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SUMMARY  

Global datasets relating to prevalence of animal pathogens are a useful input for risk 

assessments. However, missing data, and the resulting uncertainty, could potentially bias 

model outputs. This paper reviews the challenges associated with using freely available 

datasets and explores methods of estimating data, where necessary. By filling these data gaps, 

the final models can achieve more robust predictions with reduced uncertainty. 

 

INTRODUCTION 

Globalisation, with its associated increase in frequency of movement of animals, humans 

and trade products around the world, has been acknowledged as a risk factor for the spread of 

pathogens between countries and is a motivation behind the implementation of many 

pathogen incursion risk assessments (Simons et al., 2016). Thus, risk assessments are being 

conducted by both international organisations (ECDC, 2016), and individual countries, 

specifically those wishing to understand potential threats to their livestock populations and to 

avoid negative implications for trade of both live animals and animal products (Roberts et al., 

2016).  

One of the aims of the Animal Health and Welfare ERA-NET consortium (ANIHWA) 

funded project SPARE ('Spatial risk assessment framework for assessing exotic disease 

incursion and spread through Europe') is to develop a generic risk assessment framework for 

the entry of exotic animal pathogens into the European Union (EU) (SPARE, 2016). The first 

step in a risk assessment is termed the release or entry assessment. In general terms, this is 

defined as the ‘evaluation of the probability of introduction of an agent from its origin until 

the point of entry into a country or area’ (USDA, 2016). This necessitates the derivation of 

estimates for the animal disease situation in each ‘origin’ country of the world requiring data 

on animal disease prevalence (e.g. the number of recorded outbreaks per year), and 

demographic livestock data (e.g. the total number of animals and farms per species). In order 

to ensure a correct interpretation of these data, it is important that these data are comparable 

between countries. Furthermore, they should ideally arise from robust animal health 

surveillance which ensures that confidence in the health status of animals resident in the 

country of origin and those moving between countries is maintained and trade barriers are 

justified (Hoinville et al., 2013).  
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One such data source is the World Animal Health Information Database (WAHIS) and its 

predecessor Handistatus II (OIE 2016a; OIE 2016b), which are maintained by the Office 

International des Epizooties (OIE). The OIE operates a global surveillance system which 

provides valuable data sources for animal diseases by collating information which all member 

countries (MCs) are obliged to report. The OIE is recognised as a reference organisation by 

the World Trade Organization and in 2016 has a total of 180 MCs. Each MC is expected to 

report the animal diseases that it detects within its territory. Therefore, the data available from 

the OIE database could be considered to be one of the most globally comprehensive. 

Nevertheless, all global datasets dealing with such data are inherently subject to differences 

in the quality of individual reporting and the monitoring systems for disease on which reports 

are based.  From the point of view of utilising the OIE data in a quantitative risk assessment, 

one of the most important issues is ‘missing data’, i.e. MCs where the data are only reported 

as presence of a disease, without a numerical estimate of scale, or for which no information is 

reported at all. Absence of reported disease could be considered to imply disease free status 

of a country, when in reality this may not be the case. 

To assist in obtaining objective estimates for risk assessments, it is therefore expedient to 

develop reliable methods that can utilise the data that are available to estimate values for 

MCs where data are missing. Previous research has used a number of different methods to 

deal with missing data in human health disease incidence datasets, including grouping 

countries based on predictive associations (McDonald et al., 2015). Presented here is the 

development of a method to obtain objective estimates for MCs with missing data. This 

method is illustrated with a case study for number of outbreaks of classical rabies in MCs, 

based on data on classical rabies outbreaks from the OIE databases (i.e. those outbreaks 

recorded as rabies). Results are presented to compare the effectiveness of the different 

grouping methods across multiple species by conducting statistical analysis of the results for 

MCs with available data.   

 

MATERIALS AND METHODS 

Overview 

For the purposes of the analysis presented here, and for future integration within a larger 

risk assessment model, it was decided that the method employed to fill the data gaps should, 

as far as possible, be automated with generic rules implemented when certain data are absent. 

An imputation method, sometimes termed ‘farcasting’ by analogy with forecasting, was used 

whereby empirical models were fit to existing data and predictions were generated for the 

missing values from the fitted model (McDonald et al., 2015). To achieve this, countries were 

grouped together according to a predefined set of rules, all the historical data from the 

countries in each group were then combined and a probability distribution fit to these grouped 

data. 

