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A B S T R A C T

The aim of this study was to propose a procedure for optimising the cost-effectiveness of vector borne disease
surveillance using a scenario tree model and cost-effectiveness analysis. The surveillance systems for Bluetongue
Virus serotype 8 (BTV-8) implemented in Switzerland and Belgium were used as examples. In twenty four
different, simulated population structures, passive surveillance and five designs of active surveillance were in-
vestigated. The influence of surveillance system design and parameters such as farmer disease awareness, ve-
terinary disease awareness, herd and within-herd design prevalence on the overall surveillance system sensitivity
were assessed. Furthermore, the cost-effectiveness of mandatory and voluntary vaccination regimes in relation to
disease surveillance was investigated.

Under the assumption that BTV-8 manifests clinically, freedom from disease in a population can be estab-
lished with almost certainty over the period of one year using clinical surveillance alone. Additional investment
in active surveillance would therefore economically only be justified, if no clinical manifestation is suspected or
other surveillance objectives are to be provided such as early detection. The best cost-effectiveness is obtained by
sampling more herds rather than more animals within a herd. Mandatory vaccination reduces the cost of sur-
veillance by 0.26 € per vaccine and voluntary vaccination only marginally reduces the cost of risk-based sur-
veillance, by reducing the population at risk. Finally, in populations with predominantly dairy cattle, bulk-tank
milk testing is the method of choice to actively demonstrate freedom from disease.

1. Introduction

The emergence of Bluetongue virus serotype 8 (BTV-8) in northern
Europe in 2006, lead to the European Commission regulation 1266/
2007 on the surveillance of Bluetongue (European Commission, 2007;
Mehlhorn et al., 2007; Toussaint et al., 2006). Based on this regulation,
several countries implemented a range of surveillance strategies from
2006 onwards in order to detect circulation of BTV or alternatively
prove freedom from infection with BTV after implementing mitigation
and surveillance strategies. The original requirement to detect a pre-
valence of 0.005 in the bovine with 95% confidence was relaxed in May
2012 requesting to detect a prevalence of only 0.05.

Conventionally, surveillance approaches are divided into passive
and active surveillance. Passive surveillance mainly consists of

mandatory reporting of clinical suspect cases by owners and veter-
inarians while active surveillance is most commonly implemented as a
strategy decided by the competent veterinary services, and with a
certain objective on the short, mid- and long term. Active surveillance
implies the whole range of activities needed to guarantee these objec-
tives such as appropriate sample selection, collection and laboratory
analysis as well as follow-up of results and interventions. In contrast,
passive surveillance heavily relies on disease awareness of the involved
stakeholders (Hadorn et al., 2008) and is considered to cover the entire
target population. Active surveillance is designed to represent the sur-
veyed population according to a set target (i.e. confidence level at a
given design prevalence). The most generic form of active surveillance
would be a random sample, however, to reduce cost, as well as increase
sensitivity of detection, risk-based surveillance has been applied in

https://doi.org/10.1016/j.prevetmed.2018.02.009
Received 14 April 2017; Received in revised form 26 January 2018; Accepted 9 February 2018

⁎ Corresponding author.
E-mail address: srueegg@vetclinics.uzh.ch (S.R. Rüegg).

Preventive Veterinary Medicine 160 (2018) 145–154

0167-5877/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01675877
https://www.elsevier.com/locate/prevetmed
https://doi.org/10.1016/j.prevetmed.2018.02.009
https://doi.org/10.1016/j.prevetmed.2018.02.009
mailto:srueegg@vetclinics.uzh.ch
https://doi.org/10.1016/j.prevetmed.2018.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prevetmed.2018.02.009&domain=pdf


many settings (Alban et al., 2008; Calvo-Artavia et al., 2012; Hadorn
et al., 2009; Welby et al., 2013). The technical performance of a risk-
based surveillance component applied to establish freedom from in-
fection can be expressed by its sensitivity, i.e. the probability to detect
at least one case if the disease is present at a predefined design pre-
valence.

Active surveillance, if designed to have a high sensitivity, incurs
substantial costs for sampling and testing. The decision on how much
resources are spent for surveillance of a specific disease is the result of
political, technical and financial considerations. In order to guide such
decisions, we propose here a combination of scenario tree modelling as
first described Martin et al. (Martin et al., 2007) and cost-effectiveness
analysis (CEA). CEA is a method of comparing the cost and effectiveness
of two or more health care alternatives to aid decisions on resource
allocation (Clasen et al., 2007; Eichler et al., 2004; Hutubessy et al.,
2003; McEwan, 2012; Russel et al., 1996). It directly relates the fi-
nancial and scientific implications of different interventions in a sys-
temic way (Levin, 1995).

