes. The replacement of artificial fertilizer, when using the ashes of the biomass substrates instead of artificial fertilizers, is not considered.

In addition to the substrate supply chain, the emissions from the combustion of the biomass have to be considered. The most important emissions are nitrogen oxides, particulates, and carbon dioxide. However, the combustion of biomass in different furnaces leads to many other specific emissions, which are dependent on the applied technology and composition of the substrate.

For the accomplishment of the goals the following information is needed:

- LCI data of substrate production
- Actual market prices for substrates and co-substrates
- Calorific value of different substrates

- Emission data from burning the biomass substrates

2.2. Functional unit

The functional unit is one MJ useful heat for heating systems. The LCA is modelled for the situation in Switzerland with the most recent data available.

2.3. Geographical boundaries

The inventory for the combustion of olive pomace is modelled for a typical production area for olives in the Lythrodontas region in Cyprus. The inventory for the disposal of the ash generated by the combustion of olive pomace is modelled for municipal incineration in Switzerland and for a sanitary landfill according to Swiss legislation built in Switzerland. The technology mix for municipal incineration corresponds to the technology mix encountered in Switzerland in the year 2000 and is comparable to modern incineration practices in Europe, North America or Japan. The sanitary landfill for the disposal of the ash includes a base seal, leachate collection and treatment of the leachate in a municipal wastewater treatment plant.

The inventories for the combustion of coffee ground pellets, poultry litter pellets, horse dung and pig slurry solids are modelled for pilot plants in Switzerland. No adjustments have been made to the emission factors in order to account for the measurements in pilot plants. The inventory for the disposal of the ash generated by the combustion is modelled for the same geographical boundaries as the disposal of ash generated by the combustion of olive pomace.

2.4. Overview of potential biomass substrates for combustion

As a first step a survey of the potential biomass substrates for direct combustion mentioned in literature is conducted. Tab. 1 gives an overview of these substrates covering pomaces, kernels, shells, by-products from industry, oil from oil seeds, and other products and wastes. For the green marked substrates, data that could be used for an LCI are available, such as calorific values, typical moisture or elemental composition.

Tab. 1 Overview of potential biomass substrates for direct combustion

	English	Deutsch
Pomace		
	Canola pomace	Rapskuchen
	Sunflower pomace	Sonnenblumenpresskuchen
	Olive Pomace	Olivenpresslinge (Rückstände)
	Castor cake	Rizinuskuchen
Kernel		
	Palm kernel	Palmenkerne
	Oliven kernel	Olivenkerne
	Cherry stones	Kirschenkerne
	Plum stones	Zwetschgenkerne
	Grape seeds	Traubengerne
Shells		
	Sunflower shells	Sonnenblumenschalen
	Canola shells	Rapsschalen
	Buckwheat shells	Buchweizenschalen
	Nut shells	Nusschalen
	Peanut shells	Erdnusschalen
	Almond shells	Mandelschalen
	Coconut shells	Kokosnusschalen
	Rice shells	Reisschalen
	Soybean shells	Sojaschalen
By-products		
	By-products of cellulose factories	Nebenprodukte aus Zellulosefabrik
	Draff (by-product from beer production)	Biertreber (Nebenprodukt Bierproduktion)
	Residues from malt processing	Rückstände aus der Malzverarbeitung
	Bagasse (from sugarcane processing)	Bagasse (aus Zuckerrohrverarbeitung)
Oil from oil seeds		
	Canola oil	Rapsöl
	Jatropha oil	Jatropha-Öl
	Palm oil	Palmöl
	Sunflower oil	Sonnenblumenöl
	Castor oil	Rizinusöl
	Soybean oil	Sojaöl
	Plant oils in general	Pflanzenöle allg.
	Animal fat	Tierfett

Other products and wastes	English	Deutsch
Heating cereals		Heizgetreide
Triticale (cereals)		Triticale (Getreide)
Biomass		Grüngut
Paper		Papier
Paper fibre residues		Papierfaserreststoff
Textiles		Textilien
Coffee grounds		Coffee grounds / Waste
Roasting wastes		Röstereiabfälle
Sugarcane		Zuckerrohr
Palm leaves		Palmlätter
Miscanthus		Chinaschilf (Miscanthus)
Thistle (<i>Cynara cardunculus</i>)		Distel (<i>Cynara cardunculus</i>)
Other plant leaves		andere Pflanzenblätter
Glycerine		Glyzerin
Straw		Stroh
Grass		Gras
Reed canary grass		Reed canary grass
Needles (spruce)		Tannennadeln
Horse dung with wood shavings litter + wood chips		Pferdemist mit Hobelspäneinstreu + Holzschnitzel
Horse dung with wood shavings litter + cereal briquettes		Pferdemist mit Hobelspäneinstreu + Holzschnitzel
Horse dung with straw litter + reed cutting		Pferdemist mit Stroheinstreu + Riedflächenstreu
Poultry litter		Hühnermist
Corn cob		Maiskolben
Cotton residues		Baumwollreste
Beet chips		Rübenschnitzel
Sludge		Klärschlamm
Animal meal		Tiermehl
Fungi mycelium / fungi compost + wood chips		Pilzmyzel / Pilzkompost + Holzschnitzel
Cereal briquette		Getreideabgang
Residues from cereal harvesting		Rückstände der Getreideernte
Cutting of reed areas		Schnitt von Riedflächen
Fermentation substrate from food wastes		Gärsubstrat aus Speiseabfällen
Solids from biomass collection		Feststoffe von Grüngutsammlungen
Slurry solids		Güllefeststoff

In Tab. 2 the available data for an LCI of burning biomass substrates are shown.

Tab. 2 Data availability for LCI of burning biomass substrates (✓ means that corresponding data are available)

	technology	calorific value	moisture	density	fuel composition	emissions to air	ash content	ash composition	source
Olive dry pomace	boiler furnace in oil mill	✓	✓	✓	✓	CO ₂ , CO, CH ₄ , C ₂ H ₆ , ethylene, 1,3-Butadiene, n-Hexane, Benzene, Naphthalene, Anthracene	✓	✓	Jauhainen et al. (2005), van Loo & Koppejan (2007)
Palm kernel		-	-	-	-	-	✓	-	van Loo & Koppejan (2007)
Sunflower shells		✓	-	-	-	CO ₂	-	-	Hackl & Mauschitz (2007)
Bagasse	in boiler furnace in sugar mill	✓	✓	-	✓	PM, PM ₁₀ , CO ₂ , NO _x , POM,	✓	-	EPA (1993)
Triticale (cereals)		✓	✓	✓	✓	-	✓	✓	van Loo & Koppejan (2007)
Paper fibre residues		✓	-	-	-	CO ₂	-	-	Hackl & Mauschitz (2007)
Coffee grounds	in 25 kW industrial furnace, in large industrial furnace, and in a open fireplace	✓	✓	✓	✓	CO, NO ₂ , dust	✓	-	SGS-Institut-Fresenius (2008), Waelti & Keller (2009)
Miscanthus	in grate furnace, in bale furnace, in Bioflox IDDEA©	✓	✓	-	✓	CO, NO _x , dust	✓	✓	van Loo & Koppejan (2007), Schmid & Gaegauf 2008, agricultural production investigated in Jungbluth et al. (2007b)
Thistle (Cynara cardunculus)		-	-	-	✓	-	✓	-	Llorente & Garcia (2006)
Straw	e.g. in cigar burner or straw furnaces	✓	✓	✓	✓	NO _x , dust	✓	✓	van Loo & Koppejan (2007), Llorente & Garcia (2006), Allica et al. (2001),

technology	calorific value	moisture	density	fuel composition	emissions to air	ash content	ash composition	com- source
								Hersener et al. (1997)
Grass	in grate furnace, in bale furnace	√	√	√	√	NO _x , dust	-	-
Horse dung with wood shaving litter and wood chips	500-600 kW grate furnace	√	√	√	√	dust, SO ₂ , CO, NO _x , HC, NH ₃ , Cl, CO ₂	-	-
Horse dung with wood shaving litter and cereal briquettes	500-600 kW grate furnace	√	√	√	√	dust, SO ₂ , CO, NO _x , HC, NH ₃	-	-
Horse dung with straw litter + wood chips + reed cutting	500-600 kW grate furnace	-	√	-	√	dust, SO ₂ , CO, NO _x , HC, NH ₃	-	√
Poultry litter	250-350 kW grate furnace	√	√	√	√	dust, SO ₂ , CO, NO _x , HC, NH ₃	√	(√)
Fungi mycelium / fungi compost + wood chips	500-600 kW grate furnace	√	√	√	(√)	dust, SO ₂ , CO, NO _x , HC, NH ₃	-	-
Cereal briquette	500-600 kW grate furnace	√	√	√	(√)	dust, SO ₂ , CO, NO _x , HC, NH ₃	-	-
Cutting of reed areas	500-600 kW grate furnace	-	√	-	√	dust, SO ₂ , CO, NO _x , HC, NH ₃	√	√
Slurry solids	900 kW grate furnace	√	√	-	√	dust, SO ₂ , CO, NO _x , HC, NH ₃	-	(√)

2.4.1. Olive dry pomace

Olive pomace is the solid remains of olives after pressing olive oil. It contains the skins, pulp, seeds, and stems of the fruit. In the European Union, olive pomace is burned mainly in olive oil mills in order to heat up water for the oil mills. In a demonstration project of the European Commission and the University of Cyprus detailed LCI data with regard to emissions, ash composition, calorific value etc. of the olive dry pomace are published (Avraamides & Fatta 2006, Jauhainen et al. 2005).

2.4.2. Bagasse

Bagasse is the fibrous residue remaining after sugarcane or sorghum stalks are crushed to extract their juice. Bagasse is often used as a primary fuel source for sugar mills, where it is often used in cogeneration in order to provide both heat energy, used in the mill, and electricity, which is typically sold on to the grid. The island Mauritius generates 30 % of its electricity from combustion of Bagasse. The U.S. Environmental Protection Agency (EPA 1993) reports emission factors and other useful LCI figures of the bagasse combustion in a boiler furnace in a sugar mill. The combustion of bagasse in order to generate electricity is already included in ecoinvent (Jungbluth et al. 2007a).

2.4.3. Coffee grounds

The Swiss 3R Company¹ sells briquettes made from coffee grounds that can be used for barbecuing, in open fire places and in wood furnaces. We made contact with Dr. Harald Jenny, the director of the 3R Company, who informed us about their activities with regard to collection of data that can be used for LCI. According to Dr. Jenny, they already measured the emissions from fuelling a 25 kW industrial furnace with coffee grounds briquettes, and further analysis with open fire places and a large industrial furnace are planned. The 3R company showed high attendance to share their data with ESU-services Ltd. in order to enable an implementation in ecoinvent. They provided us with data regarding the elemental composition of the coffee grounds fuel (SGS-Institut-Fresenius 2008) as well as regarding carbon monoxide, nitrogen dioxide and particle emissions from the combustion in a 25 kW industrial furnace (Waelti & Keller 2009).

2.4.4. Horse dung

The technically feasible potential of energy from horse dung in Switzerland is about 2 PJ per year (Hersener & Meier 1999). However, as yet no horse dung is used energetically in Switzerland. Horse dung is usually mixed with litter, such as shavings or straw. Still, this combination cannot be burned by itself and needs another fuel, such as wood chips. The combustion of horse dung (with shavings or straw litter) as a co-fuel with wood chips, cereal briquettes, or reed cutting, was analysed in (Bühler et al. 2005; 2007). LCI data regarding calorific value, moisture, density, fuel composition, and emissions are published, however with a lack of data regarding the ash content and ash composition.

2.4.5. Grass and cereals

Several publications report LCI data of the combustion of grass, straw, hay, cereals, miscanthus, or reed cutting. The current technically feasible potential of energy from agricultural halm crops (miscanthus, hemp etc.) in Switzerland is about 0.7 PJ per year, the one of energy from compensating areas (grass, hedges etc.) is about 3.9 PJ per year, the one of energy from cuttings from landscape conservation is about 1 PJ per year, and the one of energy from straw is 11 PJ per year (Hersener & Meier 1999). As yet, grasses and cereals are not used energetically in Switzerland.

Van Loo and Koppejan (2007) report the moisture content, the calorific value and the density of high pressure grass bales, triticale, and straw, as well as elemental concentrations in straw, miscanthus, hay, triticale, and grass. They also declare the ash content of miscanthus, straw and cereals as well as the elemental composition of the ashes from cereal straw, miscanthus, and canary reed grass. However, they do not present emission factors of burning biomass substrates.

¹ <http://www.3rcompany.com/>

Schmid & Gaegau (2008) report dust, CO, and NOx emission factors of burning miscanthus pellets in an improved boiler. In addition they also declare typical elemental compositions of cereal and miscanthus pellets.

The cultivation of grass, wheat, and cereals as well as the production of hay and straw is already implemented in ecoinvent.

2.4.6. Poultry litter

Data of the combustion of poultry litter are presented by Salerno et al. (2001) whose study considers the combustion in a 250-350 kW grate furnace. Conventionally, poultry litter is used as a fertiliser in agriculture.

Ecoinvent already contains an LCI of dried poultry manure as a commercial fertiliser covering the energy demand required for further-processing (i.e. drying and granulation), process emissions, waste production, infrastructure, and transports (Nemecek et al. 2007).

2.4.7. Slurry solids

Slurry solids from liquids/solids separation of crude animal slurry can be used energetically as fuel in biomass furnaces. The technically feasible energy potential of the total slurry solids in Switzerland is about 2 PJ per year, which corresponds to 10'000 tons per year of solids from slurry separation (Hersener & Meier 1999). However, as yet slurry solids are not used energetically in Switzerland. Data of the combustion of slurry solids are reported by Hersener & Bühler (1998) and Hersener & Meier (2002).

2.5. Selection of the biomass substrates

Based on the overview of potential biomass substrates for combustion and the availability of data, LCAs of the following five substrates are established:

- **Olive dry pomace:** drying out process of pomace and combustion of dry pomace in a small-scale boiler furnace generating heat for an olive oil mill in Cyprus. Since olive dry pomace can be considered as a waste product, no emissions from the olive cultivation need to be allocated to the pomace and therefore it is not necessary to include the olive supply chain into the LCI.
- **Coffee grounds:** production of coffee ground briquettes and combustion of briquettes in a 25 kW industrial furnace generating useful heat. The coffee ground in the considered briquettes is a waste product from Nespresso® capsules and therefore the coffee production and processing does not need to be considered in the LCI.
- **Horse dung & wood chips:** co-combustion of 67 % unmodified horse dung (including wood shaving litter) and 33 % construction residual wood chips (ecoinvent dataset) in a grate furnace with a nominal boiler heat capacity of 500-600 kW generating heat for drying fruits in a farm and heating buildings. Horse dung is a waste product with no environmental burden from its formation. However, the environmental impacts from the wood chips production need to be taken into account and can be included with ecoinvent datasets.
- **Poultry litter:** Production of poultry litter pellets and combustion in a 250-250 kW grate furnace generating useful heat for apartments and hen houses. Poultry litter is a waste product with no environmental burden from its formation. Production of pellets is included in the analysis.
- **Slurry solids & wood chips:** separation of solid components from slurry and mixing and co-combustion of 15.5 % slurry solids with 71.7 % bark (ecoinvent dataset) and 12.8 % other components (mainly wood shavings) in a 1 MW bark furnace. Slurry solids are a waste product with no environmental burden from their formation. For the bark fuel ecoinvent data sets are available and the wood shavings can be approximated with similar ecoinvent dataset.

In Fig. 1 the process chain of the combustion of the five different substrates is shown. Because the fuels are considered as waste products the process chain starts with the preparation of the fuel for the combustion. No environmental burden is allocated to the biomass substrates.

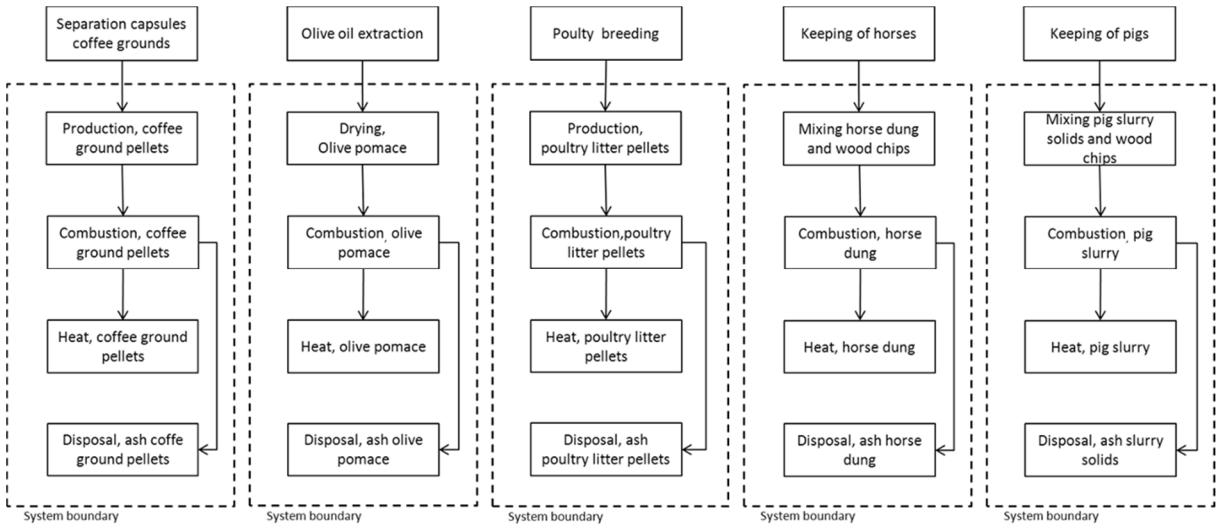


Fig. 1: Sketch of the process chain of the different biomass substrates

The five process chains in Fig. 1 are very similar. They all include four processes. The first process describes the preparation of the biomass fuel for combustion. The second process is the combustion of biomass fuel. The third process describes the heat generation and the fourth process describes the disposal of the ash generated by the combustion.

2.6. Properties of the substrates

Tab. 3 shows the elemental composition of the biomass substrates. The elemental composition of the different substrates was derived from literature. The known fractions of different elements were combined with estimates of the unknown fractions to fit the higher and the lower heating values shown in Tab. 4. The formulas (1) and (2) have been used to compute the higher and the lower heating values.

Tab. 3: Elemental composition and effective moisture of the different biomass substrates

Elemental composition	Olive pomace	Coffee ground pellets	Poultry litter pellets	Horse dung & wood chips	Pig slurry solids & bark chips
Unit	kg/kg	kg/kg	kg/kg	kg/kg	kg/kg
Carbon C	0.470	0.512	0.400	0.480	0.465
Hydrogen H	0.057	0.055	0.065	0.055	0.055
Oxygen O	0.384	0.404	0.355	0.373	0.350
Nitrogen N	0.011	-	0.038	0.002	0.022
Sulphur S	0.001	-	-	-	0.004
Ash content	0.077	0.029	0.142	0.090	0.104
Total dry mass	1.000	1.000	1.000	1.000	1.000
Moisture content	0.140	0.146	0.150	0.450	0.610

If there was no data available for the elemental composition of the fuel, the formulas (1) and (2) were used to fit the elemental composition to the known heating values shown in Tab. 4.

$$H_U = 34.8 \cdot C + 93.9 \cdot H - 10.8 \cdot O + 6.3 \cdot N - 2.44 \cdot w \quad (1)$$

$$H_O = 33.9 + 121.4 \cdot \left(H - \frac{O}{8} \right) + 22.6 \cdot H + 10.5 \cdot S \quad (2)$$

C: Carbon in kg per kg fuel
 O: Oxygen in kg per kg fuel
 S: Sulphur in kg per kg fuel

H: Hydrogen in kg per kg fuel
 N: Nitrogen in kg per kg fuel
 w: Water content in kg per kg fuel

Tab. 4 shows the lower heating value, the lower heating value dry base and the higher heating value of the different substrates. The heating values calculated according to the formulas (1) and (2) are highlighted with grey colour.

Tab. 4: Heating values of the different biomass substrates

Heating value	Olive pomace	Coffee ground pellets	Poultry litter pellets	Horse dung & wood chips	Pig slurry solids & bark chips
Unit	MJ/kg	MJ/kg	MJ/kg	MJ/kg	MJ/kg
Lower heating value LHV	14.8	15.5	13.6 ³	8.7 ⁴	5.4
Lower heating value LHV dry base	17.6 ¹	18.6	16.4	17.9	17.8 ⁵
Upper heating value UHV	18.4	19.1 ²	17.8	18.5	18.6

1) Jauhainen et al. 2005
 2) SGS-Institut-Fresenius 2008
 3) Salerno et al. 2001
 4) Bühler et al. 2005
 5) Hersener & Bühler 1998

Tab. 5 shows the particle density and the bulk density of the different biomass substrates. The particle and the bulk density of coffee ground pellets are assumed to be equal to the particle and bulk density of wood (Bauer 2007).

Tab. 5: Density and bulk density of the different biomass substrates

Density	Olive pomace	Coffee ground pellets	Poultry litter pellets	Horse dung & wood chips	Pig slurry solids & bark chips
particle density in kg/m ³	-	1100 ¹	850 ²	-	1519 ⁴
bulk density in kg/m ³	-	650 ¹	500	312 ³	300 ⁴

1) Bauer 2007
 2) Salerno et al. 2001
 3) Bühler et al. 2005
 4) Hersener & Bühler 1998

2.7. Technical specifications of the furnace

In Tab. 6 a short description of the furnace used for the combustion of the biomass substrates is shown. The furnace used for the combustion of slurry solids and bark chips is considered the oldest technology. The furnace type hobag used for the combustion of coffee ground pellets is a fully automatic heating system as the furnaces used for the combustion of poultry litter pellets, horse dung and slurry solids. The hobag heating system does not use a grate firing but instead uses a die cutter in order to compress the fuel before the combustion. For the larger furnaces used for the combustion of poultry litter pellets, horse dung and slurry solids the same technology is used. These three fuels are burned in a grate firing. For the combustion of the olive pomace only data of a laboratory scale experiment using a tubular reactor are available.

Tab. 6: General description of the device used for the combustion of the biomass substrates

general description	furnace	comment
olive pomace ⁽¹⁾	batch laboratory scale horizontal tubular reactor	experiment in lab
coffee ground pellets ⁽²⁾	furnace type hobag 25kW	device for combustion of wood waste
poultry litter pellets ⁽³⁾	rotating grate furnace 250-350kW, post-combustion chamber	pilot plant
horse dung and wood chips ⁽⁴⁾	grate furnace 500-600kW	device for combustion of wood waste
slurry solids and bark chips ⁽⁵⁾	grate furnace 1MW	device for combustion of wood waste

1) Jauhainen et al. 2005

2) Waelti & Keller 2009

3) Salerno et al. 2001

4) Bühler et al. 2005

5) Hersener & Bühler 1998

Tab. 7 shows the measures for air pollution control used during the combustion of different biomass substrates. An electrostatic filter to clean the exhaust gas was only used in the case of horse dung, but the filter did not work properly. According to Bühler et al. (2005) the electrostatic filter only removed 50% of the expected amount of particles. In Bühler et al. (2007) corona-quenching and a too high electric resistance are named as reasons for the lower separation rate.

Tab. 7: Measures for air pollution control for the different biomass substrates

air pollution control	cyclone	electrostatic filter	comment
olive pomace ⁽¹⁾	no	no	lab scale
coffee ground pellets ⁽²⁾	no	no	-
poultry litter pellets ⁽³⁾	yes	no	-
horse dung and wood chips ⁽⁴⁾	yes	yes	electrostatic filter did not work properly during the measurements
slurry solids and bark chips ⁽⁵⁾	no	no	-

1) Jauhainen et al. 2005

2) Waelti & Keller 2009

3) Salerno et al. 2001

4) Bühler et al. 2005

5) Hersener & Bühler 1998

3. Life cycle inventory: summary

3.1. Fuel-mixture preparation

3.1.1. Drying of the olive pomace

The olive pomace as a residue of the olive oil production has a moisture content of about 50 w% (Vlyssides et al. 2004). In order to burn the pomace, it has to be dried. The moisture has to be reduced from 50 %w to 14 %w in order to enable the combustion of the olive pomace in a furnace. This corresponds to 0.72 kg of water per kg of dried olive pomace that has to be removed.

3.1.2. Pellet production

Pellets are produced for coffee grounds and poultry litter. The LCI data for pellet production infrastructure and drying infrastructure are taken from wood pellet production (ecoinvent Centre 2010). The bulk density of the pellets is shown in Tab. 5. The moisture of the coffee grounds is reduced from 50 %w to 15 %w and the moisture of the poultry litter is reduced from 43 %w to 13 %w in order to enable the pellet production. This corresponds to 0.7 kg of water that has to be removed per kg of coffee ground pellets and 0.57 kg of water that has to be removed per kg of poultry litter pellets. The energy consumption for the drying processes before the pellet production is estimated to be 3.78 MJ per kilogram water evaporated (Hässig-Schellhorn 2007).

There are two possibilities to produce the pellets. Either the pellets are produced in a factory using fossil fuels for the drying process or the pellets are produced on site using heat and waste heat from the combustion processes. In addition to the savings of fossil fuels the pellets do not have to be transported, if they are produced on site. These two scenarios for the pellet production are evaluated in section 4.3.3.