Historical input data 

For the analysis presented here, the main inputs were the number of reported outbreaks 

and animal demographic data (e.g. number of animals in a country). Data for the number of 

reported outbreaks by country, k, species, s, and year, y, Nob(k,s,y), were obtained from all 

180 MCs in the OIE databases over the years 1996-2014. The following species were 

considered for this analysis: pigs, cattle, sheep, goats, cats, dogs. For the period 1996-2005 

these data were obtained from Handistatus II (OIE, 2016b). For the period 2005-2014 these 
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data were obtained from the country annual reports, located in the OIE reporting history 

section of the WAHIS interface (OIE, 2016a). Where no reports were available for a country, 

the data was considered to be missing. Species breakdown of the number of outbreaks were 

not readily available from the WAHIS data and so were estimated based on the average 

proportion of cases attributed to each species from both the WAHIS and Handistatus data, 

e.g. if there were 100 outbreaks of rabies reported in the data and the ratio of reported cases 

from the available data was 40% pigs and 60% cattle, then it was assumed that 40 outbreaks 

were attributed to pigs and 60 to cattle.  

There were considerable differences in the animal demographics between countries which 

could influence the number of recorded outbreaks. Therefore, to obtain a statistic that was 

comparable between countries the number of outbreaks was weighted by an animal 

demographic metric; the number of ‘animal establishments' by country and species, Nest(k,s). 

For pigs, cattle, sheep and goats this was the number of animal establishments as defined in 

the WAHIS database for 2014; this is essentially equivalent to farms. In the absence of 

reliable data, it was assumed that it was acceptable to treat cats and dogs as single entities, i.e. 

the number of establishments was equal to the number of animals.  The average number of 

animals per farm was considered as an alternative statistic, but as it was not directly reported 

in the OIE database, it was decided that the additional level of uncertainty in deriving this 

estimate was too great; for example it was not clear for some countries whether the farms 

were made up of lots of farms of average size, a few very large farms, or lots of small ‘back 

yard’ farms. While the reporting of the data for number of establishments was sporadic and 

also appeared to be subject to uncertainty (e.g. the same numbers of livestock/farms in a 

country being reported for numerous consecutive years, when one would expect some 

variation as animal production systems are dynamic and vulnerable to external factors), the 

value was directly reported in the OIE data and so considered to have less uncertainty than 

the number of animals per farm. However, due to the high level of uncertainty, only one point 

estimate of number of animal establishments was used, rather than an attempt to estimate 

values for each year. If these data were not recorded in the 2014 annual report, then the most 

recent historical observations were used. Data on the numbers of cats and dogs per country 

were estimated based on a collection of previous studies/literature reviews (OIE 2016a; 

WSPA 2008; FEDIAF 2014). 

The number of outbreaks, Nob(k,s,y) was divided by the number of establishments, 

Nest(k,s), to obtain the ‘establishment prevalence’ of disease by country, k, species, s and year, 

y, Pest(k,s,y) (Eq. 1);  

Pest(k,s,y) = Nob(k,s,y) / Nest(k,s,y)    (1) 

Groupings of countries 

 

It was essential that the country grouping method was relevant to the subject matter and 

provided robust predictions. A number of different measures, G, for grouping countries were 

investigated, with six different groupings considered in this analysis. Two groupings were the 

official United Nations (UN) geographical regions and sub regions, UNregion, UNsubRegion, 

respectively (UN, 2016). A further grouping, AltUNsubregion, developed in a previous 

analysis was a modified version of the UNsubRegion accounting for some specific 

epidemiological considerations (Adkin et al., 2004). Two further groupings used k-means 

cluster analysis to group countries into 5 and 10 groups based on Gross domestic product 

(GDP) per person, Gdp5 and Gdp10 respectively, under the hypothesis that a country’s 

economic activity might be proportionate to its disease prevalence and/or livestock 
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demographics (Jacobsen & Koopman, 2005). Estimates using the whole world as the sixth 

group were used for comparison.  