The aim of the present study was to propose a process for optimising
surveillance performance and costs using a scenario tree model and
CEA in sequence. The application of this approach is illustrated using
BTV-8 as an example, because there is potential for BTV to reoccur in
North-western Europe. The BTV-8-surveillance implemented in
Belgium (BE) and Switzerland (CH) in 2011 and 2012 was assessed by
Nafzger (Nafzger, 2016), and the benefit of surveillance for BTV-8 has
been demonstrated (Häsler et al., 2012; Pinior et al., 2015), but it was
also shown that the continuation of that surveillance and intervention
program might not be economically justified (Häsler et al., 2012). The
question arises whether surveillance for BTV could be more cost-ef-
fective. In the present study, surveillance is optimised from two distinct
perspectives: first with the objective to identify the most cost-effective
system to demonstrate freedom from disease, and second under the
assumption that active surveillance is mandatory in addition to clinical
surveillance (as prescribed by the EC regulation, European Commission,
2007).

2. Material & methods

Here we first describe the generic stochastic scenario tree model
implemented in R (Core R Team, 2013, code available upon request). It
is followed by a deterministic model for the cost-effectiveness analysis
implemented in Excel (Microsoft Corporation, 2010, supplementary
data). Finally, the example for Bluetongue serotype 8 is described with
the data used for the analysis and optimisation of the surveillance ap-
proach.

2.1. Scenario tree model of disease surveillance for freedom from disease

The confidence level in a surveillance system to demonstrate
freedom from disease can be measured as sensitivity to detect at least
one infected animal at a given design prevalence in a given geo-
graphical unit. Martin et al. (Martin et al., 2007) proposed scenario tree
models to compute this sensitivity. Such a tree consists of a sequence of
nodes, with branches dividing the reference population into sub-
populations. Nodes are categorized as infection, detection or risk nodes,
where infection nodes specify the infection status of a unit, detection
nodes define all events that must take place for the detection of the
infection, and risk nodes represent those factors that affect the prob-
ability of a unit being infected or detected. For the present study, risk
factors were considered at herd level as represented in Fig. 1. The re-
lative risk distributions were computed by combining expert opinions
collected by Nafzger (Nafzger, 2016) and are presented in the supple-
mentary material. The model was implemented at country level for
passive surveillance, namely clinical surveillance (CLIN), while for ac-
tive surveillance three different components were considered using
different diagnostic methods and matrices: i) blood samples and testing

with an ELISA for BTV-8-specific serum antibodies (ELISA), ii) blood
samples and testing with an RT-PCR assay specific for BTV-RNA (RT-
PCR), and iii) bulk milk samples and testing with an ELISA for BTV-8-
specific milk antibodies (BMT). For CLIN the testing procedure was a
sequence of events determined by the probability of a farmer to detect
the disease and call a veterinarian (farmer’s disease awareness, fDA),
the probability of a veterinarian to take a sample and submit it for
testing (veterinarian’s disease awareness, vDA) and the sensitivity of the
confirmatory RT-PCR. At herd level, the sensitivity (SeH) was computed
according to

= − − × × × ×SeH fDA vDA Se1 (1 ) * ,PCR
morb N PinHerd A (1)

where morb is the morbidity, NinHerd is the number of animals in a herd,
and P*A is the within-herd design prevalence. The exponent is rounded
to the next larger integer. Because for clinical surveillance all animals
are assumed to be looked at during clinical inspection by farmers, there
is no sampling fraction included in Equation =( )1n
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Where SeTest is the sensitivity of the diagnostic test, ninHerd is the number
of animals sampled in a herd, NinHerd is the number of animals in a herd,
and P*A is the within-herd design prevalence. The exponent is rounded
to the next larger integer.

The contribution to surveillance sensitivity from the risk-based
sampling of different population strata was computed and aggregated at
population level as component sensitivity (CSe), as previously described
(Martin et al., 2007; Welby et al., 2013). For combinations of two
surveillance components, e.g. clinical (CSeclinic) and an active compo-
nent (CSeactive), the system sensitivity (SSe) was computed according to

= − − × −SSe CSe CSe1 [1 ] [1 ].clinic active (3)

2.2. Cost-effectiveness analysis

CEA was applied to assess the efficiency of different alternatives of
disease surveillance systems. The goal of CEA is to assess if the value of
an intervention justifies its cost. The method relates the financial im-
plications and the technical performance of a surveillance design in a
systemic way (Levin, 1995), and was implemented in analogy to Guo
and co-workers (Guo et al., 2014). The authors describe the basic
concept and consider direct costs of surveillance, in addition to the
direct consequential costs and indirect costs of an outbreak. In the
present study, only direct costs of surveillance were considered as total
annual costs. Furthermore, the calculation was restricted to the variable
costs, which included: Cost of information campaign, cost of labour,
cost of material, cost of transportation, cost of diagnostic tests, cost of
communication and confirmation of results, and miscellaneous costs. If
not stated otherwise, costs and activities were presumed to be at an
annual basis. The scenario tree model provided the data for sampling
and testing activities as well as the corresponding surveillance system
sensitivity (SSe). It was iterated 1500 times and the resulting median
sampling activity was converted into total costs. Then the different
surveillance designs were compared on a plot where the x-axis are
median total costs and the y-axis median SSe. Due to the threshold of at
least 95% for the SSe used in the surveillance optimisation (see below),
only a small portion of the theoretical space for optimisation is used.
The spreadsheet to perform the cost-effectiveness analysis and detailed
instructions are available as supplementary data.