3.1.3. Preparation of the fuel-mixture

Two of the biomass substrates, namely horse dung and slurry solids, are mixed with wood or bark chips. These two biomass fuels have high moisture and the mixing with a dryer fuel is needed to guarantee an efficient combustion. The mixture for horse dung consists of 67 % horse dung and 33 % wood chips. The mixture for slurry solids consists of 15.5 % slurry solids and 84.5 % bark chips.

3.2. Combustion of the biomass substrates

Compared to the different combustion datasets of wood in the ecoinvent database, there is only little data available for the different biomass substrates. Especially the air emissions of the combustion are not sufficiently documented in literature. In order to estimate the undocumented emissions the ecoinvent data sets for wood combustion are used. The furnace power is considered when completing the data sets.

Tab. 8 shows the emission factors for air emissions from the combustion for all substrates. For the coffee ground pellets, the poultry litter pellets, the horse dung and the slurry solids there are only concentration measurements in the exhaust gas available. Based on these concentrations the total flux was calculated using the total volume of the exhaust gas derived from the elemental composition of the substrates.

Tab. 8: Emission factors for the air emissions of the different biomass substrates, extrapolated emission factors are highlighted with grey colour

Emission factors	Olive pomace ⁽¹⁾	Coffee ground pellets ⁽²⁾	Poultry litter pellets ⁽³⁾	Horse dung & wood chips ⁽⁴⁾	Pig slurry solids & bark chips ⁽⁵⁾
Unit	kg/MJ	kg/MJ	kg/MJ	kg/MJ	kg/MJ
Carbon dioxide CO2	1.16E-01	1.21E-01	1.08E-01	2.09E-01	3.14E-01
Carbon monoxide CO	2.12E-03	5.55E-04	5.16E-06	9.10E-05	1.41E-04
Nitrogen oxides NOx als NO2	-	3.33E-04	1.35E-04	2.39E-04	6.67E-04
Sulphur oxide SO2	-	-	4.17E-04	1.71E-04	6.50E-05
Hydrocarbons HC als C	-	-	1.88E-06	1.71E-05	-
Hydrogen chloride	-	-	4.83E-05	3.18E-05	2.11E-06
Ammonia NH3	-	-	-	7.96E-06	-
Ash	4.47E-03	1.59E-03	8.88E-03	5.50E-03	7.46E-03
Particulates TSP	-	6.34E-05	1.61E-04	2.27E-04	9.92E-04
Particulates PM <2.5um ⁽⁶⁾	-	5.70E-05	1.45E-04	2.05E-04	8.93E-04
Particulates PM 2.5 -10um ⁽⁶⁾	-	3.17E-06	8.07E-06	1.14E-05	4.96E-05
Particulates PM >10um ⁽⁶⁾	-	3.17E-06	8.07E-06	1.14E-05	4.96E-05

1) Jauhainen et al. 2005

2) Waelti & Keller 2009

3) Salerno et al. 2001

4) Bühler et al. 2005

5) Hersener & Bühler 1998

6) extrapolated, Berdowski et al. 2001

The air emissions for the combustion of olives are taken from Jauhainen et al. (2005) and completed with the ecoinvent data set "logs, mixed, burned in wood heater 6kW, CH". The air emissions for the combustion of coffee ground pellets are taken from Waelti & Keller (2009) and completed with the ecoinvent data set "pellets, mixed, burned in furnace 15kW, CH".

The air emissions for the combustion of poultry litter pellets are taken from Salerno et al. (2001) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 300kW, CH". The air emissions for the combustion of horse dung are taken from Bühler et al. (2005) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 1000kW, CH". The air emissions for the combustion of slurry solids are taken from Hersener & Bühler (1998) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 1000kW, CH".

If measurements of the emissions from the combustion are available these measurements are used. For the most important pollutants like particles, nitrogen oxides and sulphur oxides measurements are documented in literature. The numbers for particles, NO_x and SO_x are missing for the combustion of olive pomace. For the coffee ground pellets only the SO_x emissions are missing.

3.2.1. Disposal ash from combustion

There are three different ways considered to dispose the ash generated by the combustion process, namely the disposal in landfarming, the disposal to municipal incineration or the disposal to a sanitary landfill. For the small furnaces below a threshold of 30 kW it is assumed that 50 % of the ash are disposed in landfarming and 50 % are disposed in municipal solid waste incineration. For bigger furnaces above 30 kW it is assumed that 50 % of the ash is disposed in a sanitary land fill, 25 % of the ash is disposed in landfarming and 25 % is disposed in municipal solid waste incineration. These disposal scenarios are the same as used for disposal of wood ash in the ecoinvent data set for wood combustion (Bauer 2007).

3.2.2. Particulate matter emissions

For the particulate emissions only data for the total suspended particulate matter (TSP) were available. The distribution of the size of the particles had to be estimated. It was assumed that the distribution of the size of the particles for biomass combustion corresponds to the distribution of the particles for wood combustion determined within the CEPMEIP project

(Berdowski et al. 2001). The distribution of the particle emissions of wood and wood waste combustion according to CEPMEIP project is shown in Tab. 9.

Tab. 9: Distribution of the total suspended particulate matter to the different classes of particulates for non-industrial combustion plants according to Berdowski et al. 2001

Emissionfactors Wood and wood waste	Low	Fraction	Medium	Fraction	Medium-High	Fraction	High	Fraction
Non-industrial combustion plants	Mg/PJ	%	Mg/PJ	%	Mg/PJ	%	Mg/PJ	%
TSP	150.0	100.0%	300.0	100.0%	300.0	100.0%	300.0	100.0%
Particulates, < 2.5 um	135.0	90.0%	270.0	90.0%	270.0	90.0%	270.0	90.0%
Particulates, > 2.5 um, and < 10um	8.0	5.3%	15.0	5.0%	15.0	5.0%	15.0	5.0%
Particulates, > 10 um	7.0	4.7%	15.0	5.0%	15.0	5.0%	15.0	5.0%

3.3. Heat generation

The efficiency factor of the furnace used for the combustion of the olive pomace and the efficiency factor of the furnace used for the combustion of coffee ground pellets are estimated to be equal to 0.85.

The efficiency factor of the grate furnace used for the combustion of poultry litter pellets is 0.94 (Salerno et al. 2001). The efficiency factors for grate furnace and the bark furnace used for the combustion of the other substrates no information was available and an efficiency factor of 0.85 was assumed.

3.4. Disposal of the ashes

The elemental composition of the ash is taken from literature and the missing values are taken from the elemental composition of wood ash documented in the ecoinvent data set "disposal, wood ash mixture, pure, 0% water, to landfarming, CH, kg". Tab. 10 shows the elemental composition of the ash of the different biomass fuels.

The ash composition of the ash generated by the combustion of olive pomace is taken from Jauhainen et al. (2005). The ash composition of the ash generated by the combustion of coffee ground pellets is taken from SGS-Institut-Fresenius (2008). The ash composition of the ash generated by the combustion of poultry litter pellets is taken from Salerno et al. (2001) and the composition of the ash generated by the combustion of horse dung is taken from Bühler et al. (2007). The ash composition of the ash generated by the combustion of slurry solids is taken from Hersener & Bühler (1998).

The natural concentration of heavy metals in wood and the natural concentration in the analysed biomass substrates are similar, but the ash formation when burning biomass substrates is ten times higher compared to the ash formation when burning wood. If 90% of the heavy metals are transferred to the residual ash, the concentration of the heavy metals in the wood ash is considerably higher than the concentration of the heavy metals in the ash generated by the combustion of the biomass substrates. To account for the higher ash formation the adopted values for the concentration of heavy metals taken from wood ash are reduced by a factor of 10 in the case of olive pomace, poultry litter and horse dung and by a factor of 3 in the case of coffee ground pellets. Without this correction the heavy metal content of the ash generated by biomass combustion is assumed to be overestimated.

Tab. 10: Elemental composition of the ash generated by the combustion process for the different biomass fuels (kg/kg waste)

Fuel		ash olive pomace	ash coffee ground pellets	ash poultry litter pellets	ash horse dung and wood chips	ash slurry solids and bark chips
Water content	H ₂ O	n.a.	n.a.	n.a.	n.a.	n.a.
Oxygen (without O from H ₂ O)	O	0.38554	0.4012	0.2875	0.4909	0.4909
Hydrogen (without H from H ₂ O)	H	n.a.	n.a.	n.a.	n.a.	n.a.
Carbon (enter share of biogenic C below)	C	0.14853	0.012	0.012	0.012	0.012
Sulfur	S	0.00987	0.0092	0.0092	0.0092	0.0092
Nitrogen	N	n.a.	n.a.	n.a.	n.a.	n.a.
Phosphor	P	0.01705	0.0098	0.112	0.00392	0.00392
Boron	B	n.a.	n.a.	n.a.	n.a.	n.a.
Chlorine	Cl	0.00305	0.0032	0.0032	0.000204	0.000204
Bromium	Br	n.a.	n.a.	n.a.	n.a.	n.a.
Fluorine	F	n.a.	n.a.	n.a.	n.a.	n.a.
Iodine	I	n.a.	n.a.	n.a.	n.a.	n.a.
Silver	Ag	n.a.	n.a.	n.a.	n.a.	n.a.
Arsenic	As	n.a.	0.0000067	0.0000067	0.0000067	0.0000067
Barium	Ba	n.a.	n.a.	n.a.	n.a.	n.a.
Cadmium	Cd	n.a.	1.03448E-05	0.0000022	0.000005	0.000005
Cobalt	Co	n.a.	3.44828E-05	0.0000018	0.0000018	0.0000018
Chromium	Cr	n.a.	3.44828E-05	0.0000195	0.0000195	0.0000195
Copper	Cu	n.a.	0.001034483	0.000426	0.000103	0.000103
Mercury	Hg	n.a.	0.000000033	0.00000001	0.00000001	0.00000001
Manganese	Mn	n.a.	0.002172414	0.02	0.02	0.02
Molybdenum	Mo	n.a.	0.0000037	0.0000037	0.0000037	0.0000037
Nickel	Ni	n.a.	6.89655E-05	0.000059	0.00000552	0.00000552
Lead	Pb	n.a.	0.000172414	0.0000065	0.000016	0.000016
Antimony	Sb	n.a.	0.000206897	n.a.	n.a.	n.a.
Selenium	Se	n.a.	n.a.	n.a.	n.a.	n.a.
Tin	Sn	n.a.	0.001172414	n.a.	n.a.	n.a.
Vanadium	V	n.a.	3.44828E-05	0.0000395	0.0000395	0.0000395
Zinc	Zn	n.a.	0.002965517	0.00091	0.00102	0.00102
Beryllium	Be	n.a.	n.a.	n.a.	n.a.	n.a.
Scandium	Sc	n.a.	n.a.	n.a.	n.a.	n.a.
Strontium	Sr	n.a.	n.a.	n.a.	n.a.	n.a.
Titanium	Ti	0.00065	0.00138	0.00138	0.00138	0.00138
Thallium	Tl	n.a.	n.a.	n.a.	n.a.	n.a.
Tungsten	W	n.a.	n.a.	n.a.	n.a.	n.a.
Silicon	Si	0.06982	0.0826	0.0826	0.0826	0.0826
Iron (enter share of metallic iron below)	Fe	0.02528	0.0228	0.0228	0.0228	0.0228
Calcium	Ca	0.06675	0.284	0.284	0.284	0.284
Aluminium	Al	0.0241	0.079310345	0.0208	0.0208	0.0208
Potassium	K	0.21518	0.0545	0.099	0.01886	0.01886
Magnesium	Mg	0.03023	0.0321	0.044	0.0321	0.0321
Sodium	Na	0.00395	n.a.	n.a.	n.a.	n.a.
sum wet mass		100.00%	100.00%	100.00%	100.00%	100.00%

3.4.1. Landfarming

One possibility to dispose the ash generated by the combustion of the biomass substrates is the disposal in landfarming. Landfarming means the spreading of the ashes on arable land. The environmental impact of the spreading of the ashes is allocated to 100 % to the combustion of the biomass. The use of ashes as fertilisers is not considered despite the high content of alkali metals and phosphorus in the ashes. The disposal of the ash in landfarming was modelled as a direct flux of the elements shown in Tab. 10 to agricultural soil.

3.4.2. Municipal incineration

A second possibility to dispose the ashes is the disposal in municipal incineration. The disposal of the ash to municipal incineration was modelled according to Doka (2007). The same elemental composition of the ash, which is shown in Tab. 10, was used for the calculations. This includes the combustion of the ash in municipal incineration and the landfilling of the residual waste.

3.4.3. Sanitary landfill

The third possibility to dispose the ashes is the disposal of the ashes to a sanitary landfill. The disposal of the ashes to a sanitary landfill was modelled according to Doka (2007). The same elemental composition of the ash, which is shown in Tab. 10, was used for the calculations. This includes the construction of the sanitary landfill and the treatment of the sewage sludge from the wastewater treatment.

3.5. Coffee grounds in municipal incineration

For the coffee ground a second way of energy recovery was modelled, namely the combustion of the wet coffee grounds in municipal incineration instead of the drying and pelletising of the coffee grounds. The heat and electricity generation was modelled according to Doka (2007). The same elemental composition for the moist fuel as shown in Tab. 3 was used for the calculations.

For the analysis the net benefit of the combustion of coffee grounds in municipal incineration is computed. The net benefit is calculated as the difference between the avoided environmental impact of energy generation and the environmental impact of the combustion of one kilogram of coffee grounds in municipal incineration. The combustion of 1 kg of coffee grounds in municipal incineration generates 0.53 kWh electricity and 3.92 MJ of useful heat according to Doka (2007).

For the substitution of the energy generation two possibilities for electricity generation and heat production are analysed resulting in a minimal net benefit and a maximal net benefit. This minimum-maximum analysis is performed to cover the range of the different technologies for energy generation (Zah et al. 2007).

As substitution processes for electricity generation the process „electricity, natural gas, at combined cycle plant, best technology, RER“ is chosen for the minimal net benefit and for the maximal net benefit the electricity import mix shown in Tab. 11.

Tab. 11: Unit process raw data of the electricity import mix used for the calculation of the maximal net benefit of the electricity generation

product	Name	Location	InfrastructureProcess	Unit	electricity mix, import FR/DE/IT	UncertaintyType	StandardDeviation95%	GeneralComment
		CH	0	kWh	CH	0		
		Location	InfrastructureProcess	Unit	CH	0		
technosphere	electricity mix, import FR/DE/IT	CH	0	kWh	1		1.05	(1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment (1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment of Swiss Electricity Mixes. implemented in ecoinvent data v2.3
	electricity mix	FR	0	kWh	9.17E-1	1		
	electricity mix	IT	0	kWh	1.92E-2	1		
	electricity mix	DE	0	kWh	6.41E-2	1	1.05	(1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment of Swiss Electricity Mixes. implemented in ecoinvent data v2.4

As substitution process for heat generation the process “heat, light fuel oil, at industrial furnace 1MW, CH” is chosen for the maximal net benefit and the process “heat, natural gas, at industrial furnace >100kW, RER” for the minimal net benefit.

3.6. Data quality

All the measurements were performed in pilot plants. Therefore the measurements are not comparable to a continuous operation of the plants. No adjustments have been made to the emission factors in order to account for the measurements in pilot plants.

For all substrates only the total amount of suspended particulate matter (TSP) in the flue gas was measured. The particle distribution had to be extrapolated from other measurements (Berdowski et al. 2001). This resulted in a fraction of 90% of the TSP belonging to the smallest category of the particulate matter (PM) smaller than 2.5 um. Because the combustion process of the biomass is worse compared to the combustion of wood, it is expected that the amount of small particles is smaller for the biomass fuels than for the wooden fuels, but there was no data available to prove this assumption. Therefore the same particle distribution as for the combustion of wooden fuels was used. This might lead to a higher environmental impact because the environmental impact of smaller particles is higher than the environmental impact of bigger particles.

Because of the availability, the up-to-dateness and the quality of the data an inclusion in the ecoinvent data base is only recommended for the data sets for coffee ground pellets, poultry litter pellets and horse dung mixed with wood chips.

3.6.1. Olive pomace

Data quality for olives pomace is debatable. The ash composition and the air emissions during the combustion are documented in Jauhainen et al. (2005), but in the measurements of Jauhainen et al. (2005) no heavy metals emissions, no nitrogen oxide emissions and no particle emissions into air are reported, as well as there are no heavy metals detected in the ash after combustion. Because the heavy metal emissions and the heavy metal content of the ash have a high impact on the result of the ecological scarcity method 2006 it is recommended to consider this fact when comparing the olive pomace with the other substrates, especially in case of the disposal of the ash.

3.6.2. Coffee grounds

For coffee grounds there are measurements for the nitrogen oxides, carbon monoxides and particle emissions from the combustion in Waelti & Keller (2009) as well as the metal content of the fuel (SGS-Institut-Fresenius 2008). This covers the factors with the highest impact on the result of the ecological scarcity method 2006. Because of the recent measurements and the emissions measured, the air emission data quality for coffee grounds is sound.

For the ash composition of the coffee grounds there was no information available, but there was detailed information on the composition of the fuel regarding metals and heavy metals in SGS-Institut-Fresenius (2008). In order to estimate the transfer of the heavy metals to the ash, the heavy metal balance of the combustion process was calculated, assuming that all heavy metals which are not emitted into air during the combustion are transferred to the ash. This calculation provides a reliable estimate for the heavy metal content in the ash.

3.6.3. Poultry litter

The data quality for poultry litter is considered as sound. The measurements took place in 2001 (Salerno et al. 2001) and as for coffee grounds the key emissions into, namely nitrogen oxides, sulphur oxides, particulate matter and carbon monoxide are measured. The other emissions are again taken from the data sets for wood combustion.

For the ash composition there is information on the potassium, phosphorus, magnesium, cadmium, copper, nickel and zinc content of the ash in Salerno et al. (2001). This selection covers the most important metals except of lead in case of the heavy metals.

3.6.4. Horse dung

The most important air emissions generated by the combustion of horse dung regarding environmental impact are measured in Bühler et al. (2005). This includes the emissions of nitrogen oxides, sulphur oxides and particulate matter. The basis of the data regarding air emissions is considered as sound.

For the ash composition there is information on the content of phosphorus, potassium, lead, zinc, copper and cadmium in Bühler et al (2007). This covers most of the elements with a high environmental impact

3.6.5. Pig slurry solids

For pig slurry there was only information available on the air emissions in Hersener & Bühler (1998). Again the most important air emissions are measured. For the ash composition there was no data available, but there was information on the composition of the fuel regarding metals and heavy metals in Hersener & Bühler (1998). In order to estimate the transfer of the heavy metals to the ash, the heavy metal balance of the combustion process was calculated, assuming that all heavy metals which are not emitted into air during the combustion are transferred to the ash.

Because the measurements for pig slurry took place in 1998 and because of the missing data regarding ash composition the data quality for pig slurry solids is considered as the lowest among these five biomass substrates. Further the fuel mixture for slurry solids mainly consists of wood (about 85%, cf. Tab. 14) and rather represents the co-combustion of a small fraction of slurry solids with wood.

4. Life cycle impact assessment

The five data sets for the heat generation are evaluated with the methods ecological scarcity 2006 (Frischknecht et al. 2009) and IPCC Global Warming Potential (Solomon et al. 2007) and the mass fluxes for selected substances are analysed. In addition the energy recovery from coffee grounds in municipal incineration is analysed.

4.1. Ecological Scarcity 2006

The ecological scarcity method (Frischknecht et al. 2009) evaluates the inventory results on a distance to target principle. The calculation of the eco-factors is based on one hand on the actual emissions (actual flow) and on the other hand on Swiss environmental policy and legislation (critical flow). These goals are:

- Ideally mandatory or at least defined as goals by the competent authorities,
- formulated by a democratic or legitimised authority, and
- preferably aligned with sustainability.

The weighting is based on the goals of the Swiss environmental policy; global and local impact categories are translated to Swiss conditions, i.e. normalised. Environmental impacts are shown separately for the main environmental compartments such as air, soil, surface water, ground water, waste, natural and energy resources. The method is applicable to other regions as well. Eco-factors were also developed for the Netherlands, Norway, Sweden (Nordic Council of Ministers 1995, Tab. A22 / A23), Belgium (SGP 1994) and Japan (Miyazaki et al. 2004).

The ecological scarcity method allows for an optimisation within the framework of a country's environmental goals.

The environmental and political relevance is essential for the choice of substances. The environmental policy does by far not define goals for all substances. Thus the list of eco-factors is limited. This particularly applies to substances with low or unknown environmental relevance in Switzerland and Europe (e.g. sulphate emissions in water bodies).

Fig. 2 shows the absolute and the relative contribution of the different stages to the result of ecological scarcity method 2006. The combustion of natural gas has the lowest environmental impact to generate 1 MJ of useful heat followed by the combustion of wood and the combustion of oil. The biomass substrates perform significantly worse than the fossil and the wooden fuels. The combustion of the biomass substrates performs even worse than a small and inefficient combustion (wood logs mixed 6 kW).

Overall, the burning of biomass releases more pollutants into the environment than the combustion of wood, oil or natural gas. Especially the combustion of olive pomace and pig slurry solids causes a high environmental impact.

The emissions caused by the combustion process have the highest fraction for all fuels. The supply of the fuel has a higher environmental impact in case of the fossil fuels and the pelletized fuels. The drying of the olive pomace also causes a higher environmental impact for the supply with fuel. The disposal of the ashes just has an impact to the heat generation using biomass fuels. For all the biomass substrates except olive pomace the disposal of the ash has a higher impact on the result of the ecological scarcity method than for the wooden fuels. Based on Fig. 2 one can say that the combustion process itself has the highest influence on the result, followed by the provision of the fuel and the disposal of the ashes in case of the biomass substrates. A clean and complete combustion of the fuel and an appropriate disposal of the ash have the highest priority in order to minimise the environmental impacts of the heat generation.

Fig. 2: Total score (top) and the relative contribution (bottom) to the total score calculated with the method ecological scarcity 2006 per MJ of heat generated by the combustion of the different fuels split into contribution from the provision of the fuel, the direct emissions from combustion, disposal of the ashes and the rest

Fig. 3 shows the environmental impact of the burning of biomass substrates and wooden and fossil fuels grouped according to the different environmental compartments and resources distinguished in the environmental scarcity method. The combustion of slurry solids and bark chips has the highest environmental impact regarding emissions into air, into ground water and into top soil. Further the combustion of pig slurry solids consumes the most energy resources because of the high amount of bark chips that has to be mixed with the slurry solids in order to enable the combustion (cf. 3.1.3) and causes a high depletion of natural resources. The combustion of poultry litter pellets causes the highest emissions into surface water and produces a high amount of waste that has to be deposited.

The high moisture of the slurry solids demands a high amount of an additional, dryer fuel, namely bark chips, in order to enable the combustion. In case of the combustion of pig slurry solids the depletion of energy resources is even higher than in case of the fossil fuels.

Without an overall weighting of the environmental impacts the ranking would differ for the different environmental compartments, but the combustion of slurry solids causes also the highest environmental impact in five of the seven categories.

