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The Impact of Energy Prices on
Green Innovation'

Marius Ley*, Tobias Stucki**, Martin Woerter™**

JUNE 2013

Abstract. Based on patent data and industry specific energy prices for 18 OECD countries
over 30 years we investigate on an industry level the impact of energy prices on green innovation
activities. Our econometric models show that energy prices and green innovation activities are
positively related and that energy prices have a significantly positive impact on the ratio of green
innovations to non-green innovations. More concretely, our main model shows that a 10%
increase of the average energy prices of the previous five years results in a 2.7% and 4.5%
increase of the number of green patents and the ratio of green patents to non-green patents,
respectively. We also find that the impact of energy prices increases with an increasing lag
between energy prices and innovation activities. Robustness tests confirm the main results.

Abstract (Deutsch). In der vorliegenden Studie untersuchen wir, gestiitzt auf Patentdaten und
industriespezifischen Energiepreisen fiir 18 OECD-Linder, den Einfluss von Energiepreisen auf
die Innovationstétigkeit in grilnen Technologien. Unsere 0konometrischen Schitzungen zeigen
eine positive Korrelation zwischen Energiepreisen und griiner Innovationstétigkeit; Energiepreise
haben einen signifikant positive Einfluss auf die Quote von griinen im Vergleich zu nicht-griinen
Innovationen. So zeigt unser Hauptmodell, dass eine Erhéhung um 10% der durchschnittlichen
Energiepreise tiber fiinf Jahre zu einer um 2.7% hoheren Anzahl griiner Patente, beziehungsweise
einer um 4.5% hdheren Quote von griinen Patenten im Vergleich zu anderen Patenten fiihrt. Mit
zunehmendem zeitlichen Abstand zwischen Energiepreisen und Innovationstitigkeit 1dsst sich
ein grosserer Effekt der Energiepreise feststellen. Unsere zentralen Resultate werden durch
diverse Robustheitstests bestatigt.
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Zusammenfassung auf Deutsch

Ziel der vorliegenden Untersuchung ist, den Einfluss von Energiepreisen auf die Generierung
von “griinen* Innovationsaktivititen empirisch zu untersuchen. Zu diesem Zweck werden Daten
iiber Patentanmeldungen, Energiepreise und weitere Okonomische Kontrollgrossen aus 18
OECD-Léandern (inklusive aller wichtigsten Industrienationen) iiber einen Zeitraum von 30
Jahren zusammengestellt. Sdmtliche Variablen sind nicht nur auf Léanderebene, sondern
innerhalb jedes Landes auch auf Branchenebene verfiigbar, wobei wir zwischen zehn Branchen
des Industriesektors unterscheiden konnen. Aufbauend auf diesen in ihrer Art erstmalig
verfligbaren Daten ldsst sich anhand unseres 6konometrischen Modells feststellen, dass eine
Erhohung der Energiepreise um 10% (im Mittel iiber eine Fiinfjahresperiode) zu einer um 2.7%
hoheren Anmelderate bei griinen Patenten fiihrt.

Unternehmungen, die griine Innovationen anstreben, sehen sich mit dem Problem einer
doppelten Externalitdt konfrontiert: einerseits lassen sich die Ertrdge einer erfolgreichen griinen
Innovation nicht vollumfanglich durch den Innovator aneignen, da Wissen den Charakter eines
offentlichen Gutes hat; andererseits kommt der durch die Innovation generierte Nutzen
(sauberere Luft, geringere CO,-Emissionen) oftmals der gesamten Offentlichkeit und nicht nur
dem privaten Anwender der Innovation zugute. Das fiihrt zu einer geringen individuellen
Zahlungsbereitschaft fiir diese Produkte. Somit wiirde der private Sektor technologische
Neuerungen, wenn sie ausschliesslich den Marktkréften iiberlassen bleiben, in einer aus
gesellschaftlicher Sicht ungeniigenden Rate produzieren. Um dies zu dndern sind politische
Massnahmen zur Forderung solcher Innovationstédtigkeiten vonndten. Energiepreise sind ein
potentielles Instrument einer solchen Forderpolitik, weshalb sich die vorliegende Studien mit
deren Wirkung auf die Innovationstétigkeit befasst. Es gibt bereits empirische Studien, die sich
mit dieser Fragestellung befassen, jedoch unterscheidet sich die vorliegende Arbeit davon, vor

allem hinsichtlich der umfassenden Datenbasis.



Als Mass flir den Output an griinen Innovationen einer Industriebranche dienen — wie
bereits in Publikationen anderer Autoren — Patentstatistiken, die in Zusammenarbeit mit dem
Eidgendssischen Institut flir Geistiges Eigentum erarbeitet wurden. Mit Hilfe des von der OECD
geschaffenen Indicator of Environmental Technologies konnten sdmtliche Patentanmeldungen
entweder als ,griine“ oder ,nicht-griine” Erfindungen kategorisiert werden. Da bei der
Patentanmeldungen zwar das Ursprungsland erhoben wird, nicht aber die Branchenzugehorigkeit
der anmeldenden Unternehmung, wurde auf das Konkordanzschema von Schmoch et al. (2003)
zurlickgegriffen, womit sich die in der Patentstatistik erhobenen Technologiefelder den von uns
verwendeten Branchen zuordnen lassen. Daten zu Energiepreisen sind ebenfalls nicht unmittelbar
fiir verschiedene Branchen verfiigbar, jedoch stellt die Internationale Energieagentur IEA sowohl
Preisdaten fiir verschiedene Energietrdger als auch Informationen iiber die effektive Nutzung
dieser Energietrager nach Branchenkategorien bereit, und zwar individuell fiir sémtliche Lénder.
Dieser Datengrundlage ermdglicht uns, Energiepreise fiir einzelne Branchen zu konstruieren.

Um die Hypothese eines positiven Effekts von Energiepreisen auf die Generierung von
griimen Innovationen empirisch zu testen, verwenden wir das Okonometrische Model der
Wissensproduktionsfunktion (Knowledge Production Functions). In dieser Spezifikation dienen,
nebst den klassischen Produktionsfaktoren Arbeit (Anzahl Beschiftigte) und Kapital
(Investitionssumme), die bereits erwiahnten Energiepreise als erklirende Variable. Zuséitzlich
kontrollieren wir fiir den Einfluss des bereits erarbeiteten technologischen Wissens, und zwar
anhand der Anzahl der in der Vergangenheit angemeldeten Patente beider Kategorien (griin und
nicht-griin). Der geschitzte Koeffizient von Energiepreisen auf die abhingige Variable
(Patentanmeldungen) lésst sich in diesem Kontext als Elastizitdtsmass interpretieren; fallt er
statistisch signifikant aus, ist dies eine Bestitigung unserer Forschungshypothese. Dank unserer
umfangreichen Datenbasis konnen wir auf Panel-Schétzverfahren zuriickgreifen, welche auch in

Gegenwart von nicht-beobachtbarer Heterogenitit zwischen den einzelnen Branchen, oder von



landerspezifischen Schocks (etwa als Folge nationaler Politiken) unverzerrte Schitzungen
liefern.

Die von uns bevorzugte Schitzvariante bestitigt den erwarteten positiven Effekt von
Energiepreisen auf griine Innovationen, und zwar mit einer Elastizitdt von 0.27, woraus sich der
eingangs erwidhnte Wert von 2.7% errechnet. Dieser Koeffizient ist statistisch signifikant bei
einem Schwellenwert von 10%. Betrachtet man den Einfluss der Energiepreise auf den
Quotienten von griinen zu nicht-griinen Patenten (anstelle der Zahl der griinen Patente), resultiert
gar eine Elastizitit von 0.45 (signifikant zu 5%). Mit einer Reihe von Robustheitstests tiberpriifen
wir, ob diese Resultate auch Anderungen in der Spezifikation der Schitzung oder in der
Stichprobe standhalten. So betrachten wir etwa verschiedene Unterkategorien griiner
Innovationen gesondert, wiederholen unsere Berechnung der Energiepreise anhand von
abweichenden Kombinationen der verwendeten Energietriger, vergleichen verschiedene
Varianten zur Berechnung des existierenden Wissensbestandes oder schliessen Beobachtungen
mit Ausreissern bei der abhingigen Variable aus den Schitzungen aus. Diese und weitere Tests
erhirten die Stichhaltigkeit unserer Resultate.

Die erzielten Resultate konnen als Beleg dafiir gewertet werden, dass Energiepreise als
effektives Politikinstrument zur Forderung der Innovationstitigkeit im Umweltbereich dienen
konnen, und sind weitgehend im Einklang mit Resultaten aus dhnlich gelagerten empirischen
Studien. Ein Vergleich mit letzteren legt zudem nahe, dass es bedeutsame Unterschiede in der
Intensitit der Wirkung der Energiepreise auf griine Innovation zwischen verschiedenen Branchen
gibt, jedoch nur geringe Unterschiede zwischen verschiedenen Léndern. Ebenfalls im Einklang
mit der existierenden Literatur steht die Erkenntnis, dass griine Patentanmeldungen hoher
ausfallen, je grosser der Bestand an bereits erarbeiteten griinen Wissen (gemessen an der Zahl
vergangener Patentanmeldungen) ist. Zwar iibt auch der nicht-griine Wissensbestand einen
positiven Einfluss auf griine Innovationen aus, allerdings in einem deutlich geringeren Mass.

Dies ist Evidenz fiir eine gewisse Pfadabhéngigkeit griiner Technologien.



Unsere Daten ermoglichen auch eine Gegeniiberstellung der Innovationsperformance
zwischen der Schweizerischen Industrie und (im Durchschnitt) jener der Vergleichsldnder. Es
zeigt sich, dass die Schweiz deutlich unterdurchschnittlich abschneidet, was die Quote von
griinen gegeniiber nicht-griinen Patentanmeldungen betrifft, obschon die Gesamtzahl an griinen
Erfindungen Schweizer Herkunft bedeutsam ist. Dieses Phdnomen lésst sich nicht nur fiir den
Industriesektor insgesamt, sondern auch im FEinzelnen fiir neun der zehn betrachteten
Industriebranchen feststellen. Die Tatsache, dass in der Schweiz viele forschungsintensive
Branchen beheimatet sind, in welchen ein vergleichsweise geringes Potenzial fiir griine
Innovationen besteht (z.B. Pharmaindustrie), kann diesen Riickstand somit nur teilweise erkldren.
Auffallend ist auch, dass die vergleichsweise geringe Neigung der Schweiz zu griinen
Innovationen erst gegen Ende der Beobachtungsperiode, also ab Mitte der 90er Jahre, zu Tage
tritt — in fritheren Jahren lag die Quote an griinen Innovationen in der Schweiz auf Hohe des
weltweiten Durchschnitts oder sogar dariiber. Als potentielle Erklarungen fiir den Riickstand der
Schweiz gibt es (a) das Opportunitdtskosten-Argument: aufgrund der in der Vergangenheit
erfolgreich getétigten Innovationsanstrengungen hat sich die Schweiz eine Spezialisierung in
Technologienischen verschafft, welche eher nicht dem griinen Bereich zuzuordnen sind. Ein
Umschwenken von diesem Spezialisierungspfad auf ,,griinere” Technologien wire flir die
betroffenen Unternehmungen nicht ohne Umstellungskosten zu haben (wenngleich die bereits
erarbeitete nicht-grilne Wissensbasis im Hinblick auf die Entwicklung griiner Technologien
dennoch hilfreich ist, wie unsere Resultate zeigen). Und (b) diirfte auch die starke
Zurlickhaltung der Schweizer Politik in Bezug auf die explizite Forderung einzelner
Technologiefelder — darunter insbesondere ,,griine* Technologien — eine Rolle gespielt haben,
weshalb die Schweiz eine deutlich niedrigere Quote an Patentanmeldungen dieser Sorte im
Vergleich zu vielen Léndern mit aktiveren Forderpolitiken (darunter etwa Dénemark und

Deutschland) aufweist.