2.3. Surveillance optimisation for Bluetongue

Factors considered for surveillance of Bluetongue and associated
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costs in various countries were collected by Nafzger (Nafzger, 2016). In
the present project a generic summary of these data was used: The
parameters used for the scenario tree model are given in Table 1, while
the surveillance specific costs and time expenditures for the cost cal-
culation are given in Tables 2 and 3. Where deemed appropriate,
parameters were modelled stochastically using a pert distribution.

2.3.1. Surveillance optimisation
For the present study, surveillance was optimised from two distinct

perspectives: first with the objective to identify the most cost-effective
system to demonstrate freedom from disease, and second under the
assumption that active surveillance was mandatory in addition to
clinical surveillance (as prescribed by the EC regulation, European
Commission, 2007). While clinical surveillance leaves little room for
optimisation, active surveillance requires some strategic decisions and
depends on active implementation by the veterinary services. The aim
of the following surveillance optimisation process was to inform the
design of an active surveillance system for Bluetongue. Many different
surveillance designs are possible. But, the study focusses on five pos-
sible designs that represent some fundamental choices that can be
considered by policy makers. The designs compared were (1) a random
sample, (2) risk-based surveillance targeting only high risk herds, (3)
voluntary vaccination with risk-based surveillance targeting all non-
vaccinated herds, (4) voluntary vaccination with risk-based surveil-
lance targeting non-vaccinated herds at high risk, and (5) mandatory
vaccination with risk-based surveillance targeting herds at high risk.

Active surveillance was only simulated on the cattle population as
required by the EC 1266/2007, and reported to have been conducted in
many European countries (European Commission, 2007; Nafzger,
2016). From here onwards, the term “sensitivity” as the technical

performance of a surveillance system or a component thereof shall be
named SSe or CSe respectively (as described above for the scenario tree
model). In contrast, the description of the sensitivity of the model to its
input parameters (as explained below) shall be denominated “model
sensitivity”. To compare the surveillance designs, the CSe for blood
serology by ELISA, blood virus detection by RT-PCR or BMT was as-
sessed.

The technical performance of surveillance components is strongly
affected by the population structure, i.e. the distribution of risk factors
amongst the different subpopulations at risk. However, in practice in a
given territory under surveillance, this structure is given and not sub-
ject to change or decisions. Hence, in order to make generic statements
on how to design a surveillance system for optimal cost-effectiveness,
we applied active surveillance components to a set of standard popu-
lation structures reflecting livestock population distributions in dif-
ferent countries or geographical units. Twenty-four combinations were
evaluated using four characteristics of a standing population (a) a po-
pulation with a majority of cattle versus a majority of sheep, (b) pri-
marily milk vs primarily meat production, and (c) a population with
primarily small herds (median=30 animals/herd) versus primarily
large herds (median=100 animals/herd). Furthermore, either 5, 10 or
40% of the population were assumed to be exposed to high infection
risk, respectively. The combinations considered are listed in Table 4.
The focus of active surveillance exclusively on cattle was maintained
throughout.

In addition, voluntary vaccination was assumed to attain a 10%
protective coverage of the population, and mandatory vaccination 75%.
We calculated the necessary number of herds and animals to sample for
attaining a CSe-threshold of 95% or 99%. Five hundred iterations were
computed with combinations of the number of animals to sample per

Fig. 1. Flowchart illustrating the structure of the scenario tree for an active surveillance component. Risk nodes (diamonds), infection nodes (rectangles) and detection nodes (rounded
boxes) are set in sequence. Dashed lines indicate that a branch continues identically to the branch drawn in solid lines from that particular node. Perfect specificity (Sp= 1) is assumed at
the end of each branch and the probability of a positive outcome (black ellipse) is computed.
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herd between 2 and 20, and the number of herds to sample between 50
and 300 (by increments of 5 herds).

Two combinations of the number of animals in a herd and the
number of herds required to sample in order to obtain 95% CSe were
identified: (point a) sampling as few animals in a herd as possible
(between 0 and 20), and (point b) sampling as few herds as possible.
Data for the CEA was generated for points a and b performing 1500
iterations for every active surveillance component and design in all 24
standard population structures. Thus, for each of the 24 population
structures we compared technical performance and costs from three
components applied in five surveillance designs (RT-PCR, ELISA, BMT
applied to design 1–4; and PCR only applied to design 5) in two points
(a, b).

2.3.2. Model sensitivity analysis
Because some parameters can be influenced by policy, their effect

on the technical performance of the various surveillance components
(CSe) was assessed, namely farmer disease awareness (fDA), veterinary
disease awareness (vDA), herd design prevalence (P*H) and within-herd
design prevalence (P*A). As the CSe also depends on the population
structure, model sensitivity was assessed for primarily meat producing

and primarily milk producing populations. The range of investigated
values is shown in Table 5. For each parameter value the stochastic
distribution of CSe was computed with 100 iterations. The kernel
density (function kde2d{MASS} in R), i.e. the frequency of CSe values
was plotted in 3D as function of the changing parameter and the CSe
value. Because production animals are routinely observed by their
owners, model sensitivity of clinical surveillance was assessed first
followed by clinical surveillance combined with diagnostic methods
used within the active surveillance (RT-PCR, ELISA or BMT).