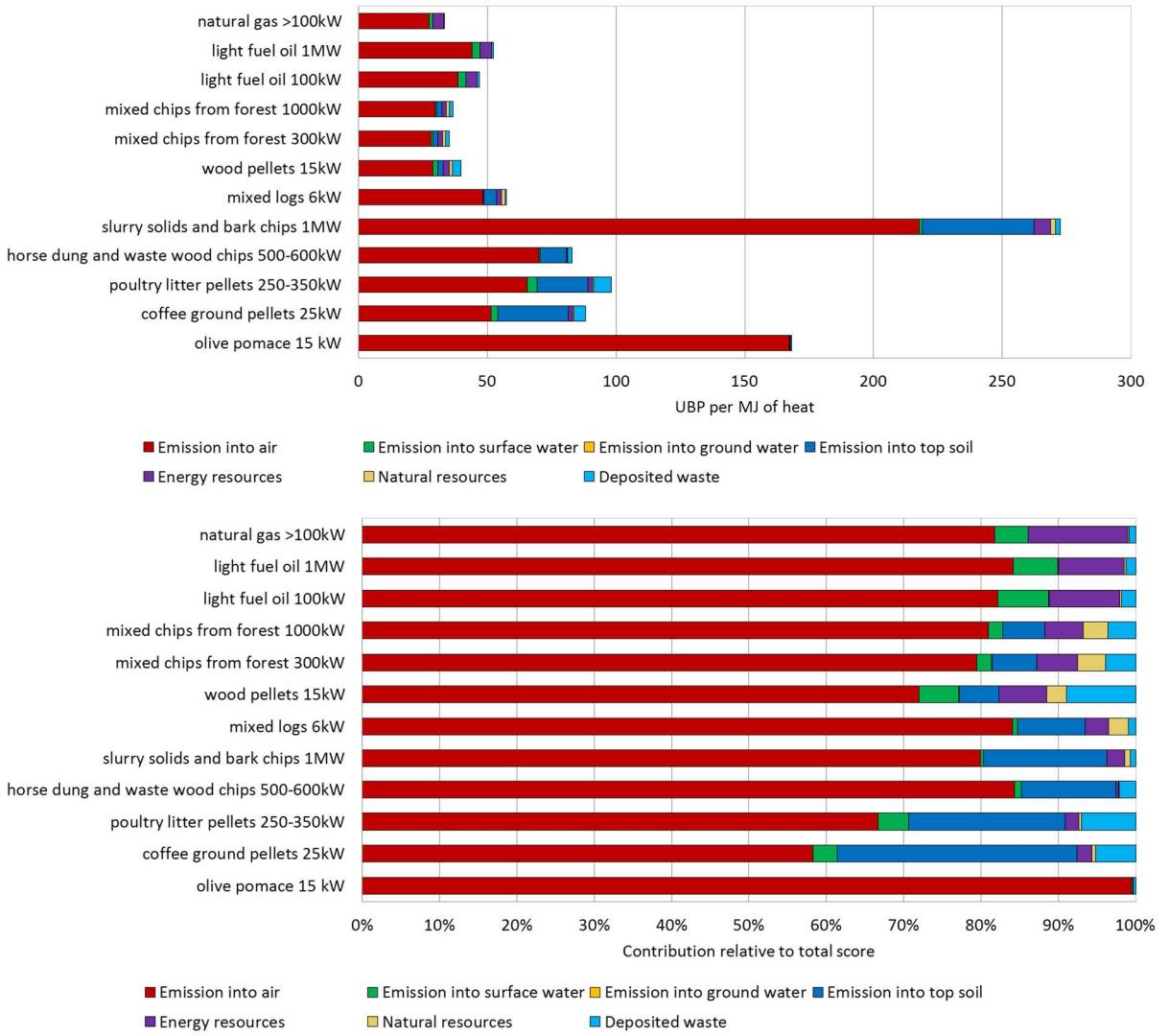


Fig. 3: Environmental impact of the burning of the different biomass substrates, wood and fossil fuels relative to the highest score per environmental compartment

Fig. 4 shows the absolute and the relative contribution of the different environmental compartments to the result of ecological scarcity method 2006. The highest percentage of the result is determined by the emissions into air and the emissions into top soil. The emissions in these two environmental compartments are analysed in more detail in the sections 4.1.1 and 4.1.2.

For all the biomass fuels the relative contribution of the different environmental compartments is similar. The emissions into air and the emissions into top soil account for the highest fraction of the total results. The sum of the points for the emissions into air and the emissions into top soil cover more than 90% of the environmental impact of the biomass fuels according to the ecological scarcity method 2006.

The total score is determined to a large extent by the air emissions. This shows the importance of the combustion process and the combustion technology. All the other environmental compartments have a considerably lower contribution to the result.

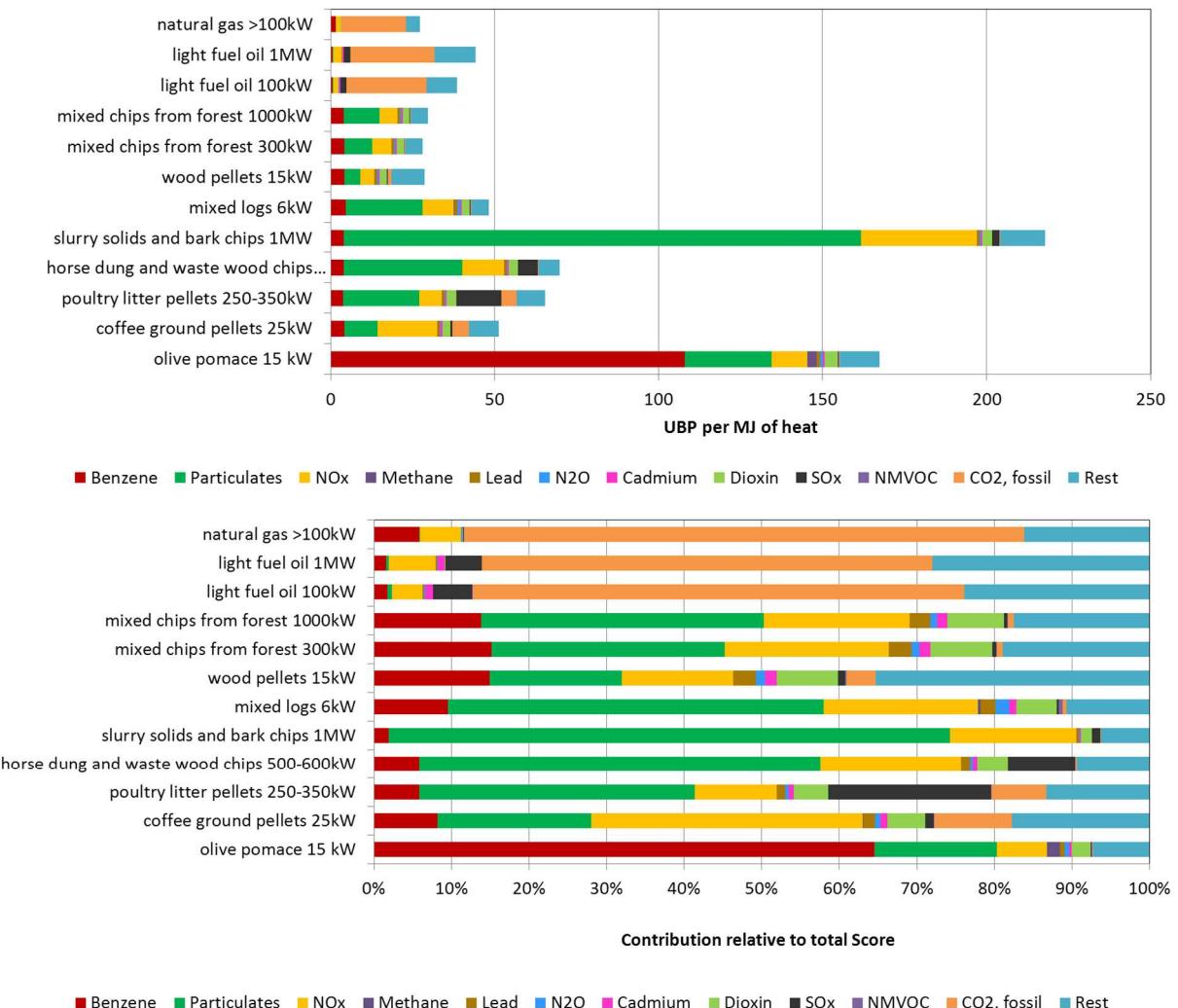
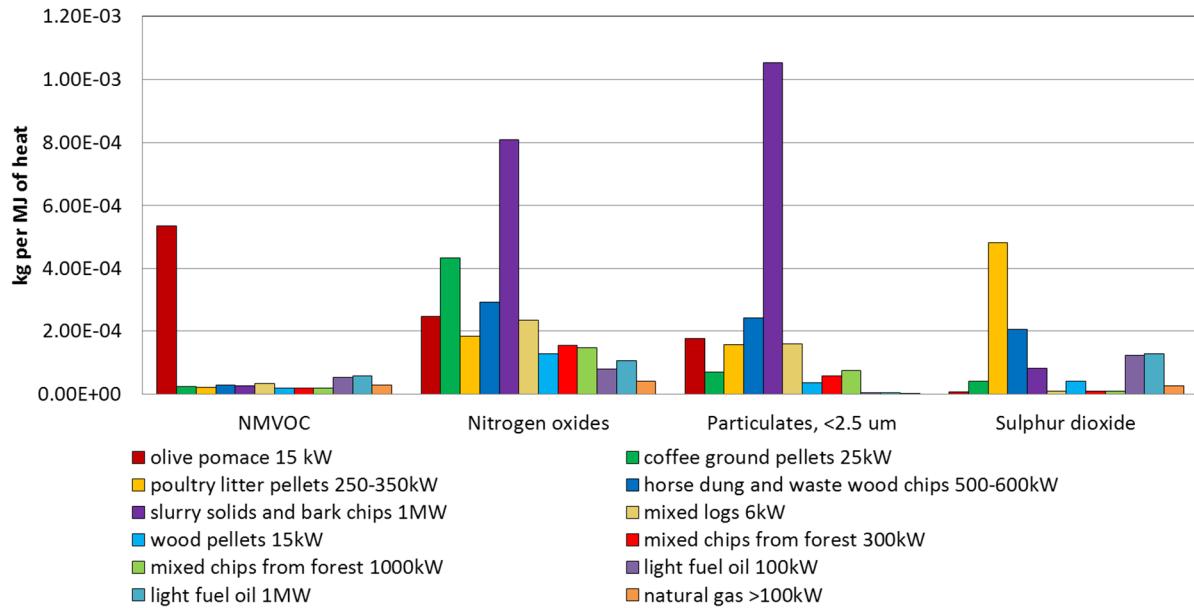


Fig. 4: Total score (top) and the relative contribution (bottom) to the total score calculated with the method ecological scarcity 2006 per MJ of heat generated by the combustion of the different fuels split into environmental compartments

4.1.1. Emissions into air

Fig. 5 shows the contribution of the different air pollutants to the total score of the air emissions as absolute values and relative to the total score. The environmental impact of the air emissions is mainly caused by the emission of benzene, particles, nitrogen oxides, methane, lead, dinitrogen oxide, cadmium, dioxin, sulphur oxide, NMVOC and fossil CO₂.

The reported benzene emissions per MJ of heat generated by the combustion of olive pomace are about 20 times higher than the benzene emissions into air generated by the combustion of the other substrates. The composition of the olive pomace seems to boost the formation of aromatic hydrocarbons during and after the combustion. The most important airborne emissions in case of the combustion of biomass substrates are particle emissions, emissions of nitrogen oxides and emissions of benzene, but there are considerable differences in the contribution of the different air pollutants to the total score across the different fuels.


Fig. 5: Total score (top) and the relative contribution (bottom) to the total score for air emissions calculated with the method ecological scarcity 2006 per MJ of heat generated by the combustion of the different biomass substrates and the combustion of wood

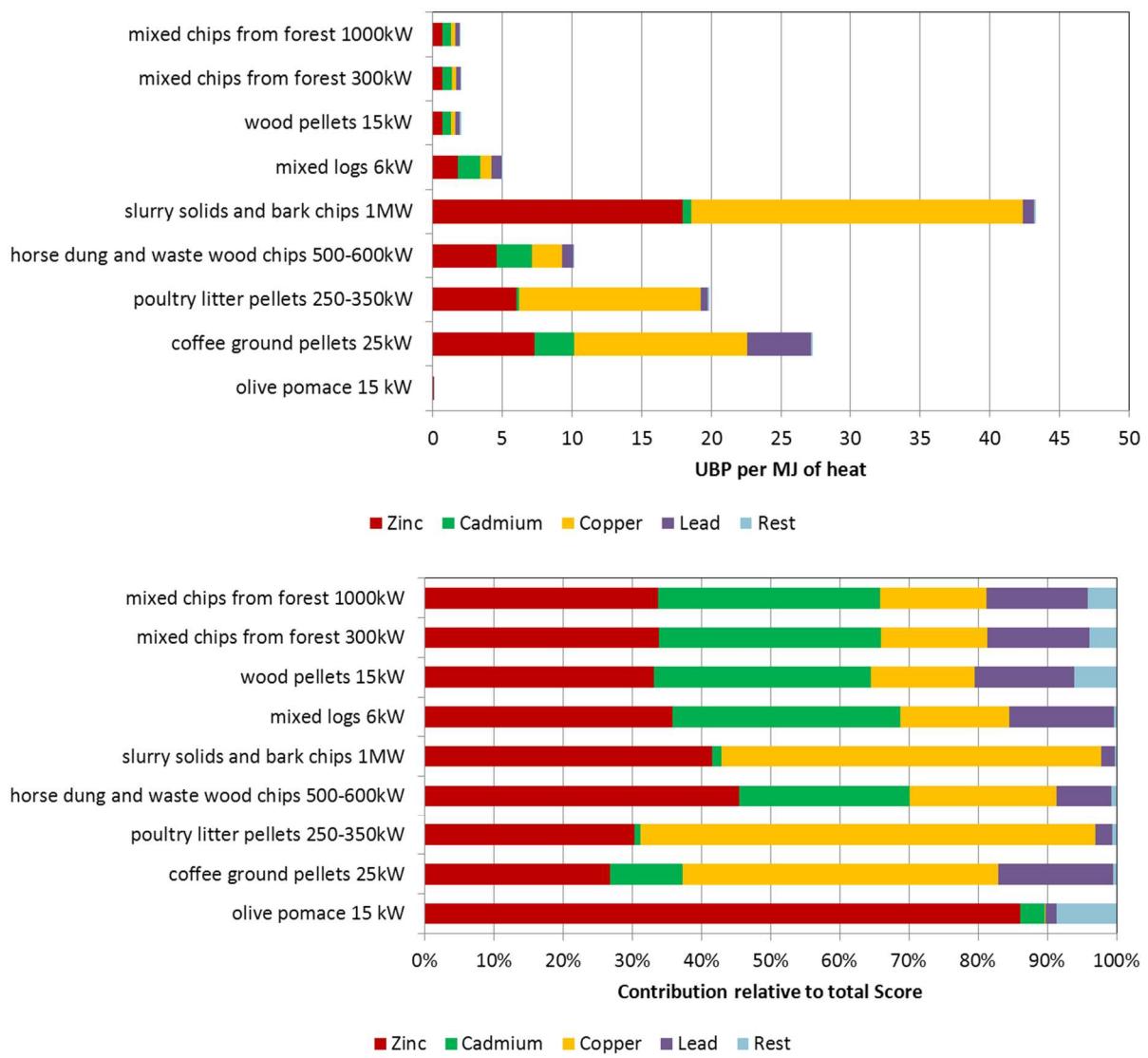
Between the biomass substrates and the wooden fuels there is only a small difference in the contribution of the different pollutants to the total score. For the fossil fuels the total score for the air emissions is mainly determined by the emissions of fossil carbon dioxide.

Because of the high benzene emissions when burning olive pomace, the NMVOC emissions for the burning of olive pomace are higher than all other fuels (cf. figure Fig. 6). For the other fuels the NMVOC emissions are in the same order of magnitude, except for light fuel oil. The nitrogen oxide emissions are in the same range for all fuels but slightly higher for the biomass substrates. Astonishing are the low nitrogen oxide emissions for horse dung and poultry litter. For these substrates high nitrogen oxide emissions are expected because of the elemental composition of the dung like in the case of slurry solids.

The particulate emissions are very high for the burning of biomass substrates (cf. Fig. 6). In the case of the burning of the slurry solids one has to say that the particle measurements are taken from a pilot plant, which does not fulfil the Swiss legislation regarding particle emissions (LRV 2009). The particle concentration of 564 mg/m³ (Hersener & Bühler 1998) in the flue gas exceeds the threshold of 20 mg/m³ by more than a factor of 25. In addition the distribution of the particle size had to be estimated for all the biomass substrates, because only the mass of the total suspended solids in the exhaust gas was measured (cf. Tab. 9). The total amount of suspended solids in the exhaust gas of the biomass combustion is higher than the total amount of suspended solids from which the distribution was extrapolated. More detailed information about the distribution of the particles emitted from the

combustion of the biomass substrates is needed in order to assess the environmental impact of the particle emissions.

Fig. 6: NMVOC emissions, nitrogen oxide emissions, particulate emissions and sulphur dioxide emissions caused by the generation of 1 MJ of useful heat for different substrates


When looking at Fig. 6 the high the amount of emissions compared to the other substrates is clearly visible, the total mass of particles emitted and the total mass of nitrogen oxides emissions have to be reduced by at least a factor of 2 in order to be in the same range as the emissions caused by the combustion of wooden fuels.

4.1.2. Emissions into soil

Fig. 7 shows the environmental impacts caused by the emissions into top soil in detail. The heavy metal emissions account for the highest fraction of the environmental impact. The sum of the environmental impact of Zinc, Cadmium, Copper and Lead determines about 90% of the environmental impact assessed with the method of the ecological scarcity 2006. The combustion of pig slurry solids mixed with bark chips causes the highest heavy metal emissions into soil, followed by coffee ground pellets and poultry litter pellets.

The heavy metal flux into agricultural soil per MJ of heat generated in the case of the biomass fuels is considerably higher than the heavy metal flux per MJ of heat generated in case of the wooden fuels. The disposal of the ash as fertiliser on agricultural soil has a high environmental impact.

Because there are no heavy metals in the ash of burned olive pomace (cf. Tab. 10), the emissions into top soil are rated considerably lower in case of olive pomace compared to the other biomass substrates and even compared to the wooden fuels.

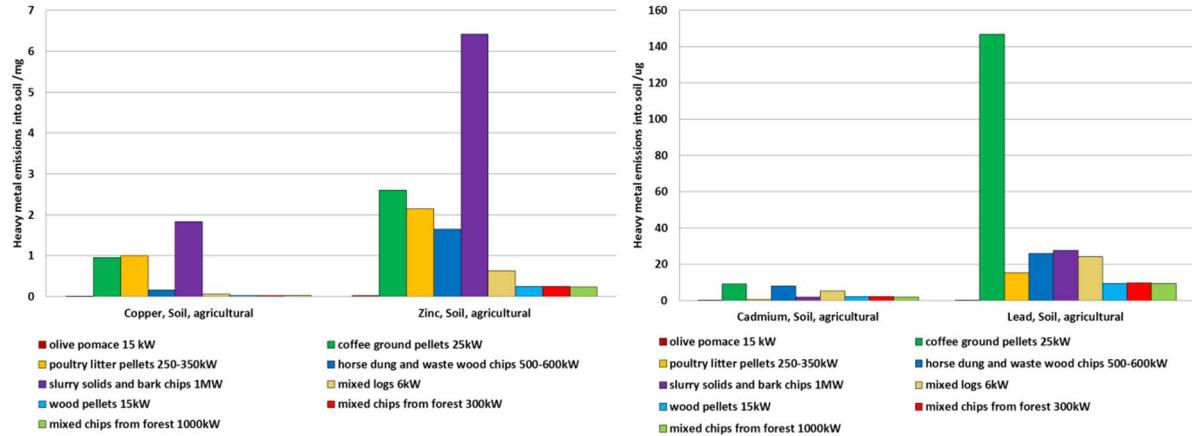

Fig. 7: Total score (top) and the relative contribution (bottom to the total score of emissions into top soil calculated with the method ecological scarcity 2006 per MJ of heat generated by the combustion of different biomass substrates and wooden fuels

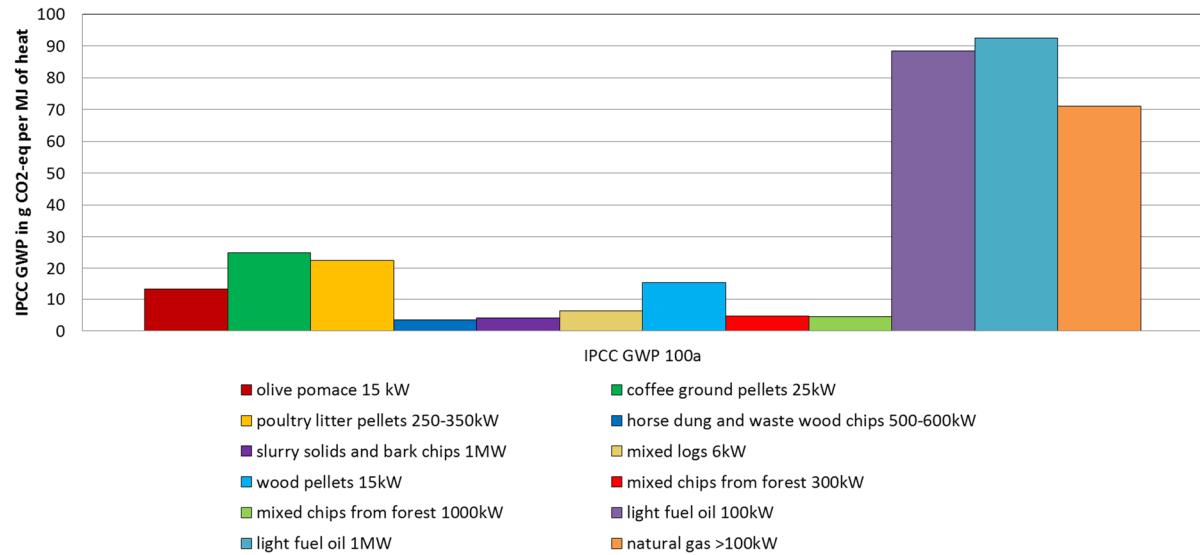
Fig. 8 shows the absolute mass fluxes of the heavy metals copper, zinc, cadmium and lead into agricultural soil. The copper emissions are very high for pig slurry solids followed by coffee ground pellets and poultry litter pellets. The zinc emissions into top soil are

considerably higher for the biomass substrates compared to the wooden fuels except olive pomace. Again the zinc emissions caused by the combustion of pig slurry solids are the highest.

The cadmium emissions into top soil are in the same range, but again higher for the biomass substrates compared to the wooden fuels except for olive pomace and poultry litter pellets.

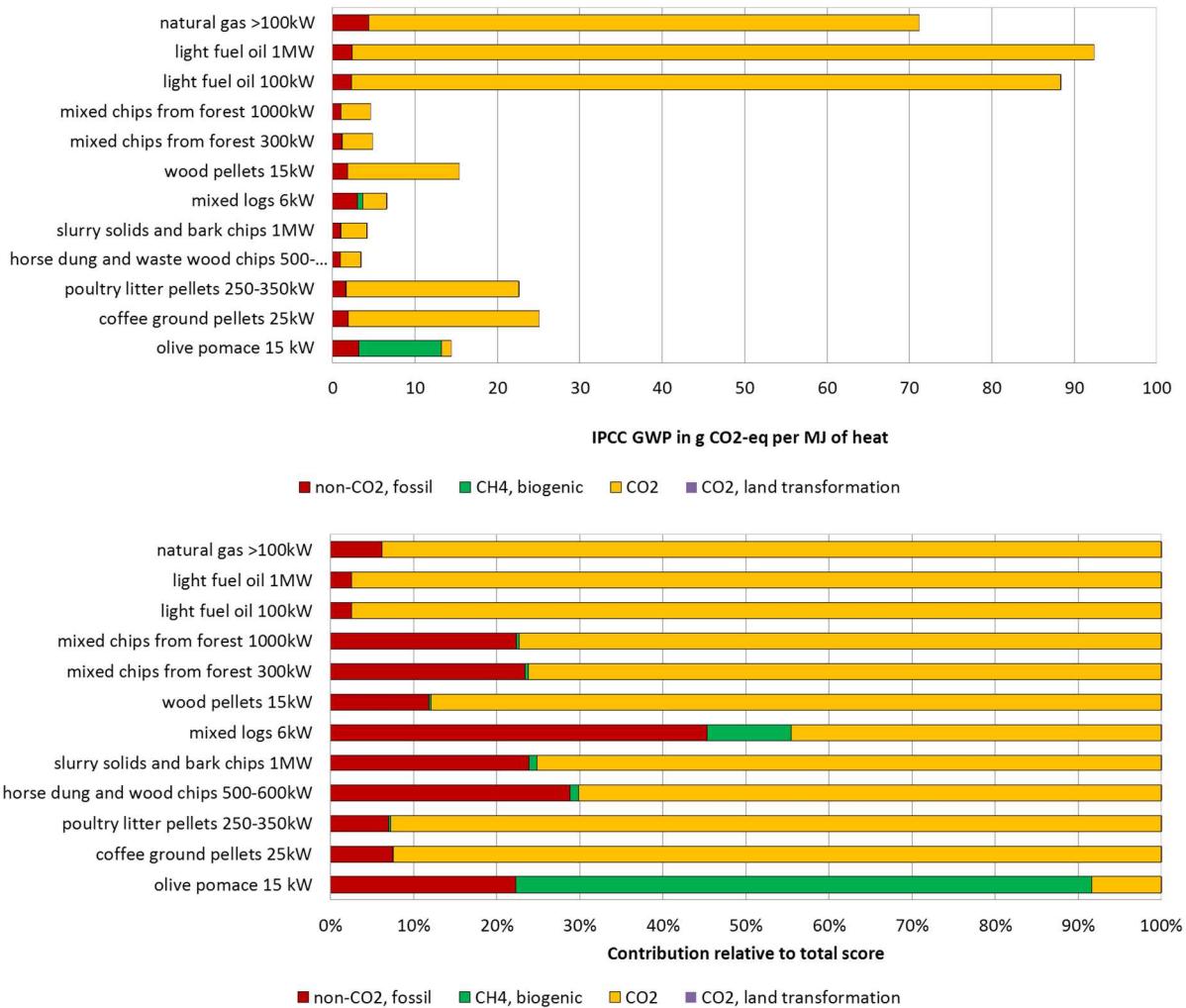
The lead emissions into top soil are in a similar range except the emission caused by the disposal of the ash of coffee ground pellets. The lead emissions for poultry litter pellets and horse dung are between the values of wood logs and wood chips.

