D1.1: Big travel demand data
analytics support tool

Project acronym:

Project title:

Funding Scheme:
Communities (ENSCC)

Authors

Erick Bastidas
Marco Laumanns
Thomas Pfeiffer
Joelle Tavernier

Internal Reviewer
Flurin Hanseler

¥

State:

Distribution:

Date:

5 AL
- Sy -

TUDelft 2%

“¥os

TRANS-FORM

Smart transfers through unravelling urban
form and travel flow dynamics

ERA-NET call on Smart Cities and

ebas@ch.ibm.com
mlim@zurich.ibm.com
thomas.pfeiffer@de.ibm.com
joelle.tavernier@ch.ibm.com

F.S.Hanseler@tudelft.nl

Version 1, revised after internal review
Confidential
August 8, 2017

‘v‘“"‘ kg

e

_“\a ECOLE POLYTECHNIQUE

‘BM’ FEDERALE DE LAUSANNE

]
Il

etral+D

I
“1ln
.||]

,
(2]

=lm

pue)
L]
w
@

mailto:F.S.Hanseler@tudelft.nl
mailto:joelle.tavernier@ch.ibm.com
mailto:thomas.pfeiffer@de.ibm.com
mailto:mlm@zurich.ibm.com
mailto:ebas@ch.ibm.com

Deliverable History

30-01-2017 |Erick Bastidas Initial draft

09-02-2017 |Erick Bastidas Swedish, Dutch, Swiss user stories
and initial APl endpoints draft

01-03-2017 |Erick Bastidas Swedish, Dutch, Swiss API
endpoints final draft and described
in the Swagger file

22-03-2017 |Joelle Tavernier Revision of API definitions and
examples

09-04-2017 |Marco Laumanns Section 2 added, Overall revision

29-06-2017 |Erick Bastidas Revision of API definitions
stop-to-stop/average

04-08-2017 |Marco Laumanns Revision based on internal review

08-08-2017 |Marco Laumanns Adjustment of API specifications to

current implementations. Added
Appendix A to reflect the changes

D1.1: Big travel data analytics support tool

Contents

L SUITIITIATY ..ttt ettt ee ettt e e st e e sttt e e s s sabaeeeesabaeeessassaeesssssaaeeesasaaaeessssssssssnssssnnaaaeees 5)
2.Data Model and Application ATChiteCTUTE.........cccueeeiieiriieeeiieerie et e et erreeeee e eeeesaeee e e e 7
2.1 TTANSIE LAYET....eeiieieiiieeeeteee ettt ettt e st e s ettt e e s st e e e s saeee e e s s s nssssssraaeeeeeeeens 7
2.2 PaSSENEGEL LAYciiiiiiiiiiieiiieeeeteee ettt ettt e ettt e e ettt e s et e e e s aate e e e s aaaeesesanraeeeeannes 8
2.3.Extensions for hub-level data...........cccooieiiiiiniiiinieeeece e 9
2.4.Graph Database..........ceecueiriiriieiiieeitet ettt ettt ettt st et e e e e s snnaeeenreas 10
2. 5. ATCRITECIUTE. ... ettt ettt ettt e et st e at e et e e sae e s b e e s ateebeesabeeesabaeeesaneeans 11
3.Internal API eNdPOINtS (COTE).....uuirruirieirieieiieieieeesteeeeteeesereeesteeesreeeessaeessssesssssseeeeeesssnsesees 12
3.1.Auth: Setting up the users authentiCation api.........cceecveereeerrieeinieersieeerieeerreessveeeeens 12
3.2.Users: Setting up the users profile api........c.cceceevierieeiieeiiieiieeieceece e 13
3.3.Admin: Setting up the admin user-management api...........ccceeveerveerreerireernsreeesnueeesnnnens 14
4.External API endpoints (data COMPULAtioN).........cecueereerrieerieeireenieesieeneeereeesereeesereesssneens 15
4.1 USET STOTIES...ciiuuiiiiiiiiiiieiitie ettt ettt ettt et be e s be e s bae e sane e e s s ssbaaeeeessnnnnaees 15
4.1.1.Urban Level USer SOIIes......cccevueriererrierienieeienterieneesitesteeeesieesseseeeseeeesneessareens 15
4.1.2.Regional Level USer StOTies........cc.cuviirieeiuiinienitenieeieeete ettt st ieee s 17
4.1.3.HUD Level USer StOTies.......ccceiruiiriiiiiinieeiteeieeite sttt ettt et eesbee e s saeee e 18
4.2.Graph transversal COMPULAtIONS........ccueeerueerrieerrieeriieenieeenreeesreeesreessreessssneeesssssnnnes 21
4.2.1. API endpoint: /api/v1l/compute/passengers/stop-t0-StOp/COUNL...........cceeeeruvveeennns 21
4.2.2.API endpoint: /api/v1/compute/passengers/stop-t0-Stop/average...........ccceeeeevveennns 38
4.2.3.API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count.................... 39
4.2.4.API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/waiting-time........ 47
4.2.5.API endpoint: /api/v1/compute/passengers/transfer/route-to-route/count.............. 48
4.2.6.API endpoint: /api/v1/compute/passengers/transfer/route-to-route/average........... 60
4.2.7.API endpoint:
/api/v1/compute/passengers/transfer/route-to-route/waiting-time/distribution................ 60
4.2.8.API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count......... 61
4.2.9.API endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/average.....78

4.2.10.API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distribution...78

4.2.11.API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution......... 78

D1.1: Big travel data analytics support tool 3

4.2.12.API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribution....... 78

4.2.13.API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density....78

4.2.14.API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/density 78

4.3.Potential future (computation) API eXteNSIONS........ccccvervveerieerieerieeirreeeiieeeeenreeeasaeeeens 79
4.3.1. API endpoint: /api/v1/compute/passengers/transfer/count (extension 1)............... 79
4.3.2.API endpoint: /api/v1/compute/passengers/transfer/count (extension 2)................ 80
4.3.3. API endpoint: /api/v1/COmMpute/rOUteS/COUNL.......cceverrrrrrrerrrrereeesreesressreeseeesaeeeens 82
4.3.4. API endpoint: /api/v1/COmMpPULe/TOULES/AVETAZE.cccveerrrerrrerrrrerrreereeeennreeeesneeennns 89

5.ConClusions and PrOSPECTS.........cccueeecieeeiieeeitieeeieeeeteeesveeesaeeessseeessseesssaeesssseesnssssseessnsnssees 94

D1.1: Big travel data analytics support tool 4

1. Summary

Task 1.1 deals with the design and development of a tool to process, filter and analyze travel
demand data. In several iterations of the requirements analysis process, the available data sets
from the case studies were analyzed and the desired functionalities of the data analysis tool
were defined together with all partners. Based on the requirements, the architecture of the
tool was designed, and the tool was implemented accordingly.

The data storage backend consists of a modern graph database, which contains a transit layer
and a passenger layer to store the cleaned and preprocessed input data. The architecture of the
tool and the data model is described on Section 2.

Queries against the database are implemented in the Apache Gremlin open source graph
query language and can be called via a set of well-defined REST APIs. The APIs are defined
using Swagger 2.0, which ensures easy documentation and integration into other applications.
The Swagger file can be downloaded from the TRANS-FORM shared folder at Box:

e TRANS-FORM > WP1 > Task 1.1 > Application Design > APIs > swagger-api.yaml
¢ TRANS-FORM > WP1 > Task 1.1 > Application Design > APIs > swagger-api.json

Besides the main data analysis functionality, the tool also provides administrative features
such as user authentication and lower-level data inspection. These administrative APIs are
described in Section 3. The functional APIs for running the data analysis queries as well as
the User Stories that led to their definition, are described in detail in Section 4, which forms
the major part of this document.

Overall, the tool provides APIs for the following four types of evaluations (and corresponding
endpoints):
¢ OD matrices, which contain the (total and time averaged) number of “passenger
journeys” between given “stops”
© /compute/passengers/stop-to-stop/count
© /compute/passengers/stop-to-stop/average
¢ Transfer matrices, which contain the number of passengers transfering between
different “trips” or “routes” (groups of trips of the same line):
© /compute/passengers/transfer/trip-to-trip/count
© /compute/passengers/transfer/trip-to-trip/waiting-time
© /compute/passengers/transfer/route-to-route/count
© /compute/passengers/transfer/route-to-route/average

© /compute/passengers/transfer/route-to-route/waiting-time/distribution

D1.1: Big travel data analytics support tool 5

¢ Intra-station passenger zone-to-zone matrices, which contain the number of
passengers and their walking time, speed and distances between given zones inside
the station
© /compute/passengers/intra-station/zone-to-zone/count
© /compute/passengers/intra-station/zone-to-zone/average
© /compute/passengers/intra-station/zone-to-zone/walking-distance/distribution
© /compute/passengers/intra-station/zone-to-zone/walking-speed/distribution
© /compute/passengers/intra-station/zone-to-zone/walking-time/distribution

¢ Intra-station passenger density and walking speed distribution (for a given space-time
discretization)
© /compute/passengers/intra-station/zone-to-zone/density
© /compute/passengers/intra-station/zone-to-zone/walking-speed/average/density

Section 5 concludes this document by discussing potential future enhancements and well as
deployment options.

D1.1: Big travel data analytics support tool 6

2. Data Model and Application Architecture

Analyzing demand data of public transportation systems requires the linkage of two different
kinds of data: data related to public transit vehicles (such as vehicle trips, routes, stops and
schedules) and data related to the travel flows (such as smart card, video data or other data
capturing the journeys of individual travelers). Accordingly, the data model of the application
is designed to reflect this dichotomy and consists of the following two layers:

e The Transit Layer contains the definitions of the transit services information. For this
layer the data model follows the de-facto standard GTFS. The GTFS (“General
Transit Feed Specification”) defines a common format for public transportation
schedules and associated geographic information. A GTFS “feed” is composed of a
series of text files (in csv format), usually collected in a ZIP file. Each file models a
particular aspect of transit information: stops, routes, trips, and other schedule data.

¢ The Passenger Layer contains definitions of the passengers’ movements when using
the transit services or when transferring between services. In this project, this data is
obtained from automatic fare collection (AFC) systems as well as video data.

The purpose of the data model is to store and to link these two kinds of data in order to
facilitate complex analytics to be run against it as efficiently as possible.

2.1. Transit Layer

The data model components for the Transit Layer reflect the consensus between the project
partners to rely as much as possible on existing data standards, in this case GTFS. In order to
maintain compatibility, all the terminology (file names and field names in each file) must be
used as the GTFS specifies. Moreover, the GTFS minimum “required” files and fields must
be provided when adding a new transportation service. The main GTFS entities that are used
in our applications are as follows:

* Astop is a location that serves as an access point to the transit system for passengers.

e A stop time represents a stopping event of a public transport vehicle at a stop in order

to let passengers board the vehicle or disembark. It usually contains an arrival and a
departure time as properties.

e A trip represents the movement of a vehicle along stops. It is represented by a
sequence of stop time entities.

¢ Aroute is a collection of different trips, e.g., to group the different trips that visit the
same sequence of stops.

® A calendar is a temporal pattern in terms of days of operation that can be associated
with a trip.

D1.1: Big travel data analytics support tool 7

* An agency is the transport operator of a route.

The concept of a “line”, which is common in the public transport literature, does not exist as
such in the GTFS, but can be represented as a route.

To extend the TRANS-FORM Transit Layer data specification to include new objects that are
not part of the GTFS, two approaches can be considered:

® to create a new “.txt” file and add the new fields to this new file, including the
connections (foreign ids) to the standard GTFS files; or

¢ to add “optional” fields to a GTFS file, if the data relates directly to a GTFS
object/file.

The first method is always preferred to keep GTFS intact.

2.2. Passenger Layer

In contrast to the Transit Layer, there seems to be no standard data format available to
describe passenger journeys. For this reason a new data model for the Passenger Layer is
defined from scratch for the purpose of this application.

In order to define the Passenger Layer data model, a few fundamental concepts have to be
defined:

® A passenger is a unique person who is doing one of multiple journeys over a given

time frame.

e A journey reflects the use of a public transport system for a certain purpose, from an
origin to a destination. Origin and destination refer to public transit stop objects in the
Transit Layer. A journey is a path of one or more journey legs. (NB: the term trip is
reserved for the Transit Layer, where it refers to a vehicle trip).

* A journey leg refers to the usage of a particular vehicle trip from a boarding stop to an
alighting stop.

The data model across the two layers is shown schematically in the following diagram:

D1.1: Big travel data analytics support tool 8

Passenger 1 travels 0..n @ 1 consists 1..n Journey
n 0..

: 0..n| (0..n
o

0 nW in starts_at ‘

Cbedrs l lends_at ” =

~Oy; 1 1 1 1 S\t
1
1

1 stops_at 1.n 2.n consists

Passenger Layer
ot l

1

E

.g U 0..n

e

|‘_£ continues_to schedules

uns

1

provides Calendar

(Calendar_dates)

Agency

This is a Graph-based data model, which is the underlying structure of a Graph Database as
explained below in Section 2.4. The numbers at the heads and tails of the edges (blue arrows)
indicate whether the edge represents a one-to-one, a one-to-many, many-to-one or a
many-to-many relationship, similar as in standard entity-relationship-diagrams. For example,
a trip consists of many (but at least 2) stop time objects, while a stop time object can be
associated to exactly one trip.