1 Introduction

Despite the fact that climate change should ideally increase the demand for green technologies,
firms have still low incentives to invest in green technologies as there is a ‘double externality
problem’ (see, e.g., Beise and Rennings 2005, Faber and Frenken 2009, Hall and Helmers 2011).
Firstly, due to the public goods nature of knowledge (see, e.g., Geroski 1995, Popp 2011) and
due to financial market imperfections green technology investment decisions are complex and
often linked with financial constraints. Secondly, because the greatest benefits from green
innovation are likely to be public rather than private, the customers’ willingness to pay for these
innovations is low. In line with this literature a study by Soltmann et al. (2013) shows that
economic performance is negatively affected by green inventions. This result indicates that —
given the current level of green promotion — free market incentives alone are not sufficient to
allow the green invention activities of industries to rise considerably. However, technological
innovations are needed to solve environmental problems. “Without significant technological
development of both existing low-carbon technologies and new ones, climate change is unlikely
to be limited to anything like 2°C” (see Helm 2012, p. 213). Accordingly, a kind of intervention
is required to stimulate green innovation activities.

The paper at hand focuses on energy prices as a measure for environmental policy' and
investigates if energy prices are likely to contribute to increase the probability of green
innovations. More concretely, we investigate if the effects of energy prices are different for
‘green’ innovations than for ‘other than green’ innovations.

Empirical research linking environmental policy and innovation is related to a small but
increasing literature. A first group of studies uses pollution abatement control expenditures
(PACE) to proxy for environmental regulation stringency. Brunnermeier and Cohen (2003)

found for the US that PACE is positively related to environmental innovation. Based on a data

' Energy prices can be seen as a measure for environmental policy, since energy prices are mainly driven by
international markets and their variations between countries are mainly due to taxes or other policy measures (see
Aghion et al. 2012).



set that includes 17 countries Lanjouw and Mody (1996) also found a positive correlation
between PACE and environmental innovation. However, the use of PACE as a measure for
policy stringency in a cross-country study is questionable due to the heterogeneity in the
definitions and sampling strategies (see Johnstone et al. 2012, p. 2161). To overcome this
problem Johnstone et al. (2012) used survey data. Based on this data they again found that
environmental innovation is positively affected by environmental policy stringency.

Most other studies overcome the problem of comparability by using energy prices as
proxy for environmental regulation.” Most of them focus on a single industry. Aghion et al.
(2012) investigated the significance of energy prices for technological change by looking at the
car industry based on patent data over a long period in time (1978 - 2007). They found that
higher energy prices increase the propensity of ‘clean’ innovation in the car industry. Moreover
they stated that the price effect is stronger for firms with a great stock of ‘dirty’ patents. Newell
et al. (1999) looked at the level of product characteristics in the air-conditioning industry and
found that energy prices had an observable effect on energetic features of the products offered for
sale. Lanzi and Sue Wing (2011) found a positive relationship between energy prices and
innovations in renewable technologies in the energy sector of 23 countries.

Popp (2002) did not focus on a single industry but a single country. He looked for the
USA at 11 different technologies including supply (e.g. solar energy, fuel cells) and demand
technologies (e.g. recovery of waste heat for energy, heat pumps) and found that energy prices

and the existing knowledge stock have a strong and significant positive effect on innovation.

? Following the findings in other fields (consumer behavior), it is likely that the elasticity effects of energy prices
and energy taxes (policy instrument) have the same direction, although they are different in magnitudes. Li et al.
(2012) showed that gasoline taxes reduce gasoline consumption stronger than a tax-exclusive price increase in
gasoline. Davis and Kilian (2011) find that tax elasticity is much larger than price elasticity. Ghalwash (2007)
compares environmental tax elasticities with traditional price elasticities and found that the effects depend on the
type of energy good. Scott (2012) finds that consumers are twice as responsive to tax-driven price changes as to
market-driven price changes and also Baranzini et al. (2009) find for Switzerland that consumers’ reaction depend
on the source of price variation. They found that the Swiss mineral oil tax increase in 1993 decreases gasoline
demand by about 3.5% in addition to its direct impact through the price increase. This additional effect may result
from the consumer’s understanding that taxes are not a market driven variation or that gasoline tax changes receive a
great deal of attention from the media, which could contribute to reinforce consumers’ reaction (Li et al. 2012).



In all these studies it is unclear whether the results also hold for other industries and/or
countries. Only a few studies are based on data for more than one country and more than one
industry. Johnstone et al. (2010) analysed for five different renewable energy technologies how
different policies (among others energy prices) did affect innovation on a certain technology.
Verdolini and Galeotti (2011) investigated the impact of energy prices on technological
innovation (12 technologies like in Popp 2002) for a panel of 17 countries and found a positive
sign. However, as both studies are based on data that is either aggregated on country-level or
technology-level, there is a concern that there may be other macro-economic shocks correlated
with both innovation and the energy price (see Aghion et al. 2012, p.5).

In the study at hand we contribute to the existing literature in many respects. Firstly, we
use energy prices as a proxy for environmental regulation. This allows us to generate an industry-
level data set that covers the whole manufacturing sector (grouped into 10 industries), the most
important countries for green invention (18 OECD countries that are responsible for more than
95% of all green patents and total patents worldwide) and this over a period of 30 years.
Secondly, we use patent data to identify green and non-green inventions.’ Patent documents
considered as covering green inventions are identified according to the OECD Indicator of
Environmental Technologies (see OECD 2012) that distinguishes seven environmental areas, i.e.
(a) general environmental management, (b) energy generation from renewable and non-fossil
sources, (c¢) combustion technologies with mitigation potential, (d) technologies specific to
climate change mitigation, (e) technologies with potential or indirect contribution to emission
mitigation, (f) emission abatement and fuel efficiency in transportation, and (g) energy efficiency
in buildings and lighting. If an invention can be assigned to one of these sub-groups (a to g), it is
counted as a green invention; otherwise it is counted as a non-green invention. By using the
Schmoch et al. (2003) concordance scheme we switch from the technology level to the industry

level. This allows us to include control variables on the aggregation level of an industry (e.g.,

3 In this paper, patents and inventions are largely used synonymously.



capital and number of employees). Furthermore, we reduce the potential problem of an omitted
variable bias by controlling for industry/country specific fixed effects. Thirdly, we calculate
industry specific energy prices what allows us to include country specific time fixed-effects.
Compared with previous studies on a more aggregated level (e.g. country level) there is no
concern that there could be macro-economic shocks correlated with both innovation and the
energy prices that bias our results (see Aghion et al. 2012, p.5).

With respect to our main variable we find that energy prices do stimulate both the
intensity of green innovation as well as the propensity of green innovation. In our model, a 10%
increase of the average energy prices of the previous five years results in a 2.7% and 4.5%
increase of the number of green patents and the ratio of green patents to other patents,
respectively. Knowledge about potential political instruments to stimulate innovation in this area
is of large importance. As our study shows, energy prices may serve as such an instrument. An
increase in energy prices may stimulate the building of a green knowledge stock that (a) would
help to achieve a country’s climate targets and (b) may serve as an important fundament to

establish a cleantech market for which long-term growth is predicted.

2 Conceptual Background and Hypotheses
The idea that an increase in the relative price of a production factor will direct innovation efforts
towards technologies that are less intensive in the production factor becoming more expensive
can be attributed to Hicks (1932, as quoted e.g. in Binswanger et al. 1978): “A change in the
relative prices of the factors of production is itself a spur to invention, and to invention of a
particular kind - directed to economising the use of a factor which has become relatively
expensive.”

This intuitively appealing assertion has been known as the induced innovation hypothesis.
Subsequent research attempted to provide microeconomic foundations for this claim and to
assess its relevance for traditional welfare economics (Binswanger et al. 1978, ch. 4). Induced

innovation is generally thought to exacerbate the effects of externalities not properly taken into



account. In particular, the exploitation of fossil fuels has undesirable side effects as CO,
emissions negatively affect global climate. Two harmful mechanisms are at work as a result of
not having adequately priced these energy resources (by failing to take into consideration their
negative externalities, e.g. by charging a CO, tax): price signals not only affect entrepreneurs’
choice of input combinations, given the production techniques currently available; but they also
affect their choice of which production technologies to develop for future use.

Taking the opposite perspective, it can be argued that taking into account induced
innovation renders market-based policies to tackle climate change more efficient (or, more
precisely, less costly). This is because such policies not only motivate profit-seeking firms to
switch to less energy-demanding technologies that are available as of today, but these policies
will induce firms to strengthen their efforts to develop such technologies for the future (see, e.g.,
Carraro and Siniscalco (1994) for a consideration of this point).

In line with the induced innovation hypothesis, Porter and van der Linde (1995) go as far
as claiming that well-designed environmental regulation may bring about a net benefit to firms
subject to such regulation. According to their argument, technological advances in process and
product design triggered by such regulation often result not only in a decrease of harmful
emissions (or of other undesirable ecological consequences), but also in new modes of
production which are altogether more efficient, bringing about competitive gains that offset the
initial private costs of complying with environmental policy. A controversial debate has
subsequently been triggered about the general validity of their claims, which became to be
known under the name of the Porter hypothesis. While we do not provide an empirical test for it
in the present study, it should be noted that the Porter hypothesis implies that regulation triggers
innovation. Thus, finding support for induced innovation can be regarded as a necessary but not
sufficient condition for validating the claims made by Porter and van der Linde.