Fig. 8: Heavy metal flux into top soil for the heavy metals copper and zinc in mg on the left and for cadmium and lead in ug on the right


4.2. Greenhouse gases

All substances, which contribute to climate change, are included in the global warming potential (GWP) indicator according to IPCC (Solomon et al. 2007). The residence time of the substances in the atmosphere and the expected immission design are considered to determine the global warming potentials. The potential impact of the emission of one kilogram of a greenhouse gas is compared to the potential impact of the emission of one kilogram CO₂ resulting in kg CO₂-equivalents. The global warming potentials are determined applying different time horizons (20, 100 and 500 years). The short integration period of 20 years is relevant because a limitation of the gradient of change in temperature is required to secure the adaptation ability of terrestrial ecosystems. The long integration time of 500 years is about equivalent with the integration until infinity. This allows monitoring the overall change in temperature and thus the overall sea level rise, etc..

In this study a time horizon of 100 years is chosen, which is also used in the Kyoto protocol.


Fig. 9 shows the IPCC global warming potential for the different fuels. It is pointed out that the composition of the biomass substrates and the wood fuels is different to the composition of the fossil fuels. The combustion of oil and natural gas causes high emissions of fossil carbon dioxide, which results in a high global warming potential. All the biomass substrates cause a lower global warming potential than the fossil fuels.

The pelletised fuels have a higher global warming potential but the GWP is still way below the GWP caused by the combustion of fossil fuels. Further the drying of the pelletised fuels is modelled with the use of fossil fuels for the heat generation. The impact on the GWP can be lowered if waste heat or heat generated by the combustion of the biomass substrate itself is used.

Fig. 9: IPCC global warming potential for the generation of 1 MJ of useful heating using the different biomass substrates or wooden fuels

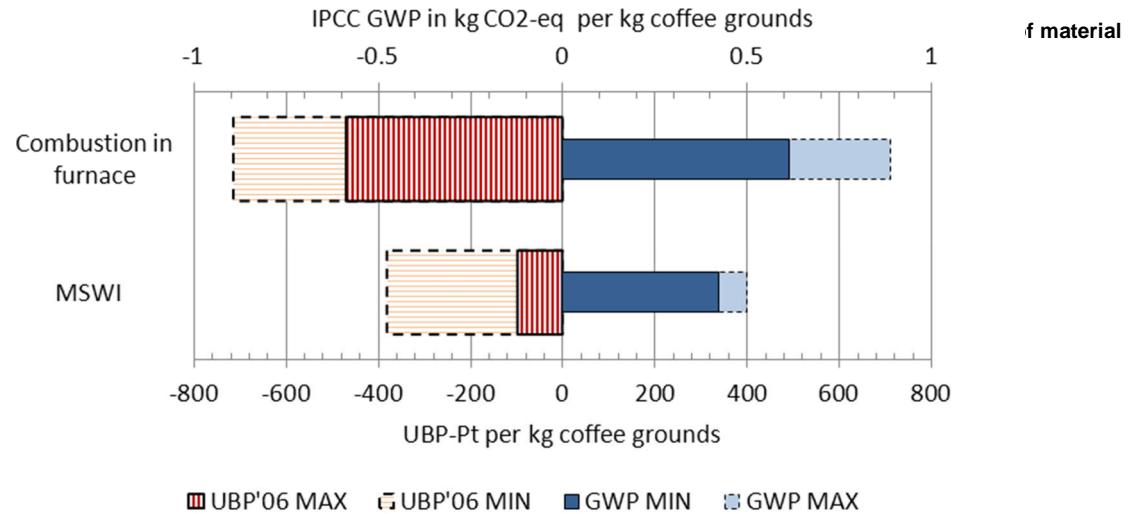
Fig. 10 shows the fractions of the different greenhouse gases contributing to the total global warming potential. For olive pomace the non-CO₂ emissions and the emission of biogenic methane accounts for about 90% of the global warming potential. For all the other substrates the GWP is mainly caused by CO₂ emissions. The GWP is considerably lower for all the biomass substrates and wooden fuels compared to the combustion of fossil fuels.

Fig. 10 GWP in CO₂-eq per MJ of heat generated with different substrates in absolute values (top) and relative to the total score (bottom)

4.3. Scenario analysis

4.3.1. Coffee grounds in municipal incineration

Fig. 11 shows the net benefit (Zah et al. 2007) of the combustion of coffee grounds in municipal incineration.


The combustion of coffee grounds in municipal incineration leads to a reduction of the GWP for the minimal net benefit as well as for the maximal net benefit. This is the case because fossil fuels are replaced by the non-fossil fuel coffee ground. The combustion of the coffee grounds in form of pellets in a furnace has a minimal net benefit of 0.6 kg CO₂-eq/kg and is higher than the maximal net benefit for the combustion in municipal incineration.

The net benefit for the combustion of coffee grounds calculated with the ecological scarcity method 2006 reveals that the minimal and the maximal net benefit are negative. This means that the substitution processes for the minimal and the maximal net benefit have a lower environmental impact according to the ecological scarcity method 2006.

The energy recovery in municipal incineration and the direct combustion of the coffee grounds are options to reduce the greenhouse gas emissions, but these options may not be environmentally friendlier, when looking at other emissions than greenhouse gases. Regarding the overall environmental impact the combustion of the coffee grounds in municipal incineration is the better solution than the direct combustion but the reduction of the GWP is slightly lower.

The net benefit in Fig. 11 also shows the trade-off between the reduction of the GWP and the increase of the environmental impact according to the ecological scarcity method 2006.

Fig. 11

4.3.2. Ash disposal

In order to evaluate the impact of the disposal of the ash generated by the combustion different scenarios for the disposal of the ash are compared. In the *reference scenario* (REF) the ash is disposed to 50 % in landfarming and to 50 % in municipal incineration for olive pomace and coffee ground pellets. The ashes from poultry litter pellets, horse dung and slurry solids are disposed to 25 % in landfarming, to 25 % in municipal incineration and to 50 % to a sanitary landfill in the reference scenario (REF). The reference scenario is described in section 3.2.1. and is used for the life cycle impact assessment.

In the *scenario disposal in landfarming* (LAND) all the ash is disposed in landfarming. The disposal in landfarming is described in section 3.4.1. In the *scenario disposal to municipal incineration* (MSWI) all the ash is disposed to municipal incineration and in the *scenario disposal to sanitary landfill* (MSWLF) all the ash is disposed to a sanitary landfill.

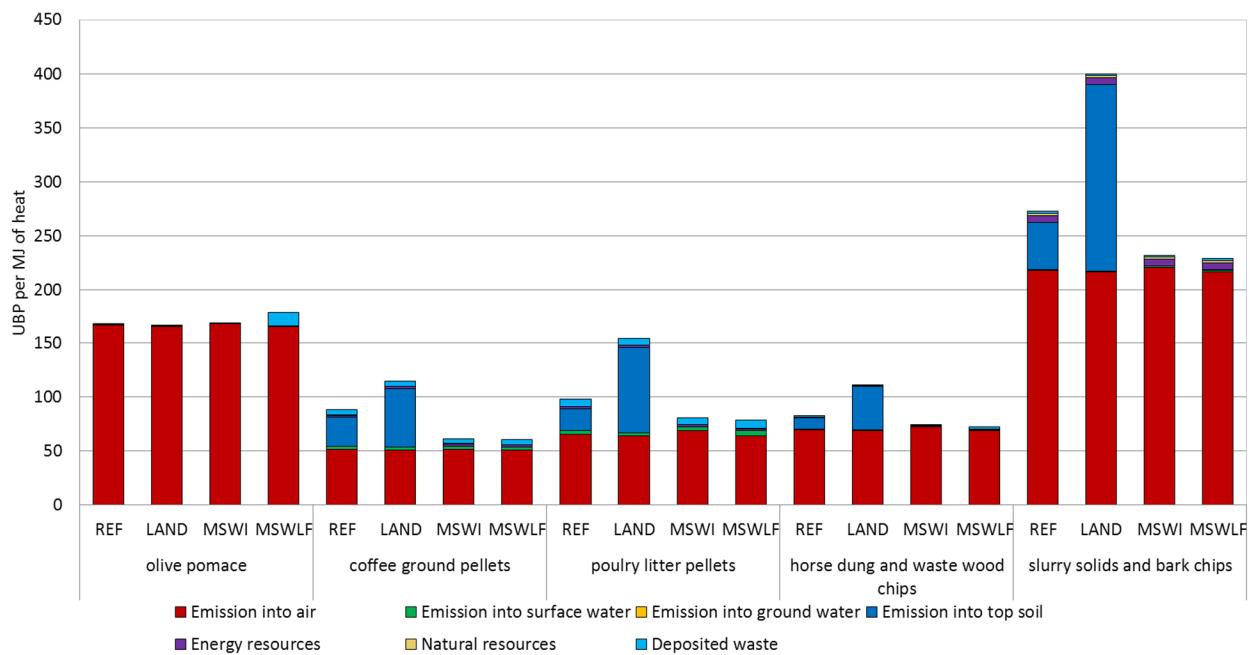


Fig. 12 Comparison of the different possibilities for the disposal of the ash generated by the combustion of the biomass fuels for the reference scenario (REF), the disposal in landfarming (LAND), the disposal to municipal incineration (MSWI) and the disposal to sanitary landfill (MSWLF)

The different scenarios for the disposal evaluate the impact of the disposal strategy on the result of the ecological scarcity method 2006. For the olive pomace the disposal of the ash

has only a small influence on the result. Because there are no heavy metals in the ash (cf. Tab. 10) the disposal of the ash from the combustion of olive pomace in landfarming has only low environmental impacts.

The different scenarios show that the disposal of the ash has a considerable influence on the result for all the biomass substrates except olive pomace. The environmental impact can be lowered when disposing the ash to municipal incineration or to a sanitary landfill.

4.3.3. Pellet production

In order to evaluate the importance of the energy source for the drying of the biomass, two possibilities for the drying process are modelled here. The first scenario assumes that the biomass is dried using fossil fuels and stored in a regional storage centre after the pelletising process. This scenario is named *regional storage*. This is the worst case regarding use of fossil fuels because fossil fuels are used for the heat generation in the drying process and for the transportation of the pellets to the regional storage centre. This scenario describes the situation if pellets are sold to external users.

The second scenario assumes the production of the pellets on site and the direct use of the heat generated by the combustion of the pellets for the drying process. This is the best case with a minimal use of fossil fuels because of the minimised transport distances and use of non-fossil fuels to dry the biomass substrates. But, it would not allow for using the pellets at another place.

Fig. 13 shows the comparison of the different scenarios for coffee ground pellets and poultry litter pellets. The environmental impact calculated with the method ecological scarcity 2006 slightly increases when using the biomass substrates in a closed loop in order to dry the wet biomass. This is mainly the case because of the high airborne emissions caused by the combustion of the biomass substrates.

The GWP can be reduced by 50 % when using the biomass substrates for the drying process instead of fossil fuels and when producing the pellets on site. However, there is a trade-off between reduction of the greenhouse gas emissions and the increase of other airborne emissions like particles and nitrogen oxides. Without an improvement of the combustion technology or a treatment of the flue gas the production of the pellets on site does not have a smaller environmental impact.

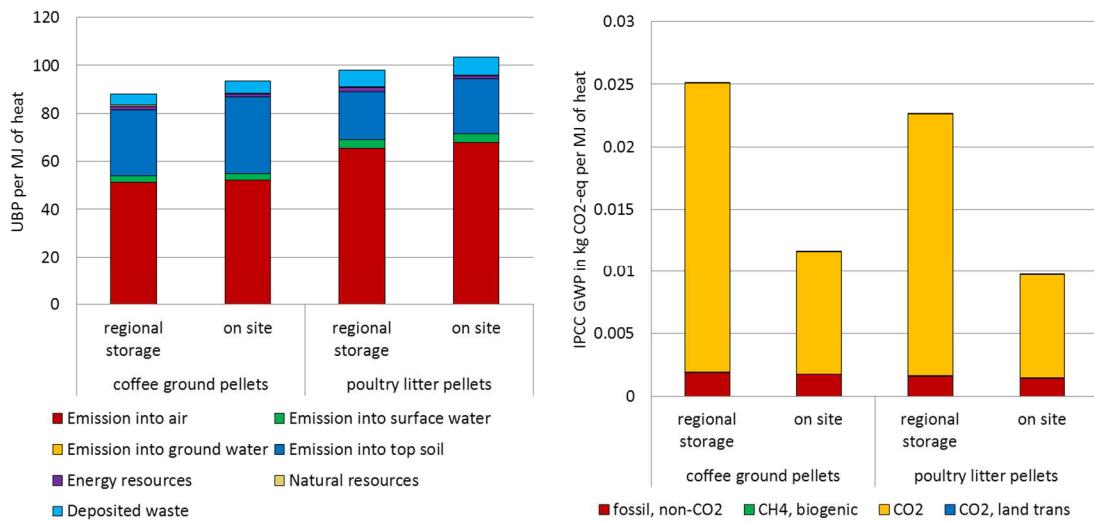


Fig. 13: Total score calculated with the method ecological scarcity 2006 on the left and GWP according to IPCC on the right for the different scenarios for the drying of the biomass substrates during pelletizing process

5. Interpretation

Biomass from agriculture, forestry or landscape management as well as waste from industry or households can be used for energy recovery. In this project an LCA performed for the direct combustion of five different wastes, namely olive pomace, coffee grounds, poultry litter, horse dung and pig slurry solids.

The LCA shows, that the direct emissions from combustion into air and the emissions from ash disposal into top soil turn out to cause the most important environmental impacts. The burning of olive pomace and pig slurry solids has the severest environmental impacts (cf. Fig. 3 and Fig. 4). The combustion of olive pomace causes high emissions of volatile organic carbons, mainly benzene and methane and the combustion of pig slurry solids causes high particle emissions.

The benzene emissions resulting from the combustion of olive pomace are high compared to the benzene emissions resulting from the combustion of the other substrates (cf. Fig. 5). The benzene emissions are taken from Jauhainen et al. (2005). The lowest benzene emissions reported by Jauhainen et al. (2005) were taken for the this study. It has to be considered that even higher benzene emissions are possible for the combustion of olive pomace when the conditions for the combustions are suboptimal. Especially because Conesa et al. (2009) report even higher benzene emissions than Jauhainen et al. (2005). However, the investigations of Jauhainen et al. (2005) show that the combustion can be optimised in order to reduce the benzene emissions.

The pelletising of the biomass substrates reduces the particle emissions. The combustion of poultry litter pellets, coffee ground pellets and wood pellets causes lower particle emissions among the different biomass substrates (cf. Fig. 5 and Fig. 6). However, the biomass substrates in general perform significantly worse compared to the particle emissions generated by the combustion of wooden fuels and even worse when compared to fossil fuels. In order to reduce the environmental impact of the combustion of the biomass substrates the combustion process has to be optimised in order to minimise the particle emissions or a treatment of the flue gas with a particle filter is necessary to reduce the particle emissions.

The fuel with the highest particle emissions were the slurry solids mixed with wood chips. This fuel has high moisture of more than 60 w% (cf. Tab. 3). A drying procedure before the combustion, like in the case of the pelletised fuels could help to reduce the particle emissions. Because of the high moisture of the pig slurry, the slurry solids have to be mixed with a dryer fuel in order to enable the combustion. This mixing leads to a high use of energy resources and natural resources. Despite the mixing with a dryer fuel for co-combustion the pig slurry solids have a low heating value (cf. Tab. 4) and the combustion of pig slurry solids has the highest environmental impact among the different biomass substrates according to the ecological scarcity method 2006. The direct combustion of slurry solids as described in Hersener & Bühler (1998) is not a valuable disposal strategy.

The influence of the used technology is difficult to determine, because the used technology is identical for the bigger furnaces with a high rated power (cf. Tab. 6). Procedural differences have not been investigated because the furnaces with a rated power above 250 kW all use the grate furnace technology. The used technology for the combustion of olive pomace is not comparable to the other furnaces, because the olive pomace is burned in a lab scale experiment. The fully automatic heating system type hobag used for the combustion of coffee ground pellets seems to be suitable for biomass combustion and even without treatment of the flue gas the particle emissions are low compared to the other fuels. Because of the lower rated power of only 25 kW compared to the other furnaces with a rated power of 250 kW or more, the automatic heating system type hobag is not compared to the technologies used for the other biomass substrates. For further investigations regarding combustion technology data from other furnaces using different technologies are needed Based on the results one can say that drier fuels cause less particle emissions and that a treatment of the flue gas is necessary in order to reduce the particle emissions.

Heavy metal emissions are very low for olive pomace (cf. Fig. 7). The heavy metal content has to be approved with further literature research or new measurements. The high heavy metal content of the ash from the combustion of biomass substrates has severe

consequences for the disposal of the ash. The disposal of the ash of the biomass substrates in landfarming leads to a considerably higher flux of heavy metals into top soil than the disposal of the ash of wooden fuels. A disposal of the ash for biomass fuels to municipal incineration or to a sanitary landfill has to be considered in order to minimise the heavy metal fluxes into top soil and the environmental impacts.

The low global warming potential of the burning of horse dung and slurry solids matches the expectations for biomass substrates, as there are no environmental burdens allocated to the fuel itself, the global warming potential is supposed to be low. The high global warming potential for the other biomass substrates is astonishing, especially for olive pomace, because the combustion of the fuel itself does not emit fossil CO₂.

The higher global warming potential of pelletised fuels originates from the preparation of the fuel. The original substrates coffee ground and poultry litter are wet and have to be dried in order to enable the pelletising process. The drying process is modelled with a heating system using fossil fuels, which leads to the higher GWP for coffee ground pellets and poultry litter pellets. The higher global warming potential of the pelletised biomass substrates is caused by the higher moisture of the biomass compared to wood.

The other biomass substrates, namely horse dung and slurry solids, also have high moisture, but they do not have to be dried. Horse dung and slurry solids are mixed with a drier fuel and burnt with high moisture. In this way there is no additional energy demand as for the pelletised fuels, which results in the lower global warming potential. However the overall environmental impact is difficult to assess because the pelletising seems to lower the particle emissions during combustion but needs more energy for the preparation.

The high GWP resulting from the combustion of olive pomace is caused by the high emissions of methane. These high methane emissions may be caused by the used combustion technology. In order to be able to judge energy recovery from olive pomace the combustion process and the methane emissions have to be measured in more detail

6. Conclusion and outlook

In this project the environmental impact of the direct combustion of five different biomass substrates, namely olive pomace, coffee grounds, poultry litter, horse dung and pig slurry solids, is assessed with an LCA. The main environmental impacts of the combustion of the different biomass substrates are high particle and nitrogen oxide emissions into air and high heavy metal emissions into soil.

The biomass fuels perform worse than their wooden and fossil counterparts when using the ecological scarcity method 2006. When using the IPCC GWP the biomass fuels perform better than the fossil fuels but not better than wooden fuels. For the heat generation using biomass substrates that means a trade-off between a reduction of the greenhouse gas emissions and an increase of other airborne pollutants like particles and nitrogen oxides.

In the case of olive pomace the combustion process need to be optimised in order to guarantee a complete combustion of the fuel and to lower the benzene and methane emissions. The high benzene and methane emissions are responsible for the high impacts in case of the ecological scarcity 2006 and the IPCC global warming potential.

For slurry solids, poultry litter pellets and horse dung a treatment of the flue gas is necessary in order to limit the particle emissions. The importance of particle emissions causes the considerably higher environmental impact for the biomass substrates compared to the wooden fuels. For all the pilots plants considered for this study only two had some kind of flue gas treatment (cf. Tab. 7). Therefore, there is a potential to reduce the air emissions, especially particles, with measures like cyclones or electro filters. Regarding electro filters the experiences from Bühler et al. (2005, 2007) should be considered.

The wet biomass fuels are prone to cause high particle emissions. With adequate technology, either to avoid the particles due to a better combustion or to clean the exhaust gas, these emissions can be significantly reduced.

The environmental impact of the disposal of the ash in landfarming is completely allocated to the disposal of the ashes. The replacement of the artificial fertiliser is not considered. If the environmental impact also would be allocated partly to the fertilisation of the agricultural land, the environmental impact of the disposal of the ash would be reduced.

The different scenarios (cf. Fig. 12) show that environmental impact can be reduced by disposing the ash generated by the combustion to municipal incineration or to a sanitary landfill. Regarding the heavy metal content of olive pomace there is additional measurement needed to consolidate the low heavy metal content in the fuel and the ash.

According to the life cycle impact assessment with the Swiss ecological scarcity method the combustion of biomass fuels is not an environmentally valuable alternative to the combustion of fossil fuels and wooden fuels, but with adjustments in the combustion technology and the disposal of the ash the combustion of biomass is able to compete with the combustion of wood. A cleaning and filtering of the exhaust gas and good conditions for a complete combustion are requirements for the energy recovery from biomass substrates.

When these requirements are fulfilled these biomass substrates can be a valuable alternative to fossil and wooden fuels and with the combustion of biomass fuels instead of fossil fuels the greenhouse gas emissions can be reduced.

For the improvement of the data sets, more detailed data on the air emissions, especially the particle distribution and the data regarding the heavy metal content of olive pomace is needed.

7. Appendix: life cycle inventory

The EcoSpold files elaborated in this project can be downloaded on <http://www.esu-services.ch/ourservices/lci/public-lci-reports/> or <http://www.lc-inventories.ch/>. They have not been validated according to the ecoinvent guidelines.

7.1. Fuel-mixture preparation

7.1.1. Drying of the olive pomace

The olive pomace as a residue of the olive oil production has a moisture content of about 50 %w (Vlyssides et al. 2004). In order to burn the pomace, it has to be dried. The moisture has to be reduced from 50 %w to 14 %w in order to enable the combustion of the olive pomace in a furnace. This corresponds to 0.72 kg of water per kg of dried olive pomace that has to be removed.

Tab. 12: Unit process raw data for the drying of olive pomace

	Name	Location	InfrastructureProcess	Unit	olive pomace, dried, at oil mill	UncertaintyType	StandardDeviation95%	GeneralComment
	Location				CY			
	InfrastructureProcess				0			
	Unit				kg			
product	olive pomace, dried, at oil mill	CY	0	kg	1			
technosphere	heat, olive pomace, at boiler furnace, in oil mill	CY	0	MJ	2.72E+0	1	1.33	(1,3,2,1,3,5,BU:1.05); Own calculations: 3.78 MJ required for drying one kg water; 0.72 kg water removed from olive pomace

7.1.2. Pellet production

Pellets are produced for coffee grounds and poultry litter. The LCI data for pellet production infrastructure and drying infrastructure are taken from wood pellet production (ecoinvent Centre 2010). The bulk density of the pellets is shown in Tab. 5. The moisture of the coffee grounds is reduced from 50 %w to 15 %w and the moisture of the poultry litter is reduced from 43 %w to 13 %w in order to enable the pellet production. This corresponds to 0.7 kg of water that has to be removed per kg of coffee ground pellets and 0.57 kg of water that has to be removed per kg of poultry litter pellets. The energy consumption for the drying processes before the pellet production is estimated to be 3.78 MJ per kilogram water evaporated (Hässig-Schellhorn 2007).

The basis of the drying process is the ecoinvent process “sawn timber, softwood, raw, kiln dried, u=10%, at plant, RER, m³”. The basis for the pellet production is the ecoinvent process “wood pellets, u=10%, at storehouse, RER, m³” (ecoinvent Centre 2010).

There are two possibilities to produce the pellets. Either the pellets are produced in a factory using fossil fuels for the drying process or the pellets are produced on site using heat and waste heat from the combustion processes. In addition to the savings of fossil fuels the pellets do not have to be transported, if they are produced on site. These two scenarios for the pellet production are evaluated in section 4.3.3. The unit process raw data for pellet production is shown in Tab. 13.

Tab. 13: Unit process raw data for the production of coffee ground and poultry litter pellets

product	Name	Location	InfrastructureProcess	Unit	coffee ground pellets, at regional storehouse	coffee ground pellets, on site	UncertaintyType	StandardDeviation95%	GeneralComment	poultry litter pellets, at regional storehouse	poultry litter pellets, on site	Uncertainty-Type	Standard-Deviation-95%	GeneralComment
										CH	CH			
										0	0			
product	coffee ground pellets, at regional storehouse	CH	0	m3	1	0				0	0			
product	poultry litter pellets, at regional storehouse	CH	0	m3	0	0				1	0			
product	coffee ground pellets, on site	CH	0	m3	0	1				0	0			
product	poultry litter pellets, on site	CH	0	m3	0	0				0	1			
technosphere	electricity, medium voltage, at grid	CH	0	kWh	1.64E+2	1.64E+2	1	1.33	(1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.7 kg water removed from coffee ground	1.64E+2	1.64E+2	1	1.33	(1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density poultry litter pellets 500 kg/m3; 0.57 kg water removed from poultry litter;
	heat, light fuel oil, at boiler 100kW, non-modulating	CH	0	MJ	1.72E+3	0	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.7 kg water removed from coffee ground	1.00E+3	0	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density poultry litter pellets 500 kg/m3; 0.57 kg water removed from poultry litter;
	heat, coffee ground pellets, in wood furnace 25kW	CH	0	MJ	0	1.72E+3	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.7 kg water removed from coffee ground	0	0	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density poultry litter pellets 500 kg/m3; 0.57 kg water removed from poultry litter;
	heat, poultry litter pellets, in rotating grate furnace 250-350kW	CH	0	MJ	0	0	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.7 kg water removed from coffee ground	0	1.00E+3	1	2.09	(4,5,2,3,3,5,BU:2); Own calculations: 3.78 MJ required for drying one kg water; bulk density poultry litter pellets 500 kg/m3; 0.57 kg water removed from poultry litter;
	transport, freight, rail	RER	0	tkm	1.64E+2	0	1	2.09	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,na,na,na,na,BU:2); Based on (4,5,na,na,na,na,BU:2); Based on	1.64E+2	0	1	2.09	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,na,na,na,na,BU:2); Based on
	transport, lorry >16t, fleet average	RER	0	tkm	3.58E+1	0	1	2.09	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,2,3,4,5,BU:3); Based on ecoinvent dataset "sawn timber, softwood, raw, kiln dried, u=10%, at plant, RER, [m3]" (4,5,2,3,4,5,BU:3); Based on	3.58E+1	0	1	2.09	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (4,5,2,3,4,5,BU:3); Based on
	technical wood drying, infrastructure	RER	1	unit	1.83E-5	1.83E-5	1	3.36	(4,5,2,3,4,5,BU:3); Based on ecoinvent dataset "sawn timber, softwood, raw, kiln dried, u=10%, at plant, RER, [m3]" (4,5,2,3,4,5,BU:3); Based on	1.83E-5	1.83E-5	1	3.36	(4,5,2,3,4,5,BU:3); Based on ecoinvent dataset "sawn timber, softwood, raw, kiln dried, u=10%, at plant, RER, [m3]" (4,5,2,3,4,5,BU:3); Based on
emission air, unspecified	wood pellet manufacturing, infrastructure	RER	1	unit	1.00E-8	1.00E-8	1	3.36	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on	1.00E-8	1.00E-8	1	3.36	ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on
	Heat, waste	-	-	MJ	5.91E+2	5.91E+2	1	1.33	(1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on	5.91E+2	5.91E+2	1	1.33	(1,3,3,3,5,BU:1:05); Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]" (1,3,3,3,5,BU:1:05); Based on

7.1.3. Preparation of the fuel-mixture

Two of the biomass substrates, namely horse dung and slurry solids, are mixed with wood or bark chips. These two biomass fuels have high moisture and the mixing with a dryer fuel is needed to guarantee an efficient combustion.

The mixture horse dung and wood chips consists of 67 % horse dung and 33% wood chips (Bühler et al. 2005). This mixture has a lower heating value of 8.4 MJ/kg and bulk density of 315 kg/m³ (cf. Tab. 4 and Tab. 5). The mixture slurry solids and bark chips consists of 15.5% pig slurry solids and 84.5% bark chips (Hersener & Bühler 1998). This mixture has a lower heating value of 5.4 MJ/kg and bulk density of 300 kg/m³ (cf. Tab. 4 and Tab. 5).

Tab. 14: Unit process raw data for the mixtures “horse dung and wood chips” and “slurry solids and bark chips”

product	Name	Location	Infrastructure-Process	Unit	horse dung and waste wood chips, at farm	slurry solids and bark chips, at farm	UncertaintyType	Standard-Deviation-95%	GeneralComment
	Location				CH	CH			
	InfrastructureProcess				0	0			
	Unit				m3	m3			
horse dung and waste wood chips, at farm	CH	0	m3	1	0				
slurry solids and bark chips, at farm	CH	0	m3	0	1				
waste wood chips, mixed, from industry, u=40%, at plant	CH	0	m3	3.30E-1	0	1	1.16E+0	(1.4.2.1.1,4,BU:1.05); Composition: (Bühler et al., 2005)	
bark chips, softwood, u=140%, at forest road	RER	0	m3	0	8.45E-1	1	1.26E+0	(1.4.4.1.1,4,BU:1.05); Composition: (Hersener et al., 1998)	

7.2. Combustion of the biomass substrates

Compared to the different combustion datasets of wood in the ecoinvent database, there is only little data available for the different biomass substrates. Especially the air emissions of the combustion are not

sufficiently documented in literature. In order to estimate the undocumented emissions the ecoinvent data sets "logs, mixed, burned in wood heater 6kW, CH, MJ", "pellets, mixed, burned in furnace 15kW, CH, MJ", "wood chips, from forest, mixed, burned in furnace 300kW, CH, MJ" and "wood chips, from forest, mixed, burned in furnace 1000kW" are used. The engine power is considered when completing the data sets.

Tab. 15 shows the emission factors for air emissions from the combustion for all substrates. For the coffee ground pellets, the poultry litter pellets, the horse dung and the slurry solids there are only concentration measurements in the exhaust gas available. Based on these concentrations the total flux was calculated using the total volume of the exhaust gas derived from the elemental composition of the substrates.

Tab. 15: Emission factors for the air emissions of the different biomass substrates

Emission factors	Olive pomace ⁽¹⁾	Coffee ground pellets ⁽²⁾	Poultry litter pellets ⁽³⁾	Horse dung & wood chips ⁽⁴⁾	Pig slurry solids & bark chips ⁽⁵⁾
Unit	kg/MJ	kg/MJ	kg/MJ	kg/MJ	kg/MJ
Carbon dioxide CO2	1.16E-01	1.21E-01	1.08E-01	2.09E-01	3.14E-01
Carbon monoxide CO	2.12E-03	5.55E-04	5.16E-06	9.10E-05	1.41E-04
Nitrogen oxides NOx als NO2	-	3.33E-04	1.35E-04	2.39E-04	6.67E-04
Sulphur oxide SO2	-	-	4.17E-04	1.71E-04	6.50E-05
Hydrocarbons HC als C	-	-	1.88E-06	1.71E-05	-
Hydrogen chloride	-	-	4.83E-05	3.18E-05	2.11E-06
Ammonia NH3	-	-	-	7.96E-06	-
Ash	4.47E-03	1.59E-03	8.88E-03	5.50E-03	7.46E-03
Particulates TSP	-	6.34E-05	1.61E-04	2.27E-04	9.92E-04
Particulates PM <2.5um	-	5.70E-05	1.45E-04	2.05E-04	8.93E-04
Particulates PM 2.5 -10um	-	3.17E-06	8.07E-06	1.14E-05	4.96E-05
Particulates PM >10um	-	3.17E-06	8.07E-06	1.14E-05	4.96E-05

1) Jauhainen et al. 2005

2) Waelti & Keller 2009

3) Salerno et al. 2001

4) Bühler et al. 2005

5) Hersener & Bühler 1998

If measurements of the emissions of the combustion are available these measurements are used. For the most important pollutants like particles, nitrogen oxides and sulphur oxides measurements are documented in literature. The figures for particles, NOx and SOx are missing for the combustion of olive pomace. For the coffee ground pellets only the SOx emissions are missing. In Tab. 16 and Tab. 17 the values taken from wood data sets are marked with a dark green.

The unit process raw data for the combustion of olive pomace and coffee ground pellets are shown in Tab. 16 and the unit process raw data for the combustion of poultry litter pellets, horse dung and slurry solids are shown in Tab. 17. The air emissions for the combustion of olives are taken from Jauhainen et al. (2005) and completed with the ecoinvent data set "logs, mixed, burned in wood heater 6kW, CH, MJ". The air emissions for the combustion of coffee ground pellets are taken from Waelti & Keller (2009) and completed with the ecoinvent data set "pellets, mixed, burned in furnace 15kW, CH, MJ".

The air emissions for the combustion of poultry litter pellets are taken from Salerno et al. (2001) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 300kW, CH, MJ". The air emissions for the combustion of horse dung are taken from Bühler et al. (2005) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 1000kW, CH, MJ". The air emissions for the combustion of slurry solids are taken from Hersener & Bühler (1998) and completed with the ecoinvent data set "wood chips, from forest, mixed, burned in furnace 1000kW, CH, MJ".

Tab. 16: Unit process raw data for the combustion of olive pomace and coffee ground pellets

product	Name	Location	In structure/rock	Unit	olive pomace, burned in boiler furnace, at oil mill	UncertaintyType	StandardDeviation	GeneralComment	coffee ground pellets, burned in wood furnace 25kW	UncertaintyType	StandardDeviation	GeneralComment
	Location				CY	0	MJ	1				
	Infrastructure/Process											
	Unit				0		MJ	0				
technosphere	olive pomace, burned in boiler furnace, at oil mill	CY	0	MJ	1				0			
	coffee ground pellets, burned in wood furnace 25kW	CH	0	MJ	0				1			
	olive pomace, dried, at oil mill	CY	0	kg	6.74E-2	1	1.26	(1,4,2,1,3,4,BU:1.05); heating value dry base: 17.8 MJ/kg, Jauhainen et al. 2005	0			
	coffee ground pellets, at regional storehouse	CH	0	m3	0	1	1.26	(1,4,1,1,3,4,BU:1.05);	8.84E-5	1	1.26	(1,4,2,1,3,4,BU:1.05); (1,4,1,1,3,4,BU:1.05); density: 650 kg/m3, assumed to be equal to wood pellets; LHW 17.3 MJ/kg, Prüfbericht 544946, SGS Institut Fresenius, 2008
	furnace, pellets, 15kW	CH	1	unit	0	1	3.34	(1,4,4,5,4,5,BU:3); uncertainty on lifetime	4.82E-7	1	3.34	(1,4,4,5,4,5,BU:3); uncertainty on lifetime
	furnace, logs, mixed, 6kW	CH	1	unit	1.74E-6	1	3.34	(1,4,4,5,4,5,BU:3); uncertainty on lifetime	0	1	3.34	(1,4,4,5,4,5,BU:3); uncertainty on lifetime
	disposal, ash olive pomace, to landfarming	CY	0	kg	2.23E-3	1	1.60	(1,4,3,1,4,5,BU:1.05); Elemental composition: tab. 1, Jauhainen et al. 2005	0	1	1.60	(1,4,3,1,4,5,BU:1.05);
	disposal, ash olive pomace, to municipal incineration	CH	0	kg	2.23E-3	1	1.60	(1,4,3,1,4,5,BU:1.05); Elemental composition: tab. 1, Jauhainen et al. 2005	0	1	1.60	(1,4,3,1,4,5,BU:1.05);
	disposal, ash olive pomace, to sanitary landfill	CH	0	kg	0	1	1.60	(1,4,3,1,4,5,BU:1.05); Elemental composition: tab. 1, Jauhainen et al. 2005	0	1	1.60	(1,4,3,1,4,5,BU:1.05);
	disposal, ash coffee ground pellets, to landfarming	CH	0	kg	0	1	1.60	(1,4,3,1,4,5,BU:1.05);	7.97E-4	1	1.60	(1,4,3,1,4,5,BU:1.05); Prüfbericht 544946, SGS Institut Fresenius, 2008
	disposal, ash coffee ground pellets, to municipal incineration	CH	0	kg	0	1	1.60	(1,4,3,1,4,5,BU:1.05);	7.97E-4	1	1.60	(1,4,3,1,4,5,BU:1.05); Prüfbericht 544946, SGS Institut Fresenius, 2008
	disposal, ash coffee ground pellets, to sanitary landfill	CH	0	kg	0	1	1.60	(1,4,3,1,4,5,BU:1.05);	0	1	1.60	(1,4,3,1,4,5,BU:1.05); Prüfbericht 544946, SGS Institut Fresenius, 2008
	disposal, ash coffee ground pellets, to transport, tractor and trailer	CH	0	kWh	1.65E-3	1	1.65	(1,4,4,5,4,5,BU:1.05); general assumption	4.17E-3	1	1.65	(1,4,4,5,4,5,BU:1.05); general assumption
	disposal, ash coffee ground pellets, to transport, lorry 20-28t, fleet average	CH	0	km	6.44E-4	1	2.35	(1,4,4,5,4,5,BU:2); general assumption	5.87E-3	1	2.35	(1,4,4,5,4,5,BU:2); general assumption
emission air, high population density	Acetaldehyde	-	-	kg	6.10E-8	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	6.10E-8	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Ammonia	-	-	kg	1.73E-6	1	1.70	(1,4,4,5,4,5,BU:1.2); extrapolation, based on measuring data of other emissions	1.73E-6	1	1.70	(1,4,4,5,4,5,BU:1.2); extrapolation, based on measuring data of other emissions
	Anthracene	-	-	kg	4.72E-6	1	3.02	(1,4,2,2,1,3,BU:3); Emissions to air from tab. 2, Jauhainen et al. 2005	0	1	3.02	(1,4,2,2,1,3,BU:3); Emissions to air from tab. 2, Wält & Keller, 2009
	Arsenic	-	-	kg	1.00E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	1.00E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Benzene	-	-	kg	1.89E-5	1	3.02	(1,4,2,2,1,3,BU:3); Emissions to air from tab. 2, Jauhainen et al. 2005	9.10E-7	1	3.02	(1,4,2,2,1,3,BU:3); Emissions to air from tab. 2, Wält & Keller, 2009
	Benzene, ethyl-	-	-	kg	3.00E-8	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions	3.00E-8	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions
	Benzene, hexachloro-	-	-	kg	7.20E-15	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions	7.20E-15	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions
	Benzo(a)pyrene	-	-	kg	5.00E-10	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions	5.00E-10	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions
	Bromine	-	-	kg	6.00E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	6.00E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Butadiene	-	-	kg	4.79E-6	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	7.00E-10	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Cadmium	-	-	kg	7.00E-10	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	5.85E-6	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Calcium	-	-	kg	5.85E-6	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	1.21E-1	1	1.13	(1,4,2,2,1,3,BU:1.05); Emissions to air from tab. 2, Wält & Keller, 2009
	Carbon dioxide, biogenic	-	-	kg	9.78E-2	1	1.13	(1,4,2,2,1,3,BU:1.05); Emissions to air from tab. 2, Jauhainen et al. 2005	5.55E-4	1	5.02	(1,4,2,2,1,3,BU:1.05); Emissions to air from tab. 2, Wält & Keller, 2009
	Carbon monoxide, biogenic	-	-	kg	2.12E-3	1	5.02	(1,4,2,2,1,3,BU:5); Emissions to air from tab. 2, Jauhainen et al. 2005	1.80E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Chlorine	-	-	kg	1.80E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	3.96E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Chromium	-	-	kg	3.96E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	4.00E-11	1	5.39	(1,4,4,5,4,5,BU:5); range of data
	Chromium VI	-	-	kg	4.00E-11	1	5.39	(1,4,4,5,4,5,BU:5); range of data	2.20E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Copper	-	-	kg	2.20E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.00E-6	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Dinitrogen monoxide	-	-	kg	7.00E-6	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.10E-14	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions
	Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin	-	-	kg	3.10E-14	1	3.34	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	2.50E-8	1	5.39	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	Ethane	-	-	kg	1.02E-5	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	1.30E-7	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	Ethene	-	-	kg	2.27E-4	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	1.08E+0	1	1.65	(1,4,4,5,4,5,BU:1.05); standard for resources
	Ethyne	-	-	kg	7.20E-5	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	0	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	Fluorine	-	-	kg	5.00E-8	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	5.00E-8	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Formaldehyde	-	-	kg	1.30E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	1.20E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Heat, waste	-	-	kg	1.07E+0	1	1.65	(1,4,4,5,4,5,BU:1.05); standard for resources	1.20E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Hexane	-	-	kg	4.92E-6	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	9.10E-7	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Hydrocarbons, aliphatic, alkanes, unspecified	-	-	kg	9.10E-7	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.10E-6	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Hydrocarbons, aliphatic, unsaturated	-	-	kg	3.10E-6	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	2.50E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Lead	-	-	kg	2.50E-8	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.60E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Magnesium	-	-	kg	3.60E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	1.70E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Manganese	-	-	kg	1.70E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.00E-10	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Mercury	-	-	kg	3.00E-10	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	4.00E-7	1	1.52	(1,4,2,2,1,3,BU:1.5); extrapolation, based on measuring data of other emissions
	Methane, biogenic	-	-	kg	2.66E-4	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	1.20E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	m-Xylene	-	-	kg	1.20E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	1.20E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Naphthalene	-	-	kg	2.42E-5	1	3.02	(1,4,2,2,1,3,BU:3); Emissions to air from tab. 2, Jauhainen et al. 2005	0	1	3.02	(1,4,2,2,1,3,BU:3); extrapolation, based on measuring data of other emissions
	Nickel	-	-	kg	6.00E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	6.00E-9	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Nitrogen oxides	-	-	kg	1.60E-4	1	1.52	(1,4,2,2,1,3,BU:1.5); range of measuring data	3.33E-4	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	NMvOC, non-methane volatile organic compounds, unspecified origin	-	-	kg	9.70E-6	1	1.52	(1,4,2,2,1,3,BU:1.5); range of measuring data	2.30E-6	1	1.52	(1,4,2,2,1,3,BU:1.5); range of measuring data
	PAH, polycyclic aromatic hydrocarbons	-	-	kg	1.11E-8	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions	1.11E-8	1	3.34	(1,4,4,5,4,5,BU:3); extrapolation, based on measuring data of other emissions
	Particulates, < 2.5 um	-	-	kg	1.17E-4	1	3.34	(1,4,4,5,4,5,BU:3); taken from wood data set	5.70E-5	1	3.34	(1,4,4,5,4,5,BU:3); Emissions to air from tab. 2, Wält & Keller, 2009
	Particulates, > 2.5 um, and < 10um	-	-	kg	0	1	2.35	(1,4,4,5,4,5,BU:2); taken from wood data set	3.17E-6	1	2.35	(1,4,4,5,4,5,BU:2); Emissions to air from tab. 2, Wält & Keller, 2009
	Particulates, > 10 um	-	-	kg	0	1	1.90	(1,4,4,5,4,5,BU:1.5); taken from wood data set	3.17E-6	1	1.90	(1,4,4,5,4,5,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	Phenol, pentachloro-	-	-	kg	8.10E-12	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	8.10E-12	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Phosphorus	-	-	kg	3.00E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions	3.00E-7	1	1.90	(1,4,4,5,4,5,BU:1.5); extrapolation, based on measuring data of other emissions
	Potassium	-	-	kg	2.34E-5	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	2.34E-5	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Propene	-	-	kg	4.79E-6	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Jauhainen et al. 2005	0	1	1.52	(1,4,2,2,1,3,BU:1.5); Emissions to air from tab. 2, Wält & Keller, 2009
	Sodium	-	-	kg	1.30E-6	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	1.30E-6	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Sulfur dioxide	-	-	kg	2.50E-6	1	1.65	(1,4,4,5,4,5,BU:0.5); extrapolation, based on measuring data of other emissions	2.50E-6	1	1.65	(1,4,4,5,4,5,BU:0.5); extrapolation, based on measuring data of other emissions
	Toluene	-	-	kg	3.00E-7	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.00E-7	1	1.90	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions
	Zinc	-	-	kg	3.00E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions	3.00E-7	1	5.39	(1,4,4,5,4,5,BU:5); extrapolation, based on measuring data of other emissions

Tab. 17: Unit process raw data for the combustion of poultry litter pellets and the fuel mixtures “horse dung and wood chips” and “slurry solids and bark chips”

product	Name	Location	Waste/other Process	Unit	poultry litter pellets, burned in rotating grate furnace 250-350kW	UncertaintyType	StandardDeviation%	GeneralComment	horse dung and waste wood chips, burned in grate furnace 500-600kW	UncertaintyType	StandardDeviation%	GeneralComment	slurry solids and bark chips, burned in bark furnace 1MW	UncertaintyType	StandardDeviation%	GeneralComment	
technosphere	Location			CH	Legend			CH	Legend			CH	Legend			CH	Legend
product	infrastructureProcess			0	taken from ecoinvent data sets for wood combustion			0	taken from ecoinvent data sets for wood combustion			0	taken from ecoinvent data sets for wood combustion			0	taken from literature
technosphere	Unit			MJ	taken from literature			MJ	taken from literature			MJ	taken from literature			MJ	taken from literature
product	poultry litter pellets, burned in rotating grate furnace 250-350kW	CH	0	MJ	1			0				0				0	
technosphere	horse dung and waste wood chips, burned in grate furnace 500-600kW	CH	0	MJ	0			0				0				0	
product	slurry solids and bark chips, burned in bark furnace 1MW	CH	0	MJ	0			0				0				1	
technosphere	electricity, low voltage, at grid	CH	0	kWh	4.17E-3	1	1.60	(1.4.3.1.4.5.BU1:05); general assumption	4.17E-3	1	1.60	(1.4.3.1.4.5.BU1:05); general assumption	4.17E-3	1	1.60	(1.4.3.1.4.5.BU1:05); general assumption	
product	poultry litter pellets, at regional storehouse	CH	0	m3	1.47E-4	1	1.26	(1.4.2.1.3.4.BU1:05); bulk density: 500 kg/m3; uncertainty: 10%; Tab. 1+2 Thermische Nutzung von Biomasse, APOLLO II, Salerno et al., 2001	0	1	1.26	(1.4.2.1.3.4.BU1:05);	0	1	1.26	(1.4.2.1.3.4.BU1:05);	
technosphere	poultry litter pellets, on site	CH	0	m3	0	1	1.26	(1.4.2.1.3.4.BU1:05); bulk density: 500 kg/m3, estimated: LHW 13.5 MJ/kg, APOLLO II, Salerno et al., 2001	0	1	1.26	(1.4.2.1.3.4.BU1:05);	0	1	1.26	(1.4.2.1.3.4.BU1:05);	
product	horse dung and waste wood chips, at farm	CH	0	m3	0	1	1.26	(1.4.1.1.3.4.BU1:05);	3.64E-4	1	1.26	(1.4.1.1.3.4.BU1:05);	0	1	1.26	(1.4.1.1.3.4.BU1:05);	
technosphere	slurry solids and bark chips, at farm	CH	0	m3	0	1	1.26	(1.4.1.1.3.4.BU1:05);	0	1	1.26	(1.4.1.1.3.4.BU1:05);	6.13E-4	1	1.26	(1.4.1.1.3.4.BU1:05); heating value pig slurry: 17.8 MJ/kg atto; Tab. 7: Energetische Nutzung landwirtschaftlicher Biomasse, Hersener & Bühler, 1998	
product	disposal, ash poultry litter pellets, to landfarming	CH	0	kg	2.22E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
technosphere	disposal, ash horse dung and waste wood chips, to landfarming	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	1.37E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions horse dung: Tab. 1+2 Thermische Nutzung von Biomasse, APOLLO II, Salerno et al., 2005	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
product	disposal, ash slurry solids and bark chips, to landfarming	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.60	(1.4.3.1.4.5.BU1:05);	1.87E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions pig slurry: Tab.7+8: Energetische Nutzung landwirtschaftlicher Biomasse, Hersener & Bühler, 1998	
technosphere	disposal, ash poultry litter pellets, to municipal incineration	CH	0	kg	2.22E-3	1	1.60	(3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001)	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
product	disposal, ash horse dung and wood chips, to municipal incineration	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	1.37E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions horse dung: Tab. 1+2 Thermische Nutzung von Biomasse, APOLLO II, Salerno et al., 2005	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
technosphere	disposal, ash slurry solids and bark chips, to municipal incineration	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.60	(1.4.3.1.4.5.BU1:05);	1.87E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions pig slurry: Tab.7+8: Energetische Nutzung landwirtschaftlicher Biomasse, Hersener & Bühler, 1998	
product	disposal, ash poultry litter pellets, to sanitary landfill	CH	0	kg	4.44E-3	1	1.60	(3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001)	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
technosphere	disposal, ash horse dung and wood chips, to sanitary landfill	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	2.75E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions horse dung: Tab. 1+2 Thermische Nutzung von Biomasse, APOLLO II, Salerno et al., 2005	0	1	1.595	(1.4.3.1.4.5.BU1:05);	
product	disposal, ash slurry solids and bark chips, to sanitary landfill	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05);	0	1	1.60	(1.4.3.1.4.5.BU1:05);	3.73E-3	1	1.60	(1.4.3.1.4.5.BU1:05); Emissions pig slurry: Tab.7+8: Energetische Nutzung landwirtschaftlicher Biomasse, Hersener & Bühler, 1998	
technosphere	disposal, wood ash mixture, pure, 0% water, to municipal incineration	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	
product	disposal, wood ash mixture, pure, 0% water, to landfills	CH	0	kg	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	0	1	1.60	(1.4.3.1.4.5.BU1:05); homogeneous fuel	
technosphere	transport, long 20-28, fleet average	CH	0	km	2.62E-3	1	2.30	(1.4.3.1.4.5.BU1:05); range of data	3.74E-3	1	2.30	(1.4.3.1.4.5.BU1:05); general assumption	3.74E-3	1	2.30	(1.4.3.1.4.5.BU1:05); general assumption	
product	fuels, wood chips, mixed, 1000kW	CH	0	kg	0	1	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	5.62E-3	0	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	5.62E-3	0	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	
technosphere	fuels, wood chips, mixed, 300kW	CH	1	unit	1.81E-6	1	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	0	1	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	0	1	3.30	(1.4.3.1.4.5.BU1:05); uncertainty on lifetime	
emission air, high population density	Acetaldehyde	-	-	kg	6.10E-8	1	1.70	(1.4.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	6.10E-8	1	1.70	(1.4.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	6.10E-8	1	1.70	(1.4.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Ammonia	-	-	kg	1.73E-6	1	1.24	(1.4.2.2.1.3.BU1:12);	7.96E-6	1	1.24	(1.4.2.2.1.3.BU1:12);	7.96E-6	1	1.24	(1.4.2.2.1.3.BU1:12);	
technosphere	Arsenic	-	-	kg	1.00E-9	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	1.00E-9	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	1.00E-9	1	5.28	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Benzene	-	-	kg	9.10E-7	1	3.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	9.10E-7	1	3.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	9.10E-7	1	3.24	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Benzene, ethyl-	-	-	kg	3.00E-8	1	1.30	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.00E-8	1	1.30	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.00E-8	1	1.32	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Benzene, hexachloro-	-	-	kg	7.20E-15	1	3.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	7.20E-15	1	3.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	7.20E-15	1	3.24	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Benz(a)pyrene	-	-	kg	5.00E-10	1	1.30	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.00E-10	1	1.30	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.00E-10	1	1.32	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Bromine	-	-	kg	6.00E-8	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	6.00E-8	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	6.00E-8	1	1.72	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Cadmium	-	-	kg	7.00E-10	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	7.00E-10	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	7.00E-10	1	1.72	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Calcium	-	-	kg	5.85E-6	1	1.50	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.85E-6	1	1.50	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.85E-6	1	1.52	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Carbon dioxide, biogenic	-	-	kg	1.08E-1	1	1.13	(3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001)	2.09E-1	1	1.13	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001	3.14E-1	1	1.13	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2005	
product	Carbon monoxide, biogenic	-	-	kg	5.16E-6	1	5.02	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001	9.10E-5	1	5.02	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2005	1.41E-4	1	5.02	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2005	
technosphere	Chlorine	-	-	kg	1.80E-7	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	1.80E-7	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	1.80E-7	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Chromium	-	-	kg	3.96E-9	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.96E-9	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.96E-9	1	5.28	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Chromium VI	-	-	kg	4.00E-11	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	4.00E-11	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	4.00E-11	1	5.28	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Copper	-	-	kg	2.20E-8	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.20E-8	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.20E-8	1	5.28	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Dinitrogen monoxide	-	-	kg	2.50E-6	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.30E-6	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.30E-6	1	1.72	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin	-	-	kg	3.10E-14	1	3.24	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.10E-14	1	3.24	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.10E-14	1	3.24	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Fluorine	-	-	kg	5.00E-8	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.00E-8	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	5.00E-8	1	1.72	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Formaldehyde	-	-	kg	1.30E-7	1	1.70	(1.4.2.2.4.3.BU1:05); standard for resources	1.30E-7	1	1.70	(1.4.2.2.4.3.BU1:05); standard for resources	1.30E-7	1	1.70	(1.4.2.2.4.3.BU1:05); standard for resources	
technosphere	Heat, waste	-	-	MJ	1.08E+0	1	1.52	(1.4.2.2.4.3.BU1:05); standard for resources	1.08E+0	1	1.52	(1.4.2.2.4.3.BU1:05); standard for resources	1.08E+0	1	1.52	(1.4.2.2.4.3.BU1:05); standard for resources	
product	Hydrocarbons, aliphatic, alkanes, unspecified	-	-	kg	1.88E-6	1	1.52	(3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001)	1.71E-5	1	1.52	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2001	1.90E-4	1	1.52	(1.4.2.2.1.3.BU1:15); Emissions: Tab. 3.5.1.1: APOLLO II Schlüsselfert., Salerno et al., 2005	
technosphere	Hydrocarbons, aliphatic, unsaturated	-	-	kg	3.10E-6	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.10E-6	1	1.70	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.10E-6	1	1.72	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
product	Lead	-	-	kg	2.50E-8	1	1.52	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.50E-8	1	1.52	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	2.50E-8	1	1.52	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	
technosphere	Magnesium	-	-	kg	3.80E-7	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.80E-7	1	5.20	(1.4.2.2.4.3.BU1:15); extrapolation, based on measuring data of other emissions	3.80E-7	1	5.28	(1.4.2.2.4.3.BU1:15);	