2.3. Extensions for hub-level data

The purpose of the hub extension is to store, at an appropriate level of detail, traces of the
passenger behavior inside the transportation hubs. Instead of modeling it by adding a third
layer to the data model, it is implemented as an extension for the transit and passenger layers
by adding further objects and relations. This design decision is based on the fact that the hub
layer adds some further detailed data (here: footpaths) about an already defined object (the
passenger) and associates those to objects of the Transit Layer (the stops). The following
diagram shows the hub-level extensions of the data model:

D1.1: Big travel data analytics support tool 9

o.n walks
Passenger TODO: future

extension

Passenger Layer

Intra-station

Intra-station
Zone

Zone : zoneAt 1

% : Stop Time

2 0.1

= TODO: future S

E extension continuesTo
2.4. Graph Database

The application data model sketched above consists of data objects and their relations. This
structure can nicely be reflected in a graph database. Graph databases are a relatively recent
concept that store relationsships between individual data objects directly instead of using
tables with foreign keys as in traditional relational databases. This should lead to faster
processing times for complex queries by avoiding the need to execute multiple nested “join”
operations on tables in a relational database.

In a graph database, the data objects are called “vertices” and the relations between two
vertices are called “edges”. Both vertices and edges can be of a certain kind (called “label”)
and can store internal data (called “properties”). Edges have an orientation, so each edge has
a unique “out-vertex” and a unique “in-vertex”. The orientation can be used with queries,
e.g., to filter on only outgoing or only incoming edges, but they can be traversed in both
directions with a query.

In order to retrieve data from a graph database, a graph-oriented query language is typically
used instead of the common SQL used for relational databases. In this application, the graph
programming language Gremlin is used, which is part of the Apache TinkerPop open source
project.

D1.1: Big travel data analytics support tool 10

2.5. Architecture

The following diagram gives a high-level overview of the application architecture:

REST API REST API REST API REST API

Analysis Analysis Analysis
app 1 app 2 app 3

Input app

IBM Bluemix Apache Apache Apache Apache Cloudant
Apps Gremiin Gremlin Gremlin Gremlin driver

IBM Graph Cloudant

The application is designed as a web application running on IBM Bluemix, a
Platform-as-a-Service (PaaS) built on Cloud Foundry, an open source, multi cloud application
platform as a service. The data backend of the application is IBM Graph, a
Database-as-a-Service (DBaaS) running on IBM Bluemix. IBM Graph is a graph database
with support for Gremlin and implements the data model described above.

The core of the application consists of a series of light-weight “analysis apps”, which are
serving the REST APIs by running queries against the graph database using Gremlin. These
apps are implemented in JavaScript running on a Node.js runtime environment. However, the
design is flexible such that further apps can be added while being implemented in any
arbitrary programming language and framework that is able to serve REST APIs and access a
graph database via Gremlin queries.

In order to load data into the main graph database, some custom Java applications are
implemented that can be executed offline. The intention is that the application's administrator
performs all data loads offline using these applications.

The analysis functionality, which is the main functionality of the tool, is provided via a
number of REST APIs, which are described in detail in the following two sections.

D1.1: Big travel data analytics support tool 11

3. Internal APl endpoints (core)

This section describes the “internal” API endpoints. The purpose of the internal endpoints is

not to perform the actual data analysis but to provide administration capabilities, data

management and support for developers. The internal APIs are grouped into four categories:

e Auth: APIs related to user authentication
e User: APIs for users to manage their user profile
¢ Admin: APIs for administrators to manage user accounts

¢ CRUD: low-level APIs to inspect and edit the data (vertices and edges) of the
underlying graph database directly.

3.1. Auth: Setting up the users authentication api

/api/v1/auth/signup
POST: users.signup

/api/v1/auth/signin
POST: users.signin

/api/v1/auth/signout
GET: users.signout

/api/v1/auth/forgot
POST: users.forgot

/api/v1/auth/reset/:token
GET: users.validateResetToken

/api/v1/auth/reset/:token
POST: users.reset

D1.1: Big travel data analytics support tool

12

3.2. Users: Setting up the users profile api

/api/v1/users/me
GET: users.me

/api/v1/users
PUT: users.update

/api/v1/users/accounts
DELETE: users.removeOAuthProvider

/api/v1/users/password
POST: users.changePassword

/api/v1/users/picture
POST: users.changeProfilePicture

D1.1: Big travel data analytics support tool

13

TRANS-FORM Confidential

3.3. Admin: Setting up the admin user-management api

/api/v1/users
GET: adminOnly

/api/v1/users/:userld
GET: adminOnly, users.read
PUT: adminOnly, users.update
DELETE: adminOnly, users.delete

4. External APl endpoints (data computation)

The external API endpoints are those that provide access to the actual data analysis queries
and computations. The APIs have been developed to fulfill the analysis requirements from all
project partners related to the case studies. This section first provides the user stories that
were formulated during the requirements elicitation process and the next section then defines
and describes the implemented APIs in detail.

4.1. User Stories

In order to specify the requirements, the software development concept of user stories was
applied. User stories are brief, informal descriptions (in natural language) of features that a
software should exhibit in order to fulfill a certain requirement for an end user. For the
purpose of this project the end user is a transportation analyst who wants to analyse transport
demand data. In the following three subsections, the user stories are listed, grouped according
to the respective level (urban level, regional level and hub level). Reference to data examples
(input and output) are given.

4.1.1. Urban Level User Stories

1. USER STORY: “As a public transport analyst, I want to get a stop-to-stop OD-matrix
of passenger journeys, as average over the number of imported days, cleaned,
matched and corrected for non-smartcard users.”

Check:
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/count
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/average

Use:
e average_by: TOTAL_DAYS_OF_TIME_INTERVAL

Examples: 1, 5, 6, 7 and others

2. USER STORY: “ As a public transport analyst, I want to get a public stop
name—to—public stop name OD-matrix on a passenger journey level, as average over
the number of imported days, cleaned, matched and corrected for non-smartcard
users.”

Check:
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/count
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/average

Use:
e average_by: TOTAL_DAYS_OF_TIME_INTERVAL,

D1.1: Big travel data analytics support tool 15

* use “stop_name” instead of “stop_id” to get public stop names

Examples: 5, 6, 7 and others
3. USER STORY: “As a public transport analyst, I want to get a time-dependent
OD-matrix (per hour of the day / other time aggregation level)”

Check:
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/count
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/average

Use:
e average_by: PER_HOUR_OF_DAY

Examples: 5, 6 and others

4. USER STORY: “As a public transport analyst, I want to get a segmented OD-matrix
for several trip purposes / classes”

This user story has not been implemented, since the available data has no information
on trip purposes or class.

D1.1: Big travel data analytics support tool 16

4.1.2.

1.

Regional Level User Stories

USER STORY: "As a public transport analyst, I want to get a station-specific transfer
matrix that contains the number of transfering passengers between given pairs of
vehicle trips.”

Check:
¢ API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count
e API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/waiting-time

Examples: 1, 2

USER STORY: "As a public transport analyst, I want to get a station-specific transfer
matrix that contains the number of transfering passengers between given pairs of
vehicle routes as well as information about the transfer time (such as average and
distributions of transfer time).”

Check:
e API endpoint: /api/vl/compute/passengers/transfer/route-to-route/count
¢ API endpoint: /api/v1/compute/passengers/transfer/route-to-route/average
¢ API endpoint: /api/v1/compute/passengers/transfer/waiting-time/distribution

e average_by: TOTAL_DAYS_OF_TIME_INTERVAL
e “distribution_percentile_interval” to specify the resolution of the discretized
transfer time distribution

Examples: 1, 2

D1.1: Big travel data analytics support tool 17

4.1.3.

1.

Hub Level User Stories

USER STORY: For a given intra-station pair of origin and destination zone, each
specified by a list of geo-coordinates (the corner points of the rectangle descibing the
physical area), I want to know the number of passengers who walked between those
zones in a given time interval.

a. Same as (1), just for a given list of intra-station OD zone pairs.

Check:
e API endpoint: /api/v1l/compute/passengers/intra-station/zone-to-zone/count
¢ API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/average

Use:
e “od_input_type: ZONE_LIST”
e average_by: TOTAL_DAYS_OF_TIME_INTERVAL
e average_by: PER_HOUR_OF_DAY

See Examples: 1, 2

USER STORY: For a given intra-station pair of origin and destination zone, I want to
know the distribution of walking time [in seconds] of passengers who walked between
those zones, in a given time interval. I'm expecting to receive the (cumulative)
distribution as a list of percentiles in default 5% increments, that is, values of the
distribution at the 5%, 10%, 15%, ..., 95%.
a. Same as (2) but instead of the default distribution increments, I want to specify
a list of percentile and expect that list to be filled with the corresponding
values.

Check:
¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distributi
on
Use:
e use “od_input_type: ZONE_LIST”
e use “distribution_percentile_interval” to specify the resolution of the
discretized distribution

See Examples: 3
USER STORY: Same as (2) but I want to know the walking distance distribution
instead of the walking time.

Check:

D1.1: Big travel data analytics support tool 18

¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distri
bution
Use:
e use “od_input_type: ZONE_LIST”
e use “distribution_percentile_interval” to specify the resolution of the
discretized distribution

See Examples: 3

4. USER STORY: Same as (2) but I want to know the speed distribution instead of the
walking time, where velocity [in mm/s] for a passenger is walking_distance /
walking_time.

Check:
¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribut
ion
Use:
e use “od_input_type: ZONE_LIST”
e use “distribution_percentile_interval” to specify the resolution of the
discretized distribution

See Examples: 3

5. USER STORY: For a given cell discretization (a rectangular grid specified by its
origin point and a distance resolution in millimeters), I want to know the density (=
number of passengers per m2) in each grid cell in each time interval (e.g. every 30
seconds) over a given time range (e.g. 8:00am-10:am on January 27).

Check:
¢ API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density
Use:
e “od_input_type: GRID”
e "grid_details": { "grid_boundaries": { "corner": { "x" : 0, "y" : 0}, "length":
4000, "width" : 4000 }
e “group_by_time_seconds: 30”

See Examples: 4

6. USER STORY: Same as (5), but I want to know the average walking speed in each
grid cell in each time interval

Check:

D1.1: Big travel data analytics support tool 19

¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/
density

e use “od_input_type: GRID”,

e "grid_details": { "grid_boundaries": { "corner": { "x" : 0, "y" : 0}, "length":
4000, "width" : 4000 }

e “group_by_time_seconds: 30”

See Examples: 4

D1.1: Big travel data analytics support tool 20

4.2. Graph transversal computations

This subsection describes the data analysis APIs in detail. For each API, a textual description
is given first, followed by its formal definition (input and output). Examples are given to
illustrate the input and output

The APIs can be called at the following URL:

* host: travel-analytics.eu-gb.mybluemix.net

® basePath: /api/v1/

4.2.1. API endpoint: /api/v1/compute/passengers/stop-to-stop/count

NOTE: To avoid a lot of duplication of text when requests/responses of different APIs are
very similar,, certain options as well as the corresponding API will be marked with a
background color.

Similar API with additional options (marked in color):

¢ API endpoint /api/v1/compute/passengers/stop-to-stop/average

Description:

Returns an OD-Matrix with the (total or average) number of passengers (i.e. distinct
passenger journeys), who travel (i.e., start their journey) within the time frame specified in
the request, from (one or multiple) origin stops to (one or multiple) destination stops. The
output OD-Matrix shows the count only from origin and destination of the complete journeys,
i.e. the computation doesn’t check the values per each intermediate journey legs (transfers) of
a journey, but only from the origin and destination of the complete journey regardless of the
route taken to complete it. For example, the OD-Matrix from Amsterdam to Zurich in a
certain day, would count the number of distinct journeys with origin stop “Amsterdam
Centraal stop_id_XYZ” and destination stop “Zurich HB stop_id_ABC”, and not aggregate
the count of each the individual possible journey legs (for example Amsterdam - Dusseldorf -
Frankfurt - Basel - Zurich) nor consider the multiple different possible routes that passengers
could take.

Computation outputs

e total count
¢ Endpoint: /api/v1/compute/passengers/stop-to-stop/count
¢ Description: returns the total sum of all the journeys,

® average
¢ Endpoint: /api/v1/compute/passengers/stop-to-stop/average
e Description: Returns the average with respect to the specification of the
“average_by” attribute of the request; the average computation is done after

D1.1: Big travel data analytics support tool 21

the group_by_time computation, i.e., the average is valid within each group
time or OD-Matrix.