Subsequent theoretical research based on the Porter hypotheses, supports for what is

known as the “weak” version of the Porter hypotheses, i.e. that energy prices are positively
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related with green innovation. Mohr (2002) showed that environmental regulation, like higher
energy prices, are encouraging firms to invest in clean technologies. Also Mohr and Saha (2008)
showed that environmental taxes trigger green innovation. Schmutzler (2001) chose an owner-
manager model and confirmed that environmental taxes lead to innovation activities if some
restrictive conditions are fulfilled. Hence, we formulate the two following hypotheses:

H1: Energy prices are positively related to the number of ‘green’ innovations (i.e., the

intensity to patent in green technologies).
H2: Energy prices are positively related to the number of green patents relative to other

patents (i.e., the propensity to patent in green technologies).

Econometric estimations (see, e.g., Popp 2002 (for different technologies), Aghion et al. 2012
(for the car industry)) confirm the fact that energy prices are positively related with the green
innovation activities. Van Leeuwen and Mohnen (2013) found strong evidence that energy prices

are positively related with green innovation investments.*

3  Description of the Data

3.1 Measurement of green inventions based on patent statistics

We use patent statistics in order to measure the green innovation activities of an industry.
Although patent statistics have many disadvantages in measuring innovation output (see Aghion
et al. 2012), they are a rather good proxy for input because there is a strong relationship between
the number of patents and R&D expenditure (see Griliches 1990). Despite the fact that not all
inventions are patentable and smaller firms are more reluctant to patent than larger firms, patent
counts are still the best available source of data on innovation activities as it is readily available

and comparable across countries (Johnstone et al. 2010). This is especially true for green

* Horbach et al. (2012) found that cost savings are an important driver for green innovations. This implicates that
higher energy prices stimulate green innovation.
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technological activities, since the OECD (2012) provides a definition of green technologies based
on the patent classification.

For the paper at hand, patent information is gathered in cooperation with the Swiss
Federal Institute of Intellectual Property (IPI). Green patents are a sub-group of patents that are
selected according to the OECD Indicator of Environmental Technologies (see OECD 2012).
Based on the International Patent Classification, the OECD definition distinguishes seven
environmental areas, i.e. (a) general environmental management, (b) energy generation from
renewable and non-fossil sources, (¢) combustion technologies with mitigation potential, (d)
technologies specific to climate change mitigation, (e) technologies with potential or indirect
contribution to emission mitigation, (f) emission abatement and fuel efficiency in transportation,
and (g) energy efficiency in buildings and lighting.

In order to identify our proxy for the green knowledge output of an industry, further
specifications and clarifications have to be made:

(a) In order to assign patents to countries, the applicant’s country of residence or the
inventor’s country of residence may be chosen. We assigned patents according to the applicant’s
address. Since only those inventions were selected for which at least one PCT (Patent
Cooperation Treaty) application was filed, the applicant's address was generally available.’
Patent applications are costly. Hence, it is very plausible that countries for which patent
applications were filed are also target markets of the invention. Accordingly, there should be a
direct link between these countries and the expected market performance.

(b) We collected inventions (patent families) rather than single patents. The patent data

stem from the EPO (European Patent Offices) World Patent Statistical database (PATSTAT).

° We may also have used the inventor’s address instead. However, there may be a risk of distorting the analysis,
especially for smaller countries, because the inventor may not live in the country where the invention occurs.
Conversely, by using the applicant’s address the analysis may be biased by patent applications from multinationals
for which the country of residence of the applicant possibly differs from the country where the invention occurred. In
order to investigate if there are considerable differences, we took both the inventor’s information and the applicant’s
information for Germany. In fact, we did not see any significant differences between the analysis based on the
inventor’s and applicant’s address for that country.
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Patents were grouped into patent families according to the PATSTAT procedure. This approach
has the advantage that distortions caused by different national granting procedures and different
application attitudes (USA: greater number of single applications for one invention compared to
Europe) are mitigated.

(c) Only inventions were considered which were at minimum filed for patent protection
under the Patent Cooperation Treaty (PCT). Fees for a PCT patent application are generally
higher than for patent applications filed with national or regional patent authorities. Accordingly,
applicants are expected to file inventions for patent protection under the PCT if they assume the
invention to have enough commercial potential to compensate for the higher fees.

(d) Most of our model variables are classified by industrial sectors and not according to
the IPC technology classes. Schmoch et al. (2003) developed a concordance scheme that links
technology fields of the patent statistics to industry classes.® On the basis of this concordance
table we thus recoded our patent data into 10 manufacturing industry classes either at the NACE
two-digit level for which also energy price data were available.” In comparison with patent data
at the firm level, aggregating patents on an industry level should reduce potential problems with
patent waves within a firm.

(e) Our data set includes patent data from 18 countries (Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands,
Spain, Sweden, Switzerland, the United Kingdom and the United States). These 18 countries
account for more than 95% of all green inventions as well as all other inventions worldwide. The
data set includes 10 industries that capture the whole manufacturing sector (chemicals; food and

tobacco; machinery; basic metals; non-metallic minerals; paper, pulp and print; textile and

6 Lybbert and Zolas (2012), suggest new methods for constructing concordances. In comparing different
concordance, they confirmed that on a relatively coarse level (e.g., 2 digit), the Schmoch et al. (2003) concordance
enable a useful empirical policy analysis.

7 The concordance scheme is based on patent classification and also the OECD Indicator of Environmental
Technologies (see OECD 2012) is based on the patent classification, hence, we can easily distinguish green from
non-green patents on the industry level. This way we can identify for each industry class the total number of green
and non-green patents.
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leather; transport equipment; wood and wood products; non-specified industry). The patent data
is available from 1975 onwards.®

Figure 1 shows the aggregated development of green inventions over time. In the
beginning of our sample period, only a few green inventions were registered. The number of
green inventions remained very low during the following ten years. Between 1985 and 1995, the
number slightly increased. The increase was, however, not disproportionally high compared with
other inventions. A sharp increase in the number of green inventions can be observed since 1995.
In 2009, 29’444 green inventions were protected worldwide. Due to generally low patent
activity, the ratio of green inventions to other inventions was quite instable in the beginning of
our sample period. In a second stage, the ratio stabilized between 6-8%. A disproportional
increase of green inventions can be observed after 2000. By 2009, the relative importance of
green inventions compared to other inventions had increased to 11.6%.

Detailed descriptive statistics for our disaggregated patent data are presented in Table 1.
Nearly half of all green inventions are patented in the ‘machinery’ sector (49%). Furthermore, a
considerable share is patented in the two industries ‘chemicals’ (24%) and ‘transport equipment’
(16%). The industry ‘transport equipment’ (35%) is at the same time the most green-intensive
industry, followed by the two industries ‘basic metals’ (14%) and ‘non-metallic minerals’ (11%).

On the country level (see Table 1) we see larger shares of non-green patents being
generated by larger countries. The USA, Japan, and Germany hold 38.5%, 14.8%, and 12.8%
respectively. Switzerland has a remarkable share of 3.0%, which is about three times that of
Austria or Denmark, and still about twice the share of Italy. In sum Switzerland is ranked 7™ in
terms of the share of other patents.

Concerning the respective shares in total green patents (see column 4 in Table 1), we see

a different picture. Although the USA (29.0%), Japan (21.4%), and Germany (18.0%) also show

¥ Actually the EPO (European Patent Office) was created in 1977/78. However, patent data are already available
from 1975 onwards. The reason is that we use PCT applications, which can contain patents that are filed before
1977. Hence PCT applications can be found in PATSTAT before EPO was created.
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the greatest green shares, the country ranking further down the line changes. Switzerland has
2.0% of all green patents and is ranked on the 10™ position, followed by Australia (1.9%), Italy
(1.5%), Denmark (1.4%), and Austria (1.1%). Compared to the ranking in other patents,
Switzerland shows the greatest drop and Austria or Denmark the greatest improvement in the
ranking.

The last column in Table 1 shows the ratio of green patents to non-green patents. Japan
(11.6%), Germany (11.3%) and Denmark (11.0%) show the highest degree of specialisation in
green patent activities, followed by Canada (10.5%) and Austria (9.7%). Switzerland (5.3%) is
ranked on the 17" position just before Ireland (5.2%). In sum we see from this descriptive
statistics that green innovation activities show a great heterogeneity across industries and across

countries.

3.2 OECD Stan data

In order to control for important industry characteristics beside their stock of knowledge we
accessed the OECD STAN database (OECD 2011). We used information on labour input (total
employment) and the capital stock (gross fixed capital formation, volumes at current prices) of

. . . . 9
industries relevant for our estimations.

3.3 IEA energy data

To analyse the impact of energy prices on innovation, we use information on energy prices
available from the International Energy Agency’s (IEA) Energy Prices and Taxes Statistics (IEA
2012a) for all 18 countries that are included in our sample. The price information is available for
different energy products on a country level from 1978 onwards. To get internationally
comparable information, we use total end-use prices (per toe'® including taxes) for the

manufacturing sector in USD (PPP). This information is available for different energy products,

? For the descriptive statistics of variables from the STAN data and other model variables see also Table A.1 in the
appendix.
' Tonne of oil equivalent; unit of energy for the practical expression of energy quantities (e.g., | MWh = 0.086 toe).
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such as electricity, light fuel oil,'’ natural gas and different coal products. Figure 2 shows the
development of the energy prices since 1978. We see a parallel development of the energy prices
of the respective sources. Several of these products show a sharp increase at the beginning of the
80s and again from 2000 onwards. While the price of light fuel oil remarkably dropped in 2008,
the electricity price further increased. Electricity is the most expensive energy source at all times,
followed by light fuel oil, natural gas, steam coal, and coking coal. With the exception of
electricity, energy prices doubled since 2000.

At the country level (see Figure 3) we see that electricity is most expensive in Italy,
followed by Japan, Korea, and Spain. Light fuel oil is most expensive in Korea followed by Italy,
Spain, and Ireland. Natural gas is most expensive in Korea, followed by Sweden, Denmark, and
Japan. However, the descriptive comparisons of these prices is very limited, since prices are not
available for all countries for all times. Hence, the average might be biased due to the fact that
energy prices are only available at later times. This is the case e.g. for Sweden in terms of natural
gas.

Besides the energy prices, the IEA collects data on consumption of the different energy
products (in ktoe) on the industry level. This information is available for 10 different industries
of the manufacturing sector and comes from the IEA World Energy Statistics and Balances (IEA
2012b). This allows us to calculate the relative importance of a certain energy product compared
with other products on the industry level. Electricity (35%) followed by other products (28%)
and natural gas (23%) are the most important energy sources. Light fuel oil, steam coal and
coking coal are of minor importance in the countries we looked at (see Figure 4). If we compare

natural gas, light fuel oil and electricity on an industry level across all countries and all times, we

"' The IEA does also collect price information for other oil products, such as motor gasoline. However, as the
number of observations is very low for these variables, we could not use this price information to construct our
industry specific energy price. Our energy price should nevertheless be representative, as the energy products that
could be taken into account (electricity, light fuel oil, natural gas and different coal products) make up more than
70% of total energy consumption (on average over all industries and the whole time period; see Figure 4). This
figure is quite impressive, as the remaining 30% do not only include motor gasoline, but also the consumption of
energy products for which no price information is collected, such as energy from biogases or heat.
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see that in most industries, electricity is the most important energy source (see Figure 5). Only in
the non-metallic minerals industry natural gas is more important. Natural gas is also relatively
important in chemicals, food and tobacco, and in the non-specified industry.

To get industry specific energy prices, we finally multiply the energy prices with the
relative importance within the industry. The industry specific energy price for an industry j, in

country 7 at time ¢ is defined as follows:

S
Energy_price;j; = Z W_E;jis * In(Energy_priceits;)

=1

where
Energy_use;j:s
W_Ejjis = N(s)
k=1 Energy_use;jq
and

s € [electricity, light fuel oil, natural gas, steam coal, coking coal].

The information on energy consumption as well as on energy prices is available for electricity,
light fuel oil, natural gas, steam coal, and coking coal. However, due to missing values for some
of the price variables, the prices used in our main model are based on the three products
electricity, LFO and natural gas. Besides the fact that there are fewer missing values for these
three products than for the other products, these are also the three products that show the largest
relative importance in our sample (see Figure 4). However, we test the sensitivity of our results

to prices that are based on other baskets of energy products as well (see Table A.6).
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3.4 Combining the data

As only very few patent counts could be registered in the years before 1980, we restrict the
patent sample used for regression analysis to the years 1980-2009. Accordingly, the final data set
includes 18 countries, 10 industry classes and a period of 30 years. This yields a data set of 5’400
observations. Because of missing values for the other model variables, the number of

observations that could be used for econometric estimations is significantly lower.

4  Empirical Test of Hypotheses

As stated by Jaffe and Palmer (1997) it is very difficult to specify a theoretically satisfying
structural or reduced-form innovation equation at the industry level. Hence, we follow the
framework of a knowledge production function as it was formulated by Griliches (1979) and
implemented in form of a modified Cobb-Douglas model by Jaffe (1986, 1989). Similar to Jaffe
(1989) we look at patents as the outcome variable but we differ in two respects, first we
investigate the industry level and secondly we can distinguish between different types of
knowledge inputs. We formulate the following knowledge production function for an industry j,

in country i at time :'?

Green _ patents;, = AL, KS, , (1)

where Green_patents is the number of green patents (inventions), L is the labour input and K the

capital-stock, 4 is a constant. The parameters & and [ are elasticities with respect to labour and

physical capital respectively. In our model we use the industries’ total number of employees as a
proxy for labour (L) and the gross fixed capital formation in real terms is used to proxy physical
capital (K). Ideally, one would use data on the capital stock instead of capital formation.
Unfortunately, this information is only available for a few countries in the STAN database. We
thus use a flow variable as a proxy for physical capital. Both variables, L and K, should be

positively related with innovation activity.

'2 Other functional forms, like e.g., a translog function, would require more detailed data to describe the production
process (see Griliches 1979).
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Expressing (3) in logarithms yields
In(Green _ patents;,) =In(A4) + aIn(L,,) + S1In(K},). (2)
Besides the standard input factors, the current flow of green patents should also be affected by an
industry’s stock of knowledge. To capture this effect we augment our specification with a
variable that measures an industry’s stock in green patents (Green_stock)."”> Following Cockburn
and Griliches (1988) and Aghion et al. (2012), the patent stock is calculated using the perpetual
inventory method. Following this method, the stock is defined as

Green _stock,, = (1—06)Green _stock, ,

+ Green _ patents,,, (3)
where & is the depreciation rate of R&D capital.'"* According to most of the literature, we take
O to be equal to 15% (see Keller 2002, Hall et al. 2005). However, we test the sensitivity of our
results to other depreciation rates as well (see Table A.7). To capture potential effects of
available knowledge in other than green technologies, we also control for the stocks of patents
that are not classified as green (Other_stock). The stock of other patents is calculated in the same
way as the stock of green patents. In line with previous literature (see, e.g., Aghion et al. 2012,
Stucki and Woerter 2012) we expect that both green specific knowledge and other than green
knowledge do stimulate current green innovation activities.

Finally, to test the impact of energy prices, a variable that measures the industry specific
energy prices (Energy price) is included in this innovation model. The augmented specification

is given by:

In(Green _ patents;,) = In(A) + aIn(L,, )+ S1In(K,

jt—

) +@lIn(Green _stock,, )

4
+ AIn(Other _stock,, )+ ¢In(Energy _price,, )+ t, +1; + &, @

' Popp (2002) finds empirical evidence that failing to properly take into account measures for existing knowledge
stocks may severely bias estimates of the innovation inducing effect of energy prices.

' Due to the low number of patents before 1980, we restricted our sample period to the years 1980-2009. However,
patent applications before 1980 were used to calculate the patent stocks. The initial value of the patent stock is set at
Green_stock,y75/(6+g), where g is the pre-1975 growth in patent stock that is assumed to be 15%.
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where @ and A are the coefficients of knowledge stocks, ¢ is the coefficient of energy prices

and ¢ is the stochastic error term (see Table 2 for variable definition). As patent variables may
contain a value of zero, we used /n(l+patents) to avoid problems with the logarithm (see
Wooldridge 2002, p. 185). To deal with the potential problem of reverse causality the
independent variables are introduced with a lag of one year.

To test the robustness of the price effect we use different dynamic specifications for
energy prices, i.e. we use alternative lags (2-5 year lag), we construct a weighted average of past
prices as proposed by Popp (2002)"° and we calculate a moving average of the energy prices of
the previous five years.

To control for correlated unobserved heterogeneity, we include country specific industry

fixed effects (7). This way we control for the general policy attitude of countries in terms of

industry specific policy measures.'® Furthermore, to reduce the risk of an omitted variable bias
from country specific shocks, we include country specific time fixed effects («). As stated in
Aghion et al. (2012), the increase of energy prices, e.g., might be correlated with country specific
subsidies for green innovation. Accordingly, the effect of energy prices may represent an indirect
effect of subsidies on green innovation, and not a direct effect of prices as suggested above. The
fixed effect u captures such country specific shocks.

As we are not just interested in the effect of energy prices on the total number of green
patents (i.e., the intensity of green patent activities; see H1), but also in the effect on the
development of the number of green patents relative to other patents (i.e., the propensity to patent
in green technologies; see H2), we alternatively estimate our innovation model with a different

dependent variable that measures the difference between the logarithms of the number of green

> As in Popp (2002), this energy price is based on an adaptive expectation model, in which expected future energy
prices are a weighted average of past prices: }3; =(1_¢/)Z;OV/" P where v, the adjustment coefficient that

represents the weights placed on past observations, is 0.83 (see Popp 2002 for a similar procedure), and at the
beginning of the sample period where no price data for previous time periods was available, price expectations have
been set to current prices.

' More concretely, we control for policies that are industry specific and do not change across time. These fixed
effects do not control for industry specific policy shocks.



20

patents and non-green patents (ratio of green patents to non-green patents). Our second model

thus reads as follows:

In(Green _ patents;,) —In(Other _ patents;,) =In(A4) + aIn(L;, )+ fIn(K;, )
+@lIn(Green _stocky, )+ An(Other _stock,, )+ ¢In(Energy _ price,, |) (5)

+ o, 0,8,

5 Estimation results

The main results are presented in Tables 3 and 4. Table 3 shows OLS log linear fixed-effects
estimations for the number of green patents."” The columns with uneven numbers show the
results of the full model as specified in equation 4 for different dynamic specifications of the
price variable. The columns with even numbers show the results for the same estimations without
capital control (reduced model), which significantly increases the number of observations. To
test whether this modification does lead to an omitted variable bias, Table A.2 shows the results
for the reduced models based on the same observations that are available in the full model. As
the results for the energy price variable do only marginally differ between these two models, we
conclude that at least the result for the energy price should not be affected by an omitted variable
bias in the reduced models. Table 4 shows the results for the model with the log ratio of green to
non-green patents as dependent variable, as specified in equation 5.

Our econometric estimations show that energy prices are significantly positively related
with green innovation. This result is in line with hypothesis H1 which states that larger energy
prices stimulate current green innovation activities. Moreover, the impact of energy prices
increases with an increasing time lag between energy prices and innovation activities (see Table

3)."® If we take a 5-year lag we get significant coefficients of 0.28 (full specification) and 0.27

' Our dependent variable is the natural logarithm of the number of green patents, which is a count variable.
Accordingly, count data models would be appropriate. However, these models do not allow to control for country
specific time fixed effects, which is one of the main contributions of our paper. We thus decided to present as a
baseline specification the OLS fixed effects regressions. Robustness tests using count data models are presented in
Table A.8.

'8 To test whether the differences arising from different time lags for the price variable in Table 3 are driven by the
different lag structure or the different samples, Table A.3 shows the results for the same estimates, but with the same
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(reduced model); if we take the moving average of energy prices over five years we see
significant coefficients of 0.27 and 0.34 for the full specification and the reduced model,
respectively.

Hypothesis H2 is confirmed as well, as energy prices have a significantly positive impact
on the ratio of green innovation to non-green innovations (see Table 4). Accordingly, energy
prices do positively affect both, the intensity and the propensity of green innovation. In our
model, a 1% increase of the average energy price of the previous five years results in a 0.45%
(full model) and 0.48% (reduced model) increase of the ratio of green to non-green patents.
Although we do not investigate crowding out effects of green innovation activities explicitly (see
van Leeuwen and Mohnen 2013, Marin 2013 for crowding out investigations on the firm-level),
the relatively large difference in elasticities (0.27 in the green patents equation vs. 0.45 in the
green share equation) indicates some crowding out tendencies, since the share of green
innovation is more strongly affected than the number of green innovations. Indeed, we find a
significantly negative effect of energy prices on non-green innovation for all but one model
specification (see Table A.4)."

As described in the introduction, our model is based on a broader data set than most
previous studies. It would thus be interesting to analyse how this fact does affect the impact of
the energy prices. As previous models either include different control variables or even use
different measures for green innovation, a direct comparison of the marginal effects of energy
prices is hardly possible. Nevertheless, a comparison can provide evidence on the question
whether the impact of energy prices differs substantially among countries and industries. Popp
(2002) identifies an effect of energy prices on the share of green patents in total patents of 0.34

(long run elasticity) for the USA. Though we defined our share variable differently, the size of

observations across the models. As these results do only marginally differ from previous results, we conclude that
differences across models are driven by dynamic effects.

' The impact of energy prices on total patent activity is negative but only small in size and not statistically
significant (these estimates are not presented here but are available on request).
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the effect is quite similar to the 0.52 that we find with respect to the share of green innovation in
non-green innovation when using comparable energy prices®’ for 13 countries (see columns 11
and 12 of Table 4). Aghion et al. (2012) analyse the effect of fuel prices on different innovation
variables for the auto industry. Based on a slightly different model specification that also controls
for other types of knowledge stocks, they identified elasticities of 0.97 and -0.57 for the number
of ‘clean’ and ‘dirty’ patents, respectively. These elasticities are considerably larger than the
figures we find for the total manufacturing sector (based on a lag structure of one year we find
for the reduced model elasticities of 0.20 and -0.14, respectively). Accordingly, it seems that the
dependency on energy prices in the auto industry is larger than the dependency in the other
manufacturing industries. In line with our finding, they also find that the impact of energy prices
increases with an increasing lag between energy prices and innovation activities. These
comparisons indicate that the differences of price elasticities across countries are smaller than the
respective differences across industries. However, further investigations are necessary to clarify
this point.

The results for the control variables are in line with general expectations. Labour input (L)
and physical capital (K) tend to be positively correlated with the number of green patents.
However, we cannot observe a significant effect for these two variables with respect to the share
of green patents. The propensity to patent in green technologies is neither affected by labour
input nor by physical capital input. As expected a larger stock of green knowledge does stimulate
current activities in green innovation. Furthermore, we find in Table 3 that knowledge in other
than green technologies serves as a resource for green innovation as well — the effect of
Other_stock on the number of green patents is significantly positive. The positive effect of green
knowledge on current green innovation activities is, however, significantly larger than the
positive effect of non-green knowledge. The effect of Other stock on the share of green patents

is significantly negative (see Table 4). Thus, it seems that due to opportunity costs, the relative

20 Estimates based on a weighted average of lagged energy prices with a discount factor of 0.83.
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impact of Other stock on green innovation is smaller than the impact on other than green

innovation.

5.1 Robustness tests

We made comprehensive tests to check the robustness of our main results presented in Tables 3
and 4. All these tests are based on the models without the capital flow variable and using moving
averages of the energy prices of the previous five years (as appearing in the last column of Tables

3 and 4, respectively).

Estimates for different subcategories of green innovation

Our estimates are so far based on a quite broad definition of green inventions. Obviously, energy
price shocks should, however, primarily affect inventions that are somehow related to energy
reduction. To deal with this assertion, we estimate our previous model (column 14 of Table 3)
separately for the seven environmental areas that are included in the OECD definition (see
OECD 2012). The respective estimates are presented in Table A.5. The estimation results show
that elasticities are larger for categories that we would suppose are more directly related to
energy. Accordingly, the elasticity is largest for innovations in ‘technologies with potential or
indirect contribution to emission mitigation’ (e.g., energy storage) and ‘energy generation from
renewable and non-fossil sources’. More general green innovation such as innovation dealing
with ‘technologies specified to climate change mitigation’ (e.g., CO, capturing) is not
significantly affected by energy price shocks. Nevertheless, our overall results seem to be quite
representative, as the effect of energy prices is significantly positive for all other subcategories,
and does only marginally vary across the different groups (elasticities between 0.24 and 0.38 for

the other six categories).

Alternative price variables
Despite the fact that our price variable includes the prices of the three most important energy

products, the construction of this variable may affect the results of our estimates. To test the
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robustness of our results with respect to the construction of the price variable, we alternatively
estimated our main model of Tables 3 and 4 with price variables that are based on alternative
baskets of energy products. As there are missing values for some product-specific energy prices,
enlarging the price basket significantly reduces the number of observations that is available for
the model estimation.”! To get comparable results for the different price baskets, we estimate all
models for the same set of observations. The respective estimation results are presented in Table
A.6. To be able to compare these results with previous results, columns (2) and (8) show the
results for the previous estimates based on the smaller sample. The fact that the price elasticities
of these estimates only marginally differ from previous estimates (0.36 vs. 0.34 for green
intensity and 0.55 vs. 0.48 for green propensity) indicates that the reduction of the sample size
does not significantly affect our results.

The estimates for the different price baskets show that the elasticities of our main models
represent the lower limit. For all other price baskets the price elasticities are significantly larger.
The largest elasticities can be observed for prices based on the three products electricity, light
fuel oil and steam coal. Based on this basket we identify elasticities of 0.98 and 1.25 for the
number of green patents and the ratio of green vs. non-green patents, respectively (see columns 3
and 9). The elasticities are lowest when natural gas prices are included in the basket. Due to the
relatively low prices of natural gas (see Figure 3) and its relatively high weight compared with
other energy products (see Figure 4), the price mixes that include natural gas tend to be lower.
Accordingly, a relative increase in these prices does lead to a lower absolute increase in energy
costs than an increase in other price mixes and as a consequence we observe smaller green
innovation effects. Other factors that may affect the different elasticities across the different price
mixes may be different factor substitutabilities. For example it may be comparatively difficult for

an industry to replace electricity by another product when electricity prices increase.

! While 3°448 observations are available when only the two products electricity and light fuel oil are included in the
price basket, only 1°203 observations are available when we additionally include the three products natural gas,
steam coal and coking coal.
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Testing the robustness of the stock variables

In our main models (Tables 3 and 4) we applied a depreciation rate of 15% in order to calculate
knowledge stocks. Table A.7 (columns 1 to 4) presents the results for alternative depreciation
rates of 10% and 30%. The results are relatively independent of the chosen depreciation rate. The

coefficients are similar and directions of the effects are identical.

Checking for outliers

Columns (5) to (8) of Table A.7 show the estimation results with regard to outliers. The
distribution of inventions across industries is very heterogeneous. Consequently we run our
estimation excluding the top 1% of performers and the top 5% of the performers, respectively.”
This only marginally affected our results. We thus conclude that our results are not driven by

outliers.

Dealing with special characteristics of our data
To deal with the count data characteristics of the green patent flow variable, column (1) of Table
A.8 shows the results for the fixed-effects Poisson model with robust standard errors as
recommended by Allison and Waterman (2002) to correct for over-dispersion. Unfortunately,
this procedure does not allow the inclusion of country specific time fixed effects, thus time fixed
effects only have been included as the nearest best alternative specification. The estimation
results with respect to energy prices are only marginally affected by this alternative estimation
procedure. The effect of energy prices on green innovation remains statistically significant and
positive, and the coefficient is only slightly smaller (0.20 vs. 0.34).

Column (2) of Table A.8 shows an OLS model that includes pre-sample fixed effects as
proposed by Blundell et al. (1995) in order to deal with unobserved heterogeneity in the presence

of lagged endogenous variables. In doing so we add the average level of patenting over the pre-

2 Our main estimates presented in Tables 3 and 4 are based on 144 groups. To check for outliers, we excluded all
groups with an average clean or dirty patent stock greater THAN or equal to the top 1% and 5% of the groups,
respectively. All in all, we thus dropped two and ten groups that account for 1.5% and 6.6% of the observations,
respectively.
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sample period 1975-1985 for both, green and other patents (both in logs), as well as two binary
variables that measure whether an industry had any patent applications at all in the pre-sample
period. This procedure does again slightly reduce the size of the effect of energy prices (0.15 vs.

0.34); the effect remains, however, statistically significant and positive.*

6 Conclusions

Based on industry-level panel data, the paper at hand investigates the determinants of green
patent applications of an industry. We find that energy prices do stimulate both, the intensity of
green innovation as well as the propensity of green innovation. In our model, a 10% increase of
the average energy prices of the previous five years results in a 2.7% and 4.5% increase of the
number of green patents and the ratio of green to non-green patents, respectively. While the main
focus is on the impact of energy prices, our model shows several other interesting results. Firstly,
we find that available knowledge stocks serve as an innovation relevant resource for green
innovation independent whether available knowledge is green specific knowledge or knowledge
in non-green technologies. Secondly, as a large knowledge stock in non-green technologies
represents larger opportunity costs with respect to green innovation, the effect of non-green
knowledge on current green innovation is significantly smaller than the effect of green
knowledge. Furthermore, the effect of non-green knowledge on the share of green patents is
significantly negative.

In contrast to previous studies, our results are more general, as they are based on a
broader empirical basis. While most previous studies focused on certain industries or countries,
our data set includes the whole manufacturing sector and the most important countries for green
innovation. Furthermore, we have reduced the problems of an omitted-variable bias by

calculating industry-specific energy prices. When comparing our results with the results of

» We chose these models not to be our baseline specification due to the fact that the count data model does not allow
to control for country time fixed effects, and the Blundell et al. (1995) procedure mainly corrects for the endogeneity
of the lagged dependent variable, which is a control variable in our model.
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previous studies, we found that price elasticities seem to vary primarily across industries and not
across countries. Accordingly, energy prices do not seem to be equally suitable as an instrument
to stimulate green innovation in different industries. Due to the limited number of observations
that is available in our data set, it was unfortunately not possible to compare price elasticities
across industries. However, it seems to be an interesting task for future research to identify such
difference across industries in order to increase the efficiency of energy price regulations.

Despite a large future market potential, firms are probably not willing by themselves to
invest in green technologies, as green innovation is still negatively related to economic
performance (see Soltmann et al. 2013). Furthermore, free-riding possibilities in green
technologies seem to be limited (see Stucki and Woerter 2012). Accordingly, knowledge about
potential policy instruments to stimulate innovation in this area is of large importance. As our
study shows, energy prices may serve as such an instrument. An increase in energy prices may
stimulate the building of a green knowledge stock that (a) would help to achieve a country’s
climate targets and (b) may serve as an important fundament to establish a cleantech market for
which long-term growth is predicted.

Future research should focus on differences of price elasticity across industries (see
above) and it could also investigate in greater detail the link between investments in green
technologies and investments in traditional technologies. Such crowding-out effects or the
meaning of opportunity costs for a technological change would provide additional insights for
policy makers. Since technological activities are global, such research would clearly benefit, if

the studies could include country comparisons.

7 Interpretations and Conclusions Relevant to Switzerland

Switzerland is usually ranked among the most innovative countries in the world (see, e.g.,
Arvanitis et al. 2013). Our descriptive results confirm such findings when we refer to the patent
activities of Swiss firms. When referring to the share of green patents in total green patents, the

picture changes. Switzerland is ranked on the 10" position (see Table 1) in terms of its relative
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share in total green patents and it is ranked 17™ if we look at the ratio of green patens to other
patents (green specialisation). This indicates that Swiss firms invest comparatively less in green
technologies compared to other countries. The present section attempts to deal with the reasons
for this apparent underperformance in green technologies, in particular by looking at the
evolution across time and the sectoral patterns of green innovation in Switzerland, as compared
to the rest of the world.

Figure B.1 shows, for Switzerland and for the time period 1977-2009, the number of
green patents and the ratio of green patents to other patents. It can thus be directly compared to
Figure 1, which displays the same information for all countries considered in this study. The
pattern of total number of green patents is very similar between Switzerland and the rest of the
world: starting from only few inventions in the late 1970s and early 1980s, the number of
inventions rose roughly exponentially throughout the time period considered. The ratio of green
patents to other patents in Switzerland evolved in a more erratic manner when compared to the
same indicator worldwide, which can be attributed to the lower number of inventions available
for the calculation of this series. However, it can be seen that, for the last fifteen years of the
comparison period, the ratio of green patenting has been consistently lower in Switzerland than
in the rest of the world. This is made even more evident in Figure B.2, where the Revealed
Technological Advantage (RTA) of Switzerland in green technologies is shown, which is defined
as the ratio of green patenting in Switzerland divided by the same ratio in the rest of the world.
Values greater than one in this measure thus represent a higher degree of the home country’s
specialisation in the respective technology, values less than one a lower degree of specialisation.
Switzerland’s RTA has been fairly stable around a value of 0.6 since the late 1990s. Prior to that
— in particular from 1988 to 1993 — Switzerland exhibited a similar or even higher propensity of
green patenting than the rest of the world. To sum up: Switzerland has intensified research in
green activities in recent years (the ratio of green to other patents rose from below 4% in the late

1990s to over 6% ten years later). Despite this recent effort, Swiss inventions have lately
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remained, on average, less “green” than inventions elsewhere, due to the fact that there was a
worldwide trend towards greener patenting from the turn of the century onwards.

Is it possible to gain deeper insights from looking at differences in the patenting
behaviour of the ten manufacturing branches considered so far in the present study? Let us
consider the three industries that account, at the world level, for nearly 90% of all green
innovations: machinery, chemicals and transport equipment. These are, according to Table B.1,
also the three most important green innovators within Switzerland. However, within each of
these branches, the propensity to innovate green (measured by the ratio of green patents to other
patents, column 5 in Table B1) in Switzerland is below the respective industry’s world average
(column 6). The gap is small for machinery (6.1% as opposed to 7.3%), but quite considerable
for chemicals (3.6% vs. 6.4%) and transport equipment (19.0% vs. 34.7%).2* With respect to
chemicals, the gap can partly be explained by the fact that this category includes
pharmaceuticals, which accounts for a significant share of Swiss patenting, and which is an
activity where green innovation opportunities are much smaller than in other activities belonging
to the ‘chemicals’ branch (such as ‘basic chemicals’, and ‘other chemical products’). It thus
seems reasonable to affirm that the composition of the Swiss manufacturing sector accounts to
some extent for the lower observed propensity of Switzerland to generate green innovations, but
that this composition effect alone cannot explain the entire gap.

Additional explanations are thus required. We briefly consider two of them here. Firstly,
opportunity costs. Switzerland is very strong in non-green technologies and its companies
invested comprehensively in building up the necessary knowledge base. It is very expensive and
risky to reallocate funds towards new environmentally friendly technologies, even more if

businesses in the field of non-green technologies are performing well. Hence, the opportunity

** With the exception of wood and wood products, all industries in Switzerland exhibit a similar pattern of a less-
than-world-average propensity to patent green. Arvanitis et al. (2011) conduct a cross-country comparison of
different industries’ propensities to generate green innovations, which is similar to the one presented here (but in
more detail, and at a slightly more disaggregated level), and obtain similar findings.
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costs of investing in environmental friendly technologies are on average greater in Switzerland
than in comparable other countries. This may explain to some extent the hesitation to invest in
green technologies in Switzerland. However, given the strong knowledge base in non-green
technologies, and the significant positive effect of such knowledge for the generation of green
innovations that we empirically have observed in the present study (see Table 3), the
technological environment is favourable also for green innovations. This suggests that Swiss
firms have the capabilities to react with green innovation activities upon more favourable market
conditions (e.g. energy prices) for green innovations.

Secondly, lack of policy. Compared to other countries, the Swiss Government refrains
from early policy interventions and it is also not in the tradition of public innovation promotion
in Switzerland to provide direct funding for green innovation activities. This attitude is quite
understandable, given the broad consensus among Swiss managers and policy makers that
refraining from openly interventionist policies in the past has been a good thing. However, it is
also not surprising that countries with an early policy commitment like Germany or Denmark
show a better green performance, so far. From an economic perspective, what matters for policies
to be effective is that they are coherent and involve a long-term commitment. Policies that affect
energy prices by taking into account negative externalities (e.g. due to the carbon emissions
resulting from the use of the respective energy source) are an example of a coherent policy signal
that indicates the development of future green markets and that, in turn, stimulates green

innovations.
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Figure 1: Development of green patents worldwide, 1975-2009
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Table 1: Number of green and other patents (inventions) by industry and
country

Period 1975-2009
Type of patent Other Green Green vs. Other
Relative Relative
share Number  share
Number of  in total of in total Ratio of
other other green green | green patents to
patents patents | patents patents | other patents
Industry
Chemicals 1174189 30.7% 75005  24.3% 6.4%
Food and tobacco 57745 1.5% 2299 0.7% 4.0%
Machinery 2057737 53.8% 151000  49.0% 7.3%
Basic metals 51937 1.4% 7058 2.3% 13.6%
Non-metallic minerals 90436 2.4% 9936 3.2% 11.0%
Paper, pulp and print 23630 0.6% 1439 0.5% 6.1%
Textile and leather 28133 0.7% 949 0.3% 3.4%
Transport equipment 145020 3.8% 50350 16.3% 34.7%
Wood and wood products 5213 0.1% 189 0.1% 3.6%
Non-specified industry 190613 5.0% 10103 3.3% 5.3%
Country
Australia 62475 1.6% 5720 1.9% 9.2%
Austria 35787 0.9% 3479 1.1% 9.7%
Belgium 40323 1.1% 2586 0.8% 6.4%
Canada 85872 2.2% 8978 2.9% 10.5%
Switzerland 114720 3.0% 6042 2.0% 5.3%
Germany 490347 12.8% 55373 18.0% 11.3%
Denmark 38944 1.0% 4276 1.4% 11.0%
Spain 28403 0.7% 2520 0.8% 8.9%
Finland 50947 1.3% 3440 1.1% 6.8%
France 203523 5.3% 17130 5.6% 8.4%
United Kingdom 226841 5.9% 15172 4.9% 6.7%
Ireland 12425 0.3% 637 0.2% 5.1%
Italy 65926 1.7% 4640 1.5% 7.0%
Japan 565774 14.8% 65906  21.4% 11.6%
Korea 86305 2.3% 7267 2.4% 8.4%
Netherlands 130982 3.4% 8794 2.9% 6.7%
Sweden 111130 2.9% 6977 2.3% 6.3%
United States 1473929 38.5% 89391 29.0% 6.1%
Total 3824653 100% 308328  100% 8.1%

Notes: Data is based on own calculations; these statistics are based on 35 cross-sections, 18
countries and 10 industries (total of 6’300 observations); the relative share in total green patents is
calculated as the share of an industry’s/country’s number of green patents relative to the number of all
green patents in our sample (sum of green patents over all industries/countries in the sample); the ratio
of green patents to other patents is defined as an industry’s/ country’s ratio of green patents relative to
its number of other patents.
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Figure 2: Energy prices for electricity, light fuel oil, natural gas, steam
coal and coking coal (per tonne of oil equivalent (toe); PPP adjusted) by
year, 1978-2009
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Figure 3: Average energy prices (per tonne of oil equivalent; PPP
adjusted) for the three most used energy products electricity, light fuel oil
and natural gas (see Figure 4) by country, 1978-2009
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Notes: As the different price information is not available for all countries over the whole sample
period, some of the figures are not directly comparable across countries and products. Natural gas
prices for Sweden are for example only available for the years 2007-2009, and are thus not directly
comparable with the respective prices for light fuel oil that are available for the whole sample
period. Other prices averages with few observations are: Australian LFO price (6 years), Danish
natural gas price (4 years) and Korean natural gas price (6 years); Source: IEA (2012a).
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Figure 4: Share of total energy consumption by product, 1978-2009
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Figure 5: Relative share of top three energy products by industry, 1978-
2009
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Table 2: Variable definition and measurement

Variable Definition/measurement Source
Dependent variable

Green_patents;j; Number of green patents own calculations
Other_patents;; Number of patents that are not classified as green own calculations

Independent variable
L

Kiji

Green_stockij;
Other_stockij

Energy_price;j
Popp_energy_price;j

Moving_average
energy price;

Number of persons engaged (total employment)

Gross fixed capital formation, volumes (current price value)
Stock of green patents

Stock of patents that are not classified as green

Industry specific energy price based on electricity, light fuel oil
and natural gas prices, PPP

Weighted average energy prices as in Popp (2002) for the
whole sample period from 1978 onwards with an adjustment
coefficient of 0.83 (see Aghion et al. 2012 for a similar
procedure).

Moving average of the energy prices of the previous five years.

OECD STAN
OECD STAN
own calculations

own calculations

IEA

IEA

IEA




Table 3: Estimation results for green patent flow

Estimation method OLS log linear fixed-effects regression
Period 1981-2009 1984-2009
Dependent variable In(Green _patents,jt)
) 2 A3) “4) €] (6) )] ®) O a0 an 12 (13) a4
In(Lije.1) 0.068 0.096 0.072 0.101 0.077 0.111%* 0.081 0.130* 0.055 0.117* -0.030 0.035 0.028 0.098
(0.080) (0.067) (0.078) (0.065) (0.083) (0.065) (0.082) (0.067) (0.079) (0.066) (0.088) (0.072) (0.084) (0.068)
In(Kjje.r) 0.125%* 0.113%* 0.111%* 0.118** 0.117%* 0.132%* 0.119%*
(0.052) (0.052) (0.056) (0.058) (0.056) (0.054) (0.059)
In(Green_stockiji.) 0.617***  0.613***  0.603***  (.599***  (.579%**  (.580%**  (0.567***  0.564%**  (.551***F  (.552%**  (.590***F  (.591***  (.550%*F*  (.55]%**
(0.035) (0.034) (0.035) (0.035) (0.036) (0.035) (0.040) (0.037) (0.040) (0.037) (0.041) (0.039) (0.047) (0.043)
In(Other_stockij.;) 0.150%**  0.147*%%  0.158**%*  (.155%%*  (.139%**%  (.147*%*  (.151%**  (.154%%*  0.180%**  0.174%**  0.172%%*  0.164%**  (.158***  (.164%**
(0.047) (0.041) (0.047) (0.043) (0.050) (0.045) (0.057) (0.047) (0.065) (0.052) (0.051) (0.044) (0.059) (0.050)
In(Energy_pricejj.;) 0.115 0.205%*
(0.089) (0.087)
In(Energy_pricejj.,) 0.119 0.200%*
(0.091) (0.087)
In(Energy_pricejj.;) 0.164* 0.223%*
(0.091) (0.087)
In(Energy_priceij.4) 0.201%*  0.222%**
(0.084) (0.080)
In(Energy_pricejj.s) 0.277*%*  0.265%**
(0.100) (0.087)
In(Popp_energy_pricejj.;) 0.286 0.391%**
(0.174) (0.162)
In(Moving_average_energy_pricejj.;) 0.268%* 0.342%*
(0.143) (0.141)
Constant W4 4TSFREE D QI2HRE LA ARBEREE D QDRI 4 65THFH* 3 [T9RRK 5. 073F*K 3436 5307F** 3 540%KF 4 206%** D 984KH* 4 985Kk 3 BROFH*
(1.054) (0.893) (1.037) (0.878) (1.061) (0.878) (1.133) (0.886) (1.154) (0.870) (1.146) (1.121) (1.190) (1.092)
Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes
g;);lg:%’fzges cific industry yes yes yes yes yes yes yes yes yes yes yes yes yes yes
N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144
R? within 0.77 0.80 0.75 0.79 0.73 0.78 0.72 0.77 0.70 0.75 0.76 0.80 0.71 0.76

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich

estimator) are in brackets under the coefficients; ***, ** * denotes statistical significance at the 1%, 5% and 10% test level, respectively.