7.2.1. Disposal ash from combustion

There are three different ways considered to dispose the ash generated by the combustion process, namely the disposal in landfarming, the disposal to municipal incineration or the disposal to a sanitary landfill. Landfarming means that the ashes are spread as fertilizer on agricultural land. For the small furnaces below a threshold of 30 kW it is assumed that 50 % of the ash is disposed in landfarming and 50 % is disposed in municipal solid waste incineration. For bigger furnaces above 30 kW it is assumed that 50 % of the ash is disposed in a sanitary land fill, 25 % of the ash is disposed in landfarming and 25 % is disposed in municipal solid waste incineration. These fractions for the different disposal scenarios are the same as used for disposal of wood ash in the ecoinvent data set for wood combustion (Bauer 2007).

7.2.2. Particulate matter emissions

For the particulate emissions only data for the total suspended particulate matter (TSP) were available. The distribution of the size of the particles had to be estimated. It was assumed that the distribution of the size of the particles for biomass combustion corresponds to the distribution of the particles for wood combustion determined within the CEPMEIP project (Berdowski et al. 2001).

Tab. 18: Distribution of the total suspended particulate matter to the different classes of particulates for non-industrial combustion plants according to Berdowski et al. 2001

Emission factors Wood and wood waste	Low	Fraction	Medium	Fraction	Medium-High	Fraction	High	Fraction
Non-industrial combustion plants	Mg/PJ	%	Mg/PJ	%	Mg/PJ	%	Mg/PJ	%
TSP	150.0	100.0%	300.0	100.0%	300.0	100.0%	300.0	100.0%
Particulates, < 2.5 um	135.0	90.0%	270.0	90.0%	270.0	90.0%	270.0	90.0%
Particulates, > 2.5 um, and < 10um	8.0	5.3%	15.0	5.0%	15.0	5.0%	15.0	5.0%
Particulates, > 10 um	7.0	4.7%	15.0	5.0%	15.0	5.0%	15.0	5.0%

7.3. Heat generation

Tab. 19 shows the unit process raw data for the heat generation for olive pomace and coffee ground pellets. The efficiency factor of the furnace used for the combustion of the olive pomace and the efficiency factor of the furnace used for the combustion of coffee ground pellets are estimated to be equal to 0.85.

Tab. 19: Unit process raw data for the heat generation of olive pomace and coffee ground pellets

product	Name	Location	Infrastructure-Process	Unit	heat, olive pomace, at boiler furnace, in oil mill	heat, coffee ground pellets, in wood furnace 25kW	Uncertainty-Type	Standard-Deviation-95%	GeneralComment
					CY	CH			
					0 MJ	0 MJ			
heat, olive pomace, at boiler furnace, in oil mill	CY	0	MJ	1	0				
heat, coffee ground pellets, in wood furnace 25kW	CH	0	MJ	0	1				
olive pomace, burned in boiler furnace, at oil mill	CY	0	MJ	1.18E+0	0	1	2.34	(1,5,5,5,5,5,BU:1.05); Estimated efficiency factor 0.85	
coffee ground pellets, burned in wood furnace 25kW	CH	0	MJ	0	1.18E+0	1	2.34	(1,5,5,5,5,5,BU:1.05); Estimated efficiency factor 0.85	

Tab. 20 shows the unit process raw data for the heat generations of the biomass substrates poultry litter pellets, horse dung and wood chips and slurry solids and bark chips. The efficiency factor of the grate furnace used for the combustion of poultry litter pellets is 0.94 (Salerno et al. 2001). The efficiency factors for grate furnace and the bark furnace used for the combustion of the other substrates no information was available and an efficiency factor of 0.85 was assumed.

Tab. 20: Unit process raw data for the heat generation of the mixtures "horse dung and wood chips" and "slurry solids and bark chips"

Name		Location	InfrastructureProcess	Unit	heat, poultry litter pellets, in rotating grate furnace 250-350kW	heat, horse dung and waste wood chips, in grate furnace 500-600kW	heat, slurry solids and bark chips, in bark furnace 1MW	UncertaintyType	StandardDeviation 95%	GeneralComment
					CH 0 MJ	CH 0 MJ	CH 0 MJ			
product	heat, poultry litter pellets, in rotating grate furnace 250-350kW	CH	0	MJ	1	0	0			
	heat, horse dung and waste wood chips, in grate furnace 500-600kW	CH	0	MJ	0	1	0			
	heat, slurry solids and bark chips, in bark furnace 1MW	CH	0	MJ	0	0	1			
technosphere	poultry litter pellets, burned in rotating grate furnace 250-350kW	CH	0	MJ	1.06E+0	0	0	1	1.20	(1,4,4,3,1,3,BU:1.05); Efficiency factor 0.94, APOLLO II, Salerno et al., 2001
	horse dung and waste wood chips, burned in grate furnace 500-600kW	CH	0	MJ	0	1.18E+0	0	1	1.50	(1,5,5,5,5,BU:1.05); Estimated efficiency factor 0.85
	slurry solids and bark chips, burned in bark furnace 1MW	CH	0	MJ	0	0	1.18E+0	1	1.50	(1,5,5,5,5,BU:1.05); Estimated efficiency factor 0.85

7.4. Disposal of the ashes

The elemental composition of the ash is taken from literature and the missing values are taken from the elemental composition of wood ash documented in the ecoinvent data set "disposal, wood ash mixture, pure, 0% water, to landfarming, CH, kg". Tab. 10 shows the elemental composition of the ash of the different biomass fuels.

The ash composition of the ash generated by the combustion of olive pomace is taken from Jauhainen et al. (2005). The ash composition of the ash generated by the combustion of coffee ground pellets is taken from SGS-Institut-Fresenius (2008). The ash composition of the ash generated by the combustion of poultry litter pellets is taken from Salerno et al. (2001) and the composition of the ash generated by the combustion of horse dung is taken from Bühler et al. (2007). The ash composition of the ash generated by the combustion of slurry solids is taken from Hersener & Bühler (1998).

The natural concentration of heavy metals in wood and the natural concentration in the analysed biomass substrates are similar, but the ash formation when burning biomass substrates is ten times higher compared to the ash formation when burning wood. If 90% of the heavy metals are transferred to the residual ash, the concentration of the heavy metals in the wood ash is considerably higher than the concentration of the heavy metals in the ash generated by the combustion of the biomass substrates. To account for the higher ash formation the adopted values for the concentration of heavy metals taken from wood ash are reduced by a factor of 10 in the case of olive pomace, poultry litter and horse dung and by a factor of 3 in the case of coffee ground pellets. Without this correction the heavy metal content of the ash generated by biomass combustion is assumed to be overestimated.

Tab. 21: Elemental composition of the ash generated by the combustion process for the different biomass fuels

Fuel		ash olive pomace	ash coffee ground pellets	ash poultry litter pellets	ash horse dung and wood chips	ash slurry solids and bark chips
Water content	H2O	n.a.	n.a.	n.a.	n.a.	n.a.
Oxygen (without O from H2O)	O	0.38554	0.4012	0.2875	0.4909	0.4909
Hydrogen (without H from H2O)	H	n.a.	n.a.	n.a.	n.a.	n.a.
Carbon (enter share of biogenic C below)	C	0.14853	0.012	0.012	0.012	0.012
Sulfur	S	0.00987	0.0092	0.0092	0.0092	0.0092
Nitrogen	N	n.a.	n.a.	n.a.	n.a.	n.a.
Phosphor	P	0.01705	0.0098	0.112	0.00392	0.00392
Boron	B	n.a.	n.a.	n.a.	n.a.	n.a.
Chlorine	Cl	0.00305	0.0032	0.0032	0.000204	0.000204
Bromium	Br	n.a.	n.a.	n.a.	n.a.	n.a.
Fluorine	F	n.a.	n.a.	n.a.	n.a.	n.a.
Iodine	I	n.a.	n.a.	n.a.	n.a.	n.a.
Silver	Ag	n.a.	n.a.	n.a.	n.a.	n.a.
Arsenic	As	n.a.	0.0000067	0.0000067	0.0000067	0.0000067
Barium	Ba	n.a.	n.a.	n.a.	n.a.	n.a.
Cadmium	Cd	n.a.	1.03448E-05	0.00000022	0.000005	0.000005
Cobalt	Co	n.a.	3.44828E-05	0.0000018	0.0000018	0.0000018
Chromium	Cr	n.a.	3.44828E-05	0.0000195	0.0000195	0.0000195
Copper	Cu	n.a.	0.001034483	0.000426	0.000103	0.000103
Mercury	Hg	n.a.	0.000000033	0.00000001	0.00000001	0.00000001
Manganese	Mn	n.a.	0.002172414	0.02	0.02	0.02
Molybdenum	Mo	n.a.	0.0000037	0.0000037	0.0000037	0.0000037
Nickel	Ni	n.a.	6.89655E-05	0.000059	0.0000552	0.00000552
Lead	Pb	n.a.	0.000172414	0.0000065	0.000016	0.000016
Antimony	Sb	n.a.	0.000206897	n.a.	n.a.	n.a.
Selenium	Se	n.a.	n.a.	n.a.	n.a.	n.a.
Tin	Sn	n.a.	0.001172414	n.a.	n.a.	n.a.
Vanadium	V	n.a.	3.44828E-05	0.0000395	0.0000395	0.0000395
Zinc	Zn	n.a.	0.002965517	0.00091	0.00102	0.00102
Beryllium	Be	n.a.	n.a.	n.a.	n.a.	n.a.
Scandium	Sc	n.a.	n.a.	n.a.	n.a.	n.a.
Strontium	Sr	n.a.	n.a.		n.a.	n.a.
Titanium	Ti	0.00065	0.00138	0.00138	0.00138	0.00138
Thallium	Tl	n.a.	n.a.	n.a.	n.a.	n.a.
Tungsten	W	n.a.	n.a.	n.a.	n.a.	n.a.
Silicon	Si	0.06982	0.0826	0.0826	0.0826	0.0826
Iron (enter share of metallic iron below)	Fe	0.02528	0.0228	0.0228	0.0228	0.0228
Calcium	Ca	0.06675	0.284	0.284	0.284	0.284
Aluminium	Al	0.0241	0.079310345	0.0208	0.0208	0.0208
Potassium	K	0.21518	0.0545	0.099	0.01886	0.01886
Magnesium	Mg	0.03023	0.0321	0.044	0.0321	0.0321
Sodium	Na	0.00395	n.a.	n.a.	n.a.	n.a.
sum wet mass		100.00%	100.00%	100.00%	100.00%	100.00%

7.4.1. Landfarming

One possibility to dispose the ash generated by the combustion of the biomass substrates is the disposal in landfarming. Landfarming means the spreading of the ashes on arable land. The environmental impact of the spreading of the ashes is allocated to 100 % to the combustion of the biomass. The use of ashes as fertilisers is not considered although the high content of alkali metals and phosphorus in the ashes. The disposal of the ash in landfarming was modelled as a direct flux of the elements shown in Tab. 10 to agricultural soil. The sum of the elements listed in Tab. 22 and Tab. 23 is no equal to 1 kg. The missing mass corresponds to the oxygen in the ash as in Tab. 21.

Tab. 22 shows the unit process raw data of the disposal of the ash generated by the combustion of olive pomace and coffee ground pellets in landfarming. The elemental composition of the ash is taken from literature and the missing values are taken from the elemental composition of wood ash documented in the ecoinvent data set "disposal, wood ash mixture, pure, 0% water, to landfarming CH, kg". The completed values are highlighted with a dark green.

Tab. 22 Unit process raw data for the disposal of the ash of olive pomace and coffee ground pellets to landfarming

product	Name	Location	Infrastructure-Process	Unit	disposal, ash olive pomace, to landfarming	CY 0 kg	UncertaintyType StandardDeviation 95%	GeneralComment	disposal, ash coffee ground pellets, to landfarming	CH 0 kg	UncertaintyType StandardDeviation 95%	GeneralComment		
								Legende						
								Location	Infrastructure-Process	Unit				
product	disposal, ash olive pomace, to landfarming	CY	0	kg	1				0					
technosphere	disposal, ash coffee ground pellets, to landfarming	CH	0	kg	0				1					
emission soil, agricultural	disposal, wood ash mixture, pure, 0% water, to landfarming	CH	0	kg	0				0					
technosphere	solid manure loading and spreading, by hydraulic loader and spreader	CH	0	kg	1.00E+0	1	1.62	(4.5,na,1,4,na,BU:1.05); Assumption for spreading	1.00E+0	1	1.62	(4.5,na,1,4,na,BU:1.05); Assumption for spreading		
emission soil, agricultural	Aluminium	-	-	kg	2.41E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	7.93E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Antimony	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	2.07E-4	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Arsenic	-	-	kg	0	1	1.34	(1,4,2,3,3,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	6.70E-6	1	1.34	(1,4,2,3,3,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Cadmium	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.03E-5	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Calcium	-	-	kg	6.68E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	2.84E-1	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Carbon	-	-	kg	1.49E-1	1	1.58	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.20E-2	1	1.58	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Chloride	-	-	kg	3.05E-3	1	1.58	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.20E-3	1	1.58	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Chromium	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.45E-5	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Cobalt	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.45E-5	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Copper	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.03E-3	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Iron	-	-	kg	2.53E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	2.28E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Lead	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.72E-4	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Magnesium	-	-	kg	3.02E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.21E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Manganese	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	2.17E-3	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Mercury	-	-	kg	0	1	1.34	(1,4,2,3,3,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.30E-8	1	1.34	(1,4,2,3,3,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Molybdenum	-	-	kg	0	1	1.34	(1,4,2,3,3,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.70E-6	1	1.34	(1,4,2,3,3,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Nickel	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	6.90E-5	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Phosphorus	-	-	kg	1.71E-2	1	1.58	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	9.80E-3	1	1.58	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Potassium	-	-	kg	2.15E-1	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	5.45E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Silicon	-	-	kg	6.98E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	8.26E-2	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Sodium	-	-	kg	3.95E-3	1	1.58	(1,4,2,1,1,5,BU:1.5); Ash composition: Tab. 4, Jauhainen et al. 2005	0	1	1.58	(1,4,2,1,1,5,BU:1.5); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Sulfur	-	-	kg	9.87E-3	1	1.58	(1,4,2,1,1,5,BU:1.5); Ash composition: Tab. 4, Jauhainen et al. 2005	9.20E-3	1	1.58	(1,4,2,1,1,5,BU:1.5); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Tin	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.17E-3	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Titanium	-	-	kg	6.50E-4	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	1.38E-3	1	1.26	(1,4,2,1,1,5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.		
emission soil, agricultural	Vanadium	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	3.45E-5	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		
emission soil, agricultural	Zinc	-	-	kg	0	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Tab. 4, Jauhainen et al. 2005	2.97E-3	1	1.26	(1,4,2,1,1,5,BU:1.1); Ash composition: Prüfbericht 544946, SGS Institut Fresenius, 2008;		

Tab. 23 shows the unit process raw data of the disposal of the ash generated by the combustion of poultry litter pellets, horse dung and slurry solids in landfarming. The elemental composition of the ash is taken from literature and the missing values are taken from the elemental composition of wood ash documented in the ecoinvent data set "disposal, wood ash mixture, pure, 0% water, to landfarming CH, kg". The completed values are highlighted with a dark green.

Tab. 23: Unit process raw data for disposal of the ash of the mixtures "horse dung and wood chips" and "slurry solids and bark chips" to landfarming

product	Name	Location	InfrastructureProcess	Unit	disposal, ash poultry litter pellets, to landfarming		disposal, ash horse dung and waste wood chips, to landfarming		disposal, ash slurry solids and bark chips, to landfarming			
					Uncertainty/Type	StandardDeviation	Uncertainty/Type	StandardDeviation	Uncertainty/Type	StandardDeviation		
					95%	GeneralComment	95%	GeneralComment	95%	GeneralComment		
	Location				CH 0 kg	Legende	CH 0 kg	Legende	CH 0 kg	Legende		
	Infrastructure Process					taken from ecoinvent data sets for combustion		taken from ecoinvent data sets for combustion		taken from ecoinvent data sets for combustion		
	Unit					taken from literature		taken from literature		taken from literature		
product	disposal, ash poultry litter pellets, to landfarming	CH 0 kg	kg	1			0		0			
product	disposal, ash horse dung and waste wood chips, to landfarming	CH 0 kg	kg	0			1		0			
product	disposal, ash slurry solids and bark chips, to landfarming	CH 0 kg	kg	0			0		1			
technosphere	solid manure loading and spreading, by hydraulic loader and spreader	CH 0 kg		1.00E+0	1	1.24 (1.4,2,1,1.5,BU:1.05); approximate burden for spreading, (n.a.n.a.,1,1,4,n.a.) & basic uncertainty of 1.05; solid manure spreading for landfarming of waste	1.00E+0	1	1.24 (1.4,2,1,1.5,BU:1.05); approximate burden for spreading, (n.a.n.a.,1,1,4,n.a.) & basic uncertainty of 1.05; solid manure spreading for landfarming of waste	1.00E+0	1	1.24 (1.4,2,1,1.5,BU:1.05); approximate burden for spreading, (n.a.n.a.,1,1,4,n.a.) & basic uncertainty of 1.05; solid manure spreading for landfarming of waste
emission soil, agricultural	Aluminium	- -	kg	2.08E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.08E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.08E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Arsenic	- -	kg	6.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	6.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	6.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Cadmium	- -	kg	2.20E-7	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	5.00E-6	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	8.68E-7	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Calcium	- -	kg	2.84E-1	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.84E-1	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.84E-3	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Carbon	- -	kg	1.20E-2	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.20E-2	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.20E-2	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Chloride	- -	kg	3.20E-3	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	2.04E-4	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	3.20E-3	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Chromium	- -	kg	1.95E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.95E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.95E-4	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Cobalt	- -	kg	1.80E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.80E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.80E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Copper	- -	kg	4.26E-4	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.03E-4	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	8.34E-4	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Iron	- -	kg	2.28E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.28E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.28E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Lead	- -	kg	6.50E-6	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.60E-5	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.27E-5	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Magnesium	- -	kg	4.40E-2	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	3.21E-2	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	3.21E-2	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Manganese	- -	kg	2.00E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.00E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.00E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Mercury	- -	kg	1.00E-8	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.00E-8	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.00E-7	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Molybdenum	- -	kg	3.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	3.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	3.70E-6	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Nickel	- -	kg	5.90E-6	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	5.52E-6	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	5.52E-5	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Phosphorus	- -	kg	1.12E-1	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	3.92E-3	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	8.37E-2	1	1.58 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Potassium	- -	kg	9.90E-2	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.89E-2	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.47E-1	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung
emission soil, agricultural	Silicon	- -	kg	8.26E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	8.26E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	8.26E-2	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Sodium	- -	kg	0	1	1.58 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	0	1	1.58 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	2.01E-1	1	1.58 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Sulfur	- -	kg	9.20E-3	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	9.20E-3	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	9.20E-3	1	1.85 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Tin	- -	kg	0	1	1.59 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	0	1	1.59 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	0	1	1.59 (1.4,2,1,1.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Titanium	- -	kg	1.38E-3	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.38E-3	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	1.38E-3	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Vanadium	- -	kg	3.95E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	3.95E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.	3.95E-5	1	1.61 (1.4,2,5,4.5,BU:1.1); direct emission from landfarming process. Uncertainty from uncertainty in waste composition.
emission soil, agricultural	Zinc	- -	kg	9.10E-4	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	1.02E-3	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition Tab. 3.6.1: APOLLO II Schlussbericht, Salerno et al., 2001	2.92E-3	1	1.26 (1.4,2,1,1.5,BU:1.1); Ash composition: no information available, modelled equal to horse dung

7.4.2. Municipal incineration

A second possibility to dispose the ashes is the disposal in municipal incineration. The disposal of the ash to municipal incineration was modelled according to Doka (2007). The same elemental composition of the ash, which is shown in Tab. 10, was used for the calculations. This includes the combustion of the ash in municipal incineration and the landfilling of the residual waste.

7.4.3. Sanitary landfill

The third possibility to dispose the ashes is the disposal of the ashes to a sanitary landfill. The disposal of the ashes to a sanitary landfill was modelled according to Doka (2007). The same elemental composition of the ash, which is shown in Tab. 10, was used for the calculations. This includes the construction of the sanitary landfill and the treatment of the sewage sludge from the wastewater treatment.

7.5. Coffee grounds in municipal incineration

For the coffee ground a second way of energy recovery was modelled, namely the combustion of the wet coffee grounds in municipal incineration instead of the drying and pelletising of the coffee grounds. The heat and electricity generation was modelled according to Doka (2007). The same elemental composition for the moist fuel as shown in Tab. 3 was used for the calculations.

For the analysis the net benefit of the combustion of coffee grounds in municipal incineration is calculated. The net benefit is calculated as the difference between the avoided environmental impact of energy generation and the environmental impact of the combustion of one kilogram of coffee grounds in municipal. The combustion of 1 kg of coffee grounds in municipal incineration generates 0.53 kWh electricity and 3.92 MJ of useful heat according to Doka (2007).

For the substitution of the energy generation two possibilities for electricity generation and heat production are analysed resulting in a minimal net benefit and a maximal net benefit. This minimum maximum analysis is performed to cover the range of the different technologies for energy generation.

As substitution processes for electricity generation the process „electricity, natural gas, at combined cycle plant, best technology, RER“ is chosen for the minimal net benefit and for the maximal net benefit the electricity import mix shown in Tab. 11.

