IEA Implementing Agreement: "Assessing the Impact of High Temperature Superconductivity in the Electric Power Sector" (ExCo Member)

Auftraggeber:

Bundesamt für Energie BFE Forschungsprogramm "Elektrizitätstechnologien und –anwendungen" CH-3003 Bern www.bfe.admin.ch

Kofinanzierung:

Université de Genève, Dépt. Phys. Matière Condensée (DPMC) 24, quai Ernest Ansermet CH-1211 Genève 4

Autoren:

Prof. René Flükiger Université de Genève Rene.flukiger@unige.ch

BFE-Bereichsleiter: Dr. Michael Moser **BFE-Programmleiter:** Roland Brüniger **BFE-Vertragsnummer:** SI/500193-01

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren dieses Berichts verantwortlich.

Zusammenfassung

Das hier beschriebene Projekt verfolgt das Ziel, eine möglichst umfassende Information über die wichtigsten nationalen und internationalen Aktivitäten auf dem Gebiet der Hoch- T_c - Supraleitung zu geben, mit Hauptinteresse auf den Entwicklungen auf dem Energiesektor. Das Hauptaugenmerk ist auf den Einsatz von Hoch- T_c - Supraleitern in industriellen Anwendungen gerichtet, vor allem Strombegrenzer, aber auch Hochstrom-Kabel, Schwungräder und Windkraftgeneratoren, unter Berücksichtigung der anfallenden Kühlprobleme. Die industrielle Entwicklung von Supraleitermaterialien (High- T_c und MgB₂) mit hohen Stromdichten und niedrigen Wechselstromverlusten wird besonders aufmerksam verfolgt. IEA hat der Fortführung dieses Implementing Agreements bis 2013 zugestimmt, mit möglicher Verlängerung um 2 Jahre.

Auch das Jahr 2012 hat bedeutende Fortschritte auf dem Gebiet der HTS - Anwendungen gebracht: R.E.YBCO - Bänder oder "Coated Conductors" werden von verschiedenen Herstellern in Längen bis über 1'000 Meter hergestellt. Die Stromdichten für industrielle Längen von Bändern haben im 2012 Jahr nicht nur die 500 A für eine Standardbreite von 10 mm erreicht: an kurzen Längen wurden sogar Werte von 1'000 A pro 1cm Breite überschritten. Ein wesentliches Hindernis auf dem Wege einer weiten Verbreitung ist der noch zu hohe Herstellungspreis. Mit den gestiegenen Produktionsmengen sind starke Verminderungen des Kaufpreises zu erwarten. Der Herstellungspreis liegt immer aber noch ein Faktor 3 über demjenigen von Bi-2223 - Bändern, deren Herstellung verbessert wurde: dies ist der Grund, warum letztere für den Bau des 1 km - Kabels in Essen (D) verwendet werden.

Aus Kostengründen werden in den nächsten Jahren für bestimmte Anwendungen vermehrt auch MgB₂-Drähte eingesetzt werden. Dies ist vor allem beim "LINK" – Projekt am CERN, das über 1'000 km Draht benötigen wird. Der Einsatz von MgB₂ bei Windgeneratoren wird gegenwärtig erwogen. Eine deutliche Erhöhung der Stromdichte durch eine veränderte Herstellungstechnik könnte neue Möglichkeiten für den Einsatz von MgB₂ - Drähten schaffen. Als Highlights für supraleitende Anwendungen kann der 4 MVA – Motor von Siemens gelten sowie die 154 kV Strombegrenzer in Korea.

Am 24.10. fand der Besuch einer japanischen Delegation (NEDO) in Ittigen (BfE) statt. Der Bericht über diesen Besuch ist in Anhang II enthalten.

Im Jahre 2012 fand bereits ein Informationstreffen des Executive Committees (ExCo) des IEA statt, im Mai in Heidelberg (D). Ein zweites Treffen wird Ende November in Tokyo stattfinden.

Projektziele

Die Projektziele beinhalten eine umfassende Information über die neuesten Fortschritte und Anwendungen auf dem Gebiet der Hoch-T_c-Supraleitung (HTSL) im Energiebereich. Dazu zählen vor allem supraleitende Strombegrenzer, Kabel, Motoren und Schwungräder, weiter Generatoren und Transformatoren, sowie Magnetische Energiespeicher (SMES). Der Zugang zu dieser Dokumentation wird durch die Teilnahme der Schweiz an einem Programm sichergestellt, das unter der Leitung der International Energy Agency (IEA) steht: "Implementing Agreement for a Cooperative Programme for Assessing the Impact of High Temperature Superconductivity on the Electric Power Sector".

Die Projektziele umfassen den Informationsaustausch über die bisher erreichten Fortschritte, über den gegenwärtigen technischen Stand und den zukünftig vorgesehenen Arbeiten. Das Programm ermöglicht den Mitgliedstaaten, gegenseitig technische Berichte auszutauschen und Laboratorien und Testeinrichtungen, sowie industrielle Unternehmen zu besuchen. Das IEA - Implementing Agreement "HTS - Supraleiter" umfasst 14 Partnern. Ein besonderer Schwerpunkt dieser umfassenden Orientierung im IEA-Agreement ist das periodische Erscheinen von detaillierten, technisch hochstehenden Berichten, die ausser der Durchführbarkeit von neuen supraleitenden Lösungen auch Aspekte wie Umwelt und Sicherheit, aber auch die Durchdringung des Marktes durch HTSL - Produkte untersucht. Zusätzlich wird die Anwendbarkeit der hier entwickelten Konzepte auf den Schweizer Markt untersucht.

Durchgeführte Arbeiten und erreichte Ergebnisse

1. ExCo Implementing Agreement: Fortführung des Agreements

Das Jahr 2012 ist das zweite Jahr des gegenwärtigen IEA - Agreements, das Ende 2013 zu Ende gehen wird (bis 2015 verlängerbar). Seit November 2011 hat Dr. Luciano Martini (ERSE, Italien), die Nachfolge von Prof. Guy Deutscher als Chairman übernommen. Wie bisher sind zwei Vice-Chairmen vorgesehen: Prof. Osami Tsukamoto (J) ist neu für die technischen Anwendungen zuständig, Prof. R. Flükiger weiterhin für die Materialprobleme.

Als Fortsetzung des schon im 2011 festgestellten Trends hat sich die Zusammensetzung des ExCo hat sich dieses Jahr noch mehr zugunsten der Industrie verschoben. Im November 2011 hat die IEA die Firma Columbus Superconductors als "Corporate Sponsor" in das ExCo aufgenommen. Columbus ist eine wichtige Erweiterung: in der Tat, sie ist eine der zwei Firmen, die MgB2 - Drähte kommerziell herstellen. Dabei ist die Hauptanwendung vorderhand noch MRI, aber deren Einsatz in Generatoren für Windkraftwerke wird gegenwärtig erwogen, und entsprechende Projekte wurden gestartet

Das ExCo besteht nun aus den folgenden 14 Partnern: USA, Japan, Deutschland, England, Norwegen, Finnland, Kanada, Korea, Israel, Italien, der Schweiz, sowie der Firmen Bruker HTS (D), Nexans (F) und Columbus Superconductors (I). Die Firma Nexans (Deutschland), führend auf dem Gebiet der Supraleitenden Kabel, war während zweier ExCo - Meetings durch Dr. J. Bock vertreten, hat aber noch kein Gesuch an die IEA Headquarters in Paris gestellt. Gegenwärtig sind Gespräche mit dem CERN im Gange.

Zusätzliche Information

Dieses Jahr wurde beschlossen, die Arbeit unseres Implementing Agreements auch für externe Stellen sichtbar zu machen, und es wurde ein entsprechender Bericht erstellt. (siehe Anhang). Diese Aktivität kann eingesehen werden in der Web-Site unseres Implementing

Agreements: http://www.SuperconductivityIEA.org . Diese Seite enthält alle Dokumente und "minutes" des jährlichen ExCo Meetings.

Obwohl die Förderung der Angewandten Supraleitung in den USA zurückgegangen ist, werden die Aktivitäten auf diesem Gebiete weiterhin intensiv verfolgt. Dies wird illustriert durch einen 154 - seitigen Bericht, der von Alan Wolsky verfasst wurde, mit dem Titel: "US Activity to make economical superconductor and equipment incorporating incorporating it, for the power sector".

- Dieser Bericht gibt Auskunft über aktuelle Anstrengungen besonders von 5 US Firmen, die "Coated Conductor tapes" oder MgB₂ - Drähten.
- Weiter gibt er Auskunft über 3 von der Regierung unterstützten Projekten für den Fortschritt der Angewandten Supraleitung: 1 Strombegrenzer-Kabel, 1 Strombegrenzungs-Transformer, 2 Energiespeicher und 4 Projekte über Rotierende Maschinen.
- Aus diesem Bericht folgt auch, dass General Electric von Low T_c Generatoren für Windmaschinen überzeugt ist.
- Schliesslich wird die Entwicklung von Kryogeneratoren beschrieben, die eine wichtige Rolle in der Verbreitung der Angewandten Supraleitung einnehmen. Dies gilt ganz besonders im Hinblick auf die in einigen Jahren zu erwartende Helium-Knappheit.

2. Tätigkeiten des ExCo und allgemeine Informationen

In diesem Jahr sind zwei ExCo – Informationstreffen vorgesehen: das Erste fand vom 9.-11. Mai in Heidelberg (D) statt und wurde von Bruker organisiert. Da das zweite ExCo - Meeting erst am 27.-29.11. in Tokyo (J) stattfinden wird (Organisator: NEDO), kann hier nur über das erste Meeting berichtet werden. Um die Information möglichst vollständig zu erfassen, werden die letzten Fortschritte auf dem Sektor der supraleitenden Drähte und Bänder aus der Applied Superconductivity Conference beschrieben, die vom 6.-12.10.2012 in Portland, OR (USA) stattfand.

2.1. Report from the IEA Secretariat

Mr. Elzinga vom IEA secretariat hat eine umfassende Information gegeben über die Umwandlung im Rahmen des IEA – Sekretariats. Ein wesentlicher Punkt, der auch die künftige Entwicklung der Angewandten Supraleitung beeinflussen könnte, ist die Ankündigung der neuen Partnerschaft zwischen IEA und IRENA (International Renewable Energy Agency):

New IEA-IRENA partnership to strengthen technology and policy co-operation

The IEA and the International Renewable Energy Agency (IRENA) recently signed a partnership agreement which will strengthen co-operation between the two organisations. Although the agencies have collaborated since IRENA's inception in 2009 – including developing a joint approach on renewable energy statistics – this agreement will launch a number of new initiatives, including a joint database of renewable energy policies to be known as the **IEA/IRENA Global Renewable Energy Policies and Measures Database.** Both parties will collect and verify information for the database, which will open to free public access and be updated at least twice a year. The proposed new areas of work are outlined in a Letter of Intent and include the regular exchange of information, the organisation of joint conferences and workshops and reciprocal participation in technical committee meetings. There will also be increased collaboration between the two agencies at the Secretariat level, and in energy technology networks, including the IEA Multilateral Technology Initiatives (Implementing Agreements).

2.2. ExCo Meeting in Heidelberg (Deutschland), vom 9.-11.5.2012

• Dr. S. Ahmed von South California Edison gab eine sehr ausführliche Uebersicht über die bisherige weltweite Entwicklung von Angewandten Supraleitern im industriellen Massstab. Er wiederholte, dass alle Projekte ohne Ausnahme erfolgreich verlaufen sind. Gleichzeitig legte er aber besonderen Wert auf die Feststellung, dass die Verbreitung von supraleitenden Anwendungen nur dann erfolgreich verlaufen wird, wenn die Drahthersteller selber die Initiative für entsprechende Geräte ergreifen. Es ist nicht zu erwarten, dass die Stromindustriellen sich von sich aus dazu bereit erklären, vor allem aus konservativen Ueberlegungen. Er übte auch eine sicher gerechtfertigte Kritik an die Drahthersteller: diese sind z.T. noch gar nicht imstande, die erforderlichen Längen von "Coated Conductors" für grosse Projekte (z.B. Kabel) herzustellen.

Die Lage ist bei den andern Supraleitern wesentlich günstiger: Leiter aus Bi-2223 oder MgB_2 können in viel grösserer Menge hergestellt werden. Es ist bemerkenswert, dass der Preis von Bi-2223 - Bändern heute nur noch etwa ein Faktor 2 bis 3 über demjenigen von Kupfer liegt (dies ist nicht per kg aufzufassen, sondern im Hinblick auf die Stromtragfähigkeit; dies wird in [\$/kAm] ausgedrückt). In Zahlen ausgedrückt, liegt der Preis von Bi-2223 – Bändern von Sumitomo (J) etwa bei 20 - 30 \$/kAm für grössere Mengen. Derjenige von Coated Conductors liegt immer noch etwa ein Faktor 3 höher, also in der Grössenordnung zwischen 70 und 100 \$/kAm. Dagegen ist der Preis von MgB_2 deutlich niedriger, etwa 3 - 5 \$/kAm, was ein erhöhtes Interesse bei manchen Projekten erklärt.

 Dr. M. Bauer von Theva informierte über den Stand der in seiner Firma entwickelte Technik der Coevaporation, kombiniert mit ISD (Inclined deposition) für die Herstellung von industriellen REBaCuO – Bändern.

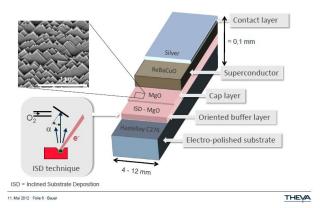


Abb. 1. Coevaporation/ISD - Methode von Theva für die Herstellung von REBaCuO Coated Conductors. Man sieht deutlich die um einen Winkel α gegenüber der normalen geneigten Kristallite.

Der Vorteil dieser Methode liegt in der Möglichkeit, grössere Dicken herstellen zu können und damit höhere Stromdichten zu erzielen. So wurden bereits 1'000 A/cm erzielt. Durch die besondere Anordnung ist auch die Anisotropie von J_c durch Zusatz von Zr weniger ausgeprägt. Die Einfachheit der Methode verspricht niedrigere Herstellungskosten. Industrielle Längen sind zurzeit in Vorbereitung.

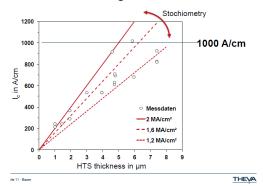


Abb. 2. Erhöhung der Stromdichte und geringe Anisotropie von J_c in Bändern, die durch Coevaporation/ISD hergestellt wurden.

 Dr. Jachim Bock from Nexans (D) hat die Situation der Angewandten Supraleitung in der Welt aus der Sicht des Kabelherstellers erläutert. Nexans ist wesentlich am gegenwärtigen Bau des 1 km – Kabels in Essen beteiligt.

Die Partner dieses Programms sind im nächsten Bild angegeben.

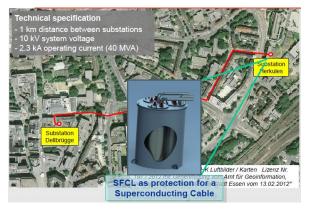


Abb.3. Das 2.3 kA Kabelprojekt (40MVA) in Essen (D), basierend auf supraleitende Bi-2223 – Bänder. Rechts ist der Einsatz von supraleitenden Strombegrenzern (SFCL) skizziert.

Dieses Ampacity genannte Projekt hat eine grosse Wichtigkeit, weil es in einem Stadtgebiet stattfindet, wo in Zukunft der Bedarf an supraleitenden Kabeln steigen wird. Die wesentlich grössere Stromtragfähiigkeit gegenüber konventionellen Kabeln ist ein Mittel, um noch grössere Strommengen im bereits überfüllten Untergrund von Städten zu transportieren. Wie im nächsten Bild gezeigt, ist die Spannung von 110 auf 10 kV reduziert.



Abb. 4. Erniedrigung der Spannung durch grössere Ströme im supraleitenden Kabel in Essen (Nexans). Rechts sind die Details des Kabels gezeigt.

J. Bock hat noch die Aktivitäten von Nexans auf dem Gebiet der Strombegrenzer vorgestellt. Diese sind in der nachfolgenden Tabelle zusammengefasst. Dabei wurde erwähnt, dass für

Project name	Location	Start-up	Type of installation	Voltage level	Current	Limitation time	HTS- Material
SFCL 12-800	Boxberg	2009	Internal power supply of a power plant	12 kV	800 A	120 ms	BSCCO
SFCL 12-800 ENSYSTROE	Boxberg	2011	Internal power supply of a power plant	12 kV	800 A	120 ms	YBCO
SFCL 12-100	Bamber Bridge /UK	2009	Distribution network	12 kV	100 A	120 ms	BSCCO
SFCL 12-400	Ainsworth Lane /UK	2012	Distribution network	12 kV	400 A	120 ms	BSCCO
SFCL 24-1000 ECCOFLOW	Mallorca/Spain Kosice/Slovacia	2012	Distribution network	24 kV	1000 A	1 s	YBCO
SFCL 12-2300 AmpaCity	Essen	2013	Distribution network	12 kV	2300 A	120 ms	YBCO

Tabelle I. Von Nexans hergestellte Strombegrenzer in Europa.

den zweiten Strombegrenzer in Boxberg (siehe Tabelle) REBaCuO – Bänder von SuperPower eingesetzt wurden anstatt der Nexans-eigenen durch einen Schmelzprozess erzeugten Bi-2212 - Elemente. Als Grund wurde eine kürzere Erholungszeit angegeben.

 Dr. GyeWong Hong von der Firma Sunam (Korea) hat eine Uebersicht über die Herstellung von REBaCuO "Coated Conductors" in Korea gegeben. Durch "reaktive coevapoation" wurden Bandlängen von 540 Meter mit Stromdichten über 500 A/cm wurden hergestellt. Durch einige Neuerungen erwartet Sunam eine deutliche Erniedrigung des Herstellungs-preises für REBaCuO – Bänder. Die mechanischen Eigenschaften dieser Bänder (nächste Abbildung) entsprechen denjenigen von Superpower und AMSC, die in früheren Jahren hier vorgestellt wurden.

Reactive Co-Evaporation (RCE):

Using inherently least expensive sources

High deposition rate can be used & adjustable composition Especially easy to scalable to large deposition area RCE-DR : Reactive Co-Evaporation

R2R): Patent pending(PCT)

High rate co-evaporation at low

by Deposition & Reaction (SuNAM,

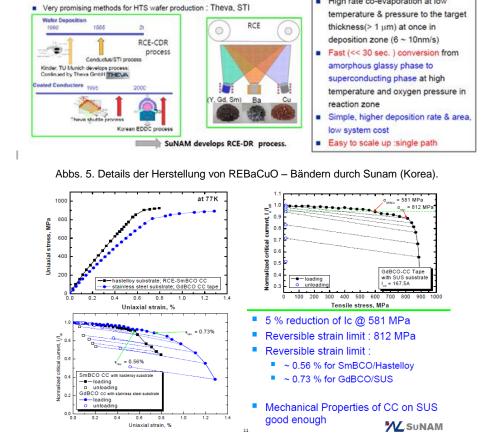


Abb. 6. Mechanische Eigenschaften von REBaCuO – Bändern von Sunam (Korea), auf Stahl- und auf Hastelloy – Substrate.

 Dr. Ok-Bae Hyun von KEPCO (Korea) stellte das koreanische Programm vor, mit Strombegrenzern in zwei Netzen von 154 kV und 345 kV. Das entsprechende Programm läuft noch bis 2018.

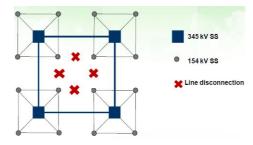


Abb. 7. Schematische Anordnung der verschiedenen Netze

Ein supraleitendes 23 kV Kabel wurde im August 2011 in Betrieb genommen und die ersten Betriebsdaten sind nun erhältlich (sie nächste Abbildung). Diese sind durchwegs positiv, sowohl vom Standpunkt der kryogene Betriebs wie der Transporteigenschaften.

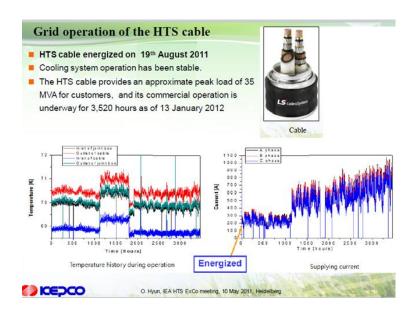


Abb. 8. Betriebsdaten 2012 des 23 kV Kabels von KEPCO in Korea (35 MVA), nach 3'520 Stunden.

Die nächsten Projekte in Korea umfassen die Zeit bis 2016 (siehe nächstes Bild); die Summe von 68 M\$ ist vorgesehen: dies ist wesentlich über den vergleichbaren Projekten im internationalen Vergleich.

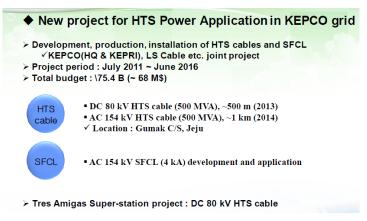


Abb. 9. Neue supraleitende Projekte in Korea bis 2016

Zuunterst in Abb. 9 ist eine 80 kV Station für das amerikanische Projekt "Tres Amigas" erwähnt. Dieses Projekt bezweckt, die 3 verschiedenen Elektrizitätsnetze in den USA zusammenzufassen, wobei der Supraleitung eine bedeutende Rolle zukommen könnte. Schliesslich ist in Korea auch ein Unterwasserkable vorgesehen (siehe Abb. 10).

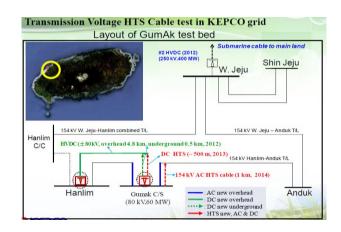


Abb. 10. Unterwasserkabelprojekt in Korea.

- Prof. B. Holzapfel vom IFW Dresden (D) hat das gemeinsam mit Bruker und dem KIT in Angriff genommene MgB₂ Programm vorgestellt. Dieses Programm ist noch nicht als Konzkurrenzprogramm zu HyperTech (USA) oder Columbus (I) zu sehen: es geht mehr darum, die Probleme bei der Herstellung von MgB₂ Drähten in den Griff zu kriegen, um bei eventuellem industriellen Einstieg schnell handeln zu können. Dabei werden sowohl die in situ wie auch die ex situ Technik verfolgt. Eine erste Produktion von 1 km wurde abgeschlossen, wobei Stromdichten von 9.1 x 10³ A/cm² bei 4.2 und 5T erzielt wurden.
- Prof. M. Noe vom KIT (Karlsruhe Institut für Technologie) stellte eine Reihe von Projekten vor, bei denen das KIT die Rolle einer Partnerschaft übernommen hat (siehe untenstehende Tabelle). Einige dieser Programme gehen bis 2015. Diese umfassen Strombegrenzer (24 kV/1 kA mit Nexans, 154kV/4 kA mit KEPRI), Transformer (1MVA) mit ABB, Kabel (mit Nexans) und Motoren, mit Siemens. Eine Eigenentwicklung betrifft die Energiespeicher (SMES), wo eine kleine Demonstrationsanlage im Bau ist.

Actual HTS Application Activities					
Application	Type of activity	Partner	Year		
Fault Current Limiter - 24 kV, 1 kA Eccoflow, FP7 - 154 kV, 4 kA Korea	Prototype, Field Test Prototype, Field Test	Nexans SuperConductors KEPRI	2013 2014		
Transformer - 1 MVA FCLT	Demonstrator	ABB	2015		
Cables - AC Cable 10 kV, 40 MVA, 1 km - DC Cable	Prototype, Field Test Demonstrator	Nexans CERN, IASS	2014 2014		
SMES - Hybrid Energy Storage (H ₂ and SMES)	Studies, small demo.	-	2014		
Rotating Machines - Test Rig - Wind Generators	Infrastructure Design tool	Siemens	2014 2014		
Magnets - 1200 MHz NMR System - FP7-EUCARD (EUCARD II) - Combit Joint Project - VATESTA	HTS high field insert High field magnet R&D Demonstrator magnet Test Facility	Bruker Biospin CERN et.al. DLR, IOFFE BNG	2015 2012 (*16 2014 2014		
HTS Fusion Magnet Technology - Current Leads W7-X – 20 kA - Current Leads JT60-SA - HTS Fusion Magnet Technology	R&D, manufacturing and testing Cable concept	IPP JT60	2012 2015 2012		

Ein grosses Gewicht wird den Magneten beigemessen: hier sind verschiedene Typen in Arbeit. Zunächst einmal ein 1'200 MHz NMR – Magnet, wobei der innere Einsatz mit Bruker BioSpin entwickelt wird. Es wird sich um den ersten industriellen HTS – Magneten handeln, der ein Feld bis etwa 30T erreichen wird. Eine weitere Entwicklung betrifft den Magneten für EUCARD, im Hinblick auf die Entwicklung von Dipolen oder Quadrupole, die bei LHC Upgrade zum Einsatz kommen werden. Weitere Magnete für spezielle Anwendungen sind geplant. Schliesslich werden verschieden Kabelkonzepte für Fusionsanwendungen bearbeitet: für WT-X (für IPP in München) und JT60-SA (Japan).

In der nächsten Abbildung ist die Hochspannungszelle für die Tests im Hinblick auf den 154 kV Strombegrenzer für KEPRI (Korea).

154 kV, 4 kA Superconducting Fault Current Limiter (KEPRI, KIT, 2012-2014)

Support

- High Voltage Cryostat Design
- High Voltage Bushing Design
- Breakdown Behavior of LN₂

Features Cryogenic High Voltage Lab

- 2 experimental cabins (one full screened)
- AC: 200 kV, 10 kVA
- Impulse: 360 kV
- DC: 115 kV
- Schering-Bridge
- Partial Discharge Measurement
- 3 bath cryostats (till 0.3 MPa)
- Cryogenic bushings (up to 230 kV AC, 550 kV LI)

Abb. 11. Hochspannungsstation für die Tests für den 154 kV Strombegrenzer von KEPRI (Korea).

Im KIT wurde auch ein Gleichstromkabel auf der Basis von MgB_2 – Drähten entwickelt, mittels einer eigens entwickelten Wickelmaschine (siehe Abbildung 12).

MgB₂-cables To transport large energy amounts over long distance MgB₂-AC-Kabel KITdevelopment from 2 years ago

Abb. 12. Gleichstromkabel auf MgB2 - Basis.

 Dr. Tabea Arndt (Siemens) hat einen Ueberblick über die Siemens – Aktivitäten auf dem Gebiet der Supraleitung gegeben. Diese umfassen einen 4 MVA – Motor, der vor allem für den Schiffbau entwickelt wurde. Dieser Motor wurde bisher 5'200 Stunden unter Vollast betrieben ohne erkennbare Probleme. Weitere Projekte bei Siemens umfassen die Windaber auch die Solarenergie, im Hinblick auf eine deutliche Erniedrigung der CO₂ – Emissionen. Bei Generatoren wird eine Erhöhung der Effizienz von 99 auf 99.5% bei supraleitendem Betrieb erwartet.

Fig. 13. 4 MVA Motor von Siemens und Formulierung der künftigen Anforderungen an supraleitende Systeme.

12/21

2.3. Fortschritte auf dem Gebiet der Supraleiterdrähte und Bänder (Aus der ASC Konferenz in Portland, OR (USA))

A. Bi-2212 - Drähte

Bi-2212 – Drähte sind bisher vernachlässigt worden, vor allem wegen der Schwierigkeiten, homogene Drähte über längere Längen zu bekommen. Auch die Reproduzierbarkeit war alles Andere als ermutigend. Aufgrund der Beobachtung von Gasblasen im Innern des Drahtes während der Reaktion der Bi-2212 - Phase, wurden verschiedene Wege vorgeschlagen, um während der Reaktion einen externen Gas Druck aufzubauen. Es hat sich in der Folge gezeigt, dass schon geringe Drücke (etwa 30 – 100 bar) genügen, um die Schädigung der ringförmigen Filamente durch Reissen deutlich zu reduzieren.

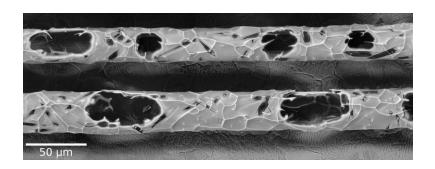
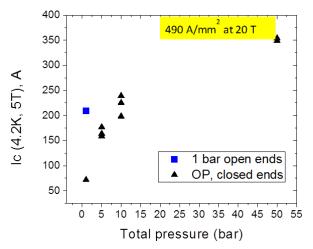



Fig. 14. Bi-2212 – Filamente nach der Reaktion. Die beobachteten Löcher werden durch die Gasblasenbildung während der Reaktion verursacht, sofern kein externer Druck angewendet wird.

Der mögliche Einsatz von Bi-2212 – Leiter auf dem Energiesektor ist beschränkt durch die hohe Empfindlichkeit auf externe Magnetfelder, die bei 77K einen Einsatz schon bei 0.2 T verunmöglichen. Bei tiefen Temperaturen (unterhalb 20K) weist Bi-2212 durchaus akzeptable Stromdichtewerte, kann aber gegen Bi-2223 und Coated Conductors nicht bestehen.

Bi-2212 – Leiter weisen aber gegenüber allen andern HTS – Leitern einen Vorteil auf: es ist in der Tat möglich, sie als <u>runde</u> Drähte herzustellen. Dies ist vor allem bei grossen Magneten wichtig, wo Kabel zum Einsatz kommen. Es ist in der Tat bis heute nicht möglich, einen Rutherford – Kabel mittels flachen Bändern herzustellen (Beispiel: Dipole und Quadrupole bei LHC,.....). Es zeigt sich, dass Bi-2212 das einzige Material ist, womit Quadrupole bei 20 T und mehr gebaut werden könnten. Somit war es notwendig, dessen Stromdichte zu optimieren. Dies ist nun gelungen, wie aus der nächsten Abbildung zu ersehen ist.

Der höchste hier gezeigte Stromdichtewert von 490 A/mm² bei 20T ist etwa um einen Faktor 5 höher als für Drähte mit der in Abb. 14 gezeigten Struktur. Somit sind die Bedingungen für Dipole oder Quadrupole bei 20T erreicht, mindestens was die Stromdichten betrifft. Es gilt nun, das Problem der mechanischen Festigkeit zu lösen, damit diese Drähte die hohen Lorentzkräfte unbeschadet überstehen können.

B. MgB₂ - Drähte

Im 2002 hat Giunchi (Edison, Italien) vorgeschlagen, MgB2 mittels der sogenannten Infiltrationsmethode herzustellen. Dabei werden Mg und B oder MgB2 - Pulverpartikel gemischt, in eine Metallhülle eingeschlossen und zu Drähten verformt, die nach einer Schlussglühung hohe Stromdichten aufweisen. In der Zwischenzeit wurden alternative Methoden entwickelt, die deutlich höhere Stromdichten aufwiesen: die *in situ* und *ex situ* Technik wird heute von 2 Industrien hergestellt: Hypertech (USA) und Columbus (Italien). Nur in Japan wurde die Infiltrationsmethode weiterentwickelt. Dieses Jahr wurde diese Technik durch eine Aenderung im Verfahren modifiziert, und zwar gleichzeitig in den USA (Ohio State University) und in Japan (NIMS, Tsukuba). Beide Laboratorien erzielten auf einen Schlag deutlich höhere Stromdichten: die Erhöhung ist in der folgende Abbildung deutlich zu sehen. Bei 4.2K wurde die Stromdichte von 1 x 10² A/mm² bei etwa 25 T gemessen, d.h. etwa 2 T mehr als bis vor 6 Monaten.

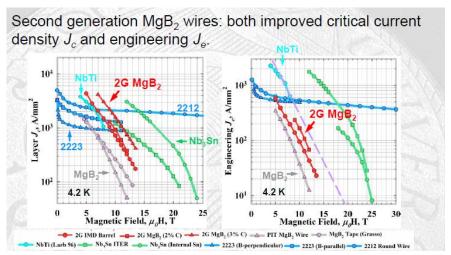


Fig. 15. Erhöhung der kritischen Stromdichte von MgB₂ – Drähten (second generation MgB₂ wires) (Li et al., ASC Konferenz).

Dank dieser Erhöhung kann nun ein direkter Vergleich zwischen den einzelnen Techniken zur Herstellung von MgB_2 – Drähten gemacht werden: Die beiden PIT Techniken (in situ und ex situ) haben bei gleichem effektivem MgB_2 – Anteil deutlich niedrigere Stromdichten als diejenigen der neuen Drähte (in der Figur als "Present" bezeichnet.

Diese Entwicklung gestatte es, Magnete mit etwa 2 T höheren Feldern bei 4-2K herzustellen. Bei 20K wäre die Felderhöhung einer Spule immer noch mindestens 1 T. Dies könnte sich beim Einsatz in Windgeneratoren als entscheidend erweisen. Für Stromdurchführungen (insbesondere im Projekt LINK im CERN) könnte sich die höhere Stromdichte in einer geringeren Mange von Supraleiterdraht niederschlagen, was zu geringeren Gesamtkosten führen würde (Insgesamt > 10'000 km Draht sind erforderlich).

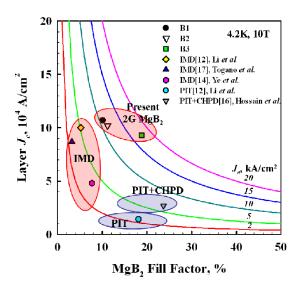


Abb. 16. Abhängigkeit der Stromdichte im Supraleiton von MgB₂-Drähten vom Füllfaktor für die verschiedenen Herstellungstechniken.

Zusammenfassend kann gesagt werden, dass dieses Jahr deutliche Fortschritte in allen Materialklassen, aber ganz besonders in Bi-2212 und MgB₂. Dies ist auch im Hinblick auf Energieanwendungen eine positive Entwicklung, die sich vor allem auf die Kosten günstig niederschlagen wird.

Nationale Zusammenarbeit

Die Zusammenarbeit innerhalb der Schweiz wurde in den letzten 11 Jahren durch das Projekt MANEP (NCCR) stark gefördert. Ausser des zielbewusst betriebenen Informations-Austausch wurden auch neue Zusammenarbeits-Projekte gefördert. Daran nahm die Angewandte Supraleitung einen beachtlichen Anteil, wobei die Gruppe von Dr. Dutoit and der EPFL in Lausanne (a.cc - Verlust-Berechnungen an Kabel)

Die Zusammenarbeit der Universität Genf (Département de Physique Appliquée) mit der Firma Bruker BioSpin in Fällanden (ZH) muss ganz besonders erwähnt werden. Zusammen mit dieser Firma haben wurden zwei Projekte durchgeführt (1KTI, 1 NCCR - Projekt), die beide Ende 2011 mit Erfolg abgeschlossen wurden. Bei beiden Projekten wurden Fortschritte in der Entwicklung von MgB₂ – Drähten erzielt.

Ein neues KTI - Projekt wurde 2012 zwischen der Universität Genf und Bruker BioSpin in Angriff genommen. Es hat zum Ziel, die Eigenschaften von Y-123-Bändern, also Hoch-T_c-Supraleiter, im Hinblick auf den Bau eines 30T – Magneten genauer zu erkunden, vor allem das Verhalten der Quench-Ausbreitung.

Internationale Zusammenarbeit

Wie in den vergangenen Jahren hat die Internationale Zusammenarbeit vor allem aus dem regen Austausch von Informationen bestanden.

Die Gruppe von Dr. Betrand Dutoit an der EPFL in Lausanne ist Partner eines europäischen Projekts (im Rahmen des 7. Frame programs), das die Entwicklung eines Fault Current Limiters zum Ziele hat. Dabei bringt diese Gruppe ihr Know How auf dem Gebiete der Berechnung der ablaufenden Prozesse ein.

Bewertung 2012 und Ausblick 2013

Alle bekannten Projekte auf der Basis von HTSL - Supraleitern haben sich dieses Jahr – wie schon in den Jahren vorher – ohne nennenswerte Probleme entwickelt. Dies ist auch ein Beweis für den Fortschritt, der in den letzten Jahren auf dem Gebiet der Betriebssicherheit erzielt wurde.

Ganz besonders muss hier die Entwicklung auf dem Materialsektor erwähnt werden: sowohl auf dem Gebiet von runden Bi-2212 - sowie von MgB₂ - Drähten wurden grosse Fortschritte erzielt. Auch bei Nb₃Sn - Drähten wurden die bisher bekannten Stromdichten um 50% erhöht.

Ausblick: die hier erwähnten Gebiete werden im 2013 weitergeführt und vertieft werden. Erwähnenswert sind die neuen, grösseren Projekte, wie das 1 km – Kabelprojekt in Essen, das gegenwärtig im Bau ist.

Referenzen

G Mondonico, B Seeber, A Ferreira, B Bordini, L Bottura, A Ballarino, R Flükiger C Senatore "Effect of quasi-hydrostatical radial pressure on I_c of Nb₃Sn wires" Supercond. Sci. Technol. 25 (2012) 115002 (9pp)

Miloslav Kulich, R. L. Flükiger and C. Senatore "Effect of cold high pressure treatments to J_c of ex situ MgB₂ wires" Submitted at ASC2012, Portland, USA, 6.-12-10-2012.

R. Flükiger, T. Baumgartner, H. Weber, C. Scheuerlein, C. Senatore, A. Ballarino, L. Bottura "Variation of $(J_c/J_{co})_{max}$ of ternary alloyed Internal Sn and PIT Nb₃Sn wires submitted to neutron 1 MeV irradiation"

Submitted at ASC2012, Portland, USA, 6.-12-10-2012.

G Mondonico, B Seeber, B Bordini, L Oberli, L Bottura, A Ballarino, R Flükiger, C Senatore "Effect of transverse compressive stress on I_c of Nb₃Sn wires: critical current behaviour under quasi-hydrostatic pressure exerted by 4 walls in a new device" Submitted at ASC2012, Portland, USA, 6.-12-10-2012.

Carmine Senatore, René Flükiger

"Formation and upper critical fields of the two distinct A15 phases in the subelements of PIT Nb₃Sn wires"

Submitted at ASC2012, Portland, USA, 6.-12-10-2012.

Anhang I

Annual Report, 1 October 2011 to 30 Sept 2012

"International Energy Agency Implementing Agreement for a Co-Operative Programme for Assessing the Impacts of High-Temperature Superconductivity on the Electric Power Sector", by Alan Wolsky

PURPOSE

Formed under the auspices of the International Energy Agency (IEA), our Implementing Agreement (IA) brings together institutions located in nine nations, all leaders in the effort to develop useful equipment that incorporates high and medium temperature superconductors. Our focus is on equipment for the power sector, comprising electric utilities and their large energy consuming customers, as well as large stand-alone producers and consumers of electric energy. Our purpose is to assess the state of efforts to advance superconductivity from laboratory curiosity to devices that will significantly improve the generation, transmission, distribution and use of electric power. This assessment is a collaborative enterprise. Participants inform each other of the effort underway in their own institutions and others with whom they work. Significance, not technical detail, is emphasized. Discussion centers on the status, challenges and promise of the work underway. Because Agreement members regard the dissemination of reliable information as part of their mission, they address interested policy makers, the community, as well as each other, all with suitable specificity.

ACTIVITY

This annual report emphasizes the IA's collective action with regard to the communities external to the IA. The IA's other activity is sharing information and perspective among its members. See sources of additional information at the end of this annual report.

Addressing the HTS community and its constituencies

The effort to completely rebuild the framework and format of IA's web-site. http://www.SuperconductivitylEA.org, was substantially completed. The rebuilt web-site is meant to serve three audiences: (a) interested but uninformed policy-makers and their aides and private-sector managers (b) potentially interested managers in the power sector who are not informed about superconductivity (c) members of the ExCo. The home page is primarily addressed to those in (a) who are unfamiliar with IEA, the HTS IA, and superconductivity. Graphics and text depicting recent, noteworthy accomplishments are displayed. These are (1) the 220 kV FCL that InnoPower has built and is now installed at the Tianjin substation where it is being demonstrated in the grid (2) the successful test at PowerTech of a single phase resistive FCL built by Siemens (3) the planned two year demonstration of a triaxial cable to be built by Nexans and operated by RWE in Essen and (4) the fact that Sumitomo has raised the performance of its Bi-2223 (DI-BSSCO™) and reduced its price to the point where DI-BSSCO™ is only twice as expensive in cable as the equivalent amount of copper. (NB Though neither InnoPower nor Nexans is a member of this IA, both responded promptly and helpfully when asked for their input.) For those in group (b), under the heading "What's new in Fault Current Limiters, the website presents an up-to-date picture of the state of FCL development and utility interest in same. All audiences may find something helpful under the heading "Links to Others" where all the participants in the effort to make practical devices from HTS and MgB2 are listed with links to enable the user to find what each organization states about itself. This list includes virtually all the organizations in HTS and MTS community. The "Members Only" section of the web-site is meant for the ExCo alone. This section enables members to retrieve meeting minutes, each others' presentations and presentations by

The Implementing Agreement (IA) was also engaged in preparing a two-page briefing document, intended for senior managers and their aides who are acquainted with but not familiar with the power sector and superconductivity's potential role therein. This document was drafted and will be reviewed in the fall of CY2012 after which completion and dissemination are planned.

guests since 2007. The same section alerts members to forthcoming meetings.

Addressing IEA

In response to the IEA's request, the IA provided text and graphics for the IEA's forthcoming publication "Energy Technology Initiatives", which IEA describes as the key publication that provides a branding for the Energy Technology Network: the CERT, Working Parties, Experts' Groups and IAs. Thanks were received from IEA with its statement that "Energy Technology Initiatives", would draw attention to the RWE-Nexans-KIT cable project in Essen.

In response to the IEA's request, a two page Executive Summary of the two most recent ExCo meetings was prepared. It emphasized things said about the interaction of the IA with IEA and the two most significant points made by our members and guests that bear upon the future commercial adoption of HTS by the power sector. The IEA replied, "This is exactly what we need, thank you very much!"

Developing new information for Members' consideration and reference

The termination of funds for HTS from USDOE's Office of Electricity gave some persons the mistaken impression that US effort to put superconductivity to practical use in the power sector ended. To illuminate the actual situation, a report, "US Activity To Make Economical Superconductor And Equipment Incorporating It, For The Power Sector" (154 pages) was prepared. The report describes recent and expected activity, most cost-shared by other parts of USDOE. The report draws particular attention to five US firms, three intent on commercializing REBaCuO conductor and two intent on commercializing MgB2. The same report describes three government funded projects to advance conductor development, two projects to advance cable, one of which is a fault current limiting cable, one project on (fault current limiting) transformer, two projects on storage, and four projects on rotating machines. The report also notes GE's conviction that an LTS generator for wind turbines is promising enough to pursue. In addition, the report describes three groups pursuing improved cryocoolers, as well as other groups offering supporting services to the HTS community. Projects funded by USDHS, USDOD and by EPRI are sketched, as well as several member supported projects engaged in outreach.

Facilitating the Member's appreciation of the power sector's perspective

Drawing on his experience as the top technical person in his utility's T&D department but speaking on his own behalf, S. Ahmed addressed the ExCo when he said that in order to commercialize superconducting equipment, it is necessary for equipment developers to build and demonstrate their equipment; utilities will not take the initiative. Power engineers are trained to consider only commercially available, off-the-shelf equipment when thinking of how to address a problem. Further, each power engineer focuses on a well-defined sub-specialty. The result is that only a few people within each utility can appreciate that utility's whole situation. Ahmed noted that when he sought bids on a 17 mile (17 km) long HTS cable, he found that the world's HTS wire suppliers lack the capacity to manufacture enough wire for the job in a timely way. He also spoke the importance of developing Fault Current Limiters and the importance of avoiding capital costs from alternatives to superconducting FCL. Drawing on his experience within KEPCO, Dr. O-B. Hyun concurred with the gist of Ahmed's remarks while stating that the operating cost of an FCL would not be neglected by KEPCO when it considers if and where to install FCL's on its system.

When describing the planned construction and installation of a 1 km long triaxial cable in Essen Germany, J. Bock (Nexans) drew the ExCo's attention to the difference in price between Sumitomo's DI-BSSCO™ and others' REBaCuO by stating that DI-BSSCO™ could be purchased for one third of the price of REBaCuO. This difference drove Nexans' decision to use DI-BSSCO™. Indeed, K. Sato (SEI) kindly confirmed the price of SEI's conductor to the IA's Operating Agent which found it to be only twice the price of an equivalent amount of copper for use in cable.

Facilitating the Member's appreciation of the conductor manufacturer's perspective

The ExCo's appreciation of effort, now underway, to commercialize conductor was substantially enhanced by Bruker's willingness to bring the ExCo to its facilities where Bruker gave an illuminating tour of its pilot-scale production of REBaCuO wire and an informative talk about its plans for future commercial production.

In addition, during the past year, outside experts accepted invitations to speak during the ExCo's meetings.

M. Bauer (THEVA) said that his firm is using Co-Evaporation (invented at TUM, 1990) and ISD discovered (1996) at TUM to make its tapes. In 2009 THEVA could produce 40m lengths of tape having 500 A/cm. Now, THEVA is optimizing its process. In the future, THEVA hopes to achieve 1000 A/cm. In response to the query "What would happen in a quench with so much current or, put another way, does THEVA intend to make an unusual shunt layer?" Bauer said THEVA is not yet addressing that issue. He showed a plot critical current vs. REBaCuO film thickness which includes one point representing a film that is 6 microns deep and carried a bit more than 1,000 A/cm. Bauer did not disclose the length of this sample. He stated that with Zr doping, the critical current's response to external magnetic field becomes less dependent on angle. Now, THEVA plans to try to further improve its tape's in-field performance and to increase the tape's length.

M. Bäcker (Deutsche Nanoschicht (D-Nano)) is pursuing a different path. Instead of increasing critical

current, D-Nano expects to offer tape having a very low price and acceptable performance for cable. D-Nano asserts this combination will attract customers.

D-Nano intends to produce its conductor by using improved chemical coating technologies. D-Nano states its continuous chemical deposition technique will enable cost efficient production of superconductors by virtue of its high thruput, low investment, low energy consumption and low raw material costs. D-Nano asserts its process will be much less expensive than vacuum coating processes. D-Nano anticipates additional savings from its inkjet technology which uses easily purchased raw materials. It has also enlisted BASF future business GmbH as a cooperation partner. The production technology is being demonstrated in a continuous pilot production line that yields up to 100m long, 6mm wide REBaCuO tapes with 0.5 micron REBaCuO layer. Backer showed the I-V curve for a 60A tape having n=32 while adding that in 2012 the REBaCuO layer has increased to 1.3 microns and the critical current has increased to substantially more than 100A/cm. D-Nano, a small firm, believes it can pursue its approach because it has enlisted BASF future business GmbH as a cooperation partner.

J. Bock (Nexans) offered the perspective of a cable maker who must choose its wire supplier. Despite the almost world-wide conviction that REBaCuO tape could be made much less expensively than tape incorporating Bi-2223, Bock said that Nexans chose Bi-2223 tape offered by Sumitomo for the cable that Nexans plans to build and then install in Essen, DE because SEI's tape could be purchased for one third of the cost others' REBaCuO. Bock also said that Nexans purchased REBaCuO tape from SuperPower for Nexans's second FCL at Boxberg instead of using Nexans own meltcast Bi-2212 because SuperPower's tape enabled faster recovery.

B. Holzapfel (IFW-Dresden) said that IFW-Dresden is collaborating with Bruker to investigate another manufacturing path to economical MgB2. [Now, only two firms Columbus and HyperTech are trying to make a business from manufacturing MgB2 wire.] Powder production has their attention because nano-crystalline MgB2 enables higher critical currents because of increased pinning at grain boundaries. For this reason, the method of milling is important. Adding carbon by doping is helpful. To date, IFW-Dresden effort has been encouraged by a proof of principle, the production a 1km, 19 filament wire that delivered an engineering current density of 91A/mm2 = 9,100 A/cm2 at 4.2K and 5T. Further wire improvement and therefore cost reduction are required for competitiveness. Holzapfel also spoke about IFW's work with EVICO to make a non-magnetic substrate (nickel with 9.5atomic weight% tungsten) that could be textured by rolling (i.e., RABITS). The goal is to reduce hysteretic loss in the substrate when current alternates in in REBaCuO layer.

New Members

In Nov 2011, IEA approved Columbus Superconductor's application to join this Implementing Agreement as a Corporate Sponsor. Columbus' participation widens the perspective of the members because Columbus is one of the world's two firms each of which is trying to develop MgB₂ into a commercial product that would find application by end users (i.e., MRI) as well as by electric utilities (e.g., in generators for wind turbines). Though J. Bock, a representative of Nexans – a leading transmission cable maker – participated in two meetings and said that Nexans would join this IA, Nexans management has not yet formally applied to IEA headquarters in Paris for its approval.

Source of additional and detailed information

This annual report emphasizes the IA's collective action with regard to the communities external to the IA. The IA also facilitated an extensive exchange of information and perspective among its members. This activity is documented in the "Members Only" section of this Implementing Agreement's web-site, http://www.SuperconductivityIEA.org where all of the members' documents and detailed minutes of the year's ExCo Meetings are archived.

Anhang II

Delegation von NEDO (Japan), 24.10.2012: HTS DEMO- Projekt in der Schweiz? Am 24.10.2012 fand in Ittigen, im Bundesamt für Energie, auf Einladung von Herrn Conradin Rasi (BfE), ein Treffen mit einer japanischen Delegation statt:

- Dr. Nobuhiko Kusunose, NEDO, Director, Energy Conservation Technology Depart ment, kusunosenbh@nedo.go.jp, (http://www.nedo.go.jp) und
- Dr. Shota Inoue, Mitsubishi Research Institute, Environment & Energy Res. Division, shota@mri.co.jp, (http://mri.co.jp).

Anwesende Schweizer Mitglieder: Jean-Christophe Füegg, BfE Michael Moser, BfE Roland Brüniger, BfE Bertrand Dutoit, EPFL René Flükiger, University Geneva.

Der Grund des Besuches war eine direkte Folge der Ereignisse von Fukushima. Es ging darum, nach dem starken Rückgang der betriebsfähigen Atomreaktoren in Japan neue Möglichkeiten für erneuerbare Energien zu finden. Das Besondere am gegenwärtigen Anliegen war, dass dabei die Supraleitung eine besondere Rolle spielen würde. Dabei sollte das japanische Know How auf dem Gebiet der Angewandten Supraleitung zum Tragen kommen. Der Besuch in der Schweiz und anderen europäischen Ländern hängt damit zusammen, dass in Japan keine Möglichkeiten für neue, erneuerbare Technologien erkennbar sind. Für TEPCO ist es im gegenwärtigen Zeitpunkt sehr schwierig, neue Technologien in Japan zu fördern: es sind keine Fehler erlaubt. Deshalb die Suche nach Partnerschaften im Ausland, die bis zur Kommerzialisierung gehen sollten.

Prinzip, auf die Schweiz übertragen, beruht auf folgender Annahme:

Es besteht der Wille, HTS Supraleiter einzusetzen, aber es sind keine Mittel für die HTS – Kabel vorhanden. Dieses würde für ein DEMO Projekt als japanischer Beitrag geliefert werden. Beide Seiten würden davon profitieren.

N. Kusunose stellte eine ganze Reihe von Anlagen vor, die supraleitende Kabeln aus Japan enthalten (in Betrieb oder gegenwärtig im Bau). Beispiele (unvollständig):

- * Yokohama cable project; Bi-2223 (Sumitomo), 66kV, 3-phasig, 250 m zum Transformer
- * M-PACC: 5kA REBaCuO, 66kV
- * Joint project mit China: 275 kV/3kA, 30m, REBaCuO (Furukawa): weltweit höchste Spannung
- * 66kV Projekt von Fujikura

*

NEDO schlug für die Schweiz **Pumpspeicherwerke** und **elektrische Bahnen** vor. Der Vorteil von kleiner Spannung, aber grosser Stromstärke bei supraleitenden Kabeln würde dabei voll zum Tragen kommen.

Interessierte Schweizer Stellen:

- SBB (Reduktion der Anzahl Transformerstationen)
- Kraftwerke Oberhasli (Generator in der Nähe des Transformers).

Eine Zusammenarbeit würde die folgenden Punkte beinhalten:

- Unterhalt der Anlagen
- Einführung von lokalen Mitarbeitern
- Verträge mit lokalen Industrien
- Training

Ein Besuch der beiden Betriebe hatte schon vor dem jetzigen Treffen stattgefunden, und war interessiert aufgenommen worden. Es ist vorgesehen, dass beide Betriebe diese Problematik nach einer eigehenden internen Beurteilung über die Schweizer Vertretung in Japan mit NEDO Kontakt aufnehmen werden.

R. Brüniger ist sehr positiv eingestellt, erwähnte aber Gründe, die es zu bedenken gibt:

- Schweizer SMES Projekt mit SBB im 1990: wurde vor Beginn eingestellt.
- Industrie ist im Prinzip positiv eingestellt, aber nach der Liberalisierung des Strommarktes: Unsicherheit betreffend der Investitionen
- Anzahl Pumpspeicherwerke in der Schweiz ist begrenzt.
- Bedarf: eine Kombination aus Transformer/Strombegrenzer würde mehr Chance haben.

Der Grundton des Treffens war positiv. Die genauen Abklärungen bez. Rentabilität solcher Anlage finden gegenwärtig statt.