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Equilibria in zeolites and other microporous materials are discussed. We present an independent particles in
a box approach, which leads to a thermodynamic description of internal occupation equilibria of the type
IX. ) + Z¥i == 2ZX;, where Z denotes the framework of the material and X the particles that can interchange
places. The independent particles in a box are defined by considering a crystal consisting of a finite number
of unit cells or boxes each of which can be filled with a specific number of particles. All empty sites in a box
have equal probability to be occupied, independent of the number of particles present, as long as sites are
available. Each time a particle does fall in a box, the probability for a next one to hit this box is reduced by
1 divided by the number of sites available in an empty box. Hence, as soon as a box is filled, the probability
for a particle to hit it becomes zero. The maximum number of particles in the system is equal to the maximum
number of sites in a box multiplied by the number of boxes. This allows equilibrium constants and the decrease
of entropy as a function of the equivalent fraction of exchanging species to be calculated. We show that the
plot of the logarithm of the equilibrium constant versus the equivalent fraction of exchanging species is not
linear and that the nonlinearity is caused by the decrease of entropy. On the basis of this observation, we
suggest the independent particles in a box to be used as a reference for “ideal behavior” and to serve as a
reference for determining activity coefficients. The generalization of the theory leads to the independent
particles in boxes with different sites. It is discussed in detail with regard to two nonequivalent sites
corresponding to the internal equilibria ZX1,,X2,2 = ZX1,+1X2,-1 in which X1 and X2 are the same species
but occupy site 1 and 2, respectively, of a box. We show the solution of this problem and explain the distribution
of the particles among the different sites as a function of the average exchange degree.

Iniroduction

Ion exchange equilibria and the distribution of ions, atoms,
or molecules in zeolites and in other microperons materials have
been investigated both by means of experimental and theoretical
methods, some aspects of which are well understood; see, e.g.,
refs 1—15. However, the handling of many relevant cases
remains unsatisfactory, and it is desirable to develop a well-
defined and simple system that can be used as an “ideal case
reference system”. We found that the independent particles in
a box can be used for this purpose. Its consequences have not
been explored so far. We do it now because this well-defined
systern leads to considerable insight and improves our under-
standing of icroporous material. We consider a crystal
consisting of a finite number of unit cells or boxes each of which
can be filled with a specific number of partticles. All empty sites
in a box have equal probability to be occupied, independent of
the number of particles present, as long as sites are available.
Each time a particle does fall in a box, the probability for a
next one to hit this box is reduced by 1 divided by the number
of sites available in an empty box. Hence, as soon as a box is
filled, the probability for a particle to hit it becomes zero. The
maximum number of particles in the system is equal to the
maximum number of sites in 2 box multiplied by the number
of boxes. In a zeolite, this corresponds to the situation in which
no coordination site is occupied with preference. An example
for which this description provides a good understanding is a
zeolite A in which some of the Na‘t have been exchanged by
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Figure 1. Particle distribution € of a system consisting of equivalent
boxes, each of which contains 12 equivalent sites, as a function of the
average number of particles in a box 7. The line marked as @ indicates
the relative number of empty boxes; 1 indicates the relative number of
boxes containing one particle and so on.

another monovalent cation M* such as K*, Ag®, or others,
leading to Na*p—M¥[AL1:8i;:045] despite the fact that site
preferences have been reposted.16-1% We have recently used it
to study the dependency of the electronic spectra of activated
Agtin— M, [Al138117045) on the exchange degree x.!° Figure 1
illustrates the calculated statistical distribution of silver ions in
the unit cells as a function of the average exchange degree 7,
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which is equal to x. The distribution shows, e.g., that the share
of unit cells with one Ag® increases until an average content
of one Ag* per unit cell is reached. With an average exchange
degree as low as 1.5 Ag* per unit cell, the share of cells with
only one Ag* is substantially smaller already and roughly
corresponds to the sum of the shares with more than one Ag™.

in the present work, we first explain the independent particles
in a box case. We show that the results iead to a thermodynamic
description of the internal occupation equilibrium 1, for which
the equilibrdum constants and the change of entropy are
calculated.

