

Bundesamt für Energie BFE Sektion Cleantech

Schlussbericht vom 27.07.2017

Brennstoffzellenpostauto & Schweizer Wasserstofftankstelle

© PostAuto

Datum: 27.07.2017

Ort: Bern

Subventionsgeberin:

Schweizerische Eidgenossenschaft, handelnd durch das Bundesamt für Energie BFE Pilot-, Demonstrations- und Leuchtturmprogramm CH-3003 Bern www.bfe.admin.ch

Subventionsempfänger:

PostAuto Fahrzeuge AG Belpstrasse 37, CH-3030 Bern www.postauto.ch

Autor:

René Krieger, PostAuto Fahrzeuge AG, rene.krieger@postauto.ch

BFE-Programmleitung: Yasmine Calisesi Arzner, <u>yasmine.calisesi@bfe.admin.ch</u>
BFE-Projektbegleitung: Stefan Oberholzer, <u>stefan.oberholzer@bfe.admin.ch</u>

BFE-Vertragsnummer: SI/500657 / TP Nr.: 8100146-02

Für den Inhalt und die Schlussfolgerungen sind ausschliesslich die Autoren dieses Berichts verantwortlich.

Bundesamt für Energie BFE

Zusammenfassung

PostAuto war Partner im EU-Projekt CHIC (Clean Hydrogen In European Cities). Im Hinblick auf die Aktivitäten der schweizerischen Post in Bezug auf eine nachhaltige Ökologie war die Teilnahme an diesem EU-Projekt von grossem Interesse. So konnten die Post resp. PostAuto dank der Beteiligung an diesem Projekt einen wichtigen Beitrag zur langfristigen Reduktion des CO₂-Ausstosses leisten und Erfahrungen im Bereich der Null-Emissionen-Mobilität gewinnen. PostAuto betrachtete das Projekt auch als wichtigen Schritt auf dem Weg hin zur Serienreife von Brennstoffzellenbussen.

Das EU-Projekt umfasste 26 Brennstoffzellenbusse, welche im täglichen öffentlichen Verkehr eingesetzt wurden. PostAuto hat in Zusammenarbeit mit der EU und nationalen Partnern ein Projekt mit 5 Brennstoffzellenbussen und einer Wasserstofftankstelle in Brugg (CH) umgesetzt. Es folgen die Erkenntnisse aus diesem 5-jährigen Projekt.

Résumé

Car Postal a été partenaire du projet CHIC – Clean Hydrogen In European Cities. Cette initiative est une étape vers une large commercialisation de bus à pile à combustible à hydrogène.

Ce projet européen compte un total de 26 bus à hydrogène quotidiennement exploités et en circulation sur des réseaux routiers. CarPostal participe à ce projet Européen en collaboration avec des partenaires nationnaux en opérant 5 bus à Hydrogène ainsi qu'une station de remplissage à Brugg. Les résultats des données acquises aux cours des 5 ans de ce projet sont ici présentés.

Abstract

PostAuto was Partner in the EU project CHIC, the Clean Hydrogen In European Cities Project, is the essential next step leading to the full market commercialization of Fuel Cell Hydrogen powered (FCH) buses. The EU project involves integrating 26 FCH buses in daily public transport. In cooperation with the EU and national partners five fuel cell buses and one hydrogen refueling station were implemented. In the follow the results of the five years of project.

Inhaltsverzeichnis

Zusamn	nenfassung	3
Résumé		3
Abstrac	t	3
Inhaltsv	erzeichnis	4
Abkürzı	ıngsverzeichnis	6
1. A	usgangslage	7
2. El	J-Projekt CHIC	9
2.1.	CHIC-Partner	9
2.2.	Partnerstädte inkl. Betrieb Brennstoffzellenbusse	10
2.3.	Tankstellen	12
2.4.	Vergleich der Städte untereinander	13
2.5.	Herausforderungen im Rahmen des CHIC-Projekts	14
2.5.1.	Financial Reporting	14
2.5.2.	Öffentlichkeitsarbeit	15
2.6.	Nationale Partner, Finanzierung	15
3. De	etails zum nationalen Projekt in Brugg	16
3.1.	Einleitung	16
3.2.	Einstellhalle	17
3.2.1.	Aufbau Einstellhalle	
3.2.2.	Stromverbrauch der Fahrzeuge in der Einstellhalle	
3.3.	Brennstoffzellenpostauto	
3.3.1.	Aufbau Brennstoffzellenpostauto	
3.3.2.	Technische Daten des Mercedes-Benz Citaro O 530 Brennstoffzellen-Hybrid	
3.3.3.	Funktion einer Brennstoffzelle	
3.3.4.	· · · · · · · · · · · · · · · · · · ·	
3.3.5.		
3.3.6.	Wasserstoffverbrauch der einzelnen Fahrzeuge	
3.3.7.	Herausforderungen beim Brennstoffzellenpostauto	
3.3.8.	Ergebnisse Brennstoffzellenpostauto	
3.3.9.	5 7	
	. Energiebilanz (Herstellung und Anlieferung Wasserstoff)	
	. Fazit zum Brennstoffzellenpostauto	
	Zukunft Brennstoffzellenpostauto	
3.4.	Wasserstofftankstelle	
3.4.1.	Bau der Wasserstofftankstelle	
3.4.2.	Wasserstofftankstelle, Ex-Zonenplan und Explosionsschutzdokument	42

3	3.4.3.	Konzept Wasserstofftankstelle	43
3	3.4.4.	Anlagenübersicht	43
3	3.4.5.	Bezug Wasserstoff, Funktionsweise der Wasserstofftankstelle	45
3	3.4.6.	Funktion der Wasserstofftankstelle	46
3	3.4.7.	Stromverbrauch und Produktionsmenge der Wasserstofftankstelle	47
3	3.4.8.	Störungen vor Ort	48
		Auswahl von Fehlerbildern	
		. Herausforderungen bei der Wasserstofftankstelle	
		. Ergebnisse aus dem Betrieb der Wasserstofftankstelle	
		. Fazit zur Wasserstofftankstelle	
3	3.4.13	. Zukunft der Wasserstofftankstelle	51
3	3.4.14	. Mobile Wasserstofftankstelle	53
4.	K	osten	51
⋆.	IX	USIGN	J -1
5.	Si	cherheit auf dem Areal	55
Ę	5.1.	Rettungsplan	55
6.	Ö	ffentlichkeitsarbeit	55
6	3.1.	Interessengruppen	56
6	6.2.	Medienberichte	57
6	5.3.	Auszeichnung	58
7.	Di	iskussion, Würdigung der Ergebnisse und Erkenntnisse	59
•			
8.	S	chlussfolgerungen	60
9.	A	usblick, nächste Schritte nach Projektabschluss	61
10	. S	chlusswort	61
11	. A l	bbildungsverzeichnis	62
12	. Tá	abellenverzeichnis	62
13		uellenverzeichnis	
14	. A ı	nhang	
•	14.1.	Projekttagebuch	64

Abkürzungsverzeichnis

BZ Brennstoