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Abstract. Based on patent data and industry specific energy prices for 18 OECD countries 
over 30 years we investigate on an industry level the impact of energy prices on green innovation 
activities. Our econometric models show that energy prices and green innovation activities are 
positively related and that energy prices have a significantly positive impact on the ratio of green 
innovations to non-green innovations. More concretely, our main model shows that a 10% 
increase of the average energy prices of the previous five years results in a 2.7% and 4.5% 
increase of the number of green patents and the ratio of green patents to non-green patents, 
respectively. We also find that the impact of energy prices increases with an increasing lag 
between energy prices and innovation activities. Robustness tests confirm the main results.  

 

Abstract (Deutsch). In der vorliegenden Studie untersuchen wir, gestützt auf Patentdaten und 
industriespezifischen Energiepreisen für 18 OECD-Länder, den Einfluss von Energiepreisen auf 
die Innovationstätigkeit in grünen Technologien. Unsere ökonometrischen Schätzungen zeigen 
eine positive Korrelation zwischen Energiepreisen und grüner Innovationstätigkeit; Energiepreise 
haben einen signifikant positive Einfluss auf die Quote von grünen im Vergleich zu nicht-grünen 
Innovationen. So zeigt unser Hauptmodell, dass eine Erhöhung um 10% der durchschnittlichen 
Energiepreise über fünf Jahre zu einer um 2.7% höheren Anzahl grüner Patente, beziehungsweise 
einer um 4.5% höheren Quote von grünen Patenten im Vergleich zu anderen Patenten führt. Mit 
zunehmendem zeitlichen Abstand zwischen Energiepreisen und Innovationstätigkeit lässt sich 
ein grösserer Effekt der Energiepreise feststellen. Unsere zentralen Resultate werden durch 
diverse Robustheitstests bestätigt. 
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Zusammenfassung auf Deutsch 

Ziel der vorliegenden Untersuchung ist, den Einfluss von Energiepreisen auf die Generierung 

von “grünen“ Innovationsaktivitäten empirisch zu untersuchen. Zu diesem Zweck werden Daten 

über Patentanmeldungen, Energiepreise und weitere ökonomische Kontrollgrössen aus 18 

OECD-Ländern (inklusive aller wichtigsten Industrienationen) über einen Zeitraum von 30 

Jahren zusammengestellt. Sämtliche Variablen sind nicht nur auf Länderebene, sondern 

innerhalb jedes Landes auch auf Branchenebene verfügbar, wobei wir zwischen zehn Branchen 

des Industriesektors unterscheiden können. Aufbauend auf diesen in ihrer Art erstmalig 

verfügbaren Daten lässt sich anhand unseres ökonometrischen Modells feststellen, dass eine 

Erhöhung der Energiepreise um 10% (im Mittel über eine Fünfjahresperiode) zu einer um 2.7% 

höheren Anmelderate bei grünen Patenten führt. 

Unternehmungen, die grüne Innovationen anstreben, sehen sich mit dem Problem einer 

doppelten Externalität konfrontiert: einerseits lassen sich die Erträge einer erfolgreichen grünen 

Innovation nicht vollumfänglich durch den Innovator aneignen, da Wissen den Charakter eines 

öffentlichen Gutes hat; andererseits kommt der durch die Innovation generierte Nutzen 

(sauberere Luft, geringere CO2-Emissionen) oftmals der gesamten Öffentlichkeit und nicht nur 

dem privaten Anwender der Innovation zugute. Das führt zu einer geringen individuellen 

Zahlungsbereitschaft für diese Produkte. Somit würde der private Sektor technologische 

Neuerungen, wenn sie ausschliesslich den Marktkräften überlassen bleiben, in einer aus 

gesellschaftlicher Sicht ungenügenden Rate produzieren. Um dies zu ändern sind politische 

Massnahmen zur Förderung solcher Innovationstätigkeiten vonnöten. Energiepreise sind ein 

potentielles Instrument einer solchen Förderpolitik, weshalb sich die vorliegende Studien mit 

deren Wirkung auf die Innovationstätigkeit befasst. Es gibt bereits empirische Studien, die sich 

mit dieser Fragestellung befassen, jedoch unterscheidet sich die vorliegende Arbeit davon, vor 

allem hinsichtlich der umfassenden Datenbasis. 
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Als Mass für den Output an grünen Innovationen einer Industriebranche dienen – wie 

bereits in Publikationen anderer Autoren – Patentstatistiken, die in Zusammenarbeit mit dem 

Eidgenössischen Institut für Geistiges Eigentum erarbeitet wurden. Mit Hilfe des von der OECD 

geschaffenen Indicator of Environmental Technologies konnten sämtliche Patentanmeldungen 

entweder als „grüne“ oder „nicht-grüne“ Erfindungen kategorisiert werden. Da bei der 

Patentanmeldungen zwar das Ursprungsland erhoben wird, nicht aber die Branchenzugehörigkeit 

der anmeldenden Unternehmung, wurde auf das Konkordanzschema von Schmoch et al. (2003) 

zurückgegriffen, womit sich die in der Patentstatistik erhobenen Technologiefelder den von uns 

verwendeten Branchen zuordnen lassen. Daten zu Energiepreisen sind ebenfalls nicht unmittelbar 

für verschiedene Branchen verfügbar, jedoch stellt die Internationale Energieagentur IEA sowohl 

Preisdaten für verschiedene Energieträger als auch Informationen über die effektive Nutzung 

dieser Energieträger nach Branchenkategorien bereit, und zwar individuell für sämtliche Länder. 

Dieser Datengrundlage ermöglicht uns, Energiepreise für einzelne Branchen zu konstruieren. 

Um die Hypothese eines positiven Effekts von Energiepreisen auf die Generierung von 

grünen Innovationen empirisch zu testen, verwenden wir das ökonometrische Model der 

Wissensproduktionsfunktion (Knowledge Production Functions). In dieser Spezifikation dienen, 

nebst den klassischen Produktionsfaktoren Arbeit (Anzahl Beschäftigte) und Kapital 

(Investitionssumme), die bereits erwähnten Energiepreise als erklärende Variable. Zusätzlich 

kontrollieren wir für den Einfluss des bereits erarbeiteten technologischen Wissens, und zwar 

anhand der Anzahl der in der Vergangenheit angemeldeten Patente beider Kategorien (grün und 

nicht-grün). Der geschätzte Koeffizient von Energiepreisen auf die abhängige Variable 

(Patentanmeldungen) lässt sich in diesem Kontext als Elastizitätsmass interpretieren; fällt er 

statistisch signifikant aus, ist dies eine Bestätigung unserer Forschungshypothese. Dank unserer 

umfangreichen Datenbasis können wir auf Panel-Schätzverfahren zurückgreifen, welche auch in 

Gegenwart von nicht-beobachtbarer Heterogenität zwischen den einzelnen Branchen, oder von 
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länderspezifischen Schocks (etwa als Folge nationaler Politiken) unverzerrte Schätzungen 

liefern. 

Die von uns bevorzugte Schätzvariante bestätigt den erwarteten positiven Effekt von 

Energiepreisen auf grüne Innovationen, und zwar mit einer Elastizität von 0.27, woraus sich der 

eingangs erwähnte Wert von 2.7% errechnet. Dieser Koeffizient ist statistisch signifikant bei 

einem Schwellenwert von 10%. Betrachtet man den Einfluss der Energiepreise auf den 

Quotienten von grünen zu nicht-grünen Patenten (anstelle der Zahl der grünen Patente), resultiert 

gar eine Elastizität von 0.45 (signifikant zu 5%). Mit einer Reihe von Robustheitstests überprüfen 

wir, ob diese Resultate auch Änderungen in der Spezifikation der Schätzung oder in der 

Stichprobe standhalten. So betrachten wir etwa verschiedene Unterkategorien grüner 

Innovationen gesondert, wiederholen unsere Berechnung der Energiepreise anhand von 

abweichenden Kombinationen der verwendeten Energieträger, vergleichen verschiedene 

Varianten zur Berechnung des existierenden Wissensbestandes oder schliessen Beobachtungen 

mit Ausreissern bei der abhängigen Variable aus den Schätzungen aus. Diese und weitere Tests 

erhärten die Stichhaltigkeit unserer Resultate. 

Die erzielten Resultate können als Beleg dafür gewertet werden, dass Energiepreise als 

effektives Politikinstrument zur Förderung der Innovationstätigkeit im Umweltbereich dienen 

können, und sind weitgehend im Einklang mit Resultaten aus ähnlich gelagerten empirischen 

Studien. Ein Vergleich mit letzteren legt zudem nahe, dass es bedeutsame Unterschiede in der 

Intensität der Wirkung der Energiepreise auf grüne Innovation zwischen verschiedenen Branchen 

gibt, jedoch nur geringe Unterschiede zwischen verschiedenen Ländern. Ebenfalls im Einklang 

mit der existierenden Literatur steht die Erkenntnis, dass grüne Patentanmeldungen höher 

ausfallen, je grösser der Bestand an bereits erarbeiteten grünen Wissen (gemessen an der Zahl 

vergangener Patentanmeldungen) ist. Zwar übt auch der nicht-grüne Wissensbestand einen 

positiven Einfluss auf grüne Innovationen aus, allerdings in einem deutlich geringeren Mass. 

Dies ist Evidenz für eine gewisse Pfadabhängigkeit grüner Technologien. 
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Unsere Daten ermöglichen auch eine Gegenüberstellung der Innovationsperformance 

zwischen der Schweizerischen Industrie und (im Durchschnitt) jener der Vergleichsländer. Es 

zeigt sich, dass die Schweiz deutlich unterdurchschnittlich abschneidet, was die Quote von 

grünen gegenüber nicht-grünen Patentanmeldungen betrifft, obschon die Gesamtzahl an grünen 

Erfindungen Schweizer Herkunft bedeutsam ist. Dieses Phänomen lässt sich nicht nur für den 

Industriesektor insgesamt, sondern auch im Einzelnen für neun der zehn betrachteten 

Industriebranchen feststellen. Die Tatsache, dass in der Schweiz viele forschungsintensive 

Branchen beheimatet sind, in welchen ein vergleichsweise geringes Potenzial für grüne 

Innovationen besteht (z.B. Pharmaindustrie), kann diesen Rückstand somit nur teilweise erklären. 