Z + ZX, = 27X
ZX + ZX, = 27X,
ZX, + ZX, = 27X,

. -

) .
+ *

ZX, _,+7ZX, =X, _, 1)

We compare the results with the so-called Kielland plot,! which
has been generally accepted to be useful for discussing activities
in ion exchange equilibria in zeolites, clay minerals, and other
materials; see, e.g., refs 2—6. We propose to substitute the
Kielland plot by the independent particles in a box equation as
a reference for ideal behavior. We then introduce the generaliza-
tion of the theory for boxes with unequal sites and we illustrate
how the fast increasing complexity of the system can be handled
for boxes with two different sites, corresponding to the internal
equilibrium 2 in which X1 and X2 are the same species but
coordinated to the sites 1 and 2, respectively.

ZX1,,X2,, = ZX1 1, X2, 2)
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particles An and p,—1An is the probability that boxes containing
r — 1 particles are transformed into boxes containing r of them.
If An = 1 particles are added to the sample, this can be
expressed as follows:

1
er1=(nbox_rn (7)

boxtYue 7
or

floox — 7

p=—7— for n<n, N, and n,zrz1
RpodVoe — 1

®

Using AN, = N,; — N1, eqs 4 and 5 become after some
rearrangement:

AN,
A = P ©

r

An =pr-—-1Nr—l _prNr for Hyor Z 1 2 1 (10)

We express the initial conditions, when all boxes are empty,
as a function of the number of particles n, the number of
positions in & bOX e, and the number of boxes Ny.

NO(O’"’box’Nuc) = Nuc (1 1)
NOnr N JI=0 for m,=zrz1 (§ ¥4

With these initial conditions, the eqs 9 and 10 can be solved
explicitly, The solution is given in eq 13. Its derivation is given

"~ Inidependent Particles in Boxes

We describe microcrystals, each consisting of Ny, unit cells
or boxes, each of which can be filled with up to s, particles.
All empty sites in a box have equal probability to be occupied,
independent of the number n of particies present. Its maximum
number nme; in 2 crystal is given by

Pax = nbOxN uc (3)

Each time 2 particle falls in a box the probability for a next
one to hit that box reduces by 1/mpox; hence, once a box is filled,
the probability for a next particle to hit it becomes zero. This is
how we define the independent particles in a box. The reduced
number @(r) of particles in the system is defined as

Nri
0(n= n_-_ C))

max

where N,; is the number of boxes containing r particles in a
crystal filled with { of them. We assume that a total of » particles
are already present in our sample and that we add an additional
number An of them in a try {. This means that the number of
empty boxes No;—; reduces to Np; and the number of boxes
containing r particles N;—; changes to Ny

Ny;= Ny;1 — poAnNy;_ 3)
N =Ny tp AnN_ i — @ARN, (6)

In these equations p,An is the probability that boxes contain-
ing r panticles vanish by receiving an additional number of

in-the-appendix;
W, r(n’nbox’N ut) =

n N
box* uC 7, Apox™ T
n (nhoxN ue ) )
(Mpex — MM (Mo xNuc)"box

r=0,1,..,m, (13)

This ends the mathematical part of the independent particle
case. Before exploring its meaning, we should add that eq 13
differs from the hypergeometric distribution?? significantly in
that it allows us to calculate equilibrium constants directly while
the hypergeometric distribution does not.

We first investigate 2 porous nanocrystal consisting of a
certain number of equivalent boxes each of which bears nyox =
12 equivalent places. We would like to know the distribution
of the particles among the boxes when filling the nanocrystal
by throwing in one particle afier the other. Figure 1 shows the
relative number of boxes containing 0,1,2, ...,12 particles, which
is the particle distribution 6, as a function of the reduced particle
number F == n/N,.. The reduced particle number 7 corresponds
to the average number of particles in a box. An example for
which these results provide a good understanding of experi-
mental observations is a zeolite A in which some of the sodium
cations have been exchanged by another monovalent cation M™
such as KT, Ag™, or others, leading to Nati2- M™.[Al128i1204s].
It has recently been used by us to study the dependency of the
electronic spectra of activated silver-containing zeolite A on
the exchange degree x.'° In this study, each pseudo-unit cell
was identified as a box with npx = 12 equivalent sites. The
size of the individual zeolite crystals was not important becanse
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TABLE 1: Equilibrium Constants K, Calculated from Eq 23 and Entropy Change in J/(K mol)