HTTP Verb:
POST

Input (send JSON request):

default_country: (required) CH (Switzerland), SE (Sweden), NL (Netherlands),

time_interval.
start_timestamp: Date (required),
end_timestamp: Date (required),

origin_stops: (Array, optional)

country: (optional, overrides “default_country” only for this element) CH

(Switzerland), SE (Sweden), NL (Netherlands),

stop_id (required if stop_name is empty, unique value in database),

stop_name: (required if stop_id is empty, NOT unique value in database),

pairs_to: (optional)
LIST_OF_STOPS (Default, pair this origin stop_id to each of the
stop_id in the “destination_stops” attribute of the request);
ALL_POSSIBLE_CONNECTIONS (pair this origin stop to all the
destination stops of every journey found in the database. By default,
the output uses the same stop attribute label of this element: whether
“id” or “name”);

aggregate_as_station (optional): FALSE (Default, count the outgoing

journeys only from this stop); TRUE (the computation will find all of the

children stops of this station-stop and aggregate all the journeys from its

children stops to one single output. The stop node must have to the property

“location_type=1”, which refers to stations. Note from GTFS: a station can’t

have a parent station),

destination_stops: (Array, optional)

country: (optional, overrides “default_country” only for this element) CH

(Switzerland), SE (Sweden), NL (Netherlands),

stop_id (required if stop_name is empty, unique value in database),

stop_name: (required if stop_id is empty, NOT unique value in database),

pairs_to (optional)
LIST_OF_STOPS (Default, pair this destination stop_id to each of the
stop_id in the “origin_stops” attribute of the request);
ALL_POSSIBLE_CONNECTIONS (pair this destination stop to all
the origin stops of every journey found in the graph. By default, the
output uses the same stop attribute label of this element: whether “id”
or “name”),

aggregate_as_station (optional): FALSE (Default, count the incoming

journeys only from this stop); TRUE (the computation will find all of the

children stops of this station-stop and aggregate all the journeys from its

children stops to one single output. The stop node must have to the property

D1.1: Big travel data analytics support tool 22

“location_type=1”, which refers to stations. Note from GTFS: a station can’t
have a parent station),
aggregate_all_origin_stops_as_stations (optional): FALSE (Default, count the
outgoing journeys from only and each stop listed in the “origin_stops™ attribute of the
request); TRUE (for each stop in the “origin_stops”, the computation will find all of
the children stops of this station stop and aggregate all the journeys from its children
stops to one single output. The stop node must have to the property
“location_type=1”, which refers to stations. Note from GTFS: a station can’t have a
parent station),
aggregate_all_destination_stops_as_stations (optional): FALSE (Default, count the
incoming journeys from only and each stop listed in the “destination_stops” attribute
of the request); TRUE (for each stop in the “destination_stops”, the computation will
find all of the children stops of this station stop and aggregate all the journeys from its
children stops to one single output count. The stop node must have to the property
“location_type=1”, which refers to stations. Note from GTFS: a station can’t have a
parent station),
average_by (only for endpoint /compute/passengers/stop-to-stop/average):
PER_HOUR_OF_DAY, is the average number of passengers per hour of day
(00:00:00 - 00:59:59, 01:00:00 - 01:59:59, ..., 23:00:00 - 23:59:59);
TOTAL_HOURS_OF_TIME_INTERVAL.: total count of passenger journeys
divided by the number of hours in between the end_timestamp and
start_timestamp;
TOTAL_DAYS_OF_TIME_INTERVAL, Default, total count of passenger
journeys divided by the number of days in between the end_timestamp and
start_timestamp;
TOTAL_MINUTES_OF_TIME_INTERVAL
TOTAL_SECONDS_OF_TIME_INTERVAL

Output (expect JSON response):

request:

ALL THE FIELDS IN THE REQUEST
journeys: (Array If specified, one per time slice defined by the “average_by” value, in
between the total time_interval; if none of the above is specified, one for the complete
time_interval)

time_interval:
start_timestamp: Date (required),
end_timestamp: Date (required),

average_interval_value: STRING (only for endpoint
/api/v1l/compute/passengers/stop-to-stop/average
- For the type of PER_X_OF_Y:
0 “01:00:00 - 01:59:59” [if PER_HOUR_OF_DAY],
- For the type of TOTAL_X_PER_TIME_INTERVAL:
o “17”[if TOTAL_HOURS_PER_TIME_INTERVAL, in
between "2016-10-03 06:00:00" and "2016-10-03
23:00:00™)

D1.1: Big travel data analytics support tool 23

0 “61” [if TOTAL_DAYS_PER_TIME_INTERVAL, in
between 01-nov to 31-dec])

od_matrix: (Array)
origin_stop_id: STRING (only appear depending on the value of
“od_matrix_output”),
origin_stop_name: STRING (only appear depending on the value of
“od_matrix_output”),
origin_stop_country (only appears if origin_stops[country] is not
empty): CH (Switzerland), SE (Sweden), NL (Netherlands),
destination_stop_id: STRING (only appears depending on the value of
“od_matrix_output”),
destination_stop_name: STRING (only appears depending on the
value of “od_matrix_output™),
destination_stop_country (only appears if destination_stops[country]
is not empty): CH (Switzerland), SE (Sweden), NL (Netherlands),
total_count: Integer (only appears depending on the value of
“count_value_output™)
average: Double (only appears depending on the value of
“count_value_output”)

metadata:
api_version: v1

Example 1 [single-day & single origin-destination]: I want to know the total number of
passenger going from 'Zurich-Altstetten' (= stop1) to 'Zurich-Oerlikon' (= stop2) on January
26.

Input:
{
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”
1
“origin_stops™: [
{
“stop_id”: “stopl”
}
1,
“destination_stops™: [
{
“stop_id”: “stop2”
}

D1.1: Big travel data analytics support tool 24

“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”

destination_stop_id

total_count

stop2

5203

}
Output:
{
“metadata”:
{
“api_version”: “v1”
1
“request”: {
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”
1
“origin_stops”: [
{
“stop_id”: “stop1”
}
1,
“destination_stops™: [
{
“stop_id”: “stop2”
}
]
“journeys”: [
{
"time_interval":{
1
“od_matrix”: [
origin_stop_id
stopl
]
}
]
}

Example 2 [single-day & single origin & all destinations]: I want to know the total number
of passenger going from 'Zurich-Altstetten' (= stop1) to their stop destinations on January

26.

D1.1: Big travel data analytics support tool

25

Input:

{
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”
1
“origin_stops™: [
{
“stop_id”: “stop1”,
“pairs_to” “ALL_POSSIBLE_CONNECTIONS”
}
]
}
Output:
{
“metadata”:
{
“api_version”: “v1”
1

“request”: {
“default_country”: “CH”,
"time_interval":{

“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”

1
“origin_stops™: [

{

“stop_id”: “stop1”,
“pairs_to” “ALL_POSSIBLE_CONNECTIONS”

]
}

bl
“journeys”: [

{

"time_interval":{

“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”

})

“od_matrix”: [

origin_stop_id

destination_stop_id

total_count

stopl

stop?2

523

stopl

stop4

661

D1.1: Big travel data analytics support tool

26

stopl stopS 345
stopl stop6 122
stopl stop13 8213
stopl stop22 3244
stopl ...all destinations...

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/stop-to-stop/average

Example 3 [multiple-days & multiple origin-destination & group by time]: I want to know the

total number of passengers who started their journeys from: 'Zurich-Altstetten' (= stop1),
and ‘Zurich HB’ (=stop3); with destination to 'Zurich-Oerlikon' (= stop2), ‘Bern HB’

(=stop4), ‘Basel HB Busstop’ (=stop5), and ‘Geneve’ (stop=6) in between January 26 and
January 29, group by days.

Input:

{

“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,

“end_timestamp”:

})

“origin_stops”: [

{

})
{

}
])

“stop_id”:

“stop_id”:

“destination_stops”: [

})
{

“stop_id”:

“stop_id”:

“stop_id”:

“2017-01-29 23:59:59”

“Stop 1”

“StOpB”

“Stopz”

“stop4”

“StOpS”

D1.1: Big travel data analytics support tool

27

“stop_id”: “stop6”

1,
“average_by”: “PER_DAY_OF_WEEK”

Output:

{

“metadata”:

{
}

13

“api_version”: “v1”

equest”: {
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

b
“origin_stops™: [
{
“stop_id”: “stop1”
b
{
“stop_id”: “stop3”
}
I,
“destination_stops”: [
{
“stop_id”: “stop2”
b
{
“stop_id”: “stop4”
b
{
“stop_id”: “stop5”
b
{
“stop_id”: “stop6”
}
1,

“average_by”: “PER_DAY_OF_WEEK”

“journeys”: [
{

"time_interval":{

D1.1: Big travel data analytics support tool

28

“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-26 23:59:59”
}

“od_matrix”: [

origin_stop_id | destination_stop_id | total_count
stopl stop2 523
stopl stop4 661
stopl stopS 345
stopl stop6 122
stop3 stop2 10234
stop3 stop4 33124
stop3 stopS 23432
stop3 stop6 44412
]
b
{
"time_interval":{
“start_timestamp”: “2017-01-27 00:00:007,
“end_timestamp”: “2017-01-27 23:59:59”
b
“od_matrix”: [
origin_stop_id | destination_stop_id | total_count
stopl stop2 323
stopl stop4 61
stopl stop5 545
stopl stop6 162
stop3 stop?2 12234
stop3 stop4 53124
stop3 stopS 3432
stop3 stop6 43472
]
b
{
"time_interval":{
“start_timestamp”: “2017-01-28 00:00:00”,
“end_timestamp”: “2017-01-28 23:59:59”
b
“od_matrix”: [
origin_stop_id | destination_stop_id | total_count
stopl stop?2 723
stopl stop4 861
stopl stopS 945
stopl stop6 622
stop3 stop2 40234
stop3 stop4 34124
stop3 stopS 21432
stop3 stop6 87412
]
b

D1.1: Big travel data analytics support tool

29

"time_interval":{
“start_timestamp”: “2017-01-29 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

b

“od_matrix”: [
origin_stop_id | destination_stop_id | total_count
stopl stop2 543
stopl stop4 612
stopl stopS 356
stopl stop6 127
stop3 stop2 17234
stop3 stop4 398124
stop3 stopS 26432
stop3 stop6 47992

Example of endpoint /api/v1l/compute/passengers/stop-to-stop/average/

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
e API endpoint: /api/v1/compute/passengers/stop-to-stop/average

Example 4 [multiple-days & multiple origin-destination & aggregate as stations & average
count & search by and output stop names]: I want to know the average number of passenger
per day in a week who started their journeys from the stations (i.e. all the outgoing journeys
of all the platforms from this parent-stop-station): 'Zurich HB' (= stop3001), and
‘Bahnhofplatz/HB’ (=stop3002); with destination to the stations ‘Bern HB’ (=stop3005),
‘Basel HB’ (=stop3008), and ‘Genéve’ (stop=3016) in between January 1 and January 31.

Input:
{
“default_country”: “CH”,
“time_interval”:
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”,
1
“origin_stops”: [
{

“stop_name”: “Zurich HB”
D1.1: Big travel data analytics support tool 30

{
“stop_name”: “Bahnhofplatz/HB”
}
1,
“destination_stops™: [
{
“stop_name”: “Bern HB”
}
{
“stop_ name”: “Basel HB”
1
{
“stop_ name”: “Geneve”
}
1,

“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“od_matrix_output”: “STOP_NAME?”,

“average_by”: “PER_DAY_OF_WEEK”

Output:

{

“metadata”:
{
“api_version”: “v1”
1
“request”: {
“default_country”: “CH”,
“time_interval”:
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”,

b
“origin_stops™: [

{
“stop_name”: “Zurich HB”
1
{
“stop_name”: “Bahnhofplatz/HB”
}
1,
“destination_stops™: [
{

“stop_name”: “Bern HB”

D1.1: Big travel data analytics support tool 31

{
“stop_ name”: “Basel HB”
1
{
“stop_ name”: “Geneve”
}

1,

“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“od_matrix_output”: “STOP_NAME?”,

“average_by”: “PER_DAY_OF_WEEK”

1
“journeys”: [
{
“time_interval”:
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31T23:59:59”
1
“average_interval_value”: “1”, (/*mondays*/)
“od_matrix”: [
origin_stop_name | destination_stop_name | average
Zurich HB Bern HB 523123
Zurich HB Basel HB 661134
Zurich HB Geneve 345324
BahnhofplatzZHB | Bern HB 521326
BahnhofplatzZHB | Basel HB 610234
BahnhofplatzZHB | Genéve 373124
]
}
{
“time_interval”:
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”
}
“average_interval_value”: “2”,
“od_matrix”: [
origin_stop_name | destination_stop_name | average
Zurich HB Bern HB 313443
Zurich HB Basel HB 53544
Zurich HB Genéve 34567
Bahnhofplatz’HB | Bern HB 975444
Bahnhofplatz/HB | Basel HB 782111
Bahnhofplatz/HB | Genéve 568999
]
1

D1.1: Big travel data analytics support tool

32

...average_interval_values from 3-wednesday to 6-saturday...

1
{
“time_interval”:
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”
1
“average_interval_value”: “7”,
“od_matrix”: [
origin_stop_name | destination_stop_name | average
Zurich HB Bern HB 576123
Zurich HB Basel HB 612134
Zurich HB Geneve 985324
BahnhofplatzzZHB | Bern HB 18326
Bahnhofplatz/HB | Basel HB 368234
BahnhofplatzZHB | Genéve 951124
]
}

Example 5 [multiple-days & multiple origin-destination & aggregate as stations & average
count & search by and output stop names]: I want to know the average number of passengers
per day in the total time interval who started their journeys from the stations (i.e. all the
outgoing journeys of all the platforms from this parent-stop-station): 'Zurich HB' (=
stop3001), and ‘Bahnhofplatz/HB’ (=stop3002); with destination to the stations ‘Bern HB’
(=stop3005), ‘Basel HB’ (=stop3008), and ‘Geneve’ (stop=3016) in between January 1 and
January 31.