Tab. 24: Unit process raw data of the electricity import mix used for the calculation of the maximal net benefit of the electricity generation

product	Name	Location	InfrastructureProcess	Unit	electricity mix, import FR/DE/IT	UncertaintyType	StandardDeviation95%	GeneralComment
		Location	InfrastructureProcess	Unit				
		CH	0	kWh				
technosphere	electricity mix, import FR/DE/IT	CH	0	kWh	1			
	electricity mix	FR	0	kWh	9.17E-1	1	1.05	(1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment of Swiss Electricity Mixes. implemented in ecoinvent data v2.2
	electricity mix	IT	0	kWh	1.92E-2	1	1.05	(1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment of Swiss Electricity Mixes. implemented in ecoinvent data v2.2
	electricity mix	DE	0	kWh	6.41E-2	1	1.05	(1,1,1,1,1,BU:1.05); Leuenberger M. and Frischknecht R. (2010) Life Cycle Assessment of Swiss Electricity Mixes. implemented in ecoinvent data v2.2

As substitution process for heat generation the process “heat, light fuel oil, at industrial furnace 1MW, CH” is chosen for the maximal net benefit and the process “heat, natural gas, at industrial furnace >100kW, RER” for the minimal net benefit.

7.6. Meta information to the unit process raw data

Tab. 25, Tab. 26, Tab. 27 and Tab. 28 show the meta information to all the unit process raw data for biomass combustion presented in this report.

Tab. 25: Meta information to the unit process raw data of the biomass substrates coffee grounds and olive pomace

ReferenceFunction	Name	coffee ground pellets, at regional storehouse	poultry litter pellets, at regional storehouse	olive pomace, burned in boiler furnace, at oil mill	coffee ground pellets, burned in wood furnace 25kW	heat, olive pomace, at boiler furnace, in oil mill	heat, coffee ground pellets, in wood furnace 25kW	disposal, ash olive pomace, to landfarming	disposal, ash coffee ground pellets, to landfarming	olive pomace, dried, at oil mill	coffee ground pellets, on site	poultry litter pellets, on site	coffee ground pellets, burned in furnace, produced on site	heat, coffee ground pellets, burned in furnace, produced on site
Geography	Location	CH 0 m3	CH 0 m3	CY 0 MJ	CH 0 MJ	CY 0 MJ	CH 0 MJ	CY 0 kg	CH 0 kg	CY 0 kg	CH 0 m3	CH 0 m3	CH 0 MJ	CH 0 MJ
ReferenceFunction	InfrastructureProcess Unit													
IncludedProcesses	This data set includes the production of the pellets and the transport to the regional storage centre	This data set includes the production of the pellets and the transport to the regional storage centre	This data set describes the emission into air caused by the combustion, infrastructure, fuel input and transport are included	This data set describes the emission into air caused by the combustion, infrastructure, fuel input and transport are included	This data set describes the efficiency of the combustion	This data set describes the efficiency of the combustion	This data set describes the disposal of the ash, only spreading of the ash is included (no transport)	This data set describes the disposal of the ash, only spreading of the ash is included (no transport)	This data set includes the drying process of the olive pomace on site (without transport)	This data set includes the production of the pellets on site (without transport)	This data set includes the production of the pellets on site (without transport)	This data set describes the emission into air caused by the combustion, infrastructure, fuel input and transport are included	This data set describes the efficiency of the combustion	
LocalName	Kaffeesatzpellets, ab Regionallager	Hühnermistpellets, ab Regionallager	Oliventrester, in Kesselfeuerung, in Ölmühle	Kaffeesatzpellets, in Holzkessel 25kW	Nutzwärme, Oliventrester, ab Kesselfeuerung, in Ölmühle	Nutzwärme, Kaffeesatzpellets, in Holzkessel 25kW	Entsorgung, Asche Oliventrester, in Landfarming	Entsorgung, Asche Kaffeesatzpellets, in Landfarming	Oliventrester, getrocknet, in Ölmühle	Kaffeesatzpellets, am Standort	Hühnermistpellets, am Standort	Kaffeesatzpellets, in Feuerung, produziert am Standort	Nutzwärme, Kaffeesatzpellets, in Feuerung, produziert am Standort	
Synonyms	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GeneralComment	Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]; own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.57 kg water/kg fuel removed from coffee ground	Based on ecoinvent dataset "wood pellets, u=10%, at storehouse, RER, [m3]; own calculations: 3.78 MJ required for drying one kg water; bulk density coffee pellets 650 kg/m3; 0.57 kg water/kg fuel removed from coffee ground	Air emission from combustion data completed with ecoinvent inventory of "pellets, mixed, burned in furnace 15kW"; LHW: 17.4 14.82 MJ/kg; Disposal ash: 50% landfarming, 50% municipal incineration	Air emission from combustion data completed with ecoinvent inventory of "pellets, mixed, burned in furnace 15kW"; LHW: 17.4 14.82 MJ/kg; Disposal ash: 50% landfarming, 50% municipal incineration	Provision of heat with efficiency factor 0.85 (estimated)	Provision of heat with efficiency factor 0.85 (estimated)	Ash composition data completed with the ecoinvent inventory of "disposal, wood ash mixture, pure, 0% water to landfarming"	Ash composition data completed with the ecoinvent inventory of "disposal, wood ash mixture, pure, 0% water to landfarming"	Own calculations: 3.78 MJ required for drying one kg water; 0.72 kg water/kg fuel removed from olive pomace	Own calculations: 3.78 MJ required for drying one kg water; 0.72 kg water/kg fuel removed from olive pomace	Own calculations: 3.78 MJ required for drying one kg water; 0.72 kg water/kg fuel removed from olive pomace	Air emission coffee ground data completed with ecoinvent inventory of "pellets, mixed, burned in furnace 15kW"; LHW: 17.4 14.82 MJ/kg; Disposal ash: 50% landfarming, 50% municipal incineration	Provision of heat with efficiency factor 0.85 (estimated); Disposal ash: 50% landfarming, 50% municipal incineration	
InfrastructureIncluded	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Category	biomass	biomass	biomass	biomass	waste management	waste management	biomass	biomass	biomass	biomass	biomass	biomass	biomass	biomass
SubCategory	fuels	fuels	heating systems	heating systems	heating systems	heating systems	landfarming	landfarming	fuels	fuels	heating systems	heating systems	heating systems	heating systems
LocalCategory	Biomasse	Biomasse	Biomasse	Biomasse	Biomasse	Biomasse	Entsorgungssysteme	Entsorgungssysteme	Biomasse	Biomasse	Biomasse	Biomasse	Biomasse	Biomasse
LocalSubCategory	Brenn- und Treibstoffe	Brenn- und Treibstoffe	Heizungssysteme	Heizungssysteme	Heizungssysteme	Heizungssysteme	Landfarming	Landfarming	Brenn- und Treibstoffe	Brenn- und Treibstoffe	Heizungssysteme	Heizungssysteme	Heizungssysteme	Heizungssysteme
Formula														
StatisticalClassification														
CASNumber														
TimePeriod	StartDate	2008	2001	2006	2009	2006	2009	2006	2008	2008	2001	2009	2009	2009
	EndDate	2008	2001	2006	2009	2006	2009	2006	2008	2008	2001	2009	2009	2009
	DataValidForEntirePeriod	1	1	1	1	1	1	1	1	1	1	1	1	1
	OtherPeriodText	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.	Collection of data and publication.
Geography	Text	The inventory is modelled for pellet production in Switzerland	The inventory is modelled for pellet production in Switzerland	The inventory is modelled for a typical production area for olives in the Lythrodontas region in Cyprus.	The inventory is modelled for a typical production area for olives in the Lythrodontas region in Cyprus.	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland	The inventory is modelled for a pilot plant in Switzerland
Technology	Text	none	none	Boiler Furnace	Furnace 25kW	Furnace 25kW	Boiler Furnace	Boiler Furnace	none	none	none	none	Furnace 25kW	Furnace 25kW
Representativeness	Percent	0	0	unknown	0	0	unknown	0	0	0	0	0	0	0
	ProductionVolume	unknown	unknown	Literature	Literature	Literature	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown
	SamplingProcedure	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature	Literature
	Extrapolations	Drying and pellet manufacturing process estimated with data for wood drying and wood pellet production	Drying and pellet manufacturing process estimated with data for wood drying and wood pellet production	Several air emissions estimated with data for wood combustion.	none	none	ash composition estimated with data for wood ash	ash composition estimated with data for wood ash	none	ash composition estimated with data for wood ash	ash composition estimated with data for wood ash	ash composition estimated with data for wood ash	Several air emissions estimated with data for wood drying and wood pellet production	Several air emissions estimated with data for wood drying and wood pellet production
	UncertaintyAdjustments	none	none	none	none	none	none	none	none	none	none	none	none	none
	Details	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process	29.04.2011 Z:\ESU-Docs\Projekte laufend321 FP Biomasse Verbrennung Feste Substrate\EcoSpold\32 1_Biomasse_6-30kW-v1.0.xlsx\Process
	OtherDetails													

Tab. 26: Meta information to the unit process raw data of the mixtures "horse dung and wood chips", "slurry solids and bark chips"

ReferenceFunction	Name	horse dung and waste wood chips, at farm	slurry solids and bark chips, at farm	poultry litter pellets, burned in rotating grate furnace 250-350kW	horse dung and waste wood chips, burned in grate furnace 500-600kW	slurry solids and bark chips, burned in bark furnace 1MW	heat, poultry litter pellets, in rotating grate furnace 250-350kW	heat, horse dung and waste wood chips, in grate furnace 500-600kW	heat, slurry solids and bark chips, in bark furnace 1MW	disposal, ash poultry/litter pellets, to landfarming	disposal, ash horse dung and waste wood chips, to landfarming	disposal, ash slurry solids and bark chips, to landfarming	poultry litter pellets, burned in furnace, produced on site	heat, poultry litter pellets, burned in furnace, produced on site			
Geography	Location	CH	CH	CH	CH	CH	CH	CH	CH	CH	CH	CH	CH	CH			
ReferenceFunction	InfrastructureProcess	0	0	0	0	0	0	0	0	0	0	0	0	0			
ReferenceFunction	Unit	m3	m3	MJ	MJ	MJ	MJ	MJ	MJ	kg	kg	kg	MJ	MJ			
IncludedProcesses		This data set includes the wood chips. Horse dung as a waste is assumed to be used with zero burden from its production.		This data set includes the bark chips. Slurries as a waste is assumed to be used with zero burden from its production.		This data set includes fuel, infrastructure, ash disposal and air emissions.		This data set includes fuel, infrastructure, ash disposal and air emissions.		This data set includes fuel, infrastructure, ash disposal and air emissions.		This data set includes the efficiency of the combustion		This data set includes the efficiency of the combustion			
LocalName		Pferdemist und Abfallholzschnitzel, ab Bauernhof		Gülefeststoffe und Rindenschnitzel, ab Bauernhof		Hühnermistpellets, in rotierender Rostfeuerung 250-Abfallholzschnitzel, in 350kW		Pferdemist und Rindenschnitzel, in Rostfeuerung 500-600kW		Gülefeststoffe und Rindenschnitzel, in Feuerung 1MW		Nutzwärme, Hühnermistpellets, in rotierender Rostfeuerung 250-350kW		Nutzwärme, Pferdemist und Abfallholzschnitzel, in Rindenschnitzel, in Rostfeuerung 500-600kW			
Synonyms		0		0		0		0		0		0		0			
GeneralComment		Mixture horse dung (67%) and waste wood (33%); lower heating value: 8.4 MJ/kg; bulk density 315 kg/m3		Mixture slurry solids (15.5%) and bark chips (84.5%); lower heating value: 5.4 MJ/kg; bulk density: 300 kg/m3		Air emission data completed with the inventory of wood chips, from forest, mixed, burned in furnace 300kW; lower heating value 13.5 MJ/kg; bulk density: 500kg/m3; Disposal Ash: 25% landfarming, 25% MSW, 50% sanitary landfill		Air emission data completed with the inventory of wood chips, from forest, mixed, burned in furnace 1000kW; lower heating value: 8.4 MJ/kg; bulk density: 300 kg/m3; Disposal Ash: 25% landfarming, 25% MSW, 50% sanitary landfill		Provision of heat with efficiency factor 0.94		Provision of heat with efficiency factor 0.85 (estimated)		Ash composition data completed with the inventory of disposal, wood ash mixture, pure, 0% water, to landfarming		Ash composition data completed with the inventory of disposal, wood ash mixture, pure, 0% water, to landfarming	
InfrastructureIncluded		1		1		1		1		1		1		1			
Category		biomass		biomass		biomass		biomass		biomass		waste management		waste management			
SubCategory		fuels		heating systems		heating systems		heating systems		heating systems		landfarming		landfarming			
LocalCategory		Biomasse		Biomasse		Biomasse		Biomasse		Biomasse		Entsorgungssysteme		Entsorgungssysteme			
LocalSubCategory		Brenn- und Treibstoffe		Brenn- und Treibstoffe		Heizungssysteme		Heizungssysteme		Heizungssysteme		Landfarming		Landfarming			
StatisticalClassification																	
CASNumber																	
TimePeriod	StartDate	2005	1998	2001	2005	1998	2001	2005	1998	2001	2005	1998	2001	2005	2001		
	EndDate	2005	1998	2001	2005	1998	2001	2005	1998	2001	2005	1998	2001	2005	2001		
DataValidForEntirePeriod		1		1		1		1		1		1		1			
OtherPeriodText		Collection of data and publication.		Collection of data and publication.		Collection of data and publication.		Collection of data and publication.		Collection of data and publication.		Collection of data and publication.		Collection of data and publication.			
Geography		Text		The inventory is modelled for a pilot plant in Switzerland		The inventory is modelled for a pilot plant in Switzerland		The inventory is modelled for a pilot plant in Switzerland		The inventory is modelled for a pilot plant in Switzerland		The inventory is modelled for a pilot plant in Switzerland		The inventory is modelled for a pilot plant in Switzerland			
Technology		Text		Preparation of fuel for grate firing 500-600 kW		bark furnace 1MW		grate furnace 300kW		grate firing 500-600 kW		bark furnace 1MW		grate furnace 300kW			
Representativeness		Percent		0		0		0		0		0		0			
ProductionVolume		unknown		unknown		unknown		unknown		unknown		unknown		unknown			
SamplingProcedure		Literature		Literature		Literature		Literature		Literature		Literature		Literature			
Extrapolations		none		none		estimated with data for wood combustion.		estimated with data for wood combustion.		none		none		none			
UncertaintyAdjustments		none		none		none		none		none		none		none			
Details		29.04.2011		29.04.2011		29.04.2011		29.04.2011		29.04.2011		29.04.2011		29.04.2011			
OtherDetails		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process		Z:\ESU-Docs\Projekte laufend\321 FP Biomasse Verbrennung Feste Substrate\EcoSpold[321_Biomasse_300-1000kW-1.0.xls]X-Process			

Tab. 27: Meta information to the unit process raw data of disposal of the ash to municipal incineration

ReferenceFunction	Name	disposal, ash olive pomace, to municipal incineration	disposal, ash coffee ground pellets, to municipal incineration	disposal, ash poultry litter pellets, to municipal incineration	disposal, ash horse dung and waste wood chips, to municipal incineration	disposal, ash slurry solids and bark chips, to municipal incineration
Geography	Location	CH	CH	CH	CH	CH
ReferenceFunction	InfrastructureProcess	0	0	0	0	0
ReferenceFunction	Unit	kg	kg	kg	kg	kg
ReferenceFunction	IncludedProcesses	waste-specific air and water emissions from incineration, auxiliary material consumption for flue gas cleaning. Short-term emissions to river water and long-term emissions to ground water from slag compartment (from bottom slag) and residual material landfill (from solidified fly ashes and scrubber sludge). Process energy demands for MSWI.	waste-specific air and water emissions from incineration, auxiliary material consumption for flue gas cleaning. Short-term emissions to river water and long-term emissions to ground water from slag compartment (from bottom slag) and residual material landfill (from solidified fly ashes and scrubber sludge). Process energy demands for MSWI.	waste-specific air and water emissions from incineration, auxiliary material consumption for flue gas cleaning. Short-term emissions to river water and long-term emissions to ground water from slag compartment (from bottom slag) and residual material landfill (from solidified fly ashes and scrubber sludge). Process energy demands for MSWI.	waste-specific air and water emissions from incineration, auxiliary material consumption for flue gas cleaning. Short-term emissions to river water and long-term emissions to ground water from slag compartment (from bottom slag) and residual material landfill (from solidified fly ashes and scrubber sludge). Process energy demands for MSWI.	waste-specific air and water emissions from incineration, auxiliary material consumption for flue gas cleaning. Short-term emissions to river water and long-term emissions to ground water from slag compartment (from bottom slag) and residual material landfill (from solidified fly ashes and scrubber sludge). Process energy demands for MSWI.
ReferenceFunction	LocalName	Entsorgung, Asche Oliventrester, in Kehrichtverbrennung	Entsorgung, Asche Kaffeesatzpellets, in Kehrichtverbrennung	Entsorgung, Asche Hühnemistpellets, in Kehrichtverbrennung	Entsorgung, Asche Pferdemist und Holzschnitzel, in Kehrichtverbrennung	Entsorgung, Asche Güllefeststoffe und Rindenschnitzel, in Kehrichtverbrennung
ReferenceFunction	Synonyms					
ReferenceFunction	GeneralComment	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O 401500; H:n.a.; C 12000; S 9200; N:n.a.; P 7050; B:n.a.; Cl 3050; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:n.a.; Ba:n.a.; Cd:n.a.; Co:n.a.; Cr:n.a.; Cu:n.a.; Hg:n.a.; Mn:n.a.; Mo:n.a.; Ni:n.a.; Pb:n.a.; Sb:n.a.; Se:n.a.; Sn:n.a.; V:n.a.; Zn:n.a.; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:650; Tl:n.a.; W:n.a.; Si:69820; Fe:25280; Ca:66750; Al:24100; K:215180; Mg:30230; Na:3950; Share of carbon in waste that is biogenic 100%. Share of iron in waste that is metallic/recyclable 0%. Net energy produced in MSWI: 0MJ/kg waste electric energy and 0MJ/kg waste thermal energyAllocation of energy production: no substitution or expansion. Total burden allocated to waste disposal function of MSWI. One kg of this waste produces 0.5558 kg of slag and 0.1405 kg of residues, which are landfilled. Additional solidification with 0.0562 kg of cement.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O 401500; H:n.a.; C 12000; S 9200; N:n.a.; P 70800; B:n.a.; Cl 3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.0955; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; Mb:3.7; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:34.483; Zn:2777.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Tl:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Share of iron in waste that is metallic/recyclable 0%. Net energy produced in MSWI: 0MJ/kg waste electric energy and 0MJ/kg waste thermal energyAllocation of energy production: no substitution or expansion. Total burden allocated to waste disposal function of MSWI. One kg of this waste produces 0.7736 kg of slag and 0.1359 kg of residues, which are landfilled. Additional solidification with 0.05436 kg of cement.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O 401500; H:n.a.; C 12000; S 9200; N:n.a.; P 70800; B:n.a.; Cl 3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:0.22; Co:1.8; Cr:19.5; Cu:103; Hg:0.01; Mn:20000; Mb:3.7; Ni:5.52; Pb:16; Sb:n.a.; Se:n.a.; Sn:n.a.; V:39.5; Zn:1020; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Tl:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Share of iron in waste that is metallic/recyclable 0%. Net energy produced in MSWI: 0MJ/kg waste electric energy and 0MJ/kg waste thermal energyAllocation of energy production: no substitution or expansion. Total burden allocated to waste disposal function of MSWI. One kg of this waste produces 0.9728 kg of slag and 0.1665 kg of residues, which are landfilled. Additional solidification with 0.0666 kg of cement.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O 401500; H:n.a.; C 12000; S 9200; N:n.a.; P 70800; B:n.a.; Cl 3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:0.22; Co:1.8; Cr:19.5; Cu:103; Hg:0.01; Mn:20000; Mb:3.7; Ni:5.52; Pb:16; Sb:n.a.; Se:n.a.; Sn:n.a.; V:39.5; Zn:1020; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Tl:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Share of iron in waste that is metallic/recyclable 0%. Net energy produced in MSWI: 0MJ/kg waste electric energy and 0MJ/kg waste thermal energyAllocation of energy production: no substitution or expansion. Total burden allocated to waste disposal function of MSWI. One kg of this waste produces 0.6717 kg of slag and 0.1037 kg of residues, which are landfilled. Additional solidification with 0.04149 kg of cement.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O 401500; H:n.a.; C 12000; S 9200; N:n.a.; P 70800; B:n.a.; Cl 3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:0.22; Co:1.8; Cr:19.5; Cu:103; Hg:0.01; Mn:20000; Mb:3.7; Ni:5.52; Pb:16; Sb:n.a.; Se:n.a.; Sn:n.a.; V:39.5; Zn:1020; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Tl:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Share of iron in waste that is metallic/recyclable 0%. Net energy produced in MSWI: 0MJ/kg waste electric energy and 0MJ/kg waste thermal energyAllocation of energy production: no substitution or expansion. Total burden allocated to waste disposal function of MSWI. One kg of this waste produces 0.7604 kg of slag and 0.2264 kg of residues, which are landfilled. Additional solidification with 0.09055 kg of cement.
ReferenceFunction	InfrastructureIncluded					
ReferenceFunction	Category	waste management	waste management	waste management	waste management	waste management
ReferenceFunction	SubCategory	municipal incineration	municipal incineration	municipal incineration	municipal incineration	municipal incineration
ReferenceFunction	LocalCategory	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme
ReferenceFunction	LocalSubCategory	Kehrichtverbrennung	Kehrichtverbrennung	Kehrichtverbrennung	Kehrichtverbrennung	Kehrichtverbrennung
ReferenceFunction	Formula					
ReferenceFunction	StatisticalClassification					
ReferenceFunction	CASNumber					
TimePeriod	StartDate	1994	1994	1994	1994	1994
TimePeriod	EndDate	2000	2000	2000	2000	2000
TimePeriod	DataValidForEntirePeriod	1	1	1	1	1
TimePeriod	OtherPeriodText	Waste composition as given in literature reference, theoretical data or other source. Transfer coefficients for modern Swiss MSWI. Emission speciation based on early 90ies data.	Waste composition as given in literature reference, theoretical data or other source. Transfer coefficients for modern Swiss MSWI. Emission speciation based on early 90ies data.	Waste composition as given in literature reference, theoretical data or other source. Transfer coefficients for modern Swiss MSWI. Emission speciation based on early 90ies data.	Waste composition as given in literature reference, theoretical data or other source. Transfer coefficients for modern Swiss MSWI. Emission speciation based on early 90ies data.	Waste composition as given in literature reference, theoretical data or other source. Transfer coefficients for modern Swiss MSWI. Emission speciation based on early 90ies data.
Geography	Text	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern incineration practices in Europe, North America or Japan.	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern incineration practices in Europe, North America or Japan.	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern incineration practices in Europe, North America or Japan.	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern incineration practices in Europe, North America or Japan.	Specific to the technology mix encountered in Switzerland in 2000. Well applicable to modern incineration practices in Europe, North America or Japan.
Technology	Text	average Swiss MSWI plants in 2000 (grate incinerators) with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR-high dust, 24.6% SCR-low dust-DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Share of waste incinerated in plants with magnetic c/s separation from slag : 50%. Gross electric efficiency technology mix 12.997% and Gross thermal efficiency technology mix 25.57%	average Swiss MSWI plants in 2000 (grate incinerators) with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR-high dust, 24.6% SCR-low dust-DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Share of waste incinerated in plants with magnetic c/s separation from slag : 50%. Gross electric efficiency technology mix 12.997% and Gross thermal efficiency technology mix 25.57%	average Swiss MSWI plants in 2000 (grate incinerators) with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR-high dust, 24.6% SCR-low dust-DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Share of waste incinerated in plants with magnetic c/s separation from slag : 50%. Gross electric efficiency technology mix 12.997% and Gross thermal efficiency technology mix 25.57%	average Swiss MSWI plants in 2000 (grate incinerators) with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR-high dust, 24.6% SCR-low dust-DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Share of waste incinerated in plants with magnetic c/s separation from slag : 50%. Gross electric efficiency technology mix 12.997% and Gross thermal efficiency technology mix 25.57%	average Swiss MSWI plants in 2000 (grate incinerators) with electrostatic precipitator for fly ash (ESP), wet flue gas scrubber and 29.4% SNCR , 32.2% SCR-high dust, 24.6% SCR-low dust-DeNOx facilities and 13.8% without Denox (by burnt waste, according to Swiss average). Share of waste incinerated in plants with magnetic c/s separation from slag : 50%. Gross electric efficiency technology mix 12.997% and Gross thermal efficiency technology mix 25.57%
Representativeness	Percent					
Representativeness	ProductionVolume	waste-specific calculation based on literature data	waste-specific calculation based on literature data	waste-specific calculation based on literature data	waste-specific calculation based on literature data	waste-specific calculation based on literature data
Representativeness	SamplingProcedure	Typical elemental transfer coefficients from current studies for modern MSWI, completed with data from coal power plants and estimates, adapted for inert/burnable waste.	Typical elemental transfer coefficients from current studies for modern MSWI, completed with data from coal power plants and estimates, adapted for inert/burnable waste.	Typical elemental transfer coefficients from current studies for modern MSWI, completed with data from coal power plants and estimates, adapted for inert/burnable waste.	Typical elemental transfer coefficients from current studies for modern MSWI, completed with data from coal power plants and estimates, adapted for inert/burnable waste.	Typical elemental transfer coefficients from current studies for modern MSWI, completed with data from coal power plants and estimates, adapted for inert/burnable waste.
Representativeness	Extrapolations	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{\ln(c)+1}$	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{\ln(c)+1}$	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{\ln(c)+1}$	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{\ln(c)+1}$	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{\ln(c)+1}$
Representativeness	UncertaintyAdjustments	automatic validation	automatic validation	automatic validation	automatic validation	automatic validation
Representativeness	Details	none	none	none	none	none
Representativeness	OtherDetails					