r 1 2 3 4 5 6 7 8 9 10 1 12
K 10 0458 0.278 0.178 0.133 0.097 0.071 0.052 0.037 0.023 0.015 6.94 x1073
AS, 00 -—-649 —106 -139 —16.8 —16.4 —21.9 ~24.6 -27.4 —30.7 —34.8 —-41.3

all boxes were assumed to be equal. The results shown in Figure
1 can therefore be interpreted as distribution of the Ag* jons in
the zeolite A as a function of the exchange degree x, which
takes the same values as 7. We now investigate the thermody-
namic equilibrium of 2 system consisting of sy + 1 Species
ZXp, p = 0,1,2, ..., Npox:

Z+X=7ZX K,
ZX +X=7X, K,
7ZX, +X=7X, K,

.

» .

+X=7ZX, K (14)

Moox

VA

Ry 1
The equilibrium constants X are given by

(ZX,]

. m, r=12, My (15)

The concentrations of the individual species [ZX,] as a
function of the concentration of free X can be expressed as
follows:2!

14
pugfLe

=0

[ZX)) =———4 (i6)

Y IxIT &)

=0 J=0

where Ko is equal to 1 by definition and Ao is the total
concentration of the ZX, species.

Rpox

Ay= Y 17X ] (17
p=0

The total concentration of bound X species can be expressed
as

Npox

Xl = 2 PIZX,) (18)

p=0

The equilibrium 14 can be compared with the independent
patticles in a box if we use the ratio between the two equilibrivm
constants, e.g., K, and K4, which we abbreviate as KB,.

K, zZxp

KB), = - 13
K [ZX_ZX 4]

=1,2, oo g — 1
(19)

This describes the following equilibria that correspond to the
‘internal occupation equilibrium of the material.

Z+ZX,= 27X KB,
ZX + ZX, = 2ZX, KB,
ZX, + ZX, = 27X, KB,

7%, ,+7ZX, =2ZX, _, KB, _; (20)

The equilibrium constants KB, can be calculated because the
number of boxes containing r particles are directly proportional
to the concentration of the ZX,, species. Thus we obtain

ACE N §
KB, = 21
. [Nr+1 (n!nbox’Nuc)] [Nr—l(n’"’box’Nuc)] ( )

Inserting the solution for Ny(n, .My} given in eq 13 leads
after some rearrangement to the following astonishingly simple
result:

Mo —F 11
KBr=r+1(b0 ) (22)
r nbox_r
and therefore to
_ r+1 nbox-_r+1 -
O v

From eq 16 it is obvious that multiplying each K, by the same
constant does not affect the concentrations {ZX,] of the
individual species. We can therefore choose K; = 1 without
loss of generality. This means that not only the equilibrium
constants KB, can be calculated from the solution of the
independent particles in a box but, more importantly, also K.
Using eqs 16—18 and 23 it is possible to calculate the
concentrations [ZX,]. We illustrate this for s, = 12 in Table
1, where the equilibrium constants and the entropy change
calculated from egs 23 and 25 are reported, and in Figure 2,
where we show the concentrations of the individual species ZX,
as a function of the free X concentration, normalized by the
maximum of [X],.. The progress of the concentrations of the
ZX, species with large p illustrates the constraints imposed on
the system by the decreasing entropy with increasing p. Since
there is no enthalpy change involved, the change of the entropy
AS, can be expressed by eq 25.

AG,=—RTlog K, 24
AS,=Rlog K, (25)