014



Table 4: Estimation results for relative patenting

Estimation method

OLS log linear fixed-effects regression

Period 1981-2009 1984-2009
Dependent variable In(Green _patentsijt) - In(Other _patents,jt)
@ @) 3 “ () ©) (@) ®) © a0 an () (13) a4
In(Lij.1) -0.052 -0.117 -0.045 -0.112 -0.045 -0.106 -0.039 -0.080 -0.066 -0.097 -0.158 -0.185%* -0.093 -0.111
(0.103) (0.088) (0.101) (0.088) (0.100) (0.084) (0.096) (0.081) (0.095) (0.076) (0.116) (0.095) (0.102) (0.085)
In(Kjj.) 0.040 0.021 0.023 0.018 0.004 0.039 0.022
(0.070) (0.069) (0.072) (0.070) (0.070) (0.068) (0.068)
In(Green_stockij.) 0.377%**  0.365%**%  0.363***  (0.350%*%*  (0.342%**  (.338*%**  (0.326%**  0.320%**  0.303***  0.305%**  (.346**F*F  (.333***  (295%*F*  (.202%**
(0.044) (0.042) (0.043) (0.042) (0.043) (0.044) (0.046) (0.045) (0.047) (0.045) (0.049) (0.046) (0.051) (0.051)
In(Other_stockij.;) -0.313%%*  L0.368***  -0.302%**  -0.356%** -0.280%** -0.337*** -0.227*¥*¥* -0.300%** -0.23]*¥** -0294**F* _0301*¥** -0359%F* _0.227*** _02097***
(0.061) (0.054) (0.060) (0.056) (0.064) (0.057) (0.074) (0.063) (0.082) (0.065) (0.067) (0.058) (0.080) (0.068)
In(Energy_pricejj.1) 0.265%*  (.345%%*
(0.131) (0.123)
In(Energy_pricejj.,) 0.253* 0.323%**
(0.130) (0.122)
In(Energy_pricejj.;) 0.305**  0.361%**
(0.134) (0.123)
In(Energy_priceij.4) 0.358%**  (0.367***
(0.131) (0.114)
In(Energy_pricejj.s) 0.408***  (.367***
(0.142) (0.116)
In(Popp_energy_pricejj.;) 0.519%** 0.615%*
(0.257) (0.238)
In(Moving_average_energy_pricejj.;) 0.450%* 0.481%**
(0.213) (0.194)
Constant -3.007** -1.823 -3.007** -1.887 -3.210%*%  -2.160%  -3.709%*  -2.683**  -3.469%*  -2.524*%*%  _2.986* -2.241 -3.810%*  -3.101%*
(1.401) (1.172) (1.387) (1.169) (1.387) (1.107) (1.427) (1.093) (1.499) (1.045) (1.649) (1.524) (1.580) (1.408)
Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes
Country specific industry
fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes
N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144
R? within 0.50 0.50 0.48 0.48 0.47 0.47 0.43 0.44 0.43 0.43 0.51 0.51 0.43 0.44

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich

estimator) are in brackets under the coefficients; ***, ** * denotes statistical significance at the 1%, 5% and 10% test level, respectively.

It
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Appendix A:
Additional Tables
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Table A.1: Descriptive statistics

Variable Mean Std. Dev. Min Max

Green_patents;j 74.4 305.2 0 4°015

Other_patents;; 1°011.6 4°768.9 0 66’161
Energy_pricejj.| 511.5 239.1 90.0 2°463.5
Green_stockij. 280.0 1°216.9 0 18°692.9
Other_stockj.; 4’1549  21°367.7 0 321°222.3
Kijje1 3.47E+09 7.09E+09 1.22E+07 8.51E+10
Lije1 426°469.4 772’114 2’676  6°395°273

Notes: see Table 2 for the variable definitions; the set of observations is identical to that used for (1) in Table 3 (2°293
observations).

Table A.2: Identification of a possible omitted variable bias (estimates of Table 3 without
capital variable but same observations)

Estimation method OLS log linear fixed-effects regression
Period 1981-2009 1984-2009
Dependent variable In(Green_patents;;)
1) 2 3) [C) (5) (6) [©)
In(Lije.1) 0.150* 0.145* 0.148* 0.156* 0.123 0.054 0.103
(0.079) (0.076) (0.080) (0.083) (0.080) (0.087) (0.085)
In(Green_stockij.) 0.622%** 0.607*** 0.584%** 0.573%** 0.557%** 0.597%** 0.557%**
(0.034) (0.034) (0.036) (0.040) (0.040) (0.040) (0.046)
In(Other_stockij.;) 0.154%** 0.163%** 0.144%** 0.157*** 0.189%** 0.179%** 0.166%**
(0.047) (0.047) (0.051) (0.057) (0.066) (0.051) (0.059)
In(Energy_price;j.1) 0.104
(0.089)
In(Energy_pricej.) 0.112
(0.091)
In(Energy_pricejj.3) 0.161%*
(0.091)
In(Energy_pricej.4) 0.202%*
(0.084)
In(Energy_pricejj.s) 0.283%%**
(0.099)
In(Popp_energy_pricejj.;) 0.274
(0.173)
In(Moving_average_energy_pricejj.;) 0.269*
(0.141)
Constant -2.884%%* -3.013%** -3.190%** -3.604%** -3.786%** -2.519%* -3.384%**
(1.034) (0.998) (1.004) (1.062) (1.034) (1.159) (1.123)
Country specific time fixed effects yes yes yes yes yes yes yes
gi:gtgfesgtz cific industry yes yes yes yes yes yes yes
N 2293 2227 2181 2146 2099 1920 1962
Groups 126 126 116 116 116 105 116
R? within 0.77 0.75 0.73 0.72 0.70 0.76 0.71

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, ** * denotes statistical
significance at the 1%, 5% and 10% test level, respectively.



Table A.3: Identification of pure dynamic effects (based on the same observations for all
models)

144

Estimation method OLS log linear fixed-effects regression
Period 1981-2009 1984-2009
Dependent variable In(Green_patents;;)
) 2 3) [C) (5 (6) O]
In(Ljj..,) 0.085 0.086 0.083 0.082 0.079 0.067 0.077
(0.075) (0.075) (0.075) (0.074) (0.074) (0.075) (0.074)
In(Green_stockij.;) 0.553%**  (.553%** 0.552%** 0.551%** 0.550%** 0.546%** 0.548%**
(0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.046)
In(Other_stockij.;) 0.174%**  0.176%** 0.179%** 0.181%** 0.185%** 0.190%** 0.185%**
(0.058) (0.058) (0.057) (0.058) (0.058) (0.058) (0.058)
In(Energy_pricej.) 0.164
(0.100)
In(Energy_pricejj.») 0.152
(0.102)
In(Energy_pricej.;) 0.185*
(0.096)
In(Energy_price;j.4) 0.192%*
(0.084)
In(Energy_pricejj.s) 0.240%***
(0.089)
In(Popp_energy_price;j.;) 0.460%**
(0.226)
In(Moving_average_energy_pricejj.;) 0.331%*
(0.153)
Constant -2.602%* -2.464%* -2.698%** -2.674%** -2.879%** -3.672%%* -3.562%**
(1.008) (0.983) (0.958) (0.922) (0.925) (1.301) (1.173)
Country specific time fixed effects yes yes yes yes yes yes yes
Country specific industry
fixed offects yes yes yes yes yes yes yes
N 2299 2299 2299 2299 2299 2299 2299
Groups 125 125 125 125 125 125 125
R? within 0.76 0.76 0.76 0.76 0.76 0.76 0.76

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, ** * denotes statistical
significance at the 1%, 5% and 10% test level, respectively. Estimations are based on all observation that are available for
all specifications.



Table A.4: Estimation results for other patent flow
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Estimation method OLS log linear fixed-effects regression
Period 1981-2009 1984-2009
Dependent variable In(Other_patents;;)
O] 2 (3) “ (5) 6) (7
In(Lij.,) 0.213%** 0.213%** 0.216%** 0.210%** 0.214%** 0.220%** 0.209%**
(0.057) (0.062) (0.063) (0.066) (0.062) (0.064) (0.071)
In(Green_stockij.;) 0.248%** 0.248%** 0.242%** 0.243%** 0.247%** 0.258%** 0.259%**
(0.026) (0.028) (0.031) (0.033) (0.034) (0.030) (0.036)
In(Other_stockij.;) 0.515%** 0.511%** 0.484%** 0.454%** 0.467%** 0.522%** 0.462%**
(0.036) (0.039) (0.041) (0.046) (0.043) (0.038) (0.051)
In(Energy_pricejj.1) -0.140%*
(0.071)
In(Energy_pricej.) -0.123*
(0.067)
In(Energy_pricej.3) -0.138**
(0.068)
In(Energy_pricej.4) -0.144**
(0.066)
In(Energy_pricejj.s) -0.102*
(0.060)
In(Popp_energy_price;j..;) -0.224*
(0.132)
In(Moving_average_energy_pricejj.;) -0.139
(0.091)
Constant -0.989 -1.034 -1.019 -0.753 -1.016 -0.744 -0.779
(0.701) (0.746) (0.795) (0.869) (0.821) (0.906) (0.972)
Country specific time fixed effects yes yes yes yes yes yes yes
Country specific industry yes yes yes ves yes yes ves
fixed effects
N 3142 3051 2969 2899 2829 2725 2669
Groups 174 174 164 154 154 143 144
R? within 0.91 0.91 0.91 0.90 0.90 0.91 0.90

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, ** * denotes statistical
significance at the 1%, 5% and 10% test level, respectively.



