Appendix of PECHouse2 final report - Drift-diffusion model with surface states †

Peter Cendula,^{*a*}, Maria Jarolin,^{*a*} S. David Tilley,^{*b*}, Matthew T. Mayer,^{*b*}, Michael Grätzel,^{*b*}, Jürgen O. Schumacher^{*a*}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

First published on the web Xth XXXXXXXXX 200X

DOI: 10.1039/b000000x In this file, we present drift-diffusion model with surface state charge transfer along with hematite material

parameters that we used for simulations.

1 Theory

The drift-diffusion model of charge transport from was used for bulk charge transport and recombination

$$\frac{d^2\phi}{dx^2} = -\frac{q(N_D - n(x) + p(x))}{\varepsilon_0\varepsilon_r},$$
(1)

$$\frac{\partial n}{\partial t} = +\frac{1}{q}\frac{\partial j_e}{\partial x} + G_e(x) - R_e(x), \qquad (2)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial j_h}{\partial x} + G_h(x) - R_h(x).$$
(3)

The electron and hole flux consists of two terms (diffusion and drift)

$$j_e = +eD_e \frac{\partial n}{\partial x} - e\mu_e n \frac{\partial \phi}{\partial x}, \qquad (4)$$

$$j_h = -eD_h \frac{\partial p}{\partial x} - e\mu_h p \frac{\partial \phi}{\partial x}, \qquad (5)$$

where the electrostatic potential is ϕ , electron mobility is μ_e , hole mobility μ_h .

A direct band-to-band nonlinear recombination is assumed

$$R_e = R_h = \frac{1}{N_D \tau_h} (np - n_i^2). \tag{6}$$

We extended the drift-diffusion equations to include effects of electron and hole trapping/detrapping and charge transfer from the surface states. Kinetic model which with corresponding rate constants ² was extended to 1D model. Trapping/Detrapping rates of electrons β_n , ε_n and holes β_p , ε_p . For the balance on the surface (x = 0) the master equation describes evolution of probability f that an electron occupies a surface trap in the semiconductor at level E_t with density N_{ss}

$$\frac{\partial f}{\partial t} = \beta_n (1-f)n(0) - \varepsilon_n f - \beta_p f p(0) + \varepsilon_p (1-f) - k_s (f-f_0),$$

where rate of charge transfer from surface traps to electrolyte k_s .

We estimate order of magnitude for $N_{ss} \approx 6 \cdot 10^{13} \text{ cm}^{-2}$ by referring to the number of surface trapped holes as reported by ¹

Electron and hole currents through the SEI

$$j_e(0) = -q(\beta_n(1-f)n(0)N_{ss} + q\varepsilon_n f N_{ss}),$$

$$j_h(0) = -q(\beta_p f p(0)N_{ss} + q\varepsilon_p(1-f)N_{ss}),$$

Detailed balance at equilibrium (index 0) gives

$$\frac{\varepsilon_n}{\beta_n n_0} = \frac{\beta_p p_0}{\varepsilon_p} = \frac{1 - f_0}{f_0} = e^{\frac{E_t - E_F 0}{k_B T}}$$

The trapping rate is calculated from electron capture crosssection γ_n and thermal velocity of carriers v_{th}

$$\beta_n = \beta_p = \gamma_n v_{th} \tag{7}$$

References

- 1 L. M. Peter, Journal of Solid State Electrochemistry, 2013, 17, 315–326.
- 2 B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann and J. Bisquert, J. Am. Chem. Soc., 2012, **134**, 4294–4302.
- 3 Y. Xu and M. A. A. Schoonen, American Mineralogist, 2000, 85, 543–556.
- 4 M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu and Y. Wang, ACS Nano, 2010, 4, 681–688.
- 5 F. J. Morin, *Physical Review*, 1954, **93**, 1195–1199.
- 6 I. Cesar, K. Sivula, A. Kay, R. Zboril and M. Grätzel, J. Phys. Chem. C, 2008, 113, 772–782.
- 7 A. Bosman and H. van Daal, Advances in Physics, 1970, 19, 1–117.
- 8 R. V. D. Krol and M. Grätzel, *Photoelectrochemical Hydrogen Production*, Springer, 2011.

^a Institute of Computational Physics, Zurich University of Applied Sciences (ZHAW), Wildbachstrasse 21, 8401 Winterthur, Switzerland. Tel: +41-58-934-7796; E-mail: cend@zhaw.ch

^b Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LPI, Station 6, 1015 Lausanne, Switzerland.

Symbol	$Fe_2O_3^2$	Description
$N_D [{\rm cm}^{-3}]$	$4.8 \cdot 10^{18}$	Donor concentration
$N_A [{\rm cm}^{-3}]$	0	Acceptor concentration
$V_{fb,RHE}$ [V]	+0.5	Flatband potential
χ [eV]	+4.78 ^{3,4}	Electron affinity
$N_C [{ m cm}^{-3}]$	$4 \cdot 10^{225,6}$	Density of states of CB
$N_V [{ m cm}^{-3}]$	$1 \cdot 10^{22}$	Density of states of VB
\mathcal{E}_r	32	Relative permitivity
E_g [eV]	2.1	Bandgap energy
d [nm]	60	Thickness of semiconductor
τ_e [ms]	0.22	Electron lifetime
τ_h [ns]	0.048^{7}	Hole lifetime
L_e [nm]	50	Electron diffusion length
L_h [nm]	2 ⁸	Hole diffusion length
α [cm ⁻¹]	$1.18 \cdot 10^{5}$	Absorption coefficient
pH	6.9	pH value of the electrolyte
E_t [eV]	$E_{c,0i} - \frac{E_g}{2}$	Trap level
γ[m ²]	10^{-25}	Electron capture cross-section

Table 1 Material parameters of hematite used in the simulations.