We now compare the results with selectivity constants as
used, for example, for describing zeolite ion exchange equilib-
ria.® We investigate monovalent jons and activity coefficients
of one, because only this case can be directly compared with
the independent particles in a box.
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1.0 This means that we can also calculate the selectivity constants
for monovalent ion exchange of a zeolite.
X -
. = Ry — 7+ 1\
0.8 KSH,] — KS), rt+ 1( box — )] (29)
r \ Myox r
‘t 061 0 This corresponds to eq 23, which means that all consequences
derived from it also apply to the ion exchange equilibrium 26.
[ZX ] Zeolite ion exchange equilibria have often been inspected by
Pl 0.4
TR means of the so-called Kielland plot.! The reasoning of Jacob
356 7 9 Kielland was that the influence of the activity coefficients yzu
0.2 1 ” and yzy in equilibria of the following type
12 ZIM+N=2ZN+M K, (30)
0.0 ;, 10 20 30 40 50 can be taken into account by a linear relation:
[x] > Qg Oy [N]ay
log X, = =lo + C(IM], — NI} (31)
i 8Ky Mg M T N
where azn, azu, an and ay are the activities of the corresponding
0.6 species. [M]z and [N]z are the concentrations of M and N in
) the zeolite Z, and € is an empirical constant. This equation has
been later used in the following form:*6
]
p °° log K, =log K, + b®, (32)
[ZXP] 04 where b is an empirical constant, K, is the corrected selectivity
constant, and @ is the equivalent fraction of exchanging species
! [N)za
0.2 o LM 33)
M]ay
0.0 7 . ; ¥ :
0 2 4 6. 8__ 10 12 @;= [N]Z 34)
S [Niz + Ml

Figure 2. Ilustration of the equilibrium 14 for a system consisting of
13 species ZX,, p = 0, 1, 2, ..., 12. (top) Relative concentrations of
the ZX, species and total concentration [X] of bound X species,
normalized by the maximum of [X],,, versus the cencentration of free
X. (bottom) Relative concentrations of the ZX, species (p =0, 1, ..,
12) versus the average number of particles in a box 7.

ZY, +X=ZY, X+Y KS,
zZY, X+X=ZY, X, +Y KS,

]

zY, _X,+X=ZY, X;+Y KS,

ZYX,,W_E + X= ZXnm +Y KS,,W (26)
The selectivity constants KS, arc defined as follows:
[2Y, _X]Y]
KS, = r=12,., 0 G0N

i [ZYnMK—(r-l)Xr—l] [X},

It is easy to see that the ratio between two of these selectivity
constants can be identified with the equilibrium constants KB,,
similar to the case in in eq 19.

2
KS (ZY,, %]

r

KSP{’ 1 [ZYn.mx—(r— l)xr— 1] [ZYRW—(r-f' I)Xr-H ]

(28)

In the systems discussed in this work, the sum [N]z + [M]z
is a constant and © is therefore equal to the exchange degree
x, which is always defined in an analogouns manner as we
explained for the example Na™ 15-.M*,[Al15811304s), divided by
the maximum number of places per unit cell Apox.

X
e, = :
Z n

box

0=0,=1 (35)
We thus write the Kielland equation for the equilibrium 26

as follows:
log XS =a+ b@y (36)

where a and b are empirical parameters. The equivalent to the
Kielland plot of the independent particles in a box has the
following form:

Mpox — F 11
log KS,,, =log KS, — log[rt 1( b:: = )] 3N
box

The derivative of K5, with respect to r is obviously not a
constant, which means that the equivalent 37 to the Kielland
plot is not linear, In Figure 3, we illustrate how log KS,41
changes as a function of r and we compare this with the linear
function 36 for which the parameters @ and b have been adjusted
to fit eq 37 as well as possible. We see that the deviation from
linearity of 37 is small, in the range between 0.1 < ©z < 0.9,
where the best experimental data are available. Since the activity
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Figure 3. Plot of the natural log of K versus the equivalent fraction
of exchanging species calculated for the independent particles in a box,
eq 37 (solid) and Kielland plot according to eq 36 with the adjusted
parameters @ = —0.476 and b = 0.364 (dotted).

cocfficients of the independent particles in a box ate equal to
1, it is not justified to use any nonvanishing parameter b for
calculating activity coefficients. In the present case, the value
of the parameter b = 0.364 is due to the decrease of entropy
with increasing equivalent fraction of exchanging species (see
Table 1). While 36 is a purely empirical equation with no
theoretical justification, 37 is the result of a well-defined and
simple sitvation. We therefore suggest that 37 should be used
in further studies as a reference for “ideal behavior” and that it
is better suited as a basis for defining activity coefficients than
the original Kielland equation.

Boxes with Two Different Sites

The sites provided by the unit cell of a microporous material
for an ion, an atom, or a molecule are often not equivalent,
The interaction of the intercalated species at one site can be
stronger than that at another. Such sites can be distinguished
by assigning them different occupation probabilities. We
therefore devise a system consisting of Ny boxes, each of which
can be filled with up to nex particles, as in the previous section,
Now, however, #n particle positions have an occupation
probability g1 and mp have go. The different particle positions
correspond to different sites ¢ = 1,2 located in the same box.
The following relations hold:

My = My + 1My
1=q,+4q,
nmax = mlNuc + ”"zNuc (38)

Each time a particle falls in a box on site o, the probability
for a next one to hit that box on site o decreases by 1/m,. This
means that once site o of this box is filled, the probability for
a next particle to hit this site becomes zero.

We assume that a total of n = »y + n, particles are already
present in our sample, ry are the number of particles on site 1
and ny those on site 2, Adding An = 1 particles to the sample
in a try i causes the number of empty boxes Noos-1 to reduce
t0 Noo,; while the number of boxes Ny, ;-1 containing (r1, 72)
particies on sites 1 and 2 change to Ny, r,;, where np =0, 1, ...,
my and r2 = 0, 1, ..., my. This can be expressed in an analogous
way as we did in eqs 5 and 6

Kunzmann et al.

Noo: = Nog i1 — @1 T Pro)AnNgg ;-1 (39

L%

N rprpi—1 + P1,rl—1A"N =Lyl + Pz,r2~1A"N

P e

(pl,rl + pl,r2)AnNr!—l,r2,i——1 (40)

In these equations, p1,, + P2, is the probability that boxes
with an occupation (ry,r2) vanish by receiving an additional
particle on site 1 or 2. py,—18n is the probability that boxes
containing (ry—1,r2) particles are transformed to boxes contain-
ing (r,r); the interpretation of pa,-14n is similar. These
probabilities can be expressed in analogy to eq 7 as follows:

Do A= = 271 ,
e n m my N, .
(gymy + gymy) — Zloz_;)(q T qz’”z)"r:_z
fo:; r——2-—1,2 and r, = ry,r, (41)
Using

A= (gm + gmn 42)

the probabilities po,r, become

Por = 43
v m
A- 262(‘11"1 + Q'ﬂ'z)Nr,,r,
n=0r=0

The initial conditions when all boxes are empty, as a function
of particles n in the sample, of the number of sites (r, m2) in
a box, and of the number of unit cells Ny, can be written for
the particle occupations rp and rp as follows, in analogy to egs
11 and 12:

NO,O(O’ml’mZ’Nuc) = Nuc (44)

th (O’ml’m2’Nuc) =0 (43)

i)

Generalization to three, four, or more different sites is
cumbersome but straightforward by extending eqs 38—45
appropriately. It is more useful to discuss the independent
particles in a box with two different sites in detail. We do not
write differential equations as we did for eqs 5 and 6 because
no analytical sclution of the problem is known. The occupations
Nyl (nmy,ma,Nyo) are known, however, from the numerical
solution of the problem given in the Appendix B as a Mathcad
code that can be translated easily to any other desired form.2

This ends the mathematical part of the independent particles
in a box with two different sites and we now explore its
meaning. It is obvious that the systems behavior becomes more
complex with respect to the previous case. A given occupation
probability set (g1,g2) leads to {my + 1)(m2 + 1) different plots
of the type shown in Figure 1. We investigate this for a specific
case where we again consider microcrystals consisting of a
certain number of boxes each of which bears ayex = 12 places.
my = 7 of theses places bear an occupation probability ¢; =
0.25, and the other m; = 5 places bear one of g, = 0.75. We
do not show all 48 situations. The four cases illustrated in Figure
4 are sufficient to explain the variety of situations created by
two different sites. It is not difficult to understand the system
and to derive specific information for any possible situation,
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Figure 4. Particle distribution &,.,(r1 = 0, 1, 2, and 3) for the independent particles in a box with two different sites as a function of the mean
exchange degree 7. Bach box consists of a total of 12 sites, out of which seven have 2 probability 0.25 and five have a probability of 0.75 for being
occupied. Each plot shows the pariicle distibution for » =0, 1, 2, ..., 7 from left to right.

TABLE 2: Distribution of the Particles among the Sites 1 and 2 for an Average Exchange Degree of r = 5

Py 0 1 2 3 4 5 6 7
0 98 x 10¢  0.008 0.031 0.064 0.078 0.057 0.023 0.004
1 0.002 0.013 0.048 0.097 0.118 0.086 0.034 0.006
2 92% 10"  0.008 0.029 0.059 0.072 0.052 0.021 0.004
3 28x 107 0.002 0.009 0.018 0.022 0.016 0.006 0.001
4 43x 10  37x10%  0.001 0.003 0.003 0.002 93x10*  16x 10~
5 26x 1006 22x107% 8.1 x 1075 16x 10  2.0% 107 14 % 1074 55% 107 94x 1076

despite its complexity. We observe as an example in the g,
plot how the unoccupied sites vanish with increasing average
exchange degree ¥ = r; -+ r» and how site 2, which has higher
occupation probability than site 1, is first occupied by only one
particle. However, occupation with two particles starts very
soon, and all boxes with only site 2 occupied vanish rapidly
above an average exchange degree of about 5. These results

simple system lead to a thermodynamic description of the
following equilibria, relevant in microporous material,

ZX, + X =ZX,,,

ZX oy + ZXppy = 22X,

can be used for understanding the internal occupation equilib-
rium 46 of a system with two different sites, 1 and 2, and they
are very useful when studying, e.g., spectroscopic properties
of species that depend on site occupation probability.

Z2X1,X2,=ZX]1 15221 (46)
ZX1 101X 2 0 1]
- [ pl+142~p2—1 (47)

P2 (ZX1 X200
Since atl Ny, ~(nnn,ma,Ny.) are known from the numerical
solution of eqs 39 and 40, all individual equilibrium constants
K102 can be calculated by means of eq 48, and therefore the

change of entropy is known, similarly as in eqs 24 and 25.
N ptlp,—l

NP&-Pz

Kpp= (48)

A question often encountered concemns the distribution of
particles among the different sites for a specified average degree
of exchange # = n + rz. This information can be extracted
from the results illustrated in Figure 4. We show as an example
in Figure 5 the results obtained for ¥ = 4 and 8 and in Table 2
those for 7 = 5. It is easy to realize that by playing with the
average exchange degree, a number of specific situations can
be generated, This can be used for analyzing experimental data
and for planing site-specific experiments.

Conclusions
We have explained the independent particles in a box case
in detail, and we have shown that the results obtained for this

A (RIED S p Sl A SRR STRE o ¢

for which the equilibrium constants and the change of entropy
have been calculated. This description has successfully been
used by us to siudy the dependency of the electronic spectra of
activated Ag*1,— . M™,[Al12811704) on the exchange degree x.!°
Our results have been compared with the so-called Kielland
plot, which has been generally accepted to be useful for
discussing activities in ion exchange equilibria in zeolites, clay
minerals, and other materials. We have shown, however, that
this choice is quite arbitrary and we propose to substitute it by
the independent particies in boxes equation as a reference for
“ideal behavior™.

The sites provided by the unit cell of a microporous material
for an ion, an atom, or a molecule are often not equivalent.
They can be distinguished by assigning different occupation
probabilities. We have therefore generalized the theory for boxes
with unequal sites, and we have illustrated how the fast
increasing complexity of the system can be handled for boxes
with two different sites, corresponding to the following internal
equilibrium in which X1 and X2 are the same species but
coordinated to the sites 1 and 2, respectively:

ZX1,, X2, = ZX1 1 X2, |

QOur results demonstrate the usefulness of the independent
particles in boxes with several sites for studying properties of
microporous material as a function of the average exchange
degree, an experimentally easy to control parameter that
therefore plays an important role in many studies of such
material.
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5

P2

0 1 2 3 4 5 8 7
P —»

Figure 5. Distribution of the particles among the sites 1 and 2 for an
average exchange degree of 4 (upper) and 8 (lower). The values of the
maxiroum contour are 0.120 (upper) and 0.132 (lower) and the spacings
between the two contours are 0.013 (upper} and 0.015 (lower).

‘We conclude that the independent particles in boxes with one
ore with several sites facilitates the discussion of relevant
observations and the planning of new experiments. It should
therefore be considered as a reference system for “ideal site
occupation equilibria” in microporous systems.