3. Results

3.1. Surveillance optimisation

The number of herds and animals within a herd to reach the
thresholds of 95 or 99% CSe were determined for three surveillance
components (RT-PCR, ELISA and BMT) in 24 standard population
structures. As an example, we report in Fig. 2 the analysis of a random
sampling design (design 1) for populations dominated by dairy cattle in
small and large herds, with 5% of the herds at risk (A and B in Fig. 2),
populations dominated by dairy cattle in small and large herds, with
40% of the herds at risk (C and D), and populations dominated by beef
cattle in small and large herds, with 5% of the herds at risk (E and F). In
this design, RT-PCR and ELISA required similar samples to reach 95 or
99% CSe, despite changes in dominating species, production type, or
proportion at risk. As expected, BMT appeared only useful if the po-
pulation was dominated by dairy type cattle (see Fig. 2E and F). Fig. 2 is
one example of the model output, and the corresponding plots for the
remaining 18 standard populations are available as supplementary
data.

An alternative perspective is provided in Fig. 3, where BMT was
compared amongst the four different surveillance designs in popula-
tions with small herds and 5% of the herds at risk. For design five,
mandatory vaccination, neither BMT nor ELISA is suited, because both
rely on antibody detection in milk and in blood, respectively. Fig. 3
shows that not only the dominating production type, but also the design
had a significant effect on the median CSe reached with a given sample.

3.2. Cost-effectiveness analysis

Because clinical surveillance leaves little room for sampling opti-
misation, the cost-effectiveness analysis was only conducted on the
different active surveillance designs. The points a (sampling as few
animals within a herd as possible) and b (sampling as few herds as
possible) were identified for every active component in each surveil-
lance design to compute the total cost of the interventions and plotted
in Fig. 4. Because the sampling procedure was chosen to achieve the
threshold of at least 95% CSe, all components are situated close to this
threshold on the y-axis. BMT did not achieve this threshold in a po-
pulation structure with 70% meat production, but was most cost-ef-
fective in all other populations for the designs 1–4 (circles on the right
side in Fig. 4). Furthermore, because the bulk milk surveillance was
applied at herd level, it was also quite constant in cost, i.e. the cost of
BMT was not very sensitive to the choice of surveillance design or po-
pulation structure. Consistently, to substantiate freedom from BTV-8,
ELISA surveillance was more expensive than BMT, but cheaper than RT-
PCR surveillance, due to test costs and animal based sampling.

Considering random sampling (design 1, black in Fig. 4) as baseline,
design 3 (green in Fig. 4) generated only marginal differences in total
costs for all corresponding surveillance components. The cost of vac-
cination was not taken into account. The range of total costs for sur-
veillance was smallest for a sample targeted at high risk herds (design 2,
red in Fig. 4), and widest for voluntary vaccination and sampling tar-
geted at non-vaccinated herds at high risk (design 4, light blue in
Fig. 4). The cost of the latter design was also the most sensitive to
population structure. Compulsory vaccination with RT-PCR

Table 1
Parameters and input values used in the scenario tree model for Bluetongue surveillance
in Europe. Variable or uncertain parameters were modelled stochastically as PERT dis-
tributions (with the three input values stated in the table), and otherwise fixed values
were used. Where no references are given, estimates were based on combined expert
opinions reported by Nafzger and co-workers (Nafzger, 2016). The time resolution of the
scenario tree is one year.

Parameter description Symbol Minimum Most likely Maximum

Herd design prevalencea P*H 0.002
Within-herd design prevalencea P*A 0.005
Number of herds 50,000
Herd size 1 30 or 100 400

Morbidity due to BTV−8 in
cattleb

morbc 0.025

Farmer Disease Awareness in
cattlec

fDAc 0.002 0.150 0.670

Veterinary Disease Awareness
in cattlec

vDAc 0.002 0.550 0.670

Sensitivity PCR in cattled PCR-Sec 0.990 0.995 0.999
Sensitivity ELISA in cattled ELISA-Sec 0.853 0.887 0.923
Sensitivity BMT in cattlee BMT-Sec 0.540

Morbidity due to BTV−8 in
sheepb

morbs 0.077

Farmer Disease Awarenessc in
sheep

fDAs 0.044 0.200 0.760

Veterinary Disease Awarenessc

in sheep
vDAs 0.044 0.600 0.760

Sensitivity PCR in sheepd PCR-Ses 0.990 0.996 0.999
Sensitivity ELISA in sheepf ELISA-Ses n.a. n.a. n.a.
Sensitivity BMT in sheepf BMT-Ses n.a.

a According to the current version of the EC 1266/2007 (European Commission, 2007)
a prevalence of 0.05 in the bovine population of the Member State must be detected by
the surveillance system with 95% confidence. Prior to the amendment of 30th May 2012
(commission implementing regulation No 456/2012) the detection of a prevalence of
0.005 was required. Hence, these design prevalences assumed in the present study are
more stringent conditions than those currently implemented in the EU.

b According to Elbers and co-workers (Elbers et al., 2008a,b). To compute the annual
morbidity per animal, the observed mean number of sick cattle (2.1) and sheep (2.7) per
herd was divided by the mean herd size (85.2 and 35.5, respectively).

c Minimal disease awareness (DA) was 0.2% and 4.4% for cattle and sheep, respec-
tively, while maximal DA corresponded to the sensitivity of clinical signs estimated by
Elbers and co-workers and implemented by Welby et al. (Elbers et al., 2008a,b; Welby
et al., 2013). Most likely values were set at roughly ¼ of the range for farmers and ¾ for
veterinarians to simulate their differing professional expertise.

d According to Vandenbussche et al. (Vandenbussche et al., 2008).
e According to the diagnostic test manufacturer (ID Vet, 2008).
f Because in the scenario, no active surveillance in sheep was considered, these values

were not used.
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surveillance (design 5, dark blue in Fig. 4) was systematically more
expensive than all other designs, albeit the cost of vaccination was not
considered. Design 2 systematically generated the least costs compared

to the baseline random design.
In addition, it was more cost-effective to sample a minimal number

of animals per herd (left side in Fig. 4) compared to sampling as few
different herds as possible (right side in Fig. 4), because the information
gained with an additional sample in the same herd was relatively poor,
while an animal from a different herd contributed more at only slightly
superior costs. This effect was minute for design two, sampling high risk
herds, in meat producing populations with small herds. Conversely,
design five, vaccination and sampling of non-vaccinated herds at high
risk produced the largest cost divergence between the points a and b
(dark blue ▲ left and right in Fig. 4, respectively). This effect was more
pronounced in populations with a large proportion at risk (compare A
and B with C and D in Fig. 4).

Finally, if one minute observation time per animal by farmers was
accounted in the cost for clinical surveillance, the approximate annual
costs in the simulated populations of 50,000 herds would arise to 500
million €. The veterinary follow-up and testing cost 0.01 million €, and
the information campaign 0.02 million €.

3.3. Model sensitivity analysis

The median CSe for clinical surveillance was very close to one for
the entire range of the investigated parameters, and for all population
structures. The CSe was reduced only when the most likely fDA was set
lower than 0.02, while vDA remained within the range defined in
Table 1 (and Fig. 5). Since SeH, and hence CSe, is relative to the product
of fDA and vDA (Eq. (1)) the same applies for vDA, i.e. the CSe for
clinical surveillance remains at close to one as long as the product of
fDA x vDA is larger than 0.00015, i.e. the combined probability that
farmer and veterinarian detect and pursue the case. Fig. 6 shows the
probability distribution of CSe depending on P*H when P*A is fixed at
0.0001. The median CSe remains at one for values of P*H greater than
0.015 and reaches 0.5 for values at approximately 0.002. In reverse,
CSe is insensitive to changes in P*A even with a P*H fixed as low as 0.01
(data not shown). Consequently, also any combination of active sur-
veillance with clinical surveillance reached SSe approximating one with
negligible 95% confidence intervals.

4. Discussion

4.1. Clinical surveillance

In this study clinical surveillance was shown to detect bluetongue
infections with almost 100% certainty. This is plausible because the
period of observation was one year and infections with BTV-8 cause a
disease which is readily detectable by clinical observation (Elbers et al.,
2008a,b). The CSe of clinical surveillance was not sensitive to variations
of disease awareness by farmers (fDA) or veterinarians (vDA) within a
realistic range. The observation that CSe of clinical surveillance does
not change upon perturbations of the design prevalence further em-
phasises that this surveillance component is a high value source of in-
formation to declare freedom from disease and proves that the passive
surveillance components such as clinical surveillance are of importance
to exclude clinical infection. The presented results are even over-
estimating the effect of P*H on the CSe, as under natural conditions,

Table 2
Costs in Euros for surveillance activity for Bluetongue surveillance. Estimates are based
on the results of the questionnaire by Nafzger and co-workers (Nafzger, 2016) and the
authors’ opinion to represent a western European average. The same costs applied to the
cattle and the sheep population, however in the present study active surveillance was
only performed on the cattle population as required by the EC regulation. The worksheet
provided as supplementary material allows for time dependent compensation or flat rates,
e.g. clinical examination, because we calculated with time-dependent payments, the flat
rate fields are set at zero.

Cost [Euros] Unit cost

Labour cost
Farmer routine check 15 hour
Veterinarian intervention 40 hour
Abattoir worker 23 hour
Lab. Technician 23 hour
Epidemiologist/senior scientist 60 hour

Compensations
Call-out fee veterinarian 65 visit
Clinical examination vet. 0 sample
Lab. Technician 0 sample

Laboratory costs
C-ELISA test 9 sample
RT-PCR 40 sample
Virus isolation 30 sample
Immunohistochemistry 20 sample
Sampling material (blood) 1 sample

Miscellaneous costs
Transportation incl. packaging 12 visit
Communication of results 0 visit
Cost of information campaign for farmers 20,000 population and year

Table 3
Time expenditure in hours for different clinical and diagnostic activities as applied in the
cost-effectiveness analysis. Estimates are based on the results of the questionnaire by
Nafzger and co-workers (Nafzger, 2016) and the authors’ opinion to represent a western
European average. The same costs applied to the cattle and the sheep population. For
laboratory analyses also covered in Table 2 flat rates are employed, hence time ex-
penditure is stated as zero, however, the worksheet provided as supplementary material
also allows for time-dependent calculations.