 

Fitting a probability distribution 

 

For each grouping method, a similar calculation was performed: for each subgroup, g, all 

non-zero entries of the establishment prevalence, Pest(k,s,y), relating to MCs, k, in the 

subgroup g were extracted. It was decided to fit a gamma distribution to these data as the 

shape of the distribution is very flexible depending on the choice of parameters, so it was 

considered likely to provide a reasonable fit for a large number of datasets, and it is restricted 

to positive values, as is the case with the data. The gamma distribution was fit using the 

fitdistr† function in R, which uses maximum likelihood methods to determine the best fitting 

values for the gamma distribution (Eq. 2); 

 𝑃𝑓𝑖𝑡(𝑔, 𝑠) = 𝑓𝑖𝑡𝑑𝑖𝑠𝑡𝑟(𝑃𝑒𝑠𝑡(𝑘, 𝑠, 𝑦) > 0,′ 𝑔𝑎𝑚𝑚𝑎′), 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑔. (2) 

Predictive accuracy 

For all countries which had OIE reported outbreaks of rabies in the species considered in 

this analysis, the accuracy of the model predictions was evaluated by two methods.  The first 

method was a comparison of the overall fit using a Kolmogorov-Smirnov (KS) test in R‡ to 

compare the raw data of rabies outbreaks over all years for country k and species s, against 

the fitted distribution from the group, Ks(k,s) (Eq. 3); 

𝐾𝑠(𝑘, 𝑠) = 𝑘𝑠. 𝑡𝑒𝑠𝑡(𝑃𝑒𝑠𝑡(𝑘, 𝑠, 𝑦) > 0,′ 𝑝𝑔𝑎𝑚𝑚𝑎′, 𝑃𝑓𝑖𝑡(𝑔, 𝑠)), 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑔.             (3) 

A statistically significant result for the KS test implied confidence that the two sets of data 

(raw and fitted) came from the same underlying distribution and thus the fitted distribution 

could be considered a reasonable estimate for the observed data. The different grouping 

scenarios were compared by evaluating the proportion of MCs where this was not the case at 

the 1% level, i.e. had a KS test p value > 0.01.  

The second method assessed the grouping fit on a country level, by comparing the 

observed median number of outbreaks per country from the OIE data, Nob(k,s), against the 

median, 25th and 75th percentiles of the predicted number of outbreaks per country using the 

grouping fit, NobFit(k,s). The predicted number of outbreaks were obtained by multiplying the 

observed number of establishments, Nest(k,s,y), by the 50th, 25th and 75th percentiles of the 

fitted distribution, Pfit(g,s). If the median of the raw OIE data fell between the 25th and 75th 

percentiles of the fitted distribution then it was considered that the fitted distribution was a 

reasonable estimate for that country. Additionally the squared difference between the 

observed and predicted country medians were calculated for different grouping methods, G 

(Eq. 4); 

 𝑆𝑑𝑖𝑓𝑓(𝑘, 𝑠, 𝐺) =  (𝑁𝑜𝑏(𝑘, 𝑠) − 𝑁𝑜𝑏𝐹𝑖𝑡(𝑘, 𝑠, 𝐺))2. (4) 

Statistics were generated for the total squared difference over all countries  

 𝑆𝑑𝑖𝑓𝑓𝑇𝑜𝑡(𝑠, 𝐺) = ∑ 𝑆𝑑𝑖𝑓𝑓(𝑘, 𝑠, 𝐺)𝑘  (5)  

                                                 
† https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html 
‡ https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ks.test.html 
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and a comparison between two grouping methods, G1 and G2, for the number of countries 

where the squared difference was smaller for G1 than for G2, Ndiff(s,G1),    

 𝑁𝑑𝑖𝑓𝑓(𝑠, 𝐺1) = ∑ (𝑆𝑑𝑖𝑓𝑓(𝑘, 𝑠, 𝐺1) < 𝑆𝑑𝑖𝑓𝑓(𝑘, 𝑠, 𝐺2))𝑘 . (6) 

RESULTS 

Approximately 60% of observations in the rabies dataset were a non-zero value. This 

varied between species; while 44% of countries reported at least one value for rabies in dogs, 

<1% of countries reported at least one value for deer (Table 1). This value for deer was 

thought to be largely due to the low country level prevalence of rabies in deer; due to the lack 

of data, results for deer and buffalo were considered highly uncertain and are not considered 

further.  Table 1 also shows that while Southern Africa tends to have a lot of data, Australasia 

has no reported outbreaks. This highlights an important consideration in the choice of the 

most appropriate grouping method; a method that provides a very good distribution fit for one 

region, but has no data for the other regions, may not be as good as one that has reasonable 

data for all groups but has a less good distibution fit. 

 

Table 1. Percentage of countries with at least one reported outbreak of classical rabies by UN 

sub region and species 

UN Sub Region Pig Deer Cattle Sheep Goat Cat Dog Buffalo 

South America 29% 0% 64% 29% 21% 29% 29% 14% 

Western Africa 0% 0% 38% 6% 6% 6% 75% 0% 

Central America 38% 0% 100% 38% 38% 50% 63% 25% 

Eastern Africa 11% 0% 58% 26% 26% 32% 58% 0% 

Northern Africa 0% 0% 43% 43% 43% 43% 57% 0% 

Middle Africa 0% 0% 11% 0% 0% 0% 33% 0% 

Southern Africa 40% 0% 100% 60% 80% 100% 100% 0% 

Northern America  25% 0% 0% 25% 25% 0% 25% 25% 

Caribbean 9% 0% 13% 9% 17% 9% 13% 0% 

Eastern Asia 0% 0% 29% 14% 14% 14% 29% 0% 

Southern Asia 22% 0% 44% 11% 22% 11% 56% 33% 

South-Eastern 

Asia 0% 0% 45% 0% 0% 36% 45% 0% 

Southern Europe 23% 0% 31% 23% 23% 31% 38% 0% 

Australia & New 

Zealand 0% 0% 0% 0% 0% 0% 0% 0% 

Melanesia 0% 0% 0% 0% 0% 0% 0% 0% 

Micronesia 0% 0% 0% 0% 0% 0% 0% 0% 

Polynesia 0% 0% 0% 0% 0% 0% 0% 0% 

Central Asia 20% 0% 100% 80% 0% 80% 100% 0% 

Western Asia 6% 0% 33% 33% 28% 33% 50% 6% 

Eastern Europe 70% 20% 100% 90% 60% 100% 100% 0% 

Northern Europe 7% 0% 21% 21% 14% 21% 21% 0% 

Western Europe 0% 0% 38% 13% 0% 50% 50% 0% 

Overall 13.0% 0.9% 39.5% 22.4% 19.3% 28.7% 44.4% 4.5% 
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Figure 1 shows the results of the overall fit for the different grouping measures for rabies. 

There was a maximum of 13.8% increase in the number of countries with a KS test p value > 

0.01, between treating the whole dataset as one epidemiological unit and the best grouping 

measure. The AltUNsubregion was on average the best across all species, although results 

varied by species, with the Gdp groupings performing better for goats. 

 

Fig. 1 Percentage of countries with a Kolmogorov-Smirnov p value >0.01, by animal species 

and grouping method, for rabies. A higher proportion means that more countries have a 

distribution of historical outbreaks that could be considered to come from the same 

distribution as the one fitted to the grouped data.  

 

Fig. 1 shows results for individual countries with the most observed data, using cattle as an 

example. It can be seen that for individual countries, the median of the observed data often 

falls between the 25th and 75th percentiles of the fitted distribution, which suggests both 

methods provide a reasonable fit.  
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Fig. 1 Comparison of observed and predicted number of rabies outbreaks in cattle for 

AltUNsubregion (predicted values estimated by fitting different distributions to groups of 

countries based on geographical region and specific epidemiological considerations (Adkin et 

al., 2004)) and World (predicted values estimated using the same distribution for every 

country), where there were at least 15 observed historical outbreaks. Triangle= median of 

country specific historical outbreaks, circle= median of fitted distribution, Line= 25th – 75th 

percentiles of country specific historical outbreaks. Country names are the official UN IS03 

codes (UN, 2016). 