Auffallend ist auch, dass die vergleichsweise geringe Neigung der Schweiz zu grünen 

Innovationen erst gegen Ende der Beobachtungsperiode, also ab Mitte der 90er Jahre, zu Tage 

tritt – in früheren Jahren lag die Quote an grünen Innovationen in der Schweiz auf Höhe des 

weltweiten Durchschnitts oder sogar darüber.  Als potentielle Erklärungen für den Rückstand der 

Schweiz gibt es (a) das Opportunitätskosten-Argument: aufgrund der in der Vergangenheit 

erfolgreich getätigten Innovationsanstrengungen hat sich die Schweiz eine Spezialisierung in 

Technologienischen verschafft, welche eher nicht dem grünen Bereich zuzuordnen sind. Ein 

Umschwenken von diesem Spezialisierungspfad auf „grünere“ Technologien wäre für die 

betroffenen Unternehmungen nicht ohne Umstellungskosten zu haben (wenngleich die bereits 

erarbeitete nicht-grüne Wissensbasis im Hinblick auf die Entwicklung grüner Technologien 

dennoch hilfreich ist, wie unsere Resultate zeigen). Und (b)  dürfte auch die starke 

Zurückhaltung der Schweizer Politik in Bezug auf die explizite Förderung einzelner 

Technologiefelder – darunter insbesondere „grüne“ Technologien – eine Rolle gespielt haben, 

weshalb die Schweiz eine deutlich niedrigere Quote an Patentanmeldungen dieser Sorte im 

Vergleich zu vielen Ländern mit aktiveren Förderpolitiken (darunter etwa Dänemark und 

Deutschland) aufweist. 
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1 Introduction 

Despite the fact that climate change should ideally increase the demand for green technologies, 

firms have still low incentives to invest in green technologies as there is a ‘double externality 

problem’ (see, e.g., Beise and Rennings 2005, Faber and Frenken 2009, Hall and Helmers 2011). 

Firstly, due to the public goods nature of knowledge (see, e.g., Geroski 1995, Popp 2011) and 

due to financial market imperfections green technology investment decisions are complex and 

often linked with financial constraints. Secondly, because the greatest benefits from green 

innovation are likely to be public rather than private, the customers’ willingness to pay for these 

innovations is low. In line with this literature a study by Soltmann et al. (2013) shows that 

economic performance is negatively affected by green inventions. This result indicates that – 

given the current level of green promotion – free market incentives alone are not sufficient to 

allow the green invention activities of industries to rise considerably. However, technological 

innovations are needed to solve environmental problems. “Without significant technological 

development of both existing low-carbon technologies and new ones, climate change is unlikely 

to be limited to anything like 2ºC” (see Helm 2012, p. 213). Accordingly, a kind of intervention 

is required to stimulate green innovation activities.  

The paper at hand focuses on energy prices as a measure for environmental policy1 and 

investigates if energy prices are likely to contribute to increase the probability of green 

innovations. More concretely, we investigate if the effects of energy prices are different for 

‘green’ innovations than for ‘other than green’ innovations.  

Empirical research linking environmental policy and innovation is related to a small but 

increasing literature. A first group of studies uses pollution abatement control expenditures 

(PACE) to proxy for environmental regulation stringency. Brunnermeier and Cohen (2003) 

found for the US that PACE is positively related to environmental innovation. Based on a data 

                                                 
1 Energy prices can be seen as a measure for environmental policy, since energy prices are mainly driven by 
international markets and their variations between countries are mainly due to taxes or other policy measures (see 
Aghion et al. 2012).  
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set that includes 17 countries Lanjouw and Mody (1996) also found a positive correlation 

between PACE and environmental innovation. However, the use of PACE as a measure for 

policy stringency in a cross-country study is questionable due to the heterogeneity in the 

definitions and sampling strategies (see Johnstone et al. 2012, p. 2161). To overcome this 

problem Johnstone et al. (2012) used survey data. Based on this data they again found that 

environmental innovation is positively affected by environmental policy stringency. 

Most other studies overcome the problem of comparability by using energy prices as 

proxy for environmental regulation.2 Most of them focus on a single industry. Aghion et al. 

(2012) investigated the significance of energy prices for technological change by looking at the 

car industry based on patent data over a long period in time (1978 - 2007). They found that 

higher energy prices increase the propensity of ‘clean’ innovation in the car industry. Moreover 

they stated that the price effect is stronger for firms with a great stock of ‘dirty’ patents. Newell 

et al. (1999) looked at the level of product characteristics in the air-conditioning industry and 

found that energy prices had an observable effect on energetic features of the products offered for 

sale. Lanzi and Sue Wing (2011) found a positive relationship between energy prices and 

innovations in renewable technologies in the energy sector of 23 countries.  

Popp (2002) did not focus on a single industry but a single country. He looked for the 

USA at 11 different technologies including supply (e.g. solar energy, fuel cells) and demand 

technologies (e.g. recovery of waste heat for energy, heat pumps) and found that energy prices 

and the existing knowledge stock have a strong and significant positive effect on innovation.  

                                                 
2 Following the findings in other fields (consumer behavior), it is likely that the elasticity effects of energy prices 
and energy taxes (policy instrument) have the same direction, although they are different in magnitudes. Li et al. 
(2012) showed that gasoline taxes reduce gasoline consumption stronger than a tax-exclusive price increase in 
gasoline. Davis and Kilian (2011) find that tax elasticity is much larger than price elasticity. Ghalwash (2007) 
compares environmental tax elasticities with traditional price elasticities and found that the effects depend on the 
type of energy good. Scott (2012) finds that consumers are twice as responsive to tax-driven price changes as to 
market-driven price changes and also Baranzini et al. (2009) find for Switzerland that consumers’ reaction depend 
on the source of price variation. They found that the Swiss mineral oil tax increase in 1993 decreases gasoline 
demand by about 3.5% in addition to its direct impact through the price increase. This additional effect may result 
from the consumer’s understanding that taxes are not a market driven variation or that gasoline tax changes receive a 
great deal of attention from the media, which could contribute to reinforce consumers’ reaction (Li et al. 2012).  
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In all these studies it is unclear whether the results also hold for other industries and/or 

countries. Only a few studies are based on data for more than one country and more than one 

industry. Johnstone et al. (2010) analysed for five different renewable energy technologies how 

different policies (among others energy prices) did affect innovation on a certain technology. 

Verdolini and Galeotti (2011) investigated the impact of energy prices on technological 

innovation (12 technologies like in Popp 2002) for a panel of 17 countries and found a positive 

sign. However, as both studies are based on data that is either aggregated on country-level or 

technology-level, there is a concern that there may be other macro-economic shocks correlated 

with both innovation and the energy price (see Aghion et al. 2012, p.5). 

In the study at hand we contribute to the existing literature in many respects. Firstly, we 

use energy prices as a proxy for environmental regulation. This allows us to generate an industry-

level data set that covers the whole manufacturing sector (grouped into 10 industries), the most 

important countries for green invention (18 OECD countries that are responsible for more than 

95% of all green patents and total patents worldwide) and this over a period of 30 years. 

Secondly, we use patent data to identify green and non-green inventions.3 Patent documents 

considered as covering green inventions are identified according to the OECD Indicator of 

Environmental Technologies (see OECD 2012) that distinguishes seven environmental areas, i.e. 

(a) general environmental management, (b) energy generation from renewable and non-fossil 

sources, (c) combustion technologies with mitigation potential, (d) technologies specific to 

climate change mitigation, (e) technologies with potential or indirect contribution to emission 

mitigation, (f) emission abatement and fuel efficiency in transportation, and (g) energy efficiency 

in buildings and lighting. If an invention can be assigned to one of these sub-groups (a to g), it is 

counted as a green invention; otherwise it is counted as a non-green invention. By using the 

Schmoch et al. (2003) concordance scheme we switch from the technology level to the industry 

level. This allows us to include control variables on the aggregation level of an industry (e.g., 

                                                 
3 In this paper, patents and inventions are largely used synonymously.  
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capital and number of employees). Furthermore, we reduce the potential problem of an omitted 

variable bias by controlling for industry/country specific fixed effects. Thirdly, we calculate 

industry specific energy prices what allows us to include country specific time fixed-effects. 

Compared with previous studies on a more aggregated level (e.g. country level) there is no 

concern that there could be macro-economic shocks correlated with both innovation and the 

energy prices that bias our results (see Aghion et al. 2012, p.5). 

With respect to our main variable we find that energy prices do stimulate both the 

intensity of green innovation as well as the propensity of green innovation. In our model, a 10% 

increase of the average energy prices of the previous five years results in a 2.7% and 4.5% 

increase of the number of green patents and the ratio of green patents to other patents, 

respectively. Knowledge about potential political instruments to stimulate innovation in this area 

is of large importance. As our study shows, energy prices may serve as such an instrument. An 

increase in energy prices may stimulate the building of a green knowledge stock that (a) would 

help to achieve a country’s climate targets and (b) may serve as an important fundament to 

establish a cleantech market for which long-term growth is predicted. 

2 Conceptual Background and Hypotheses 

The idea that an increase in the relative price of a production factor will direct innovation efforts 

towards technologies that are less intensive in the production factor becoming more expensive 

can be attributed to Hicks (1932, as quoted e.g. in Binswanger et al. 1978): “A change in the 

relative prices of the factors of production is itself a spur to invention, and to invention of a 

particular kind - directed to economising the use of a factor which has become relatively 

expensive.” 

This intuitively appealing assertion has been known as the induced innovation hypothesis. 

Subsequent research attempted to provide microeconomic foundations for this claim and to 

assess its relevance for traditional welfare economics (Binswanger et al. 1978, ch. 4). Induced 

innovation is generally thought to exacerbate the effects of externalities not properly taken into 
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account. In particular, the exploitation of fossil fuels has undesirable side effects as CO2 

emissions negatively affect global climate. Two harmful mechanisms are at work as a result of 

not having adequately priced these energy resources (by failing to take into consideration their 

negative externalities, e.g. by charging a CO2 tax): price signals not only affect entrepreneurs’ 

choice of input combinations, given the production techniques currently available; but they also 

affect their choice of which production technologies to develop for future use.  

Taking the opposite perspective, it can be argued that taking into account induced 

innovation renders market-based policies to tackle climate change more efficient (or, more 

precisely, less costly). This is because such policies not only motivate profit-seeking firms to 

switch to less energy-demanding technologies that are available as of today, but these policies 

will induce firms to strengthen their efforts to develop such technologies for the future (see, e.g., 

Carraro and Siniscalco (1994) for a consideration of this point). 

In line with the induced innovation hypothesis, Porter and van der Linde (1995) go as far 

as claiming that well-designed environmental regulation may bring about a net benefit to firms 

subject to such regulation. According to their argument, technological advances in process and 

product design triggered by such regulation often result not only in a decrease of harmful 

emissions (or of other undesirable ecological consequences), but also in new modes of 

production which are altogether more efficient, bringing about competitive gains that offset the 

initial private costs of complying with environmental policy. A controversial debate has 

subsequently been triggered about the general validity of their claims, which became to be 

known under the name of the Porter hypothesis. While we do not provide an empirical test for it 

in the present study, it should be noted that the Porter hypothesis implies that regulation triggers 

innovation. Thus, finding support for induced innovation can be regarded as a necessary but not 

sufficient condition for validating the claims made by Porter and van der Linde.  

Subsequent theoretical research based on the Porter hypotheses, supports for what is 

known as the “weak” version of the Porter hypotheses, i.e. that energy prices are positively 
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related with green innovation. Mohr (2002) showed that environmental regulation, like higher 

energy prices, are encouraging firms to invest in clean technologies. Also Mohr and Saha (2008) 

showed that environmental taxes trigger green innovation. Schmutzler (2001) chose an owner-

manager model and confirmed that environmental taxes lead to innovation activities if some 

restrictive conditions are fulfilled. Hence, we formulate the two following hypotheses:  

H1:  Energy prices are positively related to the number of ‘green’ innovations (i.e., the 

intensity to patent in green technologies). 

H2:  Energy prices are positively related to the number of green patents relative to other 

patents (i.e., the propensity to patent in green technologies). 

Econometric estimations (see, e.g., Popp 2002 (for different technologies), Aghion et al. 2012 

(for the car industry)) confirm the fact that energy prices are positively related with the green 

innovation activities. Van Leeuwen and Mohnen (2013) found strong evidence that energy prices 

are positively related with green innovation investments.4 

3 Description of the Data 

3.1 Measurement of green inventions based on patent statistics 

We use patent statistics in order to measure the green innovation activities of an industry. 

Although patent statistics have many disadvantages in measuring innovation output (see Aghion 

et al. 2012), they are a rather good proxy for input because there is a strong relationship between 

the number of patents and R&D expenditure (see Griliches 1990). Despite the fact that not all 

inventions are patentable and smaller firms are more reluctant to patent than larger firms, patent 

counts are still the best available source of data on innovation activities as it is readily available 

and comparable across countries (Johnstone et al. 2010). This is especially true for green 

                                                 
4 Horbach et al. (2012) found that cost savings are an important driver for green innovations. This implicates that 
higher energy prices stimulate green innovation.  
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technological activities, since the OECD (2012) provides a definition of green technologies based 

on the patent classification.  

For the paper at hand, patent information is gathered in cooperation with the Swiss 

Federal Institute of Intellectual Property (IPI). Green patents are a sub-group of patents that are 

selected according to the OECD Indicator of Environmental Technologies (see OECD 2012). 

Based on the International Patent Classification, the OECD definition distinguishes seven 

environmental areas, i.e. (a) general environmental management, (b) energy generation from 

renewable and non-fossil sources, (c) combustion technologies with mitigation potential, (d) 

technologies specific to climate change mitigation, (e) technologies with potential or indirect 

contribution to emission mitigation, (f) emission abatement and fuel efficiency in transportation, 

and (g) energy efficiency in buildings and lighting. 

In order to identify our proxy for the green knowledge output of an industry, further 

specifications and clarifications have to be made:  

(a) In order to assign patents to countries, the applicant’s country of residence or the 

inventor’s country of residence may be chosen. We assigned patents according to the applicant’s 

address. Since only those inventions were selected for which at least one PCT (Patent 

Cooperation Treaty) application was filed, the applicant's address was generally available.5 

Patent applications are costly. Hence, it is very plausible that countries for which patent 

applications were filed are also target markets of the invention. Accordingly, there should be a 

direct link between these countries and the expected market performance. 

(b) We collected inventions (patent families) rather than single patents. The patent data 

stem from the EPO (European Patent Offices) World Patent Statistical database (PATSTAT). 

                                                 
5 We may also have used the inventor’s address instead. However, there may be a risk of distorting the analysis, 
especially for smaller countries, because the inventor may not live in the country where the invention occurs. 
Conversely, by using the applicant’s address the analysis may be biased by patent applications from multinationals 
for which the country of residence of the applicant possibly differs from the country where the invention occurred. In 
order to investigate if there are considerable differences, we took both the inventor’s information and the applicant’s 
information for Germany. In fact, we did not see any significant differences between the analysis based on the 
inventor’s and applicant’s address for that country. 
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Patents were grouped into patent families according to the PATSTAT procedure. This approach 

has the advantage that distortions caused by different national granting procedures and different 

application attitudes (USA: greater number of single applications for one invention compared to 

Europe) are mitigated. 

(c) Only inventions were considered which were at minimum filed for patent protection 

under the Patent Cooperation Treaty (PCT). Fees for a PCT patent application are generally 

higher than for patent applications filed with national or regional patent authorities. Accordingly, 

applicants are expected to file inventions for patent protection under the PCT if they assume the 

invention to have enough commercial potential to compensate for the higher fees. 

(d) Most of our model variables are classified by industrial sectors and not according to 

the IPC technology classes. Schmoch et al. (2003) developed a concordance scheme that links 

technology fields of the patent statistics to industry classes.6 On the basis of this concordance 

table we thus recoded our patent data into 10 manufacturing industry classes either at the NACE 

two-digit level for which also energy price data were available.7 In comparison with patent data 

at the firm level, aggregating patents on an industry level should reduce potential problems with 

patent waves within a firm.  

(e) Our data set includes patent data from 18 countries (Australia, Austria, Belgium, 

Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands, 

Spain, Sweden, Switzerland, the United Kingdom and the United States). These 18 countries 

account for more than 95% of all green inventions as well as all other inventions worldwide. The 

data set includes 10 industries that capture the whole manufacturing sector (chemicals; food and 

tobacco; machinery; basic metals; non-metallic minerals; paper, pulp and print; textile and 

                                                 
6 Lybbert and Zolas (2012), suggest new methods for constructing concordances. In comparing different 
concordance, they confirmed that on a relatively coarse level (e.g., 2 digit), the Schmoch et al. (2003) concordance 
enable a useful empirical policy analysis. 
7 The concordance scheme is based on patent classification and also the OECD Indicator of Environmental 
Technologies (see OECD 2012) is based on the patent classification, hence, we can easily distinguish green from 
non-green patents on the industry level. This way we can identify for each industry class the total number of green 
and non-green patents. 
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leather; transport equipment; wood and wood products; non-specified industry). The patent data 

is available from 1975 onwards.8 

Figure 1 shows the aggregated development of green inventions over time. In the 

beginning of our sample period, only a few green inventions were registered. The number of 

green inventions remained very low during the following ten years. Between 1985 and 1995, the 

number slightly increased. The increase was, however, not disproportionally high compared with 

other inventions. A sharp increase in the number of green inventions can be observed since 1995. 

In 2009, 29’444 green inventions were protected worldwide. Due to generally low patent 

activity, the ratio of green inventions to other inventions was quite instable in the beginning of 

our sample period. In a second stage, the ratio stabilized between 6-8%. A disproportional 

increase of green inventions can be observed after 2000. By 2009, the relative importance of 

green inventions compared to other inventions had increased to 11.6%. 

Detailed descriptive statistics for our disaggregated patent data are presented in Table 1. 

Nearly half of all green inventions are patented in the ‘machinery’ sector (49%). Furthermore, a 

considerable share is patented in the two industries ‘chemicals’ (24%) and ‘transport equipment’ 

(16%). The industry ‘transport equipment’ (35%) is at the same time the most green-intensive 

industry, followed by the two industries ‘basic metals’ (14%) and ‘non-metallic minerals’ (11%). 

On the country level (see Table 1) we see larger shares of non-green patents being 

generated by larger countries. The USA, Japan, and Germany hold 38.5%, 14.8%, and 12.8% 

respectively. Switzerland has a remarkable share of 3.0%, which is about three times that of 

Austria or Denmark, and still about twice the share of Italy. In sum Switzerland is ranked 7th in 

terms of the share of other patents.  

Concerning the respective shares in total green patents (see column 4 in Table 1), we see 

a different picture. Although the USA (29.0%), Japan (21.4%), and Germany (18.0%) also show 

                                                 
8 Actually the EPO (European Patent Office) was created in 1977/78. However, patent data are already available 
from 1975 onwards. The reason is that we use PCT applications, which can contain patents that are filed before 
1977. Hence PCT applications can be found in PATSTAT before EPO was created.  
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the greatest green shares, the country ranking further down the line changes. Switzerland has 

2.0% of all green patents and is ranked on the 10th position, followed by Australia (1.9%), Italy 

(1.5%), Denmark (1.4%), and Austria (1.1%). Compared to the ranking in other patents, 

Switzerland shows the greatest drop and Austria or Denmark the greatest improvement in the 

ranking.  

The last column in Table 1 shows the ratio of green patents to non-green patents. Japan 

(11.6%), Germany (11.3%) and Denmark (11.0%) show the highest degree of specialisation in 

green patent activities, followed by Canada (10.5%) and Austria (9.7%). Switzerland (5.3%) is 

ranked on the 17th position just before Ireland (5.2%). In sum we see from this descriptive 

statistics that green innovation activities show a great heterogeneity across industries and across 

countries.  

3.2 OECD Stan data 

In order to control for important industry characteristics beside their stock of knowledge we 

accessed the OECD STAN database (OECD 2011). We used information on labour input (total 

employment) and the capital stock (gross fixed capital formation, volumes at current prices) of 

industries relevant for our estimations.9  

3.3 IEA energy data 

To analyse the impact of energy prices on innovation, we use information on energy prices 

available from the International Energy Agency’s (IEA) Energy Prices and Taxes Statistics (IEA 

2012a) for all 18 countries that are included in our sample. The price information is available for 

different energy products on a country level from 1978 onwards. To get internationally 

comparable information, we use total end-use prices (per toe10 including taxes) for the 

manufacturing sector in USD (PPP). This information is available for different energy products, 

                                                 
9 For the descriptive statistics of variables from the STAN data and other model variables see also Table A.1 in the 
appendix. 
10 Tonne of oil equivalent; unit of energy for the practical expression of energy quantities (e.g., 1 MWh = 0.086 toe). 
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such as electricity, light fuel oil,11 natural gas and different coal products. Figure 2 shows the 

development of the energy prices since 1978. We see a parallel development of the energy prices 

of the respective sources. Several of these products show a sharp increase at the beginning of the 

80s and again from 2000 onwards. While the price of light fuel oil remarkably dropped in 2008, 

the electricity price further increased. Electricity is the most expensive energy source at all times, 

followed by light fuel oil, natural gas, steam coal, and coking coal. With the exception of 

electricity, energy prices doubled since 2000. 

At the country level (see Figure 3) we see that electricity is most expensive in Italy, 

followed by Japan, Korea, and Spain. Light fuel oil is most expensive in Korea followed by Italy, 

Spain, and Ireland. Natural gas is most expensive in Korea, followed by Sweden, Denmark, and 

Japan. However, the descriptive comparisons of these prices is very limited, since prices are not 

available for all countries for all times. Hence, the average might be biased due to the fact that 

energy prices are only available at later times. This is the case e.g. for Sweden in terms of natural 

gas. 

Besides the energy prices, the IEA collects data on consumption of the different energy 

products (in ktoe) on the industry level. This information is available for 10 different industries 

of the manufacturing sector and comes from the IEA World Energy Statistics and Balances (IEA 

2012b). This allows us to calculate the relative importance of a certain energy product compared 

with other products on the industry level. Electricity (35%) followed by other products (28%) 

and natural gas (23%) are the most important energy sources. Light fuel oil, steam coal and 

coking coal are of minor importance in the countries we looked at (see Figure 4). If we compare 

natural gas, light fuel oil and electricity on an industry level across all countries and all times, we 

                                                 
11 The IEA does also collect price information for other oil products, such as motor gasoline. However, as the 
number of observations is very low for these variables, we could not use this price information to construct our 
industry specific energy price. Our energy price should nevertheless be representative, as the energy products that 
could be taken into account (electricity, light fuel oil, natural gas and different coal products) make up more than 
70% of total energy consumption (on average over all industries and the whole time period; see Figure 4). This 
figure is quite impressive, as the remaining 30% do not only include motor gasoline, but also the consumption of 
energy products for which no price information is collected, such as energy from biogases or heat. 
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see that in most industries, electricity is the most important energy source (see Figure 5). Only in 

the non-metallic minerals industry natural gas is more important. Natural gas is also relatively 

important in chemicals, food and tobacco, and in the non-specified industry. 

To get industry specific energy prices, we finally multiply the energy prices with the 

relative importance within the industry. The industry specific energy price for an industry j, in 

country i at time t is defined as follows: 

  

௜௝௧݁ܿ݅ݎ݌_ݕ݃ݎ݁݊ܧ ൌ෍ܧ_ݓ௜௝௧௦

௦

௜ୀଵ

∗ ln	ሺݏݐ݅݁ܿ݅ݎ݌_ݕ݃ݎ݁݊ܧ௜௧௦ሻ 
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and 

 

ݏ ∈ ሾ݈݁݁ܿݕݐ݅ܿ݅ݎݐ, ,݈݅݋	݈݁ݑ݂	ݐ݄݈݃݅ ,ݏܽ݃	݈ܽݎݑݐܽ݊ ,݈ܽ݋ܿ	݉ܽ݁ݐݏ  .ሿ݈ܽ݋ܿ	݃݊݅݇݋ܿ

The information on energy consumption as well as on energy prices is available for electricity, 

light fuel oil, natural gas, steam coal, and coking coal. However, due to missing values for some 

of the price variables, the prices used in our main model are based on the three products 

electricity, LFO and natural gas. Besides the fact that there are fewer missing values for these 

three products than for the other products, these are also the three products that show the largest 

relative importance in our sample (see Figure 4). However, we test the sensitivity of our results 

to prices that are based on other baskets of energy products as well (see Table A.6). 
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3.4 Combining the data  

As only very few patent counts could be registered in the years before 1980, we restrict the 

patent sample used for regression analysis to the years 1980-2009. Accordingly, the final data set 

includes 18 countries, 10 industry classes and a period of 30 years. This yields a data set of 5’400 

observations. Because of missing values for the other model variables, the number of 

observations that could be used for econometric estimations is significantly lower. 

4 Empirical Test of Hypotheses 

As stated by Jaffe and Palmer (1997) it is very difficult to specify a theoretically satisfying 

structural or reduced-form innovation equation at the industry level. Hence, we follow the 

framework of a knowledge production function as it was formulated by Griliches (1979) and 

implemented in form of a modified Cobb-Douglas model by Jaffe (1986, 1989). Similar to Jaffe 

(1989) we look at patents as the outcome variable but we differ in two respects, first we 

investigate the industry level and secondly we can distinguish between different types of 

knowledge inputs. We formulate the following knowledge production function for an industry j, 

in country i at time t:12 

_ ,ijt ijt ijtGreen patents AL K   (1)

where Green_patents is the number of green patents (inventions), L is the labour input and K the 

capital-stock, A is a constant. The parameters   and   are elasticities with respect to labour and 

physical capital respectively. In our model we use the industries’ total number of employees as a 

proxy for labour (L) and the gross fixed capital formation in real terms is used to proxy physical 

capital (K). Ideally, one would use data on the capital stock instead of capital formation. 

Unfortunately, this information is only available for a few countries in the STAN database. We 

thus use a flow variable as a proxy for physical capital. Both variables, L and K, should be 

positively related with innovation activity. 
                                                 
12 Other functional forms, like e.g., a translog function, would require more detailed data to describe the production 
process (see Griliches 1979). 
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Expressing (3) in logarithms yields 

ln( _ ) ln( ) ln( ) ln( ).ijt ijt ijtGreen patents A L K     (2)

Besides the standard input factors, the current flow of green patents should also be affected by an 

industry’s stock of knowledge. To capture this effect we augment our specification with a 

variable that measures an industry’s stock in green patents (Green_stock).13 Following Cockburn 

and Griliches (1988) and Aghion et al. (2012), the patent stock is calculated using the perpetual 

inventory method. Following this method, the stock is defined as 

1_ (1 ) _ _ ,ijt ijt ijtGreen stock Green stock Green patents     (3)

where   is the depreciation rate of R&D capital.14 According to most of the literature, we take 

  to be equal to 15% (see Keller 2002, Hall et al. 2005). However, we test the sensitivity of our 

results to other depreciation rates as well (see Table A.7). To capture potential effects of 

available knowledge in other than green technologies, we also control for the stocks of patents 

that are not classified as green (Other_stock). The stock of other patents is calculated in the same 

way as the stock of green patents. In line with previous literature (see, e.g., Aghion et al. 2012, 

Stucki and Woerter 2012) we expect that both green specific knowledge and other than green 

knowledge do stimulate current green innovation activities. 

Finally, to test the impact of energy prices, a variable that measures the industry specific 

energy prices (Energy_price) is included in this innovation model. The augmented specification 

is given by: 

1 1 1

1 1

ln( _ ) ln( ) ln( ) ln( ) ln( _ )

ln( _ ln( _ ,

ijt ijt ijt ijt

ijt ijt it ij ijt

Green patents A L K Green stock

Other stock Energy price

  

    
  

 

   

      
 (4)

                                                 
13 Popp (2002) finds empirical evidence that failing to properly take into account measures for existing knowledge 
stocks may severely bias estimates of the innovation inducing effect of energy prices. 
14 Due to the low number of patents before 1980, we restricted our sample period to the years 1980-2009. However, 
patent applications before 1980 were used to calculate the patent stocks. The initial value of the patent stock is set at 
Green_stock1975/(δ+g), where g is the pre-1975 growth in patent stock that is assumed to be 15%. 
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where   and   are the coefficients of knowledge stocks,   is the coefficient of energy prices 

and ε is the stochastic error term (see Table 2 for variable definition). As patent variables may 

contain a value of zero, we used ln(1+patents) to avoid problems with the logarithm (see 

Wooldridge 2002, p. 185). To deal with the potential problem of reverse causality the 

independent variables are introduced with a lag of one year.  

To test the robustness of the price effect we use different dynamic specifications for 

energy prices, i.e. we use alternative lags (2-5 year lag), we construct a weighted average of past 

prices as proposed by Popp (2002)15 and we calculate a moving average of the energy prices of 

the previous five years. 

To control for correlated unobserved heterogeneity, we include country specific industry 

fixed effects ( ). This way we control for the general policy attitude of countries in terms of 

industry specific policy measures.16 Furthermore, to reduce the risk of an omitted variable bias 

from country specific shocks, we include country specific time fixed effects (μ). As stated in 

Aghion et al. (2012), the increase of energy prices, e.g., might be correlated with country specific 

subsidies for green innovation. Accordingly, the effect of energy prices may represent an indirect 

effect of subsidies on green innovation, and not a direct effect of prices as suggested above. The 

fixed effect μ captures such country specific shocks. 

As we are not just interested in the effect of energy prices on the total number of green 

patents (i.e., the intensity of green patent activities; see H1), but also in the effect on the 

development of the number of green patents relative to other patents (i.e., the propensity to patent 

in green technologies; see H2), we alternatively estimate our innovation model with a different 

dependent variable that measures the difference between the logarithms of the number of green 

                                                 
15 As in Popp (2002), this energy price is based on an adaptive expectation model, in which expected future energy 

prices are a weighted average of past prices: *

0
(1 ) ,k

ijt ijt kk
P P 


    where ψ, the adjustment coefficient that 

represents the weights placed on past observations, is 0.83 (see Popp 2002 for a similar procedure), and at the 
beginning of the sample period where no price data for previous time periods was available, price expectations have 
been set to current prices. 
16 More concretely, we control for policies that are industry specific and do not change across time. These fixed 
effects do not control for industry specific policy shocks.  
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patents and non-green patents (ratio of green patents to non-green patents). Our second model 

thus reads as follows: 

1 1

1 1 1

ln( _ ) ln( _ ) ln( ) ln( ) ln( )

ln( _ ln( _ ln( _ )

.

ijt ijt ijt ijt

ijt ijt ijt

it ij ijt

Green patents Other patents A L K

Green stock Other stock Energy price

 

  

  

 

  

   

    

  

 (5)

5 Estimation results 

The main results are presented in Tables 3 and 4. Table 3 shows OLS log linear fixed-effects 

estimations for the number of green patents.17 The columns with uneven numbers show the 

results of the full model as specified in equation 4 for different dynamic specifications of the 

price variable. The columns with even numbers show the results for the same estimations without 

capital control (reduced model), which significantly increases the number of observations. To 

test whether this modification does lead to an omitted variable bias, Table A.2 shows the results 

for the reduced models based on the same observations that are available in the full model. As 

the results for the energy price variable do only marginally differ between these two models, we 

conclude that at least the result for the energy price should not be affected by an omitted variable 

bias in the reduced models. Table 4 shows the results for the model with the log ratio of green to 

non-green patents as dependent variable, as specified in equation 5. 

Our econometric estimations show that energy prices are significantly positively related 

with green innovation. This result is in line with hypothesis H1 which states that larger energy 

prices stimulate current green innovation activities. Moreover, the impact of energy prices 

increases with an increasing time lag between energy prices and innovation activities (see Table 

3).18 If we take a 5-year lag we get significant coefficients of 0.28 (full specification) and 0.27 

                                                 
17 Our dependent variable is the natural logarithm of the number of green patents, which is a count variable. 
Accordingly, count data models would be appropriate. However, these models do not allow to control for country 
specific time fixed effects, which is one of the main contributions of our paper. We thus decided to present as a 
baseline specification the OLS fixed effects regressions. Robustness tests using count data models are presented in 
Table A.8. 
18 To test whether the differences arising from different time lags for the price variable in Table 3 are driven by the 
different lag structure or the different samples, Table A.3 shows the results for the same estimates, but with the same 
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(reduced model); if we take the moving average of energy prices over five years we see 

significant coefficients of 0.27 and 0.34 for the full specification and the reduced model, 

respectively.  

Hypothesis H2 is confirmed as well, as energy prices have a significantly positive impact 

on the ratio of green innovation to non-green innovations (see Table 4). Accordingly, energy 

prices do positively affect both, the intensity and the propensity of green innovation. In our 

model, a 1% increase of the average energy price of the previous five years results in a 0.45% 

(full model) and 0.48% (reduced model) increase of the ratio of green to non-green patents. 