Input:
{
“default_country”: “CH”,
"time_interval":
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”
1
“origin_stops”: [
{

“stop_name”: “Zurich HB”

D1.1: Big travel data analytics support tool 33

{
“stop_name”: “Bahnhofplatz/HB”
}
1,
“destination_stops™: [
{
“stop_name”: “Bern HB”
}
{
“stop_ name”: “Basel HB”
1
{
“stop_ name”: “Geneve”
}
1,

“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

Output:

{

“metadata”:

{
“api_version”: “v1”

1

“request”: {
“default_country”: “CH”,
"time_interval":

{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”
1
“origin_stops™: [
{
“stop_name”: “Zurich HB”
1
{
“stop_name”: “BahnhofplatzZHB”
}
1,
“destination_stops”: [
{
“stop_name”: “Bern HB”
1

D1.1: Big travel data analytics support tool

34

“stop_ name”: “Basel HB”

“stop_ name”: “Genéeve”

}
1,
“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

1
“journeys”: [
{
"time_interval":
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-01-31 23:59:59”
1
“od_matrix”: [
origin_stop_name | destination_stop_name | average
(total_count /31)
Zurich HB Bern HB 83123
Zurich HB Basel HB 91134
Zurich HB Geneve 39324
BahnhofplatzZHB | Bern HB 9326
Bahnhofplatz/HB | Basel HB 2234
Bahnhofplatz/HB | Genéve 3324
]
}

Example 6 [multiple-days & multiple origin-destination & aggregate as stations & average
count & search by and output stop names & average by time interval]: I want to know the
average number of passengers per day who started their journeys from the stations (i.e. all
the outgoing journeys of all the platforms from this parent-stop-station): 'Zurich HB' (=
stop3001), and ‘Bahnhofplatz/HB’ (=stop3002); with destination to the stations ‘Bern HB’
(=stop3005), ‘Basel HB’ (=stop3008), and ‘Geneve’ (stop=3016) in between January 1 and

February 28 .

Input:

{
“default_country”: “CH”,
"time_interval":

D1.1: Big travel data analytics support tool

35

“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-02-28 23:59:59”

1
“origin_stops”: [
{
“stop_name”: “Zurich HB”
1
{
“stop_name”: “BahnhofplatzZHB”
}
1,
“destination_stops”: [
{
“stop_name”: “Bern HB”
1
{
“stop_ name”: “Basel HB”
1
{
“stop_ name”: “Genéve”
}
1,

“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

Output:

{

“metadata”:

{

“api_version”: “v1”

})

“request”: {
“default_country”: “CH”,
"time_interval":

{

“start_timestamp”: “2017-01-01 00:00:00”,

“end_timestamp”: “2017-02-28 23:59:59”
1
“origin_stops™: [

{

“stop_name”: “Zurich HB”
1

D1.1: Big travel data analytics support tool

36

{
“stop_name”: “Bahnhofplatz/ZHB”

}
1,
“destination_stops”: [
{
“stop_name”: “Bern HB”
1
{
“stop_ name”: “Basel HB”
1
{
“stop_ name”: “Genéve”
}
1,

“aggregate_all_origin_stops_as_stations”: “TRUE”,
“aggregate_all_destination_stops_as_stations”: “TRUE”,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

b

“journeys”: [

{
"time_interval":
{
“start_timestamp”: “2017-01-01 00:00:00”,
“end_timestamp”: “2017-02-28 23:59:59”
1
“average_interval_value”: “59” (total # of days between 01-01 and
02-28)
“od_matrix”: [
origin_stop_name | destination_stop_name | average
(total count / 59)
Zurich HB Bern HB 3256
Zurich HB Basel HB 53479
Zurich HB Geneve 31741
BahnhofplatzZHB | Bern HB 1231
Bahnhofplatz/HB | Basel HB 4122
BahnhofplatzZHB | Genéve 4424
]
}

D1.1: Big travel data analytics support tool

TRANS-FORM Confidential

4.2.2. API endpoint: /api/v1/compute/passengers/stop-to-stop/average

See Example 4.

4.2.3. API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count

Description:

Given a list of incoming trips, this endpoint calculates the total number of passengers that
arrived at a specific “arrival time”, transferred at a “transfer_stop”, and continue their journey
at a specific “departure time” to a different list of outgoing trips. When no result is found, the
OD matrix entry will be non-existent and will be omitted in the return output.

This computation counts all the passengers that transferred from one specific vehicle
(incoming trip, ex. “trip_id= 283957”) arriving at a specific time (ex. “2017-01-27 08:05:00”)
on a specific “transfer stop” (ex. “Bern HB”), and continue their journeys with another
specific vehicle (outgoing trip, ex. “trip_id= 559”) departing at a specific time (ex.
“2017-01-27 08:17:00”) from the same “transfer stop”.

Computations outputs:
e TOTAL COUNT

e Endpoint: /api/vl/compute/passengers/transfer/trip-to-trip/count
¢ [nputs: incoming/outgoing trips
¢ Description: returns the total count of passengers that transfer to a new

outioinf trip.
[]

HTTP Verb: POST

Input (send JSON request):

default_country: (required) CH (Switzerland), SE (Sweden), NL (Netherlands),

incoming_trips: (required) Array of
trip_id: STRING (unique in DB),
trip_arrival_time: DATE (required, arrival time of this trip at the
“transfer_stop”),
country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

transfer_stops: (required) Array of

stop_id: STRING (required if “stop_name” is empty),
stop_name: STRING (required if “stop_id” is empty),

D1.1: Big travel data analytics support tool 39

country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

aggregate_as_station: Boolean (Default false. If true, this stop is treated as a
station and the calculation will aggregate all the children stop of this station. If
false, this stop is treated as a single atomic stop).

outgoing_trips: (required) Array of
trip_id: STRING (unique in DB),
trip_departure_time: DATE (required, departure time of this trip at the
“transfer_stop”),
country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

Output (expect JSON response):

request. SAME AS ORIGINAL REQUEST,

metadata:
api_version: v1

transfers: Array of (one per transfer_stop)

transfer_stop_id: STRING (shown if “stop_name” is empty),
transfer_stop_name: STRING (shown if “stop_id” is empty),
transfer_stop_country (only appears if transfer_stop[country] is not empty):
CH (Switzerland), SE (Sweden), NL (Netherlands),

od_matrix: Array of (one per incoming_trip to outgoing_trip combination)
incoming_trip_country (only appears if incoming_trips[country] is not
empty): CH (Switzerland), SE (Sweden), NL. (Netherlands),
incoming_trip_id: STRING,
incoming_trip_arrival_time: DATE,
outgoing_trip_country (only appears if outgoing_trips[country] is not
empty): CH (Switzerland), SE (Sweden), NL. (Netherlands),
outgoing_trip _id: STRING,
outgoing_trip_departure_time: DATE,
total_count: Integer
waiting_time: Integer (in seconds)

Example of endpoint:
/api/vl/compute/passengers/transfer/trip-to-trip/count

D1.1: Big travel data analytics support tool 40

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count

Example 1 [passenger count]. I want to know the total number of passengers that transferred
at Bern HB (= stop_name) or “Bahnhof Olten” (= stop_name), arriving/using the “111111”
(=trip_id) at 2017-01-26 18:15:00 or “222222” (=trip_id) at 2017-01-26 18:21:00; and
continue their journey with either “333333” (=trip_id) at 2017-01-26 18:35:00, “444444”
(=trip_id) at 2017-01-26 18:38:00, “555555” (=trip_id) at 2017-01-26 18:33:00 or “666666”
(=trip_id) at 2017-01-26 18:35:00.

Input:
{
“default_country”: “CH”,
“incoming_trips”: [
{
“trip_id”: “111111”,
“trip_arrival_time”: “2017-01-26 18:15:00”
1
{
“trip_id”: “2222227,
“trip_arrival_time”: “2017-01-26 18:21:00”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”,
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_trips”: [
{
“trip_id”: “333333”,
“trip_departure_time”: “2017-01-26 18:35:00”
1
{
“trip_id”: “444444”,
“trip_departure_time”: “2017-01-26 18:38:00”
1
{
“trip_id”: “555555”,
“trip_departure_time”: “2017-01-26 18:33:00”
1
{

“trip_id”: “666666”,
“trip_departure_time”: “2017-01-26 18:35:00”

D1.1: Big travel data analytics support tool 41

]
}
Output:
{
“metadata”:
{
“api_version”: “v1”
b

“request”: {
“default_country”: “CH”,
“incoming_trips”: [

{
“trip_id”: “111111”,
“trip_arrival_time”: “2017-01-26 18:15:00”
1
{
“trip_id”: “2222227,
“trip_arrival_time”: “2017-01-26 18:21:00”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”,
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_trips™: [
{
“trip_id”: “333333”,
“trip_departure_time”: “2017-01-26 18:35:00”
1
{
“trip_id”: “444444”,
“trip_departure_time”: “2017-01-26 18:38:00”
1
{
“trip_id”: “555555”,
“trip_departure_time”: “2017-01-26 18:33:00”
1
{

“trip_id”: “666666”,
“trip_departure_time”: “2017-01-26 18:35:00”

D1.1: Big travel data analytics support tool 42

]
b
“transfers”:
[
{
“transfer_stop_name”: “Bern HB”,
“od_matrix”:
[
incoming_trip_id | incoming_trip_arrival_ti | outgoing | outgoing trip_departu | total_coun
me _trip_id | re _time t
222222 2017-01-26 18:21:00 444444 | 2017-01-26 18:38:00 15
222222 2017-01-26 18:21:00 555555 |2017-01-26 18:33:00 |4
222222 2017-01-26 18:21:00 666666 | 2017-01-26 18:35:00 |9
]
1
{
“transfer_stop_name”: “Bahnhof Olten”,
“od_matrix”:
[
incoming_tri | incoming_trip_arrival | outgoing_trip | outgoing_trip_departure | total_cou
_id _time _id _time nt
111111 2017-01-26 18:15:00 | 333333 2017-01-26 18:35:00 4
]
b
]

Example of endpoint:
/api/vl/compute/passengers/transfer/trip-to-trip/waiting-time

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/waiting-time

Example 2 [waiting time]. I want to know the waiting time of passengers that transferred at
Bern HB (= stop_name) or “Bahnhof Olten” (= stop_name), arriving/using the “111111”
(=trip_id) at 2017-01-26 18:15:00 or “222222” (=trip_id) at 2017-01-26 18:21:00; and
continue their journey with either “333333” (=trip_id) at 2017-01-26 18:35:00, “444444”

D1.1: Big travel data analytics support tool 43

(=trip_id) at 2017-01-26 18:38:00, “555555” (=trip_id) at 2017-01-26 18:33:00 or “666666”
(=trip_id) at 2017-01-26 18:35:00.

Input:

{
“default_country”: “CH”,
“incoming_trips”: [

{
“trip_id”: “111111”,
“trip_arrival_time”: “2017-01-26 18:15:00”
1
{
“trip_id”: “2222227,
“trip_arrival_time”: “2017-01-26 18:21:00”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”,
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_trips”: [
{
“trip_id”: “333333”,
“trip_departure_time”: “2017-01-26 18:35:00”
1
{
“trip_id”: “444444”,
“trip_departure_time”: “2017-01-26 18:38:00”
1
{
“trip_id”: “555555”,
“trip_departure_time”: “2017-01-26 18:33:00”
1
{
“trip_id”: “666666”,
“trip_departure_time”: “2017-01-26 18:35:00”
}
]
}
Output:
{

D1.1: Big travel data analytics support tool 44

“metadata”:

“api_version”: “v1”

I3

“request”: {
“default_country”: “CH”,
“incoming_trips”: [

{
“trip_id”: “111111”,
“trip_arrival_time”: “2017-01-26 18:15:00”
1
{
“trip_id”: “2222227,
“trip_arrival_time”: “2017-01-26 18:21:00”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”,
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_trips”: [
{
“trip_id”: “333333”,
“trip_departure_time”: “2017-01-26 18:35:00”
1
{
“trip_id”: “444444”,
“trip_departure_time”: “2017-01-26 18:38:00”
1
{
“trip_id”: “555555”,
“trip_departure_time”: “2017-01-26 18:33:00”
1
{
“trip_id”: “666666”,
“trip_departure_time”: “2017-01-26 18:35:00”
}
]
1
“transfers”:
[
{

D1.1: Big travel data analytics support tool 45

“transfer_stop_name”: “Bern HB”,
“od_matrix”:

[
incoming_t |incoming_trip_arr | outgoing t | outgoing trip_depar | waiting_
rip_id ival_time rip_id ture_time time
222222 2017-01-26 444444 2017-01-26 2434
18:21:00 18:38:00
222222 2017-01-26 555555 2017-01-26 4432
18:21:00 18:33:00
222222 2017-01-26 666666 2017-01-26 1314
18:21:00 18:35:00
]
1
{
“transfer_stop_name”: “Bahnhof Olten”,
“od_matrix”:
[
incoming t | incoming_trip_arr | outgoing t | outgoing trip_depar | waiting
rip_id ival_time rip_id ture_time time
111111 2017-01-26 444444 2017-01-26 2334
18:15:00 18:38:00
]
b
]

D1.1: Big travel data analytics support tool

46

TRANS-FORM Confidential

4.2.4. API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/waiting-time

Check API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count

See Example 2.

4.2.5. API endpoint: /api/v1/compute/passengers/transfer/route-to-route/count
Text only for /api/vl/compute/passengers/transfer/route-to-route/average

Text only for /api/vl/compute/passengers/transfer/route-to-route/waiting-time/distribution

Description:

Given a list of incoming routes, this endpoint calculates the total number (or average) of
passengers that transfer at a “transfer_stop”, and continue their journey to a different list of
outgoing routes. When an incoming route doesn’t stop at the “transfer_stop” (or it doesn’t
transfer to the outgoing route), the OD matrix entry will be omitted in the response.

This computation counts all the passengers that enter the vehicle of a specific route (for
example “route_id=7077”) in any possible previous stop than the “transfer_stop” withtin the
same route (e.g., if the transfer is “transfer_stop_name=Bern”, which is the stop number 4 of
the route 7077, then get all the passengers that started their journey using the same route 7077
at any of the stops with sequence number 1, 2, and 3), to then later continue their journey to
another route (e.g., “route_id=3124").