Further analysis on all the countries showed that the difference between the predicted and 

observed medians was smaller for the AltUNsubregion (compared to the whole world) for 58 

countries, and larger for only 29 countries.  In addition, the squared sum of the differences 

between the medians was larger for the whole world than for AltUNsubregion. A similar 

pattern was observed for the other species, suggesting that the AltUNSubregion grouping 

provided the better fit (Table 2). 
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Table 2: Comparisons between two grouping methods, AltUNSubRegion (ALT) and World 

(Wrld). The number of countries where the squared difference between observed and 

predicted median number of rabies outbreaks by species, s, and country k was smaller for 

ALT than for Wrld, is depicted by Ndiff(s,ALT) and the opposite, depicted by Ndiff(s,Wrld). The 

total sum of the squared difference over all countries for ALT is depicted by SdiffTot(s,ALT) and 

for Wrld, depicted by SdiffTot(s,Wrld). 

 Pig Cattle Sheep Goat Cat Dog 

Ndiff(s,ALT) 23 58 30 25 47 67 

Ndiff(s,Wrld) 8 29 13 14 18 34 

SdiffTot(s,ALT)  41 168 70 80 116 287 

SdiffTot(s,Wrld) 148 319 137 164 244 420 

 

DISCUSSION 

Risk assessments for animal and public health require good quality data in terms of trade 

movements, animal health status and production systems (Rodgers et al. 2011). An essential 

prerequisite for estimating animal health status or disease burden is the availability of 

comprehensive national-level data on the prevalence of the disease of interest (McDonald et 

al. 2015). This is not always possible, however, and the treatment of missing values may lead 

to biased results. An alternative method, as presented here, is to estimate pathogen prevalence 

for countries with missing national-level data (McDonald et al. 2015). As risk assessments 

are data driven, with the value of the results being dictated by the quality of the data inputs, 

filling data gaps will reduce the occurrence of biased results and allow for more usable 

outputs giving more power to the risk assessment conclusions. Intrinsically, it is essential that 

the results of these methods provide transparent and robust estimates for the missing data.  

To assess the risk of exotic disease incursion and spread through Europe, the OIE database 

of global animal disease prevalence was used and different imputation methods, based on 

country groupings, were compared to investigate whether model output accuracy could be 

improved. In the case study example of rabies, the results presented suggest that the 

methodology employed provided reasonable estimates for most countries in the world but 

was not always accurate on a country level. Results suggested that grouping countries before 

fitting a distribution was more accurate than just using a distribution fit to the whole world, 

but no grouping method was accurate for every country. As such, it is believed that the 

methodology is appropriate when estimating missing data, but it would be inadvisable to use 

the method in order to replicate an observed dataset. 

An interesting result of these analyses is that they have the additional benefit of providing 

a statistic by which to determine which grouping method and/or proxy variables are best to 

consider for a given situation; the results suggest that this varies between both animal host 

species and pathogens of interest. For the case study of rabies, a comparison of the average 

score across species suggested that the AltUNsubregion would be the best grouping measure 

to use. However, it is acknowledged that there are limitations to the analyses presented here. 

The metrics of comparison used here do not comprehensively describe everything about the 

goodness of the fit; other metrics such as the average KS score may give different results. 
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There are also other factors such as the proportion of MCs that fall into groupings where 

there are no observed data, and thus no estimate can be determined: it should be considered 

whether a grouping that gives a higher KS score is still the best option if an alternative 

grouping with a slightly lower KS score can provide estimates for more individual countries. 

This methodology could be further expanded to consider these issues, as well as test for other 

proxy variables or combinations of variables to evaluate if they would provide a better fit. 

Another area where this methodology could be expanded would be to evaluate the fits for 

distributions other than the gamma (e.g. lognormal or Weibull).  

The analysis presented here is designed to fill specific data gaps in global datasets, but is 

still reliant on good quality input data. While the OIE database is one of the most 

comprehensive in the world, there are still data gaps that lead to uncertainty about the model 

results, particularly with regards to the number of animal establishments. The assumption to 

treat cats and dogs as single entities could underestimate the risk, as it does not account for 

households that have multiple pets or institutions such as dog homes.  

In conclusion, while there is a growing number of available global datasets providing 

information that could be used for risk assessments, currently there are assumptions which 

need to be made regarding the data gaps before datasets can be used. Using global datasets as 

they stand, with missing data treated as a zero, may inadvertently penalise those countries 

which do report disease outbreaks as opposed to those countries which are affected by a 

pathogen but do not report outbreak data. The methodology for estimating animal disease 

prevalence presented here allows for an objective, transparent approach to fill the data gaps 

and provide a more comprehensive base for data input to risk assessments. 
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