Tab. 28: Meta information to the unit process raw data of disposal of the ash to sanitary landfill

Type	Field name, IndexNumber	for MSW landfill	for MSW landfill	for MSW landfill	for MSW landfill	for MSW landfill	
ReferenceFunction	Name	disposal, ash olive pomace, to sanitary landfill	disposal, ash coffee ground pellets, to sanitary landfill	disposal, ash poultry litter pellets, to sanitary landfill	disposal, ash horse dung and waste wood chips, to sanitary landfill	disposal, ash slurry solids and bark chips, to sanitary landfill	
Geography	Location	CH	CH	CH	CH	CH	
ReferenceFunction	InfrastructureProcess	0	0	0	0	0	
ReferenceFunction	Unit	kg	kg	kg	kg	kg	
ReferenceFunction	IncludedProcesses	Waste-specific short-term emissions to air via landfill gas incineration and landfill leachate. Burdens from treatment of short-term leachate (0-100a) in wastewater treatment plant (including WWTP sludge disposal in municipal incinerator). Long-term emissions from landfill to groundwater (after base lining failure).	Waste-specific short-term emissions to air via landfill gas incineration and landfill leachate. Burdens from treatment of short-term leachate (0-100a) in wastewater treatment plant (including WWTP sludge disposal in municipal incinerator). Long-term emissions from landfill to groundwater (after base lining failure).	Waste-specific short-term emissions to air via landfill gas incineration and landfill leachate. Burdens from treatment of short-term leachate (0-100a) in wastewater treatment plant (including WWTP sludge disposal in municipal incinerator). Long-term emissions from landfill to groundwater (after base lining failure).	Waste-specific short-term emissions to air via landfill gas incineration and landfill leachate. Burdens from treatment of short-term leachate (0-100a) in wastewater treatment plant (including WWTP sludge disposal in municipal incinerator). Long-term emissions from landfill to groundwater (after base lining failure).	Waste-specific short-term emissions to air via landfill gas incineration and landfill leachate. Burdens from treatment of short-term leachate (0-100a) in wastewater treatment plant (including WWTP sludge disposal in municipal incinerator). Long-term emissions from landfill to groundwater (after base lining failure).	
ReferenceFunction	LocalName	Entsorgung, Asche Olivenresten, in Reaktordeponie	Entsorgung, Asche Kaffeesatzpellets, in Reaktordeponie	Entsorgung, Asche Hühnermistpellets, in Reaktordeponie	Entsorgung, Asche Pferdemist und Holzschnitzel, in Reaktordeponie	Entsorgung, Asche Güllefeststoffe und Rindenschnitzel, in Reaktordeponie	
ReferenceFunction	Synonyms						
ReferenceFunction	GeneralComment	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:385540; H:n.a.; C:148530; S:9870; N:n.a.; P:17050; B:n.a.; Cl:3050; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:n.a.; Ba:n.a.; Cd:n.a.; Co:n.a.; Cr:n.a.; Cu:n.a.; Hg:n.a.; Mn:n.a.; Mo:n.a.; Ni:n.a.; Pb:n.a.; Sb:n.a.; Se:n.a.; Sn:n.a.; V:n.a.; Zn:n.a.; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:650; Ti:n.a.; W:n.a.; Si:69820; Fe:25280; Ca:67657; Al:24100; K:215180; Mg:30230; Na:3950; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:287500; H:n.a.; C:12000; S:9200; N:n.a.; P:3920; B:n.a.; Cl:3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.905; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; V:0.37; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:24.00; Zn:65.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Ti:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:287500; H:n.a.; C:12000; S:9200; N:n.a.; P:3920; B:n.a.; Cl:3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.905; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; V:0.37; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:24.00; Zn:65.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Ti:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:287500; H:n.a.; C:12000; S:9200; N:n.a.; P:3920; B:n.a.; Cl:3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.905; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; V:0.37; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:24.00; Zn:65.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Ti:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:287500; H:n.a.; C:12000; S:9200; N:n.a.; P:3920; B:n.a.; Cl:3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.905; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; V:0.37; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:24.00; Zn:65.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Ti:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.	Inventoried waste contains .waste composition (wet, in ppm): H2O:n.a.; O:287500; H:n.a.; C:12000; S:9200; N:n.a.; P:3920; B:n.a.; Cl:3200; Br:n.a.; F:n.a.; I:n.a.; Ag:n.a.; As:6.7; Ba:n.a.; Cd:9.905; Co:34.483; Cr:31.997; Cu:1020.7; Hg:n.a.; Mn:2172.4; V:0.37; Ni:65.2; Pb:156.72; Sb:206.9; Se:n.a.; Sn:1172.4; V:24.00; Zn:65.2; Be:n.a.; Sc:n.a.; Sr:n.a.; Ti:1380; Ti:n.a.; W:n.a.; Si:82600; Fe:22800; Ca:284000; Al:79310; K:54500; Mg:32100; Na:n.a.; Share of carbon in waste that is biogenic 100%. Overall degradability of waste during 100 years: 5%.
ReferenceFunction	InfrastructureIncluded	waste management	waste management	waste management	waste management	waste management	
ReferenceFunction	Category	sanitary landfill	sanitary landfill	sanitary landfill	sanitary landfill	sanitary landfill	
ReferenceFunction	SubCategory						
ReferenceFunction	LocalCategory	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme	Entsorgungssysteme	
ReferenceFunction	LocalSubCategory	Reaktordeponie	Reaktordeponie	Reaktordeponie	Reaktordeponie	Reaktordeponie	
ReferenceFunction	Formula						
ReferenceFunction	StatisticalClassification						
ReferenceFunction	CASNumber						
TimePeriod	StartDate	1994	1994	1994	1994	1994	
TimePeriod	EndDate	2000	2000	2000	2000	2000	
TimePeriod	DataValidForEntirePeriod	1	1	1	1	1	
TimePeriod	OtherPeriodText						
Geography	Text	Technology encountered in Switzerland in 2000. Landfill includes base seal, leachate collection system, treatment of leachate in municipal wastewater treatment plant.	Technology encountered in Switzerland in 2000. Landfill includes base seal, leachate collection system, treatment of leachate in municipal wastewater treatment plant.	Technology encountered in Switzerland in 2000. Landfill includes base seal, leachate collection system, treatment of leachate in municipal wastewater treatment plant.	Technology encountered in Switzerland in 2000. Landfill includes base seal, leachate collection system, treatment of leachate in municipal wastewater treatment plant.	Technology encountered in Switzerland in 2000. Landfill includes base seal, leachate collection system, treatment of leachate in municipal wastewater treatment plant.	
Technology	Text	Swiss municipal sanitary landfill for biogenic or untreated municipal waste (reactive organic landfill). Landfill gas and leachate collection system. Recultivation and monitoring for 150 years after closure.	Swiss municipal sanitary landfill for biogenic or untreated municipal waste ("reactive organic landfill"). Landfill gas and leachate collection system. Recultivation and monitoring for 150 years after closure.	Swiss municipal sanitary landfill for biogenic or untreated municipal waste ("reactive organic landfill"). Landfill gas and leachate collection system. Recultivation and monitoring for 150 years after closure.	Swiss municipal sanitary landfill for biogenic or untreated municipal waste ("reactive organic landfill"). Landfill gas and leachate collection system. Recultivation and monitoring for 150 years after closure.	Swiss municipal sanitary landfill for biogenic or untreated municipal waste ("reactive organic landfill"). Landfill gas and leachate collection system. Recultivation and monitoring for 150 years after closure.	
Representativeness	Percent						
Representativeness	ProductionVolume						
Representativeness	SamplingProcedure	Landfill model based on observed leachate concentrations in literature. Extrapolated to 60'000 years heedng chemical characteristics. Initial waste composition from various literature sources.	Landfill model based on observed leachate concentrations in literature. Extrapolated to 60'000 years heedng chemical characteristics. Initial waste composition from various literature sources.	Landfill model based on observed leachate concentrations in literature. Extrapolated to 60'000 years heedng chemical characteristics. Initial waste composition from various literature sources.	Landfill model based on observed leachate concentrations in literature. Extrapolated to 60'000 years heedng chemical characteristics. Initial waste composition from various literature sources.	Landfill model based on observed leachate concentrations in literature. Extrapolated to 60'000 years heedng chemical characteristics. Initial waste composition from various literature sources.	
Representativeness	Extrapolations	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{1/(c)+1}$. Mean long-term emissions are the emissions until the next glacial period occurs (in 60'000a) and the landfill is eroded. Maximal long-term emissions are the complete emissions of all landfilled material (except Cr). Minimal long-term emissions are derived implicitly from the mean and maximal values assuming a lognormal distribution.	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{1/(c)+1}$. Mean long-term emissions are the emissions until the next glacial period occurs (in 60'000a) and the landfill is eroded. Maximal long-term emissions are the complete emissions of all landfilled material (except Cr). Minimal long-term emissions are derived implicitly from the mean and maximal values assuming a lognormal distribution.	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{1/(c)+1}$. Mean long-term emissions are the emissions until the next glacial period occurs (in 60'000a) and the landfill is eroded. Maximal long-term emissions are the complete emissions of all landfilled material (except Cr). Minimal long-term emissions are derived implicitly from the mean and maximal values assuming a lognormal distribution.	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{1/(c)+1}$. Mean long-term emissions are the emissions until the next glacial period occurs (in 60'000a) and the landfill is eroded. Maximal long-term emissions are the complete emissions of all landfilled material (except Cr). Minimal long-term emissions are derived implicitly from the mean and maximal values assuming a lognormal distribution.	uncertainty of waste input composition data derived from generic formula $GSD(c) = N^{1/(c)+1}$. Mean long-term emissions are the emissions until the next glacial period occurs (in 60'000a) and the landfill is eroded. Maximal long-term emissions are the complete emissions of all landfilled material (except Cr). Minimal long-term emissions are derived implicitly from the mean and maximal values assuming a lognormal distribution.	
Representativeness	UncertaintyAdjustments						

7.7. Data quality

All the measurements were performed in pilot plants. Therefore the measurements are not comparable to a continuous operation of the plants. No adjustments have been made to the emission factors in order to account for the measurements in pilot plants.

For all substrates only the total amount of suspended particulate matter (TSP) in the flue gas was measured. The particle distribution had to be extrapolated from other measurements (Berdowski et al. 2001). This resulted in a fraction of 90% of the TSP belonging to the smallest category of the particulate matter (PM) smaller than 2.5 um. Because the combustion process of the biomass is worse compared to the combustion of wood, it is expected that the amount of small particles is smaller for the biomass fuels than for the wooden fuels, but there was no data available to prove this assumption. Therefore the same particle distribution as for the combustion of wooden fuels was used. This might lead to a higher environmental impact because the environmental impact of smaller particles is higher than the environmental impact of bigger particles.

Because of the availability, the up-to-dateness and the quality of the data an inclusion in the ecoinvent data base is only recommended for the data sets for coffee ground pellets, poultry litter pellets and horse dung mixed with wood chips.

7.7.1. Olive pomace

Data quality for olives pomace is debatable. The ash composition and the air emissions during the combustion are documented in Jauhainen et al. (2005), but in the measurements of Jauhainen et al. (2005) no heavy metals emissions, no nitrogen oxide emissions and no particle emissions into air are reported, as well as there are no heavy metals detected in the ash after combustion. Because the heavy metal emissions and the heavy metal content of the ash have a high impact on the result of the ecological scarcity method 2006 it is recommended to consider this fact when comparing the olive pomace with the other substrates, especially in case of the disposal of the ash.

7.7.2. Coffee grounds

For coffee grounds there are measurements for the nitrogen oxides, carbon monoxides and particle emissions from the combustion in Waelti & Keller (2009) as well as the metal content of the fuel (SGS-Institut-Fresenius 2008). This covers the factors with the highest impact on the result of the ecological scarcity method 2006. Because of the recent measurements and the emissions measured, the air emission data quality for coffee grounds is sound.

For the ash composition of the coffee grounds there was no information available, but there was detailed information on the composition of the fuel regarding metals and heavy metals in SGS-Institut-Fresenius (2008). In order to estimate the transfer of the heavy metals to the ash, the heavy metal balance of the combustion process was calculated, assuming that all heavy metals which are not emitted into air during the combustion are transferred to the ash. This calculation provides a reliable estimate for the heavy metal content in the ash.

7.7.3. Poultry litter

The data quality for poultry litter is considered as sound. The measurements took place in 2001 (Salerno et al. 2001) and as for coffee grounds the key emissions into, namely nitrogen oxides, sulphur oxides, particulate matter and carbon monoxide are measured. The other emissions are again taken from the data sets for wood combustion.

For the ash composition there is information on the potassium, phosphorus, magnesium, cadmium, copper, nickel and zinc content of the ash in Salerno et al. (2001). This selection covers the most important metals except of lead in case of the heavy metals.

7.7.4. Horse dung

The most important air emissions generated by the combustion of horse dung regarding environmental impact are measured in Bühler et al. (2005). This includes the emissions of nitrogen oxides, sulphur oxides and particulate matter. The basis of the data regarding air emissions is considered as sound.

For the ash composition there is information on the content of phosphorus, potassium, lead, zinc, copper and cadmium in Bühler et al (2007). This covers most of the elements with a high environmental impact

7.7.5. Pig slurry solids

For pig slurry there was only information available on the air emissions in Hersener & Bühler (1998). Again the most important air emissions are measured. For the ash composition there was no data available, but there was information on the composition of the fuel regarding metals and heavy metals in Hersener & Bühler (1998). In order to estimate the transfer of the heavy metals to the ash, the heavy metal balance of the combustion process was calculated, assuming that all heavy metals which are not emitted into air during the combustion are transferred to the ash.

Because the measurements for pig slurry took place in 1998 and because of the missing data regarding ash composition the data quality for pig slurry solids is considered as the lowest among these five biomass substrates. Further the fuel mixture for slurry solids mainly consists of wood (about 85%, cf. Tab. 14) and rather represents the co-combustion of a small fraction of slurry solids with wood.

8. References

Allica et al. 2001 Allica J. H., Mitre A. J., Bustamante J. A. G., Itoiz C., Blanco F., Alkorta I. and Garbisu C. (2001) Straw quality for its combustion in a straw-fired power plant. In: Biomass and Bioenergy(21), pp. 249-258.

Avraamides & Fatta 2006 Avraamides M. and Fatta D. (2006) Life Cycle Assessment (LCA) as a Decision Support Tool (DST) for the ecoproduction of olive oil", Implementation of Life Cycle Inventory in Lythrodontas region of Cyprus, Task 3.2. University of Cyprus, Nicosia.

Bauer 2007 Bauer C. (2007) Holzenergie. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz, Vol. ecoinvent report No. 6-IX, v2.0 (Ed. Dones R.). Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH retrieved from: www.ecoinvent.org.

Berdowski et al. 2001 Berdowski J., Visschedijk A., Creemers E., Pulles T., Pacyna J., Fudala J. and Querreveld D. (2001) The Co-ordinate European Programme on Particulate Matter Emission Inventories, Projections and Guidance (CEPMEIP) Database, retrieved from: <http://www.air.sk/tno/cepmeip/downloads.php>.

Bühler et al. 2005 Bühler R., Hersener J.-L. and Jenni A. (2005) Thermische Nutzung von anspruchsvollen Biomassebrennstoffen - Verbrennungsversuche Frühjahr 2005. Bundesamt für Energie BFE, Bern.

Bühler et al. 2007 Bühler R., Hersener J.-L., Jenni A. and Klippe N. (2007) Thermische Nutzung von anspruchsvollen Biomassebrennstoffen - Versuche Herbst 2006. Bundesamt für Energie, Bern.

Conesa et al. 2009 Conesa J. A., Font R., Fullana A., Martin-Gullon I., Aracil I., Galvez A., Molto J. and Gomez-Rico M. F. (2009) Comparison between emissions from the pyrolysis and combustion of different wastes. In: Journal of Analytical and Applied Pyrolysis(84), pp. 95-102.

Doka 2007 Doka G. (2007) Life Cycle Inventories of Waste Treatment Services. ecoinvent report No. 13, v2.0. EMPA St. Gallen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, retrieved from: www.ecoinvent.org.

ecoinvent Centre 2010 ecoinvent Centre (2010) ecoinvent data v2.2, ecoinvent reports No. 1-25. Swiss Centre for Life Cycle Inventories, Duebendorf, Switzerland, retrieved from: www.ecoinvent.org.

EPA 1993 EPA (1993) Emission factor documentation for AP-42 Section 1.8 bagasse combustion in sugar mills. United States Environmental Protection Agency, Research Triangle Park.

Frischknecht et al. 2007 Frischknecht R., Jungbluth N., Althaus H.-J., Doka G., Dones R., Heck T., Hellweg S., Hischier R., Nemecek T., Rebitzer G. and Spielmann M. (2007) Overview and Methodology. ecoinvent report No. 1, v2.0. Swiss Centre for Life Cycle Inventories, Dübendorf, CH, retrieved from: www.ecoinvent.org.

Frischknecht et al. 2009 Frischknecht R., Steiner R. and Jungbluth N. (2009) The Ecological Scarcity Method - Eco-Factors 2006: A method for impact assessment in LCA. Federal Office for the Environment FOEN, Zürich und Bern, retrieved from: www.bafu.admin.ch/publikationen/publikation/01031/index.html?lang=en.

Hackl & Mauschitz 2007 Hackl A. and Mauschitz G. (2007) Emissionen aus Anlagen der österreichischen Zementindustrie V, Weitra / Wien, A.

Hässig-Schellhorn 2007 Hässig-Schellhorn J. (2007) Analyse der ökologischen Leistungsfähigkeit der Pelletsproduktion aus Wald- und Restholz. ETH Zürich, Zürich.

Hersener et al. 1997 Hersener J.-L., Meister E., Mediavilla V., Lips A., Rüegg J., Nussbaumer T., Baserga U., Müller D., Dinkel F., Waldeck B., Trauboth-Müller T. and Hirs B. (1997) Schlussbericht Projekt Energiegras/Feldholz. Bundesamt für Energie BfE, Tänikon, CH.

Hersener & Bühler 1998 Hersener J.-L. and Bühler R. (1998) Energetische Nutzung landwirtschaftlicher Biomasse Band 2 - Energetische Nutzung von Hofdüngerfeststoffen. Bundesamt für Energie, Bern.

Hersener & Meier 1999 Hersener J.-L. and Meier U. (1999) Energetisch nutzbares Biomassepotential in der Schweiz sowie Stand der Nutzung in ausgewählten EU-Staaten und den USA. Im Auftrag des Bundesamtes für Energie. Bundesamt für Energie, Bern.

Hersener & Meier 2002 Hersener J.-L. and Meier U. (2002) Vergleich von Energieumwandlungsverfahren für Gülle (ENKON). Bundesamt für Energie, Bern.

Jauhainen et al. 2005 Jauhainen J., Martin-Gullon I., Conesa J. A. and Font R. (2005) Emissions from pyrolysis and combustion of olive oil solid waste. In: Journal of Analytical and Applied Pyrolysis(74), pp. 512-517.

Jungbluth et al. 2007a Jungbluth N., Chudacoff M., Dauriat A., Dinkel F., Doka G., Faist Emmenegger M., Gnansounou E., Klijn N., Schleiss K., Spielmann M., Stettler C. and Sutter J. (2007a) Life Cycle Inventories of Bioenergy. ecoinvent report No. 17, v2.0. ESU-services, Uster, CH, retrieved from: www.ecoinvent.org.

Jungbluth et al. 2007b Jungbluth N., Frischknecht R., Faist Emmenegger M., Steiner R. and Tuchschnid M. (2007b) Life Cycle Assessment of BTL-fuel production: Inventory Analysis. RENEW - Renewable Fuels for Advanced Powertrains, Sixth Framework Programme: Sustainable Energy Systems, Deliverable: D 5.2.7. ESU-services, Uster, retrieved from: www.esu-services.ch/projects/renew/.

Jungbluth et al. 2010 Jungbluth N., Frischknecht R., Orthlieb A., Büsser S. and Leuenberger M. (2010) Aktualisierung und Ergänzung der naturemade Kennwertmodelle: Ökobilanzen für die Prüfung des globalen Kriteriums von Energieprodukten (Zwischenbericht Juli 2010). ESU-services im Auftrag vom Verein für umweltgerechte Energie (VUE), Uster, retrieved from: www.esu-services.ch/projects/naturemade/.

Llorente & Garcia 2006 Llorente M. J. F. and Garcia J. E. C. (2006) Concentration of elements in woody and herbaceous biomass as a function of the dry ashing temperature. In: Fuel(85), pp. 1273-1279.

LRV 2009 LRV (2009) Luftreinhalte-Verordnung vom 16. Dezember 1985 (LRV): (Stand am 1.1.2009). 814.318.142.1. Schweizerischer Bundesrat, retrieved from: www.admin.ch/ch/d/sr/c814_318_142_1.html.

Miyazaki et al. 2004 Miyazaki N., Siegenthaler C., Schoenbaum T. and Azuma K. (2004) Japan Environmental Policy Priorities Index (JEPIX) - Calculation of Ecofactors for Japan: Method for Environmental Accounting based on the EcoScarcity Principle. 7. International Christian University Social Science Research Institute, Tokyo.

Nemecek et al. 2007 Nemecek T., Heil A., Huguenin O., Meier S., Erzinger S., Blaser S., Dux D. and Zimmermann A. (2007) Life Cycle Inventories of Agricultural Production Systems. ecoinvent report No. 15, v2.0. Agroscope FAL Reckenholz and FAT Taenikon, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, retrieved from: www.ecoinvent.org.

Nordic Council of Ministers 1995 Nordic Council of Ministers (1995) LCA-NORDIC technical report no. 10 and special reports no. 1-2., Copenhagen.

Salerno et al. 2001 Salerno B., Hersener J.-L. and Dinkel F. (2001) APOLLO II - Thermische Nutzung von Hühnermist Phase II. Bundesamt für Energie, Bern.

Schmid & Gaegauf 2008 Schmid M. and Gaegauf C. (2008) Saubere Pelletfeuerung für dezentrale Wärmeerzeugung mit Nicht-Holz-Biomasse-Ressourcen - Zusammenfassung Schlussbericht EUREKATI-Projekt. Bundesamt für Energie, Bern.

SGP 1994 SGP (1994) Etude relative à la normalisation écologique des emballages en Belgique, rapport final au ministre belge de la santé publique, de l'intégration sociale et de l'environnement, Liège.

SGS-Institut-Fresenius 2008 SGS-Institut-Fresenius (2008) Abfalluntersuchung. 544946. SGS INSTITUT FRESENIUS GmbH, D-78333 Stockach.

Solomon et al. 2007 Solomon S., Qin D., Manning M., Alley R. B., Berntsen T., Bindoff N. L., Chen Z., Chidthaisong A., Gregory J. M., Hegerl G. C., Heimann M., Hewitson B., Hoskins B. J., Joos F., Jouzel J., Kattsov V., Lohmann U., Matsuno T., Molina M., Nicholls N., Overpeck J., Raga G., Ramaswamy V., Ren J., Rusticucci M., Somerville R., Stocker T. F., Whetton P., Wood R. A. and Wratt D. (2007) Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

van Loo & Koppejan 2007 van Loo S. and Koppejan J. (2007) Handbook of Biomass Combustion and Co-Firing. Earthscan.

Vlyssides et al. 2004 Vlyssides A. G., Loizides M. and Karlis P. K. (2004) Integrated strategic approach for reusing olive oil extraction by-products. In: Journal of Cleaner Production(12), pp. 603-611.

Waelti & Keller 2009 Waelti K. and Keller P. (2009) Emissionsmessungen beim Verbrennen von Biomasse aus Kaffeesatz in Hobag-Holzkessel 25 kW bei Firma Leibacher AG, Stein am Rhein. 19-69. UCW Umwelt Controlling + Consulting Waelti, Rafz, CH.

Zah et al. 2007 Zah R., Böni H., Gauch M., Hischier R., Lehmann M. and Wäger P. (2007) Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. Schlussbericht. Abteilung Technologie und Gesellschaft, Empa im Auftrag des Bundesamtes für Energie, des Bundesamtes für Umwelt und des Bundesamtes für Landwirtschaft, Bern, retrieved from: www.bfe.admin.ch/energie/00588/00589/00644/index.html?lang=de&msg-id=12653.