Although we do not investigate crowding out effects of green innovation activities explicitly (see 

van Leeuwen and Mohnen 2013, Marin 2013 for crowding out investigations on the firm-level), 

the relatively large difference in elasticities (0.27 in the green patents equation vs. 0.45 in the 

green share equation) indicates some crowding out tendencies, since the share of green 

innovation is more strongly affected than the number of green innovations. Indeed, we find a 

significantly negative effect of energy prices on non-green innovation for all but one model 

specification (see Table A.4).19  

As described in the introduction, our model is based on a broader data set than most 

previous studies. It would thus be interesting to analyse how this fact does affect the impact of 

the energy prices. As previous models either include different control variables or even use 

different measures for green innovation, a direct comparison of the marginal effects of energy 

prices is hardly possible. Nevertheless, a comparison can provide evidence on the question 

whether the impact of energy prices differs substantially among countries and industries. Popp 

(2002) identifies an effect of energy prices on the share of green patents in total patents of 0.34 

(long run elasticity) for the USA. Though we defined our share variable differently, the size of 

                                                 
observations across the models. As these results do only marginally differ from previous results, we conclude that 
differences across models are driven by dynamic effects.   
19 The impact of energy prices on total patent activity is negative but only small in size and not statistically 
significant (these estimates are not presented here but are available on request). 
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the effect is quite similar to the 0.52 that we find with respect to the share of green innovation in 

non-green innovation when using comparable energy prices20 for 13 countries (see columns 11 

and 12 of Table 4). Aghion et al. (2012) analyse the effect of fuel prices on different innovation 

variables for the auto industry. Based on a slightly different model specification that also controls 

for other types of knowledge stocks, they identified elasticities of 0.97 and -0.57 for the number 

of ‘clean’ and ‘dirty’ patents, respectively. These elasticities are considerably larger than the 

figures we find for the total manufacturing sector (based on a lag structure of one year we find 

for the reduced model elasticities of 0.20 and -0.14, respectively). Accordingly, it seems that the 

dependency on energy prices in the auto industry is larger than the dependency in the other 

manufacturing industries. In line with our finding, they also find that the impact of energy prices 

increases with an increasing lag between energy prices and innovation activities. These 

comparisons indicate that the differences of price elasticities across countries are smaller than the 

respective differences across industries. However, further investigations are necessary to clarify 

this point.  

The results for the control variables are in line with general expectations. Labour input (L) 

and physical capital (K) tend to be positively correlated with the number of green patents. 

However, we cannot observe a significant effect for these two variables with respect to the share 

of green patents. The propensity to patent in green technologies is neither affected by labour 

input nor by physical capital input. As expected a larger stock of green knowledge does stimulate 

current activities in green innovation. Furthermore, we find in Table 3 that knowledge in other 

than green technologies serves as a resource for green innovation as well – the effect of 

Other_stock on the number of green patents is significantly positive. The positive effect of green 

knowledge on current green innovation activities is, however, significantly larger than the 

positive effect of non-green knowledge. The effect of Other_stock on the share of green patents 

is significantly negative (see Table 4). Thus, it seems that due to opportunity costs, the relative 

                                                 
20 Estimates based on a weighted average of lagged energy prices with a discount factor of 0.83. 
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impact of Other_stock on green innovation is smaller than the impact on other than green 

innovation. 

5.1 Robustness tests 

We made comprehensive tests to check the robustness of our main results presented in Tables 3 

and 4. All these tests are based on the models without the capital flow variable and using moving 

averages of the energy prices of the previous five years (as appearing in the last column of Tables 

3 and 4, respectively).  

Estimates for different subcategories of green innovation 

Our estimates are so far based on a quite broad definition of green inventions. Obviously, energy 

price shocks should, however, primarily affect inventions that are somehow related to energy 

reduction. To deal with this assertion, we estimate our previous model (column 14 of Table 3) 

separately for the seven environmental areas that are included in the OECD definition (see 

OECD 2012). The respective estimates are presented in Table A.5. The estimation results show 

that elasticities are larger for categories that we would suppose are more directly related to 

energy. Accordingly, the elasticity is largest for innovations in ‘technologies with potential or 

indirect contribution to emission mitigation’ (e.g., energy storage) and ‘energy generation from 

renewable and non-fossil sources’. More general green innovation such as innovation dealing 

with ‘technologies specified to climate change mitigation’ (e.g., CO2 capturing) is not 

significantly affected by energy price shocks. Nevertheless, our overall results seem to be quite 

representative, as the effect of energy prices is significantly positive for all other subcategories, 

and does only marginally vary across the different groups (elasticities between 0.24 and 0.38 for 

the other six categories).  

Alternative price variables 

Despite the fact that our price variable includes the prices of the three most important energy 

products, the construction of this variable may affect the results of our estimates. To test the 
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robustness of our results with respect to the construction of the price variable, we alternatively 

estimated our main model of Tables 3 and 4 with price variables that are based on alternative 

baskets of energy products. As there are missing values for some product-specific energy prices, 

enlarging the price basket significantly reduces the number of observations that is available for 

the model estimation.21 To get comparable results for the different price baskets, we estimate all 

models for the same set of observations. The respective estimation results are presented in Table 

A.6. To be able to compare these results with previous results, columns (2) and (8) show the 

results for the previous estimates based on the smaller sample. The fact that the price elasticities 

of these estimates only marginally differ from previous estimates (0.36 vs. 0.34 for green 

intensity and 0.55 vs. 0.48 for green propensity) indicates that the reduction of the sample size 

does not significantly affect our results. 

The estimates for the different price baskets show that the elasticities of our main models 

represent the lower limit. For all other price baskets the price elasticities are significantly larger. 

The largest elasticities can be observed for prices based on the three products electricity, light 

fuel oil and steam coal. Based on this basket we identify elasticities of 0.98 and 1.25 for the 

number of green patents and the ratio of green vs. non-green patents, respectively (see columns 3 

and 9). The elasticities are lowest when natural gas prices are included in the basket. Due to the 

relatively low prices of natural gas (see Figure 3) and its relatively high weight compared with 

other energy products (see Figure 4), the price mixes that include natural gas tend to be lower. 

Accordingly, a relative increase in these prices does lead to a lower absolute increase in energy 

costs than an increase in other price mixes and as a consequence we observe smaller green 

innovation effects. Other factors that may affect the different elasticities across the different price 

mixes may be different factor substitutabilities. For example it may be comparatively difficult for 

an industry to replace electricity by another product when electricity prices increase.  

                                                 
21 While 3’448 observations are available when only the two products electricity and light fuel oil are included in the 
price basket, only 1’203 observations are available when we additionally include the three products natural gas, 
steam coal and coking coal. 
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Testing the robustness of the stock variables 

In our main models (Tables 3 and 4) we applied a depreciation rate of 15% in order to calculate 

knowledge stocks. Table A.7 (columns 1 to 4) presents the results for alternative depreciation 

rates of 10% and 30%. The results are relatively independent of the chosen depreciation rate. The 

coefficients are similar and directions of the effects are identical. 

Checking for outliers 

Columns (5) to (8) of Table A.7 show the estimation results with regard to outliers. The 

distribution of inventions across industries is very heterogeneous. Consequently we run our 

estimation excluding the top 1% of performers and the top 5% of the performers, respectively.22 

This only marginally affected our results. We thus conclude that our results are not driven by 

outliers. 

Dealing with special characteristics of our data 

To deal with the count data characteristics of the green patent flow variable, column (1) of Table 

A.8 shows the results for the fixed-effects Poisson model with robust standard errors as 

recommended by Allison and Waterman (2002) to correct for over-dispersion. Unfortunately, 

this procedure does not allow the inclusion of country specific time fixed effects, thus time fixed 

effects only have been included as the nearest best alternative specification. The estimation 

results with respect to energy prices are only marginally affected by this alternative estimation 

procedure. The effect of energy prices on green innovation remains statistically significant and 

positive, and the coefficient is only slightly smaller (0.20 vs. 0.34). 

Column (2) of Table A.8 shows an OLS model that includes pre-sample fixed effects as 

proposed by Blundell et al. (1995) in order to deal with unobserved heterogeneity in the presence 

of lagged endogenous variables. In doing so we add the average level of patenting over the pre-

                                                 
22 Our main estimates presented in Tables 3 and 4 are based on 144 groups. To check for outliers, we excluded all 
groups with an average clean or dirty patent stock greater THAN or equal to the top 1% and 5% of the groups, 
respectively. All in all, we thus dropped two and ten groups that account for 1.5% and 6.6% of the observations, 
respectively. 
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sample period 1975-1985 for both, green and other patents (both in logs), as well as two binary 

variables that measure whether an industry had any patent applications at all in the pre-sample 

period. This procedure does again slightly reduce the size of the effect of energy prices (0.15 vs. 

0.34); the effect remains, however, statistically significant and positive.23 

6 Conclusions 

Based on industry-level panel data, the paper at hand investigates the determinants of green 

patent applications of an industry. We find that energy prices do stimulate both, the intensity of 

green innovation as well as the propensity of green innovation. In our model, a 10% increase of 

the average energy prices of the previous five years results in a 2.7% and 4.5% increase of the 

number of green patents and the ratio of green to non-green patents, respectively. While the main 

focus is on the impact of energy prices, our model shows several other interesting results. Firstly, 

we find that available knowledge stocks serve as an innovation relevant resource for green 

innovation independent whether available knowledge is green specific knowledge or knowledge 

in non-green technologies. Secondly, as a large knowledge stock in non-green technologies 

represents larger opportunity costs with respect to green innovation, the effect of non-green 

knowledge on current green innovation is significantly smaller than the effect of green 

knowledge. Furthermore, the effect of non-green knowledge on the share of green patents is 

significantly negative.  

In contrast to previous studies, our results are more general, as they are based on a 

broader empirical basis. While most previous studies focused on certain industries or countries, 

our data set includes the whole manufacturing sector and the most important countries for green 

innovation. Furthermore, we have reduced the problems of an omitted-variable bias by 

calculating industry-specific energy prices. When comparing our results with the results of 

                                                 
23 We chose these models not to be our baseline specification due to the fact that the count data model does not allow 
to control for country time fixed effects, and the Blundell et al. (1995) procedure mainly corrects for the endogeneity 
of the lagged dependent variable, which is a control variable in our model.  
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previous studies, we found that price elasticities seem to vary primarily across industries and not 

across countries. Accordingly, energy prices do not seem to be equally suitable as an instrument 

to stimulate green innovation in different industries. Due to the limited number of observations 

that is available in our data set, it was unfortunately not possible to compare price elasticities 

across industries. However, it seems to be an interesting task for future research to identify such 

difference across industries in order to increase the efficiency of energy price regulations. 

Despite a large future market potential, firms are probably not willing by themselves to 

invest in green technologies, as green innovation is still negatively related to economic 

performance (see Soltmann et al. 2013). Furthermore, free-riding possibilities in green 

technologies seem to be limited (see Stucki and Woerter 2012). Accordingly, knowledge about 

potential policy instruments to stimulate innovation in this area is of large importance. As our 

study shows, energy prices may serve as such an instrument. An increase in energy prices may 

stimulate the building of a green knowledge stock that (a) would help to achieve a country’s 

climate targets and (b) may serve as an important fundament to establish a cleantech market for 

which long-term growth is predicted.  

Future research should focus on differences of price elasticity across industries (see 

above) and it could also investigate in greater detail the link between investments in green 

technologies and investments in traditional technologies. Such crowding-out effects or the 

meaning of opportunity costs for a technological change would provide additional insights for 

policy makers. Since technological activities are global, such research would clearly benefit, if 

the studies could include country comparisons. 

7 Interpretations and Conclusions Relevant to Switzerland 

Switzerland is usually ranked among the most innovative countries in the world (see, e.g., 

Arvanitis et al. 2013). Our descriptive results confirm such findings when we refer to the patent 

activities of Swiss firms. When referring to the share of green patents in total green patents, the 

picture changes. Switzerland is ranked on the 10th position (see Table 1) in terms of its relative 
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share in total green patents and it is ranked 17th if we look at the ratio of green patens to other 

patents (green specialisation). This indicates that Swiss firms invest comparatively less in green 

technologies compared to other countries. The present section attempts to deal with the reasons 

for this apparent underperformance in green technologies, in particular by looking at the 

evolution across time and the sectoral patterns of green innovation in Switzerland, as compared 

to the rest of the world. 

Figure B.1 shows, for Switzerland and for the time period 1977-2009, the number of 

green patents and the ratio of green patents to other patents. It can thus be directly compared to 

Figure 1, which displays the same information for all countries considered in this study. The 

pattern of total number of green patents is very similar between Switzerland and the rest of the 

world: starting from only few inventions in the late 1970s and early 1980s, the number of 

inventions rose roughly exponentially throughout the time period considered. The ratio of green 

patents to other patents in Switzerland evolved in a more erratic manner when compared to the 

same indicator worldwide, which can be attributed to the lower number of inventions available 

for the calculation of this series. However, it can be seen that, for the last fifteen years of the 

comparison period, the ratio of green patenting has been consistently lower in Switzerland than 

in the rest of the world. This is made even more evident in Figure B.2, where the Revealed 

Technological Advantage (RTA) of Switzerland in green technologies is shown, which is defined 

as the ratio of green patenting in Switzerland divided by the same ratio in the rest of the world. 

Values greater than one in this measure thus represent a higher degree of the home country’s 

specialisation in the respective technology, values less than one a lower degree of specialisation. 

Switzerland’s RTA has been fairly stable around a value of 0.6 since the late 1990s. Prior to that 

– in particular from 1988 to 1993 – Switzerland exhibited a similar or even higher propensity of 

green patenting than the rest of the world. To sum up: Switzerland has intensified research in 

green activities in recent years (the ratio of green to other patents rose from below 4% in the late 

1990s to over 6% ten years later). Despite this recent effort, Swiss inventions have lately 
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remained, on average, less “green” than inventions elsewhere, due to the fact that there was a 

worldwide trend towards greener patenting from the turn of the century onwards. 

Is it possible to gain deeper insights from looking at differences in the patenting 

behaviour of the ten manufacturing branches considered so far in the present study? Let us 

consider the three industries that account, at the world level, for nearly 90% of all green 

innovations: machinery, chemicals and transport equipment. These are, according to Table B.1, 

also the three most important green innovators within Switzerland. However, within each of 

these branches, the propensity to innovate green (measured by the ratio of green patents to other 

patents, column 5 in Table B1) in Switzerland is below the respective industry’s world average 

(column 6). The gap is small for machinery (6.1% as opposed to 7.3%), but quite considerable 

for chemicals (3.6% vs. 6.4%) and transport equipment (19.0% vs. 34.7%).24 With respect to 

chemicals, the gap can partly be explained by the fact that this category includes 

pharmaceuticals, which accounts for a significant share of Swiss patenting, and which is an 

activity where green innovation opportunities are much smaller than in other activities belonging 

to the ‘chemicals’ branch (such as ‘basic chemicals’, and ‘other chemical products’). It thus 

seems reasonable to affirm that the composition of the Swiss manufacturing sector accounts to 

some extent for the lower observed propensity of Switzerland to generate green innovations, but 

that this composition effect alone cannot explain the entire gap. 

Additional explanations are thus required. We briefly consider two of them here. Firstly, 

opportunity costs. Switzerland is very strong in non-green technologies and its companies 

invested comprehensively in building up the necessary knowledge base. It is very expensive and 

risky to reallocate funds towards new environmentally friendly technologies, even more if 

businesses in the field of non-green technologies are performing well. Hence, the opportunity 

                                                 
24 With the exception of wood and wood products, all industries in Switzerland exhibit a similar pattern of a less-
than-world-average propensity to patent green. Arvanitis et al. (2011) conduct a cross-country comparison of 
different industries’ propensities to generate green innovations, which is similar to the one presented here (but in 
more detail, and at a slightly more disaggregated level), and obtain similar findings. 
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costs of investing in environmental friendly technologies are on average greater in Switzerland 

than in comparable other countries. This may explain to some extent the hesitation to invest in 

green technologies in Switzerland. However, given the strong knowledge base in non-green 

technologies, and the significant positive effect of such knowledge for the generation of green 

innovations that we empirically have observed in the present study (see Table 3), the 

technological environment is favourable also for green innovations. This suggests that Swiss 

firms have the capabilities to react with green innovation activities upon more favourable market 

conditions (e.g. energy prices) for green innovations. 

Secondly, lack of policy. Compared to other countries, the Swiss Government refrains 

from early policy interventions and it is also not in the tradition of public innovation promotion 

in Switzerland to provide direct funding for green innovation activities. This attitude is quite 

understandable, given the broad consensus among Swiss managers and policy makers that 

refraining from openly interventionist policies in the past has been a good thing. However, it is 

also not surprising that countries with an early policy commitment like Germany or Denmark 

show a better green performance, so far. From an economic perspective, what matters for policies 

to be effective is that they are coherent and involve a long-term commitment. Policies that affect 

energy prices by taking into account negative externalities (e.g. due to the carbon emissions 

resulting from the use of the respective energy source) are an example of a coherent policy signal 

that indicates the development of future green markets and that, in turn, stimulates green 

innovations. 
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Figure 1: Development of green patents worldwide, 1975-2009 

 

 
Source: Own calculations. 
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Table 1: Number of green and other patents (inventions) by industry and 
country 

Period 1975-2009 

Type of patent Other Green Green vs. Other 

  

Number of  
other 

patents 

Relative 
share  

in total 
other  

patents 

Number 
of  

green 
patents 

Relative 
share 

in total 
green 

patents 

Ratio of  
green patents to  

other patents 

Industry           

Chemicals 1174189 30.7% 75005 24.3% 6.4% 

Food and tobacco 57745 1.5% 2299 0.7% 4.0% 

Machinery 2057737 53.8% 151000 49.0% 7.3% 

Basic metals 51937 1.4% 7058 2.3% 13.6% 

Non-metallic minerals 90436 2.4% 9936 3.2% 11.0% 

Paper, pulp and print 23630 0.6% 1439 0.5% 6.1% 

Textile and leather 28133 0.7% 949 0.3% 3.4% 

Transport equipment 145020 3.8% 50350 16.3% 34.7% 

Wood and wood products 5213 0.1% 189 0.1% 3.6% 

Non-specified industry 190613 5.0% 10103 3.3% 5.3% 

Country       

Australia 62475 1.6% 5720 1.9% 9.2% 

Austria 35787 0.9% 3479 1.1% 9.7% 

Belgium 40323 1.1% 2586 0.8% 6.4% 

Canada 85872 2.2% 8978 2.9% 10.5% 

Switzerland 114720 3.0% 6042 2.0% 5.3% 

Germany 490347 12.8% 55373 18.0% 11.3% 

Denmark 38944 1.0% 4276 1.4% 11.0% 

Spain 28403 0.7% 2520 0.8% 8.9% 

Finland 50947 1.3% 3440 1.1% 6.8% 

France 203523 5.3% 17130 5.6% 8.4% 

United Kingdom 226841 5.9% 15172 4.9% 6.7% 

Ireland 12425 0.3% 637 0.2% 5.1% 

Italy 65926 1.7% 4640 1.5% 7.0% 

Japan 565774 14.8% 65906 21.4% 11.6% 

Korea 86305 2.3% 7267 2.4% 8.4% 

Netherlands 130982 3.4% 8794 2.9% 6.7% 

Sweden 111130 2.9% 6977 2.3% 6.3% 

United States 1473929 38.5% 89391 29.0% 6.1% 

Total 3824653 100% 308328 100% 8.1% 
 
Notes: Data is based on own calculations; these statistics are based on 35 cross-sections, 18 
countries and 10 industries (total of 6’300 observations); the relative share in total green patents is 
calculated as the share of an industry’s/country’s number of green patents relative to the number of all 
green patents in our sample (sum of green patents over all industries/countries in the sample); the ratio 
of green patents to other patents is defined as an industry’s/ country’s ratio of green patents relative to 
its number of other patents. 
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Figure 2: Energy prices for electricity, light fuel oil, natural gas, steam 
coal and coking coal (per tonne of oil equivalent (toe); PPP adjusted) by 
year, 1978-2009 
 

 
 
Source: IEA (2012a). 

 
 
Figure 3: Average energy prices (per tonne of oil equivalent; PPP 
adjusted) for the three most used energy products electricity, light fuel oil 
and natural gas (see Figure 4) by country, 1978-2009 
 

 
 
Notes: As the different price information is not available for all countries over the whole sample 
period, some of the figures are not directly comparable across countries and products. Natural gas 
prices for Sweden are for example only available for the years 2007-2009, and are thus not directly 
comparable with the respective prices for light fuel oil that are available for the whole sample 
period. Other prices averages with few observations are: Australian LFO price (6 years), Danish 
natural gas price (4 years) and Korean natural gas price (6 years); Source: IEA (2012a). 

  

0

200

400

600

800

1000

1200

1400

1
9
7
8

1
9
8
1

1
9
8
4

1
9
8
7

1
9
9
0

1
9
9
3

1
9
9
6

1
9
9
9

2
0
0
2

2
0
0
5

2
0
0
8

price_electricity_ppp

price_lfo_ppp

price_naturalgas_ppp

price_steamcoal_ppp

price_cokingcoal_ppp

0

200

400

600

800

1000

1200

1400

1600

A
U
S

A
U
T

B
EL

C
A
N

C
H
E

D
EU

D
N
K

ES
P

FI
N

FR
A

G
B
R

IR
L

IT
A

JP
N

K
O
R

N
LD

SW
E

U
SA

price_electricity_ppp

price_lfo_ppp

price_naturalgas_ppp



38 
 

 

Figure 4: Share of total energy consumption by product, 1978-2009 
 

 
 
Source: IEA (2012b). 

 
 
Figure 5: Relative share of top three energy products by industry, 1978-
2009 
 

 
 
Source: IEA (2012b). 

  

35%

7%

23%

5%

2%

28%

electricity

lfo

natural gas

steam coal

coking coal

other products (e.g.,
energy from biogas or
heat)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

natural gas

lfo

electricity



39 
 

 

Table 2: Variable definition and measurement 

Variable Definition/measurement Source 
Dependent variable     
Green_patentsijt Number of green patents own calculations 

Other_patentsijt Number of patents that are not classified as green own calculations 

Independent variable     
Lijt Number of persons engaged (total employment) OECD STAN 

Kijt Gross fixed capital formation, volumes (current price value) OECD STAN 

Green_stockijt Stock of green patents own calculations 

Other_stockijt Stock of patents that are not classified as green own calculations 

Energy_priceijt 
Industry specific energy price based on electricity, light fuel oil  
and natural gas prices, PPP 

IEA 

Popp_energy_priceijt 

Weighted average energy prices as in Popp (2002) for the 
whole sample period from 1978 onwards with an adjustment 
coefficient of 0.83 (see Aghion et al. 2012 for a similar 
procedure). 