Appendix

A. Solution of the Independent Particle eqs 9 and 10. To
solve this problem we write the egs ¢ and 10 as differential
equations Al and A2 with the initial conditions A3 and A4.

dn,
= Pl (A1)

dn,
an —~+pN =p_N,_, for n,zr=1 (A2

N, O(O!Hbox’N uc) =N ue (A3)
N0 N ) = 0 (Ad)

The solution of Al is readily found as follows:

Kunzmann et al.
dn,
S="Srin (A5)
0
Using eq 7 for r = 0 leads to

dn = ny, In(ay N, — 1) +1In Gy

(A6)

In(Ny) = — f T

This equation can be written as

= ColttpudVy — 7)™ (AT}

We will see later that the integration constant Cq follows from
the initial conditions. To find the solution of A2 we proceed as
follows. First, we solve it for the special cases N and Na. From
this, it will be easy to guess the general solution for N,, which
can be tested by inserting it into A2. Applying the initial
conditions will then lead to the solution of the problem. For r
= 1, we obtain

dN] "box ! Pipox

dn N, = ] A8

dn ¥ Jrtl:uox‘Nuc - nVI nboxNuc - TIVO (AB)
A ke Py
—_— N, = 'v Y% (AQ
dn N nboxN we 1 nboxNuc O(nbox'N w ( )

The solution of this equation can be expressed as follows:

Ny = G(n)e"® (A10)
where
"’boxNuc —-n
(Ppox — 1) ln(nboxNuc —n)+ Cll (A1)
and
G(n) = f P ~Colm N — nyree™V® g
bo)tN uc 0% boxue

Gm) =
S i CoftgeNp = o™l oD =Gl gy
G() = My, Cy [ €™ dn = (n+ CioImCoe™ ™ (A12)
Inserting this into eq A10 leads to

N =(n+ Cm)nbmcoe—cue(ﬂm—l) Intrportye—my+Cn

N 1= nboxCO(n' + C]O)(nboxN w n)(nm--l) (A13)

The solution for M is found by the same procedure as

2
+nCy+ CZO)(nboxNuc - ")nm
(Ald)

Ny = Ryo(Per — I)CO(

On the basis of the solutions for Ny, Ni, and N» it is not
difficult to estimate the general solution for Ny, = Ny(r,mpox,N )
to be as follows:
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SCHEME 1: Numerical Solution of the Independent Particle in a Box with Two Different Sites

Countingthesitesand N, =N uc-(m i+ mz) ni=0.Nyy  A=(qqmytqgm 2) Noye
Abbreviation:
Initial condition, N empty = for 1y €0.m,
all sites are empty:
for rpe 0.my
C'I-'z._o
Cr,.rz"Nuc if ry4r =0
c
Calculation of the N =B «N
¢ empt,
occupation for two o ¢ Pl
different sites: for ke 0. N,
Cc—Bk
denome=A — Z Z {arsitags 2)-(25'_52
$ 1™ 0s ,m™ 0
4
namer 14——-—-
denont
92
numerzq—
denom
for ryc0.m,
Plr,"(‘“ = T 1) muter
for roe0.my
Pl (o rg)mumery
for ry€0.m
for rpel.my
valuec—(l-pl ~p2, ) -
D, value if ( +r2) 0
((P e =1 o gm ,+value)) i [(r lf0)+(r2$0)]-2
(plrI C, =ty t valuc) if [(rz'O) + GI#})]IZ
(Plr,- e, r2-|-pztz_l-crl,rz_‘l+value) if (r!-r2)>0
BK-H'-D
B
Rearranging the values M:= | for i€ 0.my
for more convenient use: for 116 0.m;
for ne 0. Ny
i 1
MM__ | IN <'>] —_—
g
Bio—MM
B
Number of boxes, number of sites and site preferences: N, =100 m,m? myns q (075  q.%l-q,
n nt Co=0 for r=0 (Al16)
— T
N r(n’nbox*N ue) (nboxN uc n) g ZC '
(e = 7)! (r i)t From this follows
(A15)
r nf_l nr
Y Cy——=— (A17)

where Coo is equal to 1. The validity of A15 can be tested by
inserting it into A2. It is easy to see that the initial conditions

A3 and A4 are fulfilled if

= - 7

Inserting this in eq A15 leads to the solution expressed in eq

13.

B. Numerical Solutions of The eqs 39—45. The solution
of this problem is illustrated in Scheme 1 as a Mathcad file.
Where possible, the same symbols have been used as in the

text. 2
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