Computations outputs:
e TOTAL COUNT

¢ Endpoint: /api/vl/compute/passengers/transfer/route-to-route/count
¢ Description: returns the total number of passengers that transfer from the
incoming to the outgoing route.
e AVERAGE
¢ Endpoint: api/vl/compute/passengers/transfer/route-to-route/average
¢ Description: returns the average number of passengers that transfer from the
incoming to the outgoing route, according to the “average_by” filter.
e WAITING TIME DISTRIBUTION
¢ Endpoint:
/api/vl/compute/passengers/transfer/route-to-route/waiting-time/distribut
ion
e Description: returns the distribution of the waiting time (difference in between
arrival_time of the incoming trip and the departure_time of the outgoing trip
of the given incoming and outgoing routes) of passengers. The (cumulative)
distribution is provided at a list of percentiles for the given
percentile_increments (default is 5%, that means values of the distribution at
the 5%, 10%, 15%, ..., 95%). The percentile increment can be specified.

HTTP Verb: POST

Input (send JSON request):

default_country: (required) CH (Switzerland), SE (Sweden), NL (Netherlands),

time_interval:

D1.1: Big travel data analytics support tool 48

start_timestamp: Date (required),
end_timestamp: Date (required),

incoming_routes: Array of
route_id: STRING (unique, required if route_short_name is empty),
route_short_name: STRING (NOT unique, required if route_id is empty),
country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

transfer_stops: Array of
stop_id: STRING (required),
country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

outgoing_routes: Array of
route_id: STRING (unique in DB, require if route_short_name is empty),
route_short_name: STRING (NOT unique in DB, required if route_short_id
is empty),
country: (optional, overrides “default_country” only for this element) CH
(Switzerland), SE (Sweden), NL (Netherlands),

average_by (required only for endpoint ...route-to-route/average):
TOTAL_HOURS_OF_TIME_INTERVAL.: total count of passenger journeys
divided by the number of hours in between the end_timestamp and
start_timestamp;
TOTAL_DAYS_OF_TIME_INTERVAL, Default, total count of passenger
journeys divided by the number of days in between the end_timestamp and
start_timestamp;

distribution_percentile_interval: Integer (required only for endpoint:

“.../distribution”, input the percentile interval discretization value in between 1 and
100 for the desired output computation.)

Output (expect JSON response):

request: SAME AS ORIGINAL REQUEST,

metadata:
api_version: v1

transfers: Array of (If specified, one per transfer_stop, or average_by value, in
between the total time_interval; if none of the above is specified, one for the complete

time_interval)

transfer_stop_id: STRING,

D1.1: Big travel data analytics support tool 49

transfer_stop_country (only appears if transfer_stop[country] is not empty):
CH (Switzerland), SE (Sweden), NL (Netherlands),

time_interval: (required)
start_timestamp: Date (required),
end_timestamp: Date (required),

average_interval_value: STRING (only for endpoint
“/api/v1/compute/passengers/stop-to-stop/average”)
- For the type of TOTAL_X_PER_TIME_INTERVAL:
o “17” [if TOTAL_HOURS_PER_TIME_INTERVAL, in
between "2016-10-03 06:00:00" and "2016-10-03
23:00:00™)
o0 “61” [if TOTAL_DAYS_PER_TIME_INTERVAL, in
between 01-nov to 31-dec])

od_matrix: Array of (one per incoming_route to outgoing_route combination)
incoming_route_id: STRING,
incoming_route _country (only appears if incoming_trips[country] is
not empty): CH (Switzerland), SE (Sweden), NL (Netherlands),
outgoing_route _id: STRING,
outgoing_route_country (only appears if outgoing_trips[country] is
not empty): CH (Switzerland), SE (Sweden), NL (Netherlands),
total_count: Integer (only for endpoint: “.../count™)
average: Double (only for endpoints “.../average”)

Example of endpoint:
/api/vl/compute/passengers/transfer/route-to-route/count

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/transfer/route-to-route/count

Example 1 [Transfer passenger count]. I want to know the total number of passengers that
started their journey with the routes “IC70112” (=route_id) or “IC70125” (=route_id),
transferred at the stations “Bern HB” (=stop_name) or “Bahnhof Olten”(=stop_name), and
continue their journey with any of the routes “IR3243 (=route_id), “S5432” (=route_id),
“S3112” (=route_id) or “Bus20_trip20” (=route_id); in between the 26 and 29 of January.

D1.1: Big travel data analytics support tool 50

Input:

{
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
“incoming_routes”: [
{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”
1
{
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
1
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
1
{
“route_id”: “Bus20_trip20”
}
]
}
Output:
{
“metadata”:
{
“api_version”: “v1”
1

D1.1: Big travel data analytics support tool

51

“request”: {
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

bl
“incoming_routes”: [

{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”
1
{
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
1
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
1
{
“route_id”: “Bus20_trip20”
}
]
1
“transfers”:
[
{

"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
1
“transfer_stop_name”: “Bern HB”,
“od_matrix”:

[

D1.1: Big travel data analytics support tool

52

incoming_route_id outgoing_route_id total_count
I1C70112 IR3243 4
IC70112 S5432 25
1C70125 IR3243 5
1C70125 S5432 15
1C70125 S3112 4
]
1
{
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
1
“transfer_stop_name”: “Bahnhof Olten”,
“od_matrix”:
[
incoming_route_id outgoing route_id total_count
IC70112 IR3243 11
1C70112 S5432 43
IC70112 Bus20_trip20 75
1C70125 IR3243 24
1C70125 S5432 56
1C70125 S3112 89
1C70125 Bus20_trip20 12
]
}

Example of Endpoint: api/vl/compute/passengers/transfer/route-to-route/average

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/transfer/route-to-route/average

Example 2 [Transfer passenger count average]. I want to know the daily average (taken over
the total amount of days in between a time interval) number of passengers that started their
journey with the routes “IC70112” (=route_id) or “IC70125” (=route_id), transferred at the
stations “Bern HB” (=stop_name) or “Bahnhof Olten”(=stop_name), and continue their
journey with either of the routes “IR3243” (=route_id), “S5432” (=route_id), “S3112”
(=route_id) or “Bus20_trip20” (=route_id); in between the 26 and 29 of January.

Input:

{
“default_country”: “CH”,

D1.1: Big travel data analytics support tool 53

"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

bl
“incoming_routes”: [

{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”
1
{
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
1
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
1
{
“route_id”: “Bus20_trip20”
}
1,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”
}
Output:
{
“metadata”:
{

“api_version”: “v1”

I3

“request”: {
“default_country”: “CH”,

D1.1: Big travel data analytics support tool

"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

bl
“incoming_routes”: [

{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”
1
{
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
1
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
1
{
“route_id”: “Bus20_trip20”
}
1,
“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”
1
“transfers”:
[

{
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
1
“transfer_stop_name”: “Bern HB”,
“average_interval_value”: “4”,
“od_matrix”:

[

| incoming_route_id | outgoing_route_id | average

D1.1: Big travel data analytics support tool

IC70112 IR3243 3
IC70112 S5432 2
IC70125 IR3243 5
IC70125 S5432 15
I1C70125 S3112 4
]
1
{
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
1
“transfer_stop_name”: “Bahnhof Olten”,
“average_interval_value”: “4”,
“od_matrix”:
[
incoming_route_id outgoing_route_id average
IC70112 IR3243 31
IC70112 S5432 22
IC70112 Bus20_trip20 55
I1C70125 IR3243 12
IC70125 S5432 17
I1C70125 S3112 33
IC70125 Bus20_trip20 11
]
}

Example of endpoint:
/api/vl/compute/passengers/transfer/route-to-route/waiting-time/distribution

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint:

/api/v1/compute/passengers/transfer/route-to-route/waiting-time/distribution

Example 3 [waiting time distribution]. I want to know the waiting time distribution
(discretized in 25% percentile increments) of passengers that started their journey with the
routes “IC70112” (=route_id) or “IC70125” (=route_id), transferred at the stations “Bern
HB” (=stop_name) or “Bahnhof Olten”(=stop_name), and continue their journey with either
of the routes “IR3243” (=route_id), “S5432” (=route_id), “S3112” (=route_id) or
“Bus20_trip20” (=route_id); in between the 26 and 29 of January.

D1.1: Big travel data analytics support tool 56

Input:

{
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”
“incoming_routes”: [
{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”
1
{
“stop_name”: “Bahnhof Olten”
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
1
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
1
{
“route_id”: “Bus20_trip20”
}
1,
“distribution_percentile_interval”: 25
}
Output:
{
“metadata”:
{

“api_version”: “v1”

D1.1: Big travel data analytics support tool

57

I3

“request”: {
“default_country”: “CH”,
"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

bl
“incoming_routes”: [

{
“route_id”: “IC70112”
1
{
“route_id”: “IC70125”
}
1,
“transfer_stops”:
[
{
“stop_name”: “Bern HB”,
“aggregate_as_station”: true
1
{
“stop_name”: “Bahnhof Olten”,
“aggregate_as_station”: true
}
1,
“outgoing_routes”: [
{
“route_id”: “IR3243”
}
{
“route_id”: “S5432”
1
{
“route_id”: “S3112”
}
{
“route_id”: “Bus20_trip20”
}
1,
“distribution_percentile_interval”: 25
}
“transfers”:
[

{

"time_interval":{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

D1.1: Big travel data analytics support tool 58

}
“transfer_stop_name”: “Bern HB”,
“distribution_matrix”:

[
percentile waiting_time
0 2
25 2
50 5
75 7
100 12
]

"time_interval":{

“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”

},

“transfer_stop_name”: “Bahnhof Olten”,

“distribution_matrix”:

[

percentile

waiting_time

0

25

50

75

100

WININ (=

D1.1: Big travel data analytics support tool

59

TRANS-FORM Confidential

4.2.6. API endpoint: /api/v1/compute/passengers/transfer/route-to-route/average
Check API endpoint: /api/vl/compute/passengers/transfer/route-to-route/count

Example 2

4.2.7. API endpoint:
/api/v1/compute/passengers/transfer/route-to-route/waiting-time/distribution

Check API endpoint: /api/vl/compute/passengers/transfer/route-to-route/count

Example 3

4.2.8.

API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count

Text only for /api/vl/compute/.../average

Description: Computations for the intra-station zones-to-zone. We define 3 types of
computations:

1.

“Total count” or “average number” of passengers: Get an OD-Matrix with the total
(or the average) number of passengers (i.e., distinct passenger walks), who walked
from one (or a list of multiple) origin intra-station zone(s) to another (or a list of
multiple) destination intra-station zone(s), in a given time interval.

*: Outputs the distribution of walking time [in seconds], of passengers
who walked from one (or a list of multiple) origin intra-station zone(s) to another (or
a list of multiple) destination intra-station zone(s), in a given time interval. Expect to
receive the (cumulative) distribution as a list of percentiles at user-defined increments
(default is 5%, that means values of the distribution at the 5%, 10%, 15%, ..., 95%).
Other distribution computations: walking distance [in millimeters], or walking speed
[in millimeters/second] of passengers,

For a given cell discretization (a rectangular grid specified by its corners,
length, and width), outputs the passenger density (= number of passengers per cell) in
each grid cell. Other density computations: walking average speed (= average walking
speed in each grid cell).

Computations outputs:

PASSENGER_TOTAL_COUNT

0 Endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/count

0 Description: Returns the total count of passengers,
PASSENGER_AVERAGE

0 Endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/average

0 Description: The average is calulated by the specification of the “average_by”
attribute of the request;

o Endpoint:

—

0 Description: the (cumulative) distribution of walking distance (in mm) as a list

of percentiles in default 5% increments (that is, values of the distribution at the
0%, 5%, 10%, 15%, ..., 95%, 100% quantiles),

0 Endpoint:

—

D1.1: Big travel data analytics support tool 61

0 Description: the (cumulative) distribution of walking time (in seconds) as a list

of percentiles in default 5% increments (that is, values of the distribution at the
0%, 5%, 10%, 15%, ..., 95%, 100% quantiles),

o Endpoint:

—

0 Description: the (cumulative) distribution of walking speed (distance/time, in
mm/s) as a list of percentiles in default 5% increments (that is, values of the
distribution at the 0%, 5%, 10%, 15%, ..., 95%, 100% quantiles)

0 Endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density
0 Description: Average number of passengers per in each grid cell at a given
time interval,

0 Endpoint:

—

0 Description: Average walking speed of passengers in each grid cell in a given
time interval.

Definitions:

e “Pre-defined zones”: Pre-defined intra-station zones are station-dependent. As an
example, Lausanne Station has 25 different zones.

e “Grid cells”: Each station is divided in a 16mA2 (4m x 4m) grid and each of the inner
cells represent an intra-station cell identified by its “cell_id” (unique value in the
Graph DB). To identify a specific cell in a station, we use the format “A-B”, where
“A” is the column number, increments from left-to-right in the x axis; and “B” is the
row number, increments from top-to-down in the y axis, ex. 1-1, 2-1, 3-1,...).