IEA 

Moving_average_ 
energy_priceijt 

Moving average of the energy prices of the previous five years. IEA 
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Table 3: Estimation results for green patent flow 

 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 

  

Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patentsijt) 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
ln(Lijt-1) 0.068 0.096 0.072 0.101 0.077 0.111* 0.081 0.130* 0.055 0.117* -0.030 0.035 0.028 0.098 
  (0.080) (0.067) (0.078) (0.065) (0.083) (0.065) (0.082) (0.067) (0.079) (0.066) (0.088) (0.072) (0.084) (0.068) 
ln(Kijt-1) 0.125** 0.113** 0.111** 0.118** 0.117** 0.132** 0.119** 
  (0.052) (0.052) (0.056) (0.058) (0.056) (0.054) (0.059) 
ln(Green_stockijt-1) 0.617*** 0.613*** 0.603*** 0.599*** 0.579*** 0.580*** 0.567*** 0.564*** 0.551*** 0.552*** 0.590*** 0.591*** 0.550*** 0.551*** 
  (0.035) (0.034) (0.035) (0.035) (0.036) (0.035) (0.040) (0.037) (0.040) (0.037) (0.041) (0.039) (0.047) (0.043) 
ln(Other_stockijt-1) 0.150*** 0.147*** 0.158*** 0.155*** 0.139*** 0.147*** 0.151*** 0.154*** 0.180*** 0.174*** 0.172*** 0.164*** 0.158*** 0.164*** 
  (0.047) (0.041) (0.047) (0.043) (0.050) (0.045) (0.057) (0.047) (0.065) (0.052) (0.051) (0.044) (0.059) (0.050) 
ln(Energy_priceijt-1) 0.115 0.205** 
  (0.089) (0.087) 
ln(Energy_priceijt-2) 0.119 0.200** 
  (0.091) (0.087) 
ln(Energy_priceijt-3) 0.164* 0.223** 
  (0.091) (0.087) 
ln(Energy_priceijt-4) 0.201** 0.222*** 
  (0.084) (0.080) 
ln(Energy_priceijt-5) 0.277*** 0.265*** 
  (0.100) (0.087) 
ln(Popp_energy_priceijt-1) 0.286 0.391** 
  (0.174) (0.162) 
ln(Moving_average_energy_priceijt-1) 0.268* 0.342** 
  (0.143) (0.141) 
Constant -4.475*** -2.812*** -4.483*** -2.920*** -4.657*** -3.179*** -5.073*** -3.436*** -5.307*** -3.540*** -4.296*** -2.984*** -4.985*** -3.880***
  (1.054) (0.893) (1.037) (0.878) (1.061) (0.878) (1.133) (0.886) (1.154) (0.870) (1.146) (1.121) (1.190) (1.092) 

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669 
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144 
R2 within 0.77 0.80 0.75 0.79 0.73 0.78 0.72 0.77 0.70 0.75 0.76 0.80 0.71 0.76 
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Table 4: Estimation results for relative patenting 
Estimation method OLS log linear fixed-effects regression 
Period 1981-2009 1984-2009 
Dependent variable ln(Green_patentsijt) - ln(Other_patentsijt) 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
ln(Lijt-1) -0.052 -0.117 -0.045 -0.112 -0.045 -0.106 -0.039 -0.080 -0.066 -0.097 -0.158 -0.185* -0.093 -0.111 
  (0.103) (0.088) (0.101) (0.088) (0.100) (0.084) (0.096) (0.081) (0.095) (0.076) (0.116) (0.095) (0.102) (0.085) 
ln(Kijt-1) 0.040 0.021 0.023 0.018 0.004 0.039 0.022 
  (0.070) (0.069) (0.072) (0.070) (0.070) (0.068) (0.068) 
ln(Green_stockijt-1) 0.377*** 0.365*** 0.363*** 0.350*** 0.342*** 0.338*** 0.326*** 0.320*** 0.303*** 0.305*** 0.346*** 0.333*** 0.295*** 0.292*** 
  (0.044) (0.042) (0.043) (0.042) (0.043) (0.044) (0.046) (0.045) (0.047) (0.045) (0.049) (0.046) (0.051) (0.051) 
ln(Other_stockijt-1) -0.313*** -0.368*** -0.302*** -0.356*** -0.280*** -0.337*** -0.227*** -0.300*** -0.231*** -0.294*** -0.301*** -0.359*** -0.227*** -0.297***
  (0.061) (0.054) (0.060) (0.056) (0.064) (0.057) (0.074) (0.063) (0.082) (0.065) (0.067) (0.058) (0.080) (0.068) 
ln(Energy_priceijt-1) 0.265** 0.345*** 
  (0.131) (0.123) 
ln(Energy_priceijt-2) 0.253* 0.323*** 
  (0.130) (0.122) 
ln(Energy_priceijt-3) 0.305** 0.361*** 
  (0.134) (0.123) 
ln(Energy_priceijt-4) 0.358*** 0.367*** 
  (0.131) (0.114) 
ln(Energy_priceijt-5) 0.408*** 0.367*** 
  (0.142) (0.116) 
ln(Popp_energy_priceijt-1) 0.519** 0.615** 
  (0.257) (0.238) 
ln(Moving_average_energy_priceijt-1) 0.450** 0.481** 
  (0.213) (0.194) 
Constant -3.007** -1.823 -3.007** -1.887 -3.210** -2.160* -3.709** -2.683** -3.469** -2.524** -2.986* -2.241 -3.810** -3.101** 
  (1.401) (1.172) (1.387) (1.169) (1.387) (1.107) (1.427) (1.093) (1.499) (1.045) (1.649) (1.524) (1.580) (1.408) 

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669 
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144 
R2 within 0.50 0.50 0.48 0.48 0.47 0.47 0.43 0.44 0.43 0.43 0.51 0.51 0.43 0.44 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively.
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Table A.1: Descriptive statistics 

Variable Mean Std. Dev. Min Max 
Green_patentsijt 74.4 305.2 0 4’015 
Other_patentsijt 1’011.6 4’768.9 0 66’161 
Energy_priceijt-1 511.5 239.1 90.0 2’463.5 
Green_stockijt-1 280.0 1’216.9 0 18’692.9 
Other_stockijt-1 4’154.9 21’367.7 0 321’222.3
Kijt-1 3.47E+09 7.09E+09 1.22E+07 8.51E+10
Lijt-1 426’469.4 772’114 2’676 6’395’273

 
Notes: see Table 2 for the variable definitions; the set of observations is identical to that used for (1) in Table 3 (2’293 
observations). 
 

Table A.2: Identification of a possible omitted variable bias (estimates of Table 3 without 
capital variable but same observations) 

Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patentsijt) 

  (1) (2) (3) (4) (5) (6) (7) 

ln(Lijt-1) 0.150* 0.145* 0.148* 0.156* 0.123 0.054 0.103 

  (0.079) (0.076) (0.080) (0.083) (0.080) (0.087) (0.085) 

ln(Green_stockijt-1) 0.622*** 0.607*** 0.584*** 0.573*** 0.557*** 0.597*** 0.557*** 

  (0.034) (0.034) (0.036) (0.040) (0.040) (0.040) (0.046) 

ln(Other_stockijt-1) 0.154*** 0.163*** 0.144*** 0.157*** 0.189*** 0.179*** 0.166*** 

  (0.047) (0.047) (0.051) (0.057) (0.066) (0.051) (0.059) 

ln(Energy_priceijt-1) 0.104 

  (0.089) 

ln(Energy_priceijt-2) 0.112 

  (0.091) 

ln(Energy_priceijt-3) 0.161* 

  (0.091) 

ln(Energy_priceijt-4) 0.202** 

  (0.084) 

ln(Energy_priceijt-5) 0.283*** 

  (0.099) 

ln(Popp_energy_priceijt-1) 0.274 

  (0.173) 

ln(Moving_average_energy_priceijt-1) 0.269* 

  (0.141) 

Constant -2.884*** -3.013*** -3.190*** -3.604*** -3.786*** -2.519** -3.384*** 

  (1.034) (0.998) (1.004) (1.062) (1.034) (1.159) (1.123) 

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2293 2227 2181 2146 2099 1920 1962 

Groups 126 126 116 116 116 105 116 

R2 within 0.77 0.75 0.73 0.72 0.70 0.76 0.71 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. 
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Table A.3: Identification of pure dynamic effects (based on the same observations for all 
models) 

Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patentsijt) 

  (1) (2) (3) (4) (5) (6) (7) 

ln(Lijt-1) 0.085 0.086 0.083 0.082 0.079 0.067 0.077    

  (0.075) (0.075) (0.075) (0.074) (0.074) (0.075) (0.074)    

ln(Green_stockijt-1) 0.553*** 0.553*** 0.552*** 0.551*** 0.550*** 0.546*** 0.548*** 

  (0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.046)    

ln(Other_stockijt-1) 0.174*** 0.176*** 0.179*** 0.181*** 0.185*** 0.190*** 0.185*** 

  (0.058) (0.058) (0.057) (0.058) (0.058) (0.058) (0.058)    

ln(Energy_priceijt-1) 0.164                 

  (0.100)   

ln(Energy_priceijt-2)   0.152                 

    (0.102)                 

ln(Energy_priceijt-3)   0.185*   

    (0.096)                 

ln(Energy_priceijt-4)   0.192**                 

    (0.084)   

ln(Energy_priceijt-5)   0.240***                 

    (0.089)                 

ln(Popp_energy_priceijt-1)   0.460**                 

    (0.226)   

ln(Moving_average_energy_priceijt-1)   0.331**  

    (0.153)    

Constant -2.602** -2.464** -2.698*** -2.674*** -2.879*** -3.672*** -3.562*** 

  (1.008) (0.983) (0.958) (0.922) (0.925) (1.301) (1.173)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2299 2299 2299 2299 2299 2299 2299    

Groups 125 125 125 125 125 125 125 

R2 within 0.76 0.76 0.76 0.76 0.76 0.76 0.76    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. Estimations are based on all observation that are available for 
all specifications.  
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Table A.4: Estimation results for other patent flow 

Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Other_patentsijt) 

  (1) (2) (3) (4) (5) (6) (7) 

ln(Lijt-1) 0.213*** 0.213*** 0.216*** 0.210*** 0.214*** 0.220*** 0.209*** 

  (0.057) (0.062) (0.063) (0.066) (0.062) (0.064) (0.071)    

ln(Green_stockijt-1) 0.248*** 0.248*** 0.242*** 0.243*** 0.247*** 0.258*** 0.259*** 

  (0.026) (0.028) (0.031) (0.033) (0.034) (0.030) (0.036)    

ln(Other_stockijt-1) 0.515*** 0.511*** 0.484*** 0.454*** 0.467*** 0.522*** 0.462*** 

  (0.036) (0.039) (0.041) (0.046) (0.043) (0.038) (0.051)    

ln(Energy_priceijt-1) -0.140*   

  (0.071)   

ln(Energy_priceijt-2)   -0.123*   

    (0.067)   

ln(Energy_priceijt-3)   -0.138**   

    (0.068)   

ln(Energy_priceijt-4)   -0.144**   

    (0.066)   

ln(Energy_priceijt-5)   -0.102*   

    (0.060)   

ln(Popp_energy_priceijt-1)   -0.224*   

    (0.132)   

ln(Moving_average_energy_priceijt-1)   -0.139    

    (0.091)    