Hours Unit

Time for clinical visit
Farmer routine check 0.02 animal and day
Veterinarian intervention 0.04 animal

Time for sampling
Blood 0.08 sample
Tissue 0.17 sample
Milk 0.02 farm and day

Time for lab. work and analysis
ELISA 0 sample
RT-PCR 0 sample
Virus isolation 0 sample
Immunohistochemistry 0 sample
Epidemiological data analysis 1.00 farm and year

Table 4
Combination of characteristics used for the 24 simulated population structures considered
for the optimisation of BTV-8 surveillance. To compute a population, one option of each
column are combined. The effect of population composition on surveillance component
sensitivity (CSe) is reported in the results section.

Cattle:Sheep Dairy:Meat Herd Size Proportion at high risk

70: 30 70: 30 S 5%
or 30: 70 or 30: 70 or L or 10%

or 40%

Table 5
Parameters and their range used to analyse model sensitivity of BTV-8 surveillance sce-
nario tree models. Dependence of surveillance component sensitivity (CSe) on the para-
meters is reported in the results section.

Parameter name Symbol Minimum Maximum

Median farmer disease awareness fDA 0.00 0.50
Median veterinary disease awareness vDA 0.00 0.50
Herd design prevalence P*H 0.00 0.04
Within-herd design prevalence P*A 0.00 0.04
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infections are over-dispersed and hence P*A should be larger than P*H,
in contrast to the parameters used here (Faes et al., 2011). Furthermore,
the model assumes a specificity of 1, implying that every observation
with symptoms suspicious for BTV-8 infection is pursued until it is
confirmed with highest confidence. Concurrent diseases with similar
clinical spectrum would therefore raise the confirmatory activity for
false positive cases (and consequently the costs). These are contextual
interactions, which do not affect more specific surveillance components
such as ELISA or RT PCR. Nevertheless, the most cost-effective system
to demonstrate freedom from disease is clinical surveillance. This

reflects findings using other authors (Souza Monteiro et al., 2012;
Welby et al., 2016), it should however be noted, that due to the mod-
elling approach employed here, this is not necessarily true for alter-
native surveillance objectives, such as early detection or estimation of
prevalence.

The CSe of clinical surveillance might be overestimated due to
methodological reasons; indeed, the conventional approach for calcu-
lating herd-level sensitivity (SeH) in scenario trees might not be entirely
appropriate for clinical observations, because it assumes that all ani-
mals in a herd are equally subject to surveillance. Although biological

Fig. 2. Surveillance sensitivity for random sampling (design
1). The plot reports the median of 500 iterations. It shows the
median number of animals sampled in a herd (x-axis) and the
median number of herds sampled (y-axis) in a population of
50,000 herds to reach a surveillance sensitivity of 95% (light
green) or 99% (dark green) for six population structures (the
18 others are available as supplementary data). For each
population structure, three active surveillance components
were assessed blood RT-PCR assay (PCR), blood ELISA
(ELISA) or bulk milk testing (BMT) with ELISA. The popula-
tion structures considered were: A) a population composed of
small herds (median 30 cows/herd) with 70% cattle and 30%
sheep, 70% dairy and 30% meat production, where 5% of the
population is at high risk of infection by BTV-8; B) a popu-
lation composed the same as A), but with large herds (median
100 cows/herd); populations C) and D) have the same struc-
ture, but 40% are at risk, while in populations E) and F) again
5% are at risk, but 70% of the animals are in meat and 30% in
dairy production.
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heterogeneity in showing clinical signs is considered with a maximal
sensitivity of 0.67 (Elbers et al., 2008a,b), individual animals are un-
likely to be evenly subjected to clinical observation for practical rea-
sons. In fact, decisions about whether or not to call a veterinarian will
often be taken based on information relevant at herd level rather than
at animal level (Even Sergeant, pers. communication), and will further
depend on willingness to report. Hadorn and co-workers considered
these probabilities with additional factors for the probability to report
in the Swiss surveillance system, and calculated a median sensitivity of
0.924 (95% CI: 0.724–0.987) for clinical surveillance in 52,983 herds
(Hadorn et al., 2009). This additional fraction in Eq. (1) (mor-
bidity× probability of reporting by farmer× probability of reporting by
veterinarian), together with a lower pert distribution for the sensitivity
of clinical signs and computation of the model at herd level, account for
the different estimates. If in the present model the sensitivity of clinical
observations would be assumed to operate at herd level, this would
result in a maximum SeH of 0.67 (Elbers et al., 2008a,b), which is
considerably lower than the median SeH of> 0.99% that was com-
puted. However, considering that from a veterinary service perspective,
the total sensitivity of this surveillance component is aggregated for
50,000 herds, even this difference of SeH has only marginal effects on