¢ Coordinates “0,0” is the top-left corner in a map in each hub/station.

e Units:

0 Distance: millimeters
0 Time: seconds
0 Speed: millimeters / second

HTTP Verb: POST

Input (send JSON request):
default_country: (required) CH (Switzerland), SE (Sweden), NL (Netherlands),

default_parent_station: (required)
stop_id: (STRING, required only if stop_name is empty) - GTFS “stop_id”
unique value within a country, for example “17382”,
stop_name: (STRING, required only if stop_id is empty) - GTFS
stop_name” NOT unique value within a country, e.g., “Lausanne”

D1.1: Big travel data analytics support tool 62

time_interval:
start_timestamp: Date (required),
end_timestamp: Date (required),

od_input_type: ZONE_LIST (match each origin zones from a specific origin list to
each destination zones from the destination list, for all endpoints except “.../density”),
GRID (match every cell inside the grid to all the other cells, only for endpoints
“.../density”),

grid_details: (required only if “od_input_type=GRID”)
grid_boundaries: (required)

corner: (top-left corner)

x: INTEGER (in mm)

y: INTEGER (in mm)
length: Integer (in mm, value in the x axis discretization. Pre-defined
inner cells boundaries of the grid are 4000mm x 4000mm each, so this
value will be rounded up to the closest 4000mm multiple, e.g., if
“3000”, then “4000” will be used)
width: Integer (in mm, value in the y axis. Pre-defined inner cells
boundaries of the grid are 4000mm x 4000mm each, so this value will
be rounded up to the closest 4000mm multiple, e.g., if “3000” is given
then “4000” will be used)

zone_list_details: (required if “od_input_type==ZONE_LIST”)
origin_zones: Array of

zone_id: STRING (required only if zone_name is empty),
zone_name: (required only if zone_id is empty),
country: (optional, overrides “default_country” only for this element)
CH (Switzerland), SE (Sweden), NL (Netherlands),
pairs_to: (optional)
LIST_OF_ZONES (Default, pair this origin zone to each of the zones
in the “destination_zones” list);
ALL_POSSIBLE_CONNECTIONS (pair this origin zone to all the
zones —as destinations— found in the same station);

destination_zones: Array of
zone_id: STRING (required only if zone_name is empty),
zone_name: (required only if zone_id is empty),
country: (optional, overrides “default_country” only for this element)
CH (Switzerland), SE (Sweden), NL (Netherlands),
pairs_to: (optional)
LIST_OF_ZONES (Default, pair this destination zone to each of the
zones in the “origin_zones” list);
ALL_POSSIBLE_CONNECTIONS (pair this destination zone to all
the zones —as origins— found in the same station);

group_by_time (optional): STRING
ALL (default), SECONDS, MINUTES, HOURS, DAYS, WEEKS, MONTHS,
QUARTERS,

D1.1: Big travel data analytics support tool 63

TRANS-FORM Confidential

group_by_time_seconds (optional): Integer, number of seconds to group by.

Output (expect JSON response):

request:
ALL THE FIELDS IN THE REQUEST

metadata:
api_version: v1

walks: (Array. If specified, one per “average_by” value in between the total
time_interval, otherwise one for the complete time_interval)
time_interval:
start_timestamp: Date (required),
end_timestamp: Date (required),

od_matrix: (Array, only appears in “.../count” or “.../average” endpoints)
origin_zone_id: STRING,
destination_zone_id: STRING,
total_count: Integer (only endpoint “.../count™)

average: Double (only endpoint “.../average”)

Example of endpoint:
/api/vl/compute/passengers/intra-station/zone-to-zone/count

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count

Example 1 [Hub level user story 1; total count of passengers] In Lausanne Station, I want to
know the total amount of passengers that walked from origin zones 11 and 23 to destination
zones 66 and 88 between January 21 to January 27.

Input:

{
“default_country”: “CH”,

“default_parent_station”:

{

“stop_name”: “Lausanne”

}
"time_interval":{

“start_timestamp”: “2017-01-21 00:00:007,
“end_timestamp”: “2017-01-27 23:59:59”

})

“od_input_type”: “ZONE_LIST”,

D1.1: Big travel data analytics support tool 65

“zone_list_details™:

{
“origin_zones”:
[
{
“zone_id”: “11”,
1
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”,
}
{
“zone_id”: “88”,
}
]
}
}
Output:
{
“metadata”:
{
“api_version”: “v1”
“request”:
{

“default_country”: “CH”,

“default_parent_station”:

{

“stop_name”: “Lausanne”

I3

"time_interval":{
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”
1

“od_input_type”: “ZONE_LIST”,

“zone_list_details™:

D1.1: Big travel data analytics support tool

66

“origin_zones”:

[
{
“zone_id”: “11”,
1
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”,
}
{
“zone_id”: “88”,
}
]
}
}
“walks”:
[
{
"time_interval": {
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”
1
“od_matrix”:
[
origin_zone_id destination_zone_id total count
11 66 1236
11 88 3112
23 66 1334
23 88 66311
]
}
]

Example of endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/average

D1.1: Big travel data analytics support tool

67

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/average

Example 2 [Hub level user story 1; average count of passengers] In Lausanne Station, I want
to know the daily average amount of passengers that walked from origin zones 11 and 23 to
destination zones 66 and 88 between January 21 to January 27.

Input:

{
“default_country”: “CH”,

“default_parent_station”:

{

“stop_name”: “Lausanne”

1
"time_interval":{
“start_timestamp”: “2017-01-21 00:00:00”,

“end_timestamp”: “2017-01-27 23:59:59”
1

“od_input_type”: “ZONE_LIST”,

“zone_list_details”:

{
“origin_zones”:
[
{
“Zone id!’, ‘Kll’!
g . b
b
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”
—_— . b
1
{
“zone_id”: “88”,
}
]
b

D1.1: Big travel data analytics support tool 68

“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

}
Output:
{
“metadata”:
{
“api_version”: “v1”
b
“request”:
{

“default_country”: “CH”,

“default_parent_station”:

{

“stop_name”: “Lausanne”

1
"time_interval":{

“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”

b
“od_input_type”: “ZONE_LIST”,

“zone_list_details™:

{
“origin_zones”:
[
{
“zone_id”: “11”
g— . b
1
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”
— . b
1
{
“zone_id”: “88”,
}
]
1

D1.1: Big travel data analytics support tool

“average_by”: “TOTAL_DAYS_OF_TIME_INTERVAL”

1
“walks”:
[
{
"time_interval":{
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”
1
“od_matrix”:
[
origin_zone_id destination_zone_id average
(total_count/ 7)
11 66 176.57
11 88 44457
23 66 190.57
23 88 9473
]
}
]

Example of endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR

¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution

e API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distribution
(Note: instead of “walking_time” of the following example, the response matrix will
output “walking_distance”.)

e API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribution
(Note: instead of “walking_time” of the following example, the response matrix will
output “walking_speed”.)

Example 3 [Hub level user story 2; distribution of walking time] In Lausanne Station, I want
to know the walking time distribution of passengers that walked from origin zones 11 and 23
to destination zones 66 and 88 between January 21 to January 27.

D1.1: Big travel data analytics support tool 70

Input:

{
“default_country”: “CH”,
“default_parent_station”:
{
“stop_name”: “Lausanne”
1
"time_interval": {
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”
1
“od_input_type”: “ZONE_LIST”,
“zone_list_details”:
{
“origin_zones”:
[
{
“zone_id”: “117,
1
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”,
1
{
“zone_id”: “88”,
}
]
1
“distribution_precentage_interval”: 25
}
Output:
{
“metadata”:
{

D1.1: Big travel data analytics support tool

71

“api_version”: “v1”

1
“request”:
{
“default_country”: “CH”,
“default_parent_station”:
{
“stop_name”: “Lausanne”
1
"time_interval": {
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”
1
“od_input_type”: “Z0ONE_LIST”,
“zone_list_details”:
{
“origin_zones”:
[
{
“zone_id”: “117,
1
{
“zone_id”: “23”,
}
1,
“destination_zones”:
[
{
“zone_id”: “66”,
1
{
“zone_id”: “88”,
}
]
1
“distribution_precentage_interval”: 25
1
“walks”:
[

"time_interval":{
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”

D1.1: Big travel data analytics support tool

72

I3

“distribution_matrix”:

[
percentile walking_time
0 210
25 245
50 248
75 332
100 425
]

EXAMPLE RESPONSE IN THE SWAGGER FILE FOR
¢ API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density
¢ API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/density
(Note: instead of “passenger_density” of the following example, the response matrix
will output “walking_speed_average”.)

Example 4 [Hub level user story 5; grid; passenger density] In Lausanne station, I want to
know the density (= number of passengers) in each grid cell in each time interval of 30
seconds; on January 21 between 08:00:00 and 08:09:59. The grid cells are 4000mm x
4000mm sqares.

0 4k 8k 12k ... (mm)

3-3 |43 | 53 |63 | 73

34 |44 | 54 [64 |74

D1.1: Big travel data analytics support tool 73

3-5 | 45 | 55 | 65 | 7-5

Input:
“default_country”: “CH”,

“default_parent_station”:

{

“stop_name”: “Lausanne”

I8

"time_interval": {
“start_timestamp”: “2017-01-21 08:00:00”,
“end_timestamp”: “2017-01-21 08:10:00”
}

“od_input_type”: “GRID”,

“grid_details”:

{
“grid_boundaries”:
{

“corner”:

{

€.

X’
[{ o)
y

: 0,
>0
1
“length”: 4000,
“width”: 4000

}
I3

“group_by_time_seconds”: 30

D1.1: Big travel data analytics support tool

74

Output:

{
“metadata”:
{
“api_version”: “v1”
1
“request”:
{
“default_country”: “CH”,
“default_parent_station”:
{
“stop_name”: “Lausanne”
1
"time_interval": {
“start_timestamp”: “2017-01-21 08:00:00”,
“end_timestamp”: “2017-01-21 08:10:00”
1
“od_input_type”: “GRID”,
“grid_details”:
{
“grid_boundaries”:
{
“corner”:
{
“X”: 0’
(‘y”: 0
1
“length”: 4000,
“width”: 4000
}
1
“group_by_time_seconds”: 30
1
“walks”:
[

"time_interval":{
“start_timestamp”: “2017-01-21 08:00:00”,
“end_timestamp”: “2017-01-21 08:00:30”

})

D1.1: Big travel data analytics support tool

75

“density _matrix”:

[
cell id density
3-3 1.23
4-3 1.47
7-5 0.25
]
1
{
"time_interval":{
“start_timestamp”: “2017-01-21 08:00:30”,
“end_timestamp”: “2017-01-21 08:01:00”
1
“density_matrix”:
[
cell id density
3-3 1.11
4-3 1.15
7-5 0.77
]
1
{
... time intervals in between 08:01:00 and 08:09:30
1
{
"time_interval": {
“start_timestamp”: “2017-01-21 08:09:30”,
“end_timestamp”: “2017-01-21 08:10:00”
1
“density_matrix”:
[
cell_id passenger_density
3-3 1.00
4-3 1.11
7-5 0.33
]
}

D1.1: Big travel data analytics support tool 76

TRANS-FORM Confidential

]

4.2.9. API endpoint: /api/v1l/compute/passengers/intra-station/zone-to-zone/average

Check API endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/count

Example 2

4.2.10. API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distribution

Check API endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/count

Example 3 (replace the output “walking_time” by “walking_distance™)

4.2.11. API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution

Check API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count

Example 3

4.2.12. API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribution

Check API endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/count

Example 3 (replace the output “walking_time” to “walking_speed”)

4.2.13. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density
Check API endpoint: /api/vl/compute/passengers/intra-station/zone-to-zone/count

Example 4

4.2.14. API endpoint:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/density

Check API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count

Example 4 (replace the output “passenger_density” to “walking_speed_average_density”)

D1.1: Big travel data analytics support tool 78

4.3. Potential future (computation) API extensions

4.3.1. API endpoint: /api/v1/compute/passengers/transfer/count (extension 1)

To make the API more "user-friendly-ish”, the input request JSON would need to specify the
"trip_id" (something like: ch_trip_544523, where let say "544523" is the unique identifier inside
Switzerland for that trip in the trips.txt), because we can't identify an specific trip node with only
the route_short_name (ex. "IC70112") as an input. The "IC70112" label represents all the

trips running daily on the same route/path or the rounte_short_name.

- So one case is that the person who is going to use this specific api endpoint already knows,
somehow, the time-specific trip_id (ch_trip_544523), and the use this as input/output (Note: this
is the original version case).

- But a second case (the maybe "more user-friendly"), is that the person only knows the
route_short_name (IC70112), and the "scheduled_arrival time" (08:00:00) of the "transfer_stop"
(which is required as an input too), and with these 2 input parazone_alias we can deduce the
time-specific "trip_id" we need (ch_trip_544523) and the possible connecting outgoing trips.

Input:

{
“start_timestamp”: “2017-01-26 00:00:00”,

“end_timestamp”: “2017-01-29 23:59:59”,
“incoming_journey_legs”: [

{
“route_short_name”: “IC70112”,
“scheduled_arrival time”: “08:00:00”
//IMPLICIT// “destination_stop_name”: SEE “transfer_stops”
1
1,
“transfer_stops”:
[
{
“transfer_stop_id”: “ ” OR “transfer_stop_name”: “Ziirich HB”;
}
]
“outgoing_journey_legs”: [
{
/IMPLICIT// “origin_stop_name”: SEE “transfer_stops”
“route_short_name”: “IC70155”,
“scheduled_departurel time”: “08:15:00”
}
1,

D1.1: Big travel data analytics support tool 79

4.3.2. API endpoint: /api/v1/compute/passengers/transfer/count (extension 2)

Get the number of passengers who went from a list of specific incoming journey_legs (asking
origin_stop_name OR origin_stop_id), then stopped and transferred in a specific stop
(transfer_stop_id), to then continue their journeys to a list of outgoing journey_legs (asking
destination_stop_name OR destination_stop_id)

Example: Count of passenger who went from stops {“Ziirich Altstetten” (=stopID1) or
“Riischlikon” (=stopIDID3), in direction to {“Bern HB” (=stopID4), “Basel HB” (=stopID5),
or “Geneve” (=stopID6)}, in between Jan 26 to Jan 29.