Constant -0.989 -1.034 -1.019 -0.753 -1.016 -0.744 -0.779    

  (0.701) (0.746) (0.795) (0.869) (0.821) (0.906) (0.972)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry 
yes yes yes yes yes yes yes 

fixed effects 

N 3142 3051 2969 2899 2829 2725 2669 

Groups 174 174 164 154 154 143 144 

R2 within 0.91 0.91 0.91 0.90 0.90 0.91 0.90 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. 
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Table A.5: Estimates for different types of green innovation 

Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Specific_green_patentsijt) 

Type of green patents: 
General environmental 

management 

Energy generation from 
renewable and non-fossil 

sources 

Combustion technologies 
with mitigation potential 

Technologies specific to  
climate change mitigation 

Technologies with potential 
or indirect contribution 
 to emission mitigation 

Emission abatement and fuel 
efficiency in transportation 

Energy efficiency in  
buildings and lighting 

  (1) (2) (3) (4) (5) (6) (7) 

ln(Lijt-1) 0.053 0.149 0.036 -0.006 -0.001 -0.007 0.031    

  (0.070) (0.103) (0.044) (0.039) (0.075) (0.080) (0.061)    

ln(Specific_green_stockijt-1) 0.460*** 0.526*** 0.461*** 0.593*** 0.580*** 0.547*** 0.554*** 

  (0.044) (0.054) (0.044) (0.050) (0.040) (0.039) (0.042)    

ln(Specific_other_stockijt-1) 0.198*** 0.097** 0.037 0.034** 0.072* -0.012 0.078**  

  (0.052) (0.041) (0.029) (0.017) (0.039) (0.041) (0.037)    

ln(Moving_average_energy_priceijt-1) 0.239* 0.379*** 0.328*** 0.074 0.382*** 0.342*** 0.255**  

  (0.135) (0.133) (0.103) (0.087) (0.115) (0.116) (0.120)    

Constant -2.851** -4.429*** -2.558*** -0.638 -2.746** -1.851 -2.442**  

  (1.099) (1.369) (0.734) (0.699) (1.111) (1.185) (1.008)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2669 2669 2669 2669 2669 2669 2669    

Groups 144 144 144 144 144 144 144 

R2 within 0.68 0.70 0.52 0.64 0.70 0.65 0.67    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under 
the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
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Table A.6: Estimates based on alternative price variables (same observations for all models) 

Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Green_patentsijt) ln(Green_patentsijt) - ln(Other_patentsijt) 

Products included in price basket 
electricity,  

light fuel oil 

electricity, 
 light fuel 

oil,  
natural gas 

electricity, 
light fuel oil, 
steam coal 

electricity, light 
fuel oil, natural 
gas, steam coal 

electricity, light 
fuel oil, steam 

coal, coking coal 

electricity, light fuel 
oil, natural gas, 

steam coal, coking 
coal 

electricity, 
 light fuel oil 

electricity, 
light fuel oil, 
natural gas 

electricity, 
light fuel oil, 
steam coal 

electricity, light 
fuel oil, natural 
gas, steam coal 

electricity, light 
fuel oil, steam 

coal, coking coal 

electricity, light fuel 
oil, natural gas, 

steam coal, coking 
coal 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

ln(Lijt-1) -0.059 -0.069 -0.092 -0.116 -0.080 -0.104    -0.173 -0.192 -0.212 -0.251 -0.193 -0.232    

  (0.170) (0.157) (0.167) (0.147) (0.165) (0.146)    (0.208) (0.191) (0.200) (0.181) (0.199) (0.182)    

ln(Green_stockijt-1) 0.437*** 0.448*** 0.429*** 0.439*** 0.431*** 0.441*** 0.277*** 0.292*** 0.270*** 0.281*** 0.274*** 0.284*** 

  (0.068) (0.070) (0.069) (0.070) (0.070) (0.070)    (0.087) (0.089) (0.089) (0.088) (0.090) (0.088)    

ln(Other_stockijt-1) 0.170 0.182 0.170 0.194* 0.160 0.190    -0.118 -0.100 -0.119 -0.086 -0.131 -0.093    

  (0.116) (0.115) (0.108) (0.114) (0.111) (0.115)    (0.113) (0.111) (0.105) (0.107) (0.108) (0.109)    

ln(Moving_average_energy_priceijt-1) 0.716** 0.364** 0.984** 0.675** 0.944** 0.650**  1.014* 0.553* 1.251*** 0.929** 1.125** 0.871**  

  (0.350) (0.182) (0.376) (0.274) (0.384) (0.267)    (0.516) (0.284) (0.446) (0.379) (0.452) (0.363)    

Constant -4.066 -1.672 -5.054* -2.825 -4.868* -2.809    -6.891* -3.793 -7.902** -5.375* -7.184** -5.175*   

  (2.681) (2.143) (2.868) (2.325) (2.890) (2.304)    (3.720) (2.878) (3.143) (3.029) (3.141) (2.958)    

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes 

N 1203 1203 1203 1203 1203 1203    1203 1203 1203 1203 1203 1203 

Groups 89 89 89 89 89 89 89 89 89 89 89 89 

R2 within 0.80 0.80 0.80 0.80 0.80 0.80    0.31 0.31 0.32 0.32 0.31 0.32 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under the 
coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
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Table A.7: Estimates based on alternative depreciation rates and controlling for outliers, respectively 

Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Green_patentsijt) ln(Green_patentsijt) - ln(Other_patentsijt) ln(Green_patentsijt) ln(Green_patentsijt) - ln(Other_patentsijt)

Depreciation rate 10% 30% 10% 30% 15% 15% 15% 15% 

Checking for outliers no no no no drop top 1% drop top 5% drop top 1% drop top 5% 

  (1) (2) (3) (4) (5) (6) (7) (8) 

ln(Lijt-1) 0.101 0.089 -0.114    -0.103    0.097 0.091 -0.111 -0.118    

  (0.072) (0.062) (0.086)    (0.080)    (0.069) (0.068) (0.085) (0.084)    

ln(Green_stockijt-1) 0.551*** 0.539*** 0.276*** 0.321*** 0.551*** 0.548*** 0.292*** 0.288*** 

  (0.044) (0.040) (0.052)    (0.047)    (0.043) (0.043) (0.051) (0.051)    

ln(Other_stockijt-1) 0.161*** 0.177*** -0.293*** -0.299*** 0.163*** 0.157*** -0.297*** -0.301*** 

  (0.054) (0.041) (0.072)    (0.058)    (0.050) (0.048) (0.068) (0.067)    

ln(Moving_average_energy_priceijt-1) 0.356** 0.309** 0.491**  0.458**  0.352** 0.321** 0.486** 0.463**  

  (0.146) (0.127) (0.199)    (0.182)    (0.143) (0.139) (0.199) (0.195)    

Constant -4.103*** -3.302*** -3.122**  -3.176**  -3.862*** -3.558*** -3.047** -2.871**  

  (1.144) (0.960) (1.446)    (1.292)    (1.100) (1.057) (1.432) (1.400)    

Country specific time fixed effects yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes 

N 2669 2669 2669    2669    2629 2494 2629 2494    

Groups 144 144 144 144 142 134 142 134 

R2 within 0.76 0.77 0.44    0.45    0.76 0.74 0.44 0.44    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country 
level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 
10% test level, respectively.
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Table A.8: Models dealing with the count data characteristics 
of the green patent flow variable and the endogeneity of the 
stock variables, respectively 

Estimation method Fixed-effects Poisson regression OLS pre-sample mean estimator

Period 1984-2009 

Dependent variable Green_patentsijt ln(Green_patentsijt) 

  (1) (2) 

ln(Lijt-1) 0.046    0.056*   

  (0.121)    (0.069) 

ln(Green_stockijt-1) 0.798*** 0.647***    

  (0.094)    (0.033)    

ln(Other_stockijt-1) 0.035    0.085**  

  (0.119)    (0.036)    

ln(Moving_average_energy_priceijt-1) 0.202**  0.148**  

  (0.096)    (0.069)    

Constant   -2.216*** 

    (0.715)    

Year fixed effects yes no 

Country specific industry  
fixed effects 

yes no 

Country specific time fixed effects no yes 

Industry fixed effects no yes 

Pre-sample fixed effects no yes 

N 2610 2669    

Groups 137 144 

Wald chi2 72782.29***   

R2   0.94    

Log Likelihood -7674.11   

 
Notes: see Table 2 for the variable definitions; standard errors that are in brackets 
under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 
10% test level, respectively; Column (1): In line with Allison and Waterman (2002) 
we used robust standard errors to correct for overdispersion; Column (2): Pre-
sample mean scaling approach proposed by Blundell et al. (1995) was used to 
account for fixed unobserved heterogeneity in the propensity to patent in the 
presence of lagged endogenous variables; standard errors are robust to 
heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator). 
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Appendix B: 

Tables and Figures for Switzerland 
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Figure B.1: Development of green patents in Switzerland, 1977-2009 
 

 
 
Source: Own calculations. 

 

 

Figure B.2: Revealed Technological Advantage in green technology, Switzerland vs. 
World, 1977-2009 
 

 
 
Source: Own calculations. 
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Table B.4: Number of green and other patents (inventions) by industry in 
Switzerland 

Region Switzerland World 

Type of patent Other Green Green vs. Other 

  

Number 
of  

other 
patents 

Relative 
share  

in total 
other  

patents 

Number 
of  

green 
patents 

Relative 
share  

in total 
green  

patents 

Ratio of 
green 

patents to 
other 

patents 

Ratio of  
green 

patents to  
other 

patents 

Chemicals 44627 38.9% 1628 26.9% 3.6% 6.4% 

Food and tobacco 3841 3.3% 132 2.2% 3.4% 4.0% 

Machinery 49738 43.4% 3034 50.2% 6.1% 7.3% 

Basic metals 1452 1.3% 174 2.9% 12.0% 13.6% 

Non-metallic minerals 2495 2.2% 253 4.2% 10.1% 11.0% 

Paper, pulp and print 1053 0.9% 36 0.6% 3.4% 6.1% 

Textile and leather 1035 0.9% 21 0.3% 2.0% 3.4% 

Transport equipment 2585 2.3% 491 8.1% 19.0% 34.7% 

Wood and wood products 162 0.1% 7 0.1% 4.3% 3.6% 

Non-specified industry 7732 6.7% 266 4.4% 3.4% 5.3% 

Total 114720 100% 6042 100% 5.3% 8.1% 
 
Notes: Data is based on own calculations; these statistics are based on 35 cross-sections and 10 industries 
(total of 350 observations); the relative share in total green patents is calculated as the share of an industry’s 
number of green patents relative to the number of all green patents in our sample (sum of green patents over 
all industries in the sample); the ratio of green patents to other patents is defined as an industry’s ratio of 
green patents relative to its number of other patents. 

 

 

 