the total CSe.
The actions induced by clinical surveillance cost 0.01 million € for

case follow-up and 0.02 million € for the information campaign. For
case follow-up, similar costs were predicted for a medium awareness
level by Hadorn et al. (Hadorn et al., 2009). However, a retrospective
analysis (Häsler et al., 2012) suggests that we over-estimated follow-up
costs and sensitisation campaign by about 50%. Furthermore, we have
considered one minute observation time per day and cow, which may
be implicit in a milking procedure, but should be performed explicitly
in fattening herds and young stock to reach the best possible sensitivity
of clinical surveillance. Also depending on season and production
system the quality of the observation may vary. At a labour cost of 15
€/h and a simulated population of 1.5 million animals this time spent
corresponds to an annual equivalent of approximately 500 million €.
Although attribution of costs is a matter of policy, it is unusual to
compensate the farming industry for surveillance efforts, to the extent
that these costs have not even been reported in previous studies
(Hadorn et al., 2009; Häsler et al., 2012). Also, because observation for
health cannot be accounted independently of other husbandry activity,
it is difficult to determine its true value. However, even if it this effort
was considered as a specific activity, due to its syndromic focus, it

Fig. 3. Surveillance sensitivity for bulk milk testing (BMT) in
populations composed of small herds with 5% at high risk of
infection with BTV-8. The plot reports the median of 500
iterations. It shows the median number of animals sampled in
a herd (x-axis) and the median number of herds sampled (y-
axis) in a population of 50,‘000 herds to reach a surveillance
sensitivity of 95% (light green) or 99% (dark green). The plots
on the left show the sensitivity for populations dominated by
dairy cattle and the plots on the right populations dominated
by beef production. The surveillance strategies considered
were: design 1) random sampling, design 2) target on high
risk herds, design 3) voluntary vaccination and target on non-
vaccinated herds, design 4) voluntary vaccination and target
on non-vaccinated herds at high risk. Design 5, with manda-
tory vaccination is not suitable for BMT as the latter relies on
detection of antibodies which are present in all vaccinated
animals.
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would need to be divided among all notifiable diseases and ultimately
considered in the socio-ecological context (Rich et al., 2013).

4.2. Active surveillance

Under the assumption that active surveillance was mandatory, the
components assessed for active surveillance in this study were assumed
to be implemented independently of clinical surveillance. The European
Commission regulation 1266/2007 (European Commission, 2007) al-
lows a flexible implementation of active surveillance: a risk-based de-
sign can be implemented, and in terms of testing for BTV-8, bulk-tank
milk testing, blood ELISA and RT-PCR are available (Hadorn et al.,
2009; Vandenbussche et al., 2008). Risk based surveillance was most
cost-effective if a small proportion of the population was at high risk.
With an increasing proportion of the population at high risk the cost-

saving effect due to risk-based surveillance became smaller considering
the same relative risk. However, because the size of the population at
high risk and the relative risk are usually interrelated and influence
each other mutually in addition to the actual cost-effect. Therefore, the
result of modifying the population at risk by either strengthening the
criteria or combining risk factors, will need to be assessed for each
specific case. This should be considered when risk is defined to inform
the policy. Also, the model doesn’t account for overlap between dif-
ferent surveillance components and thus may overestimate the number
of detected cases and consequently the surveillance system sensitivity.
The administration and planning of risk-based surveillance was not
taken into account in this model and would thus be underestimated. In
order to be more cost-effective than random sampling, this amount
could arise to roughly 0.3 million € for 5% of the modelled population
at risk, but only 0.2 million € for 40% at risk (Fig. 4). This further

Fig. 4. Comparison of sampling the least number of animals per herd (also referred to as “point a”, left) and sampling the least number of herds (also referred to as “point b”, right) in
different population structures (letters A-F, see below). The y-axis shows the median technical performance (component sensitivity, CSe) of the surveillance design and the x-axis the
median total annual costs of 1500 iterations for the five surveillance designs: Random sampling (design 1, black), high risk targeting (design 2, red), voluntary vaccination and targeting
non-vaccinated animals (design 3, green), voluntary vaccination and targeting non-vaccinated animals in high risk herds (design 4, light blue), and mandatory vaccination and RT-PCR in
high risk herds (design 5, dark blue). The surveillance components are coded as shapes: RT-PCR (▲), ELISA (■) and BMT (●). The component sensitivity was assessed in different
population structures: A) a population composed of small herds (median 30 cows/herd) with 70% cattle and 30% sheep, 70% dairy and 30%meat production, where 5% of the population
is at high risk of infection by BTV-8; B) a population composed the same as A), but with large herds (median 100 cows/herd); populations C) and D) have the same structure, but 40% are
at risk, while in populations E) and F) again 5% are at risk, but 70% of the animals are in meat and 30% in dairy production.
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emphasises, that with a large population at high risk, risk-based sur-
veillance is not necessarily cost-effective.