Input:

{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”,
“incoming_journey_legs”: [

{
“origin_stop_id”: “Ziirich Altstetten”,
//IMPLICIT// “destination_stop_name”: SEE “transfer_stops”
1
{
“origin_stop_name”: “Riischlikon”,
//IMPLICIT// “destination_stop_name”: SEE “transfer_stops”
}
1,
“transfer_stops”:
[
{
“transfer_stop_id”: “ ” OR “transfer_stop_name”: “Ziirich HB”;
}
]
“outgoing_journey_legs”: [
{
/IMPLICIT// “origin_stop_name”: SEE “transfer_stops”
“destination_stop_name”: “Bern HB”
1
{
/IMPLICIT// “origin_stop_name”: SEE “transfer_stops”
“destination_stop_name”: “Basel HB”
1
{

/IMPLICIT// “origin_stop_name”: SEE “transfer_stops”
“destination_stop_name”: “Geneve”

D1.1: Big travel data analytics support tool 80

1,
}
Output:
{
“request”: {
SAME AS ORIGINAL REQUEST
“journeys”: [
{
“start_timestamp”: “2017-01-26 00:00:00”,
“end_timestamp”: “2017-01-29 23:59:59”,
“transfer_stop_name”: “Ziirich HB”,
“od_matrix”: [
incoming_journey_leg | outgoing _journey_leg | total_count Average (total_count /
origin_stop_name destination_stop_name time interval)
Ziirich Altstetten Bern HB 523 523/ 4 (per day)
Ziirich Altstetten Basel HB 661
Ziirich Altstetten Geneéeve 345
Riischlikon Bern HB 122
Riischlikon Basel HB 10234
Riischlikon Geneve 33124
]
}
]
}

D1.1: Big travel data analytics support tool

81

4.3.3. API endpoint: /api/v1/compute/routes/count

Description: get an OD-Matrix with the total number of passengers, within the time frame
specified in the request, from all the stop-to-stop sequences for every ROUTE specified. This
API endpoint doesn’t consider passenger transfers or connections between routes (i.e. there
are no two connected journey_legs in passengers journeys, but only one journey_leg for
every journey a passenger travels). This endpoint can be used to calculate the passengers
count of single routes. The count value is the aggregation (sum) of every trip taken place
during the time frame in a specific route.

HTTP Verb: POST

Input (send JSON request):

start_timestamp: Date (required),

end_timestamp: Date (required),

routes: (Array, if empty use default = ALL)
route_id: STRING (optional, if empty use default=transverse all the stops path
from the origin_stop_id (if provided) to all its possible destination, or from all
the possible origin stops to the destination_stop_id (if provided), or if both are
provided then compute only from origin_stop_id to destination_stop_id in this
route),
origin_stop_id: STRING (optional, if empty use default=first stop in trip
sequence),
destination_stop_id: STRING (optional, if empty use default=last stop in trip
sequence),
show_intermediate_stops: BOOLEAN (optional, TRUE (default), get all
intermediate stops in between origin_stop_id and destination_stop_id; FALSE,
aggregate all the stops from origin_stop_id and destination_stop_id to a single
count)

group_by_time (optional): STRING - ALL (default), SECONDS, MINUTES,

HOURS, DAYS, WEEKS, MONTHS, QUARTERS

Output (expect JSON response):

request:
ALL THE FIELDS IN THE REQUEST
od_matrix: (Array)
start_timestamp: Date,
end_timestamp: Date,
routes: (Array)
route_id: STRING,
origin_stop_id: STRING,
destination_stop_id: STRING,
count: Integer

D1.1: Big travel data analytics support tool 82

Example 1. I want to know the passenger count for every day in between 2017-01-21 and
2017-01-27, on the routes “Line 1” (starting on the stop “S3”) until the last stop, and route
“Line 3” for the whole trip (first to last stop).

Input:

{
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”,
“routes”: [

{
“route_id”: “Line 17,
“origin_stop_id”: “S3”
1
{
“route_id”: “Line 3”
1
1,
“group_by_time”: “DAYS”
}
Output:
{

“request”: {
“start_timestamp”: “2017-01-21 00:00:00”,

“end_timestamp”: “2017-01-27 23:59:59”,
“routes”: [

{
“route_id”: “Line 17,
“origin_stop_id”: “S3”
1
{
“route_id”: “Line 3”
}
1,
“group_by_time”: “DAYS”
1
“od_matrix”: [

{
“start_timestamp”: “2017-01-21 00:00:00”,

“end_timestamp”: “2017-01-21 23:59:59”,
“routes™: [

route_id origin_stop_id destination_stop_id | count
Line 1 S3 S4 3
Line 1 S4 S5 4

D1.1: Big travel data analytics support tool 83

Line 1 .. .intermediate stops of Line 1 | ... vee
Line 1 S8 S9 (last stop L1) 5
Line 3 S17 (first stop L3) | S18 22
Line 3 S18 S19 12
Line 3 S19 S20 17
Line 3 S20 S21 (last stop L3) 13
]

1

{
“start_timestamp”: “2017-01-22 00:00:00”,
“end_timestamp”: “2017-01-22 23:59:59”,
“routes”: [
route_id origin_stop_id destination_stop_id | count
Line 1 S3 S4 2
Line 1 S4 S5 5
Line 1 .. .intermediate stops of Line 1 | ... ves
Line 1 S8 S9 (last stop L1) 2
Line 3 S17 (first stop L3) | S18 12
Line 3 S18 S19 32
Line 3 S19 S20 27
Line 3 S20 S21 (last stop L.3) 13
]

1

{
... // OD-Matrixes from 2017-01-23 to 2017-01-26, one per day // ...

1

{
“start_timestamp”: “2017-01-22 00:00:00”,
“end_timestamp”: “2017-01-22 23:59:59”,
“routes”: [
route_id origin_stop_id destination_stop_id | count
Line 1 S3 S4 2
Line 1 S4 S5 8
Line 1 . . .intermediate stops of Line 1 | ... e
Line 1 S8 S9 (last stop L1) 3
Line 3 S17 (first stop L3) | S18 12
Line 3 S18 S19 2
Line 3 S19 S20 7
Line 3 S20 S21 (last stop L3) 19
]

}

D1.1: Big travel data analytics support tool

Example 2. I want to know the total passenger count in between 2017-02-01 and 2017-02-05,
on the routes “Line 1”, “Line 3”, and “Line 5”.

Input:
{
“start_timestamp”: “2017-02-01 00:00:00”,
“end_timestamp”: “2017-02-05 23:59:59”,
“routes”: [
{
“route_id”: “Line 1”
1
{
“route_id”: “Line 3”
1
{
“route_id”: “Line 5”
}
1,
“group_by_time”: “ALL”
}
Output:
{

“request”: {
“start_timestamp”: “2017-02-01 00:00:00”,
“end_timestamp”: “2017-02-05 23:59:59”,
“routes”: [

{

“route_id”: “Line 1”
}
{

“route_id”: “Line 3”
1
{

“route_id”: “Line 5”
}

1,
“group_by_time”: “ALL”

})

D1.1: Big travel data analytics support tool 85

“od_matrix”:

[
{
“start_time”: “2017-02-01 00:00:00”,
“end_time”: “2017-02-05 23:59:59”,
“routes”:
[
route_id origin_stop_id destination_stop_id | count
Line 1 S1 (first stop L1) S2 32342
Line 1 S2 S3 41233
Line 1 ... intermediate stops of Line 1 | ... vee
Line 1 S8 S9 (last stop L.1) 5338
Line 3 S17 (first stop L3) S18 22127
Line 3 S18 S19 12215
Line 3 S19 S20 1721
Line 3 S20 S21 (last stop L3) 13443
Line 5 S65 (first stop L5) | S68 2211
Line 5 S68 S76 32379
Line 5 S76 S99 1421
Line 5 S99 S101 1212
Line 5 ...intermediate stops of Line 5 .
Line 5 S112 S114 (laststop L5) [124
]
}
]

Example 3. I want to know the total passenger count, aggregated from the first stop to the
last stop, in between 2017-02-01 and 2017-02-05, on the routes “Line 1, “Line 3”, and
“Line 5”.

Input:

{
“start_timestamp”: “2017-02-01 00:00:00”,

“end_timestamp”: “2017-02-05 23:59:59”,

“routes”: [
{
“route_id”: “Line 17,
“show_intermediate_stops”: “FALSE”
1
{

“route_id”: “Line 37,

D1.1: Big travel data analytics support tool 86

“show_intermediate_stops”: “FALSE”

1
{
“route_id”: “Line 57,
“show_intermediate_stops”: “FALSE”
}
1,
“group_by_time”: “ALL”,
}
Output:
{

“request”: {
“start_timestamp”: “2017-02-01 00:00:00”,
“end_timestamp”: “2017-02-05 23:59:59”,
“routes”: [

{
“route_id”: “Line 17,
“show_intermediate_stops”: “FALSE”
1
{
“route_id”: “Line 37,
“show_intermediate_stops”: “FALSE”
1
{
“route_id”: “Line 57,
“show_intermediate_stops”: “FALSE”
}
1,
“group_by_time”: “ALL”
1
“od_matrix”:
[

{
“start_time”: “2017-02-01 00:00:007,

“end_time”: “2017-02-05 23:59:59”,

“routes”:

[

route_id origin_stop_id destination_stop_id | count
Line 1 S1 (first stop L.1) S9 (last stop L.1) 733242

D1.1: Big travel data analytics support tool

87

Line 3 S17 (first stop L3) | S21 (last stop L3) 392127
Line 5 S65 (first stop L5) | S114 (last stop L5) | 842211
]
}
]
}
D1.1: Big travel data analytics support tool 88

4.3.4.

API endpoint: /api/v1/compute/routes/average

Description: get an OD-Matrix with the average number of passengers, within the time frame
specified in the request, from all the stop-to-stop sequences for every ROUTE specified. This
API endpoint doesn’t consider transfers or connections between routes (i.e. there are no two
connected journey_legs in passengers journeys, but only one journey_leg per journey), only
single routes passengers count).

The average value is calculated by the “average_by” property:

TRIPS, is the average number of passenger during the time frame within a route from
stop-to-stop (= total number of passengers from-stop-to-stop divided by number of
trips);

HOURS_PER_DAY, is the average number of passengers per hour of day (00:00:00 -
00:59:59, 01:00:00 - 01:59:59, ..., 23:00:00 - 23:59:59);

DAYS_PER_WEEK, average per day of week (MONDAYS, TUESDAYS, ...,
SUNDAY);

DAYS_PER_MONTH, average per day of week (1st, 2nd, ..., 31st);
WEEKS_PER_MONTH, average per week in month (week 1, week 2, week 3, week
4);

WEEKS_PER_YEAR, average per week in a year (week 1, week 2, ..., week 52);
MONTHS_PER_YEAR, average per month in a year (January, February, ...,
December);

QUARTERS_PER YEAR, average per quarter in a year (Q1, Q2, Q3, Q4);

HTTP Verb: POST

Input (send JSON request):

start_timestamp: Date (required),

end_timestamp: Date (required),

routes: (Array, if empty use default = ALL)
route_id: STRING (optional, if empty use default=transverse all the stops path
from the origin_stop_id (if provided) to all its possible destination, or from all
the possible origin stops to the destination_stop_id (if provided), or if both are
provided then compute only from origin_stop_id to destination_stop_id in this
route),
origin_stop_id: STRING (optional, if empty use default=first stop in trip
sequence),
destination_stop_id: STRING (optional, if empty use default=last stop in trip
sequence),
show_intermediate_stops: BOOLEAN (optional, TRUE (default), get all
intermediate stops in between origin_stop_id and destination_stop_id; FALSE,
aggregate all the stops from origin_stop_id and destination_stop_id to a single
count)

average_by: TRIPS, HOURS_PER_DAY, DAYS_PER_WEEK,

DAYS_PER_MONTH, WEEKS_PER_MONTH, WEEKS_PER_YEAR,

MONTHS_PER_YEAR, QUARTERS_PER YEAR

Output (expect JSON response):

D1.1: Big travel data analytics support tool 89

request:
ALL THE FIELDS IN THE REQUEST
od_matrix: (Array)
start_timestamp: Date,
end_timestamp: Date,
routes: (Array)
route_id: STRING,
origin_stop_id: STRING,
destination_stop_id: STRING,
average: Double

Example 4. I want to know the average passenger count per hour of the day in between
2017-01-21 and 2017-01-27, on the routes “Line 1” (starting on the stop “S3”) until the last
stop, and route “Line 3” aggregated from the first to last stop.

Input:
{
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”,
“routes”: [
{
“route_id”: “Line 17,
“origin_stop_id”: “S3”
1
{
“route_id”: “Line 3”,
“show_intermediate_stops”: “FALSE”
1
1,
“average_by”: “HOURS_PER_DAY”
}
Output:
{

“request”: {
“start_timestamp”: “2017-01-21 00:00:00”,
“end_timestamp”: “2017-01-27 23:59:59”,
“routes”: [
{
“route_id”: “Line 17,
“origin_stop_id”: “S3”

})

D1.1: Big travel data analytics support tool 90

“route_id”: “Line 3”,
“show_intermediate_stops”: “FALSE”

1

1,

“average_by”: “HOURS_PER_DAY”

1
“od_matrix”: [

{
“start_timestamp”: “00:00:00”,
“end_timestamp”: “00:59:59”,
“routes”: [
route_id origin_stop_id destination_stop_id | average
Line 1 S3 S4 1
Line 1 S4 S5 2
Line 1 .. . intermediate stops of Line

1

Line 1 S8 S9 (last stop L1) 2
Line 3 S17 (first stop L3) | S21 (last stop L3) 324
]

1

{
“start_timestamp”: “01:00:00”,
“end_timestamp”: “01:59:59”,
“routes”: [
route_id origin_stop_id destination_stop_id | average
Line 1 S3 S4 4
Line 1 S4 S5 3
Line 1 . . .intermediate stops of Line 1 | ... e
Line 1 S8 S9 (last stop L1) 1
Line 3 S17 (first stop L3) | S21 (last stop L3) 234
]

1

{
... // OD-Matrixes from 02:00:00 to 22:59:59, one per hour of day// ...