Table A.5: Estimates for different types of green innovation

Estimation method OLS log linear fixed-effects regression
Period 1984-2009
Dependent variable In(Specific_green_patents;;)
. Energy generation from . . . . Technologies with potential . . .
Type of green patents: General environmental renewable and non-fossil Cqmbu;t}on 'technolog'les Tf:chnologles spetc'lﬁc .to or indirect contribution Emlss'lon at?atement and fuel Er'lerlgy efﬁme'ncy'm
management sources with mitigation potential climate change mitigation to emission mitigation efficiency in transportation buildings and lighting
) 2 3) “ (5 (6) O]
In(Ljj..,) 0.053 0.149 0.036 -0.006 -0.001 -0.007 0.031
(0.070) (0.103) (0.044) (0.039) (0.075) (0.080) (0.061)
In(Specific_green_stockij.i) 0.460%** 0.526%** 0.461%** 0.593%** 0.580%** 0.547%** 0.554%**
(0.044) (0.054) (0.044) (0.050) (0.040) (0.039) (0.042)
In(Specific_other_stocki.) 0.198%** 0.097** 0.037 0.034** 0.072%* -0.012 0.078%*
(0.052) (0.041) (0.029) (0.017) (0.039) (0.041) (0.037)
In(Moving_average_energy_pricejj.;) 0.239* 0.379%*** 0.328%** 0.074 0.382%** 0.342%** 0.255%*
(0.135) (0.133) (0.103) (0.087) (0.115) (0.116) (0.120)
Constant -2.851%* -4.420%%* -2.558%** -0.638 -2.746** -1.851 -2.442%*
(1.099) (1.369) (0.734) (0.699) (1.111) (1.185) (1.008)
Country specific time fixed effects yes yes yes yes yes yes yes
Country specific industry
fixed offects yes yes yes yes yes yes yes
N 2669 2669 2669 2669 2669 2669 2669
Groups 144 144 144 144 144 144 144
R? within 0.68 0.70 0.52 0.64 0.70 0.65 0.67

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under
the coefficients; ***, ** * denotes statistical significance at the 1%, 5% and 10% test level, respectively.
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Table A.6: Estimates based on alternative price variables (same observations for all models)

Estimation method

Period

OLS log linear fixed-effects regression

1984-2009

Dependent variable In(Green_patents;;) In(Green_patents;;) - In(Other_patents;;,)
electricity, .. - L electricity, light fuel .. .. - T electricity, light fuel
Products included in price basket heéﬁftfr:;tzl | 'igghf‘lel 1;1?: fel tgfl, ?:chltglclltr}:ai%}allt eggrﬁtyst:agmht . tgi‘lr;l“fé‘;f‘lcfif;lg lf;‘itgfe‘ltyml 1121&0 . tc})li,l, 1121&0 . tc})li,l, ztzcltglclltr}:ailll%}allt eggrlﬂtystélagmht . t:eillr,nn:::lfﬂcﬁliis;lg
natural gas steam coal gas, steam coal  coal, coking coal coal natural gas steam coal gas, steam coal  coal, coking coal coal
) (2) 3) “ (5 (6) (7 ®) ©) (10) ) (12)
In(Lije.1) -0.059 -0.069 -0.092 -0.116 -0.080 -0.104 -0.173 -0.192 -0.212 -0.251 -0.193 -0.232
(0.170) (0.157) (0.167) (0.147) (0.165) (0.146) (0.208) (0.191) (0.200) (0.181) (0.199) (0.182)
In(Green_stock;j.1) 0.437%%* 0.448%* 0.429%%** 0.439%#* 0.431 %% 0.441%%* 0.277%%* 0.292%%* 0.270%%** 0.281%%* 0.274%%* 0.284%%*
(0.068) (0.070) (0.069) (0.070) (0.070) (0.070) (0.087) (0.089) (0.089) (0.088) (0.090) (0.088)
In(Other_stockij.1) 0.170 0.182 0.170 0.194* 0.160 0.190 -0.118 -0.100 -0.119 -0.086 -0.131 -0.093
(0.116) (0.115) (0.108) (0.114) (0.111) (0.115) (0.113) (0.111) (0.105) (0.107) (0.108) (0.109)
In(Moving_average_energy_pricej.;) | 0.716%* 0.364%* 0.984%** 0.675%* 0.944%** 0.650%* 1.014* 0.553* 1.251%%* 0.929%* 1.125%* 0.871%*
(0.350) (0.182) (0.376) (0.274) (0.384) (0.267) (0.516) (0.284) (0.446) (0.379) (0.452) (0.363)
Constant -4.066 -1.672 -5.054* -2.825 -4.868* -2.809 -6.891%* -3.793 -7.902%* -5.375% -7.184%* -5.175%
(2.681) (2.143) (2.868) (2.325) (2.890) (2.304) (3.720) (2.878) (3.143) (3.029) (3.141) (2.958)
Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes
Country specific industry
fixed cffects yes yes yes yes yes yes yes yes yes yes yes yes
N 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203
Groups 89 89 89 89 89 89 89 89 89 89 89 89
R? within 0.80 0.80 0.80 0.80 0.80 0.80 0.31 0.31 0.32 0.32 0.31 0.32

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under the

coefficients; ***, ** * denotes statistical significance at the 1%, 5% and 10% test level, respectively.
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Table A.7: Estimates based on alternative depreciation rates and controlling for outliers, respectively

Estimation method

OLS log linear fixed-effects regression

Period 1984-2009
Dependent variable In(Green_patents;;)  In(Green_patents;;) - In(Other_patents;;,) In(Green_patents;;) In(Green_patents;;) - In(Other_patentsy;,)
Depreciation rate 10% 30% 10% 30% 15% 15% 15% 15%
Checking for outliers no no no no drop top 1%  drop top 5% drop top 1% drop top 5%
O] () 3) [C) (5 (6) O] ®)
In(Lij.,) 0.101 0.089 -0.114 -0.103 0.097 0.091 -0.111 -0.118
(0.072) (0.062) (0.086) (0.080) (0.069) (0.068) (0.085) (0.084)
In(Green_stockij.) 0.551%%*  (.539*** 0.276%** 0.321%*** 0.551%** 0.548%** 0.292%** 0.288%***
(0.044) (0.040) (0.052) (0.047) (0.043) (0.043) (0.051) (0.051)
In(Other_stockij.;) 0.161%%*  (.177*** -0.293%** -0.299%** 0.163%** 0.157%%** -0.297*** -0.301%**
(0.054) (0.041) (0.072) (0.058) (0.050) (0.048) (0.068) (0.067)
In(Moving_average_energy_pricej.;) | 0.356%* 0.309** 0.491** 0.458** 0.352%* 0.321%** 0.486** 0.463**
(0.146) (0.127) (0.199) (0.182) (0.143) (0.139) (0.199) (0.195)
Constant -4.103%%%  13.302% % -3.122%* -3.176** -3.862%%* -3.558*#* -3.047%* -2.871%*
(1.144) (0.960) (1.446) (1.292) (1.100) (1.057) (1.432) (1.400)
Country specific time fixed effects yes yes yes yes yes yes yes yes
ggsggf:g: cific industry yes yes yes yes yes yes yes yes
N 2669 2669 2669 2669 2629 2494 2629 2494
Groups 144 144 144 144 142 134 142 134
R? within 0.76 0.77 0.44 0.45 0.76 0.74 0.44 0.44

Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country
level (clustered sandwich estimator) are in brackets under the coefficients; ***, ** * denotes statistical significance at the 1%, 5% and

10% test level, respectively.

1%
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Table A.8: Models dealing with the count data characteristics
of the green patent flow variable and the endogeneity of the
stock variables, respectively

Estimation method Fixed-effects Poisson regression OLS pre-sample mean estimator
Period 1984-2009
Dependent variable Green_patentsyj; In(Green_patents;;,)
O] (2
In(Lij.,) 0.046 0.056*
(0.121) (0.069)
In(Green_stockj.;) 0.798%** 0.647%**
(0.094) (0.033)
In(Other_stocki.;) 0.035 0.085%*
(0.119) (0.036)
In(Moving_average energy_pricejj.;) 0.202%* 0.148**
(0.096) (0.069)
Constant -2.216%**
(0.715)
Year fixed effects yes no
g)cz:(riltgfsgtesmﬁc industry yes o
Country specific time fixed effects no yes
Industry fixed effects no yes
Pre-sample fixed effects no yes
N 2610 2669
Groups 137 144
Wald chi2 72782.29%**
R’ 0.94
Log Likelihood -7674.11

Notes: see Table 2 for the variable definitions; standard errors that are in brackets
under the coefficients; ***, ** * denotes statistical significance at the 1%, 5% and
10% test level, respectively; Column (1): In line with Allison and Waterman (2002)
we used robust standard errors to correct for overdispersion; Column (2): Pre-
sample mean scaling approach proposed by Blundell et al. (1995) was used to
account for fixed unobserved heterogeneity in the propensity to patent in the
presence of lagged endogenous variables; standard errors are robust to
heteroskedasticity and clustered at the industry-country level (clustered sandwich
estimator).



50

Appendix B:

Tables and Figures for Switzerland
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Figure B.1: Development of green patents in Switzerland, 1977-2009
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Source: Own calculations.

Figure B.2: Revealed Technological Advantage in green technology, Switzerland vs.
World, 1977-2009
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Source: Own calculations.
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Table B.4: Number of green and other patents (inventions) by industry in
Switzerland

Region Switzerland ‘ World
Type of patent Other Green Green vs. Other
Relative Relative | Ratio of | Ratio of
Number  share Number share green green
of in total of in total | patents to | patents to
other other green green other other
patents  patents patents patents patents patents
Chemicals 44627 38.9% 1628 26.9% 3.6% 6.4%
Food and tobacco 3841 3.3% 132 2.2% 3.4% 4.0%
Machinery 49738  43.4% 3034 50.2% 6.1% 7.3%
Basic metals 1452 1.3% 174 2.9% 12.0% 13.6%
Non-metallic minerals 2495 2.2% 253 4.2% 10.1% 11.0%
Paper, pulp and print 1053 0.9% 36 0.6% 3.4% 6.1%
Textile and leather 1035 0.9% 21 0.3% 2.0% 3.4%
Transport equipment 2585 2.3% 491 8.1% 19.0% 34.7%
Wood and wood products 162 0.1% 7 0.1% 4.3% 3.6%
Non-specified industry 7732 6.7% 266 4.4% 3.4% 5.3%
Total 114720  100% 6042 100% 5.3% 8.1%

Notes: Data is based on own calculations; these statistics are based on 35 cross-sections and 10 industries
(total of 350 observations); the relative share in total green patents is calculated as the share of an industry’s
number of green patents relative to the number of all green patents in our sample (sum of green patents over
all industries in the sample); the ratio of green patents to other patents is defined as an industry’s ratio of
green patents relative to its number of other patents.