Although the five surveillance designs investigated in this study
were just a few of many possible options, the authors feel that they
represent some fundamental choices that are made by policy makers.
Bulk-tank milk testing was most cost-effective with relatively little
variance of cost between designs, although its CSe varied depending on
the choice of sampling design (Fig. 3). Moreover, it was not suited to
attain a required threshold of 95% sensitivity for three designs (1, 3 and
5) when a proportion of 70% of the population were kept for meat
rather than dairy production (Fig. 3).

RT-PCR and blood serology using ELISA provided similar informa-
tion at similar cost in populations where 5% of the herds were at high
risk and risk-based surveillance was performed. However, with rising
proportion at high risk (with constant relative risks), the costs of risk-
based surveillance increased due to the larger sample size required.
This amplified the four-fold higher costs for an RT-PCR compared to an
ELISA. These observations are primarily because the call-out fee of 65 €
was equal for both regimes, while the difference in test costs of 9 €
(ELISA) and 40 € (RT-PCR) had relatively little impact due to the
comparably little added value of an additional sample in the same herd.
In this context it appeared that sampling a maximal number of herds

(point a) was most cost-effective due to the fact, that one sample from a
new herd added more information than a sample drawn from a herd
that was already sampled. In the present model this compensated the
additional cost of 65 € for the herd visit. It must be emphasised that the
distinct capacities of RT-PCR and ELISA to detect antigens and anti-
bodies, respectively, both contribute to evidence for freedom from BTV-
8. They provide distinct supplementary information for surveillance for
early detection or the assessment of prevalence or vaccination cov-
erage.

Voluntary vaccination with an assumed reduction of the susceptible
herds by 10% and surveillance targeted at non-vaccinated herds only
marginally reduced costs compared to random sampling. In contrast,
mandatory vaccination with an assumed coverage of 75% reduced the
cost of surveillance targeted at herds at high risk, particularly if this was
only a small proportion of the population. These estimates considered
surveillance costs only, and did not include the costs for vaccination.
Therefore, the cost for vaccination justifiable with its effect on sur-
veillance should not exceed the approximately 400′000 € saved by the
surveillance design 5 compared to the baseline random design (dark
blue versus black in Fig. 4). Given the population of cattle of approxi-
mately 1.5 million this would justify a cost of 0.26 € per vaccine,
bearing in mind that this only covers the cost of surveillance and not the

Fig. 5. Kernel density (z-axis), i.e. the frequency of the component
sensitivity (CSe, x-axis) of clinical surveillance depending on variation
of farmer disease awareness in increments of 0.0001 (fDA, y-axis) in
the Belgian setting as reported by Nafzger and co-workers (Nafzger,
2016). The two-dimensional kernel density estimation was performed
with the function kde2d{MASS} in R, performing 1000 iterations for
each fDA value. Veterinary disease awareness (vDA) was kept con-
stant at 0.01. Due to Eq. (1), for any product of fDA*vDA greater than
0.00015, the CSe was converging towards one.

Fig. 6. Kernel density (z-axis), i.e. the frequency of component sen-
sitivity (CSe, x-axis) of clinical surveillance depending on the varia-
tion of herd design prevalence in increments of 0.0002 (P*H, y-axis) in
the Belgian setting as reported by Nafzger and co-workers (Nafzger,
2016). The two-dimensional kernel density estimation was performed
with the function kde2d{MASS} in R, performing 1000 iterations for
each P*H value. Within-herd design prevalence (P*A) is fixed at
0.0001. Note that despite a modelled unnatural under-dispersion of
infections, the mean CSe remains close to 1.0 from values greater than
0.15. As infections are naturally over-dispersed, CSe should be even
less sensitive to changes in P*H.
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benefits of vaccination preventing the disease.

5. Conclusions

Under the assumption that BTV-8 manifests clinically as described
by Elbers et al. (Elbers et al., 2008a,b), freedom from disease in a po-
pulation can be established with almost certainty over the period of one
year using clinical surveillance alone. Additional investment in active
surveillance would therefore economically only be justified, if no
clinical manifestation is suspected or other surveillance objectives are
to be provided such as early detection. In the first case, the regulatory
requirement of demonstrating freedom from disease is questionable
since due to the lack of clinical manifestation, the economic importance
arises only from the regulation and not from the disease. In the second
case, surveillance is only cost-effective if the time gain and conse-
quently smaller impact of a disease introduction compared to clinical
surveillance alone, justifies the additional costs. In this case it is im-
portant to realise that 1) this requires a high sampling frequency, 2) for
emerging diseases diagnostic tools may not be available, 3) the risk
estimation to target risk-based sampling may induce high uncertainty,
and 4) scenario trees cannot provide reliable information on the time
gain.

With the legal requirement for active surveillance, risk-based sur-
veillance to prove freedom from disease is only cost-effective if a small
proportion of the population is at high risk. The best cost-effectiveness
is obtained by sampling the maximal number of herds rather than more
animals per herd. This effect is expected to grow with increasing ag-
gregation of infections within herds. The effect of mandatory vaccina-
tion against BTV-8 on surveillance justifies a cost of< 0.26 € per vac-
cine and voluntary vaccination only marginally reduces the cost of
surveillance. Finally, bulk-tank milk testing is the method of choice to
actively demonstrate freedom from disease in populations dominated
by dairy production.
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