1

{

“start_timestamp”: “23:00:00”,
“end_timestamp™: “23:59:59”,
“routes”: [

route_id origin_stop_id destination_stop_id | average
Line 1 S3 S4 2

Line 1 S4 S5 8

Line 1 ...intermediate stops of Line 1 .

Line 1 S8 S9 (last stop L1) 3

D1.1: Big travel data analytics support tool 91

| Line 3 | S17 (first stop L3) | S21 (laststop L3) | 341

]

Example 5. I want to know the average trip passenger count in between 2017-02-01 and
2017-02-05, on the routes “Line 1”, “Line 3”, and “Line 5.

Input:
{
“start_timestamp”: “2017-02-01 00:00:00”,
“end_timestamp”: “2017-02-05 23:59:59”,
“routes”: [
{
“route_id”: “Line 17,
1
{
“route_id”: “Line 37,
1
{
“route_id”: “Line 57,
}
],
“average_by”: “TRIPS”
}
Output:
{

“request”: {
“start_timestamp”: “2017-02-01 00:00:00”,
“end_timestamp”: “2017-02-05 23:59:59”,
“routes”: [

{

“route_id”: “Line 1”
1
{

“route_id”: “Line 3”
1
{

D1.1: Big travel data analytics support tool

92

“route_id”: “Line 5”

}

I,

“average_by”: “TRIPS”

b

“od_matrix”:

[

{
“start_time”: “2017-02-01 00:00:007,
“end_time”: “2017-02-05 23:59:59”,
“routes”:
[
trip_id origin_stop_id destination_stop_id | average
Line 1 S1 (first stop L1) [S2 12
Line 1 S2 S3 32
Line 1 S... S...
Line 1 S8 S9 (last stop L1) 15
Line 3 S17 (first stop L3) | S18 32
Line 3 S18 S19 33
Line 3 S19 S20 34
Line 3 S20 S21 (last stop L3) 12
Line 5 S65 (first stop L5) | S68 23
Line 5 S68 S76 11
Line 5 S76 S99 22
Line 5 S99 S101 23
Line 5 S... S...
Line 5 S112 S114 (last stop L5) |23
]
}
]
}
D1.1: Big travel data analytics support tool 93

5. Conclusions and Prospects

This document has described the design and implementation of the Big Travel Demand
Analytics Support Tool. The tool has been conceived as a web application running on the
IBM Bluemix cloud platform-as-a-service.

The data storage core of the application is a graph database. The graph database implements a
novel data model for the combination of transit and passenger data, which has been
developed especially for this project in order to enable an analysis of complex travel demand
data. The main innovation of this data model is to combine transit data, for which a de-facto
standard already existed (GTFS) albeit only in relational form, with passenger data, for which
no standard was available so far, and to combine these two layers into a combined
transit-and-passenger data model. Furthermore, the data model was extended to include
hub-level passenger data to capture the walking behavior inside transit hubs.

The Big Travel Demand Analytics Support Tool provides its analysis functionality via a set of
well-defined APIs. These APIs can be called from any consuming program in order to
perform further processing. One main use of the APIs is the visualization of travel demand
data, thus the tool will feed into the Visualization Tool developed as D1.3.

The use of the APIs, either directly or via the Visualization Tool, during the case studies will
serve as a test of whether the new concept of a graph database is suitable for storing and
analysing travel demand data. In particular, the performance of the graph queries,
implemented in Gremlin, will be tested. Given the limited experience in the field of graph
databases so far, this will serve as an interesting benchmark and test case.

In order to run the tool outside the IBM Bluemix, a certain adjustments will have to be done.
Since IBM Graph is only available as a service on Bluemix, another standalone graph
database must be chosen and set up in order to implement the same data model. This graph
database must provide Gremlin APIs. Furthermore, a webserver running the Node.js runtime
environment has to be set up. The analysis APIs should only need minor configuration
adjustments to connect to the new database, but other than that should be interoperable due to
the use of Gremlin.

D1.1: Big travel data analytics support tool 94

/api/v1l/compute/passengers/stop-to-stop/count:
/api/v1l/compute/passengers/stop-to-stop/average:

Options not implemented:

od_matrix_output: (optional) SAME_VALUE_AS_OD_LISTS (Default, returns the
value(s) specified in the "origin_stops" and "destination_stops" lists), STOP_ID
(return only the stop_id value in the OD-Matrix), STOP_NAME (return only the
stop_name value in the OD-Matrix), STOP_ID_AND_STOP_NAME (return the
stop_id and stop_name value in the OD-Matrix)

group_by_time (optional): STRING
ALL (default), SECONDS, MINUTES, HOURS, DAYS, WEEKS, MONTHS,
QUARTERS,

average_by (only for endpoint /compute/passengers/stop-to-stop/average):
PER_DAY_OF_WEEK, average per day of the week (1 -monday-, 2, ..., 7);
PER_DAY_OF_MONTH, average per day of the month (1, 2, 3, 4,..., 30, 31);
PER_WEEK_OF_MONTH, average per week in month (1 —week—, 2, 3, 4);
PER_WEEK_OF_YEAR, average per week in a year (1, 2, ..., 53);
TOTAL_WEEKS_OF_TIME_INTERVAL: total count of passenger journeys
divided by the number of weeks in between the end_timestamp and
start_timestamp;
PER_MONTH_OF_YEAR, average per month in a year (1-january, ...,
12-december);
TOTAL_MONTHS_OF_TIME_INTERVAL.: total count of passenger
journeys divided by the number of months (30 days/month) in between the
end_timestamp and start_timestamp;
PER_QUARTER_OF_YEAR, average per quarter in a year (1 -Q—, 2, 3, 4);
[TOTAL_QUARTERS_OF_TIME_INTERVAL] total count of passenger
journeys divided by the number of quarters (4 quarters/year) in between the
end_timestamp and start_timestamp;
[PER_YEARS] average per years (2017, 2018, 2019,...);
[TOTAL_YEARS_OF_TIME_INTERVAL] total count of passenger journeys
divided by the number of years (365 days/year) in between the end_timestamp
and start_timestamp.

D1.1: Big travel data analytics support tool 95

/api/v1l/compute/passengers/route-to-route/count:
/api/v1l/compute/passengers/route-to-route/average:

Options not implemented:

transfer_stops:
stop_name: STRING (required if “stop_id” is empty),

average_by (required only for endpoint ...route-to-route/average):
PER_HOUR_OF_DAY, is the average number of passengers per hour of day
(00:00:00 - 00:59:59, 01:00:00 - 01:59:59, ..., 23:00:00 - 23:59:59);
PER_DAY_OF_WEEK, average per day of the week (1 -monday-, 2, ..., 7);
PER_DAY_OF_MONTH, average per day of the month (1, 2, 3, 4,..., 30, 31);
PER_WEEK_OF_MONTH, average per week in month (1 -week—, 2, 3, 4);
PER_WEEK_OF_YEAR, average per week in a year (1, 2, ..., 53);
TOTAL_WEEKS_OF_TIME_INTERVAL.: total count of passenger journeys
divided by the number of weeks in between the end_timestamp and
start_timestamp;
PER_MONTH_OF_YEAR, average per month in a year (1-january, ...,
12-december);
TOTAL_MONTHS_OF_TIME_INTERVAL.: total count of passenger
journeys divided by the number of months (30 days/month) in between the
end_timestamp and start_timestamp;
PER_QUARTER_OF_YEAR, average per quarter in a year (1 -Q—-, 2, 3, 4);
[TOTAL_QUARTERS_OF_TIME_INTERVAL] total count of passenger
journeys divided by the number of quarters (4 quarters/year) in between the
end_timestamp and start_timestamp;
[PER_YEARS] average per years (2017, 2018, 2019,...);
[TOTAL_YEARS_OF_TIME_INTERVAL] total count of passenger journeys
divided by the number of years (365 days/year) in between the end_timestamp
and start_timestamp.

D1.1: Big travel data analytics support tool 96

/api/v1l/compute/passengers/intra-station/zone-to-zone/count:
/api/v1l/compute/passengers/intra-station/zone-to-zone/average:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distribution
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribution
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution

Options not implemented:

zone_list_details: (required if “od_input_type==ZONE_LIST”)
origin_zones: Array of
zone_name: (required only if zone_id is empty),
country: (optional, overrides “default_country” only for this element)
CH (Switzerland), SE (Sweden), NL (Netherlands),
pairs_to: (optional)
LIST_OF_ZONES (Default, pair this origin zone to each of the zones
in the “destination_zones” list);
ALL_POSSIBLE_CONNECTIONS (pair this origin zone to all the
zones —as destinations— found in the same station);

destination_zones: Array of
zone_name: (required only if zone_id is empty),
country: (optional, overrides “default_country” only for this element)
CH (Switzerland), SE (Sweden), NL (Netherlands),
pairs_to: (optional)
LIST_OF_ZONES (Default, pair this destination zone to each of the
zones in the “origin_zones” list);
ALL_POSSIBLE_CONNECTIONS (pair this destination zone to all
the zones —as origins— found in the same station);

group_by_time (optional): STRING
ALL (default), SECONDS, MINUTES, HOURS, DAYS, WEEKS, MONTHS,
QUARTERS,

group_by_time_seconds (optional): Integer, number of seconds to group by.

average_by (required only for endpoint “.../average”):
PER_MINUTE_OF_HOUR, is the average number of passengers per hour of
day (00:00:00 - 00:00:59, 00:01:00 - 00:01:59, ..., 23:59:00 - 23:59:59);
PER_DAY_OF_WEEK, average per day of week (1 -monday-, 2, ..., 7);
PER_DAY_OF_MONTH, average per day of week (1, 2, 3, 4,..., 30, 31);
PER_WEEK_OF_MONTH, average per week in month (1 -week—, 2, 3, 4);
PER_WEEK_OF_YEAR, average per week in a year (1, 2, ..., 53);
TOTAL_WEEKS_OF_TIME_INTERVAL: total count of passenger walks
divided by the number of weeks in between the end_timestamp and
start_timestamp;
PER_MONTH_OF_YEAR, average per month in a year (1-january, ..
12-december);

)y

D1.1: Big travel data analytics support tool 97

TOTAL_MONTHS_OF_TIME_INTERVAL: total count of passenger walks
divided by the number of months (30 days/month) in between the
end_timestamp and start_timestamp;

PER_QUARTERS_OF_YEAR, average per quarter in a year (1 -Q-, 2, 3, 4);
[TOTAL_QUARTERS_OF_TIME_INTERVAL] total count of passenger
journeys divided by the number of quarters (4 quarters/year) in between the
end_timestamp and start_timestamp;

[PER_YEARS] average per years (2017, 2018, 2019,...);
[TOTAL_YEARS_OF_TIME_INTERVAL] total count of passenger
journeys divided by the number of years (365 days/year) in between the
end_timestamp and start_timestamp.

/api/v1/compute/passengers/intra-station/zone-to-zone/density:
/api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/density:

Options not implemented:

grid_details: (required only if “od_input_type==GRID”)
all_cells_in_station: BOOLEAN (optional)
False (Default, if false specify the “grid_boundaries” parameter),
True (if true, all the grid cells inside the station is used to make the
computation).

D1.1: Big travel data analytics support tool 98

	1. Summary
	2. Data Model and Application Architecture
	2.1. Transit Layer
	2.2. Passenger Layer
	2.3. Extensions for hub-level data
	2.4. Graph Database
	2.5. Architecture

	3. Internal API endpoints (core)
	3.1. Auth: Setting up the users authentication api
	3.2. Users: Setting up the users profile api
	3.3. Admin: Setting up the admin user-management api

	4. External API endpoints (data computation)
	4.1. User Stories
	4.1.1. Urban Level User Stories
	4.1.2. Regional Level User Stories
	4.1.3. Hub Level User Stories

	4.2. Graph transversal computations
	4.2.1. API endpoint: /api/v1/compute/passengers/stop-to-stop/count
	4.2.2. API endpoint: /api/v1/compute/passengers/stop-to-stop/average
	4.2.3. API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/count
	4.2.4. API endpoint: /api/v1/compute/passengers/transfer/trip-to-trip/waiting-time
	4.2.5. API endpoint: /api/v1/compute/passengers/transfer/route-to-route/count
	4.2.6. API endpoint: /api/v1/compute/passengers/transfer/route-to-route/average
	4.2.7. API endpoint: /api/v1/compute/passengers/transfer/route-to-route/waiting-time/distribution
	4.2.8. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/count
	4.2.9. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/average
	4.2.10. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/walking-distance/distribution
	4.2.11. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/walking-time/distribution
	4.2.12. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/distribution
	4.2.13. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/density
	4.2.14. API endpoint: /api/v1/compute/passengers/intra-station/zone-to-zone/walking-speed/average/density

	4.3. Potential future (computation) API extensions
	4.3.1. API endpoint: /api/v1/compute/passengers/transfer/count (extension 1)
	4.3.2. API endpoint: /api/v1/compute/passengers/transfer/count (extension 2)
	4.3.3. API endpoint: /api/v1/compute/routes/count
	4.3.4. API endpoint: /api/v1/compute/routes/average

	5. Conclusions and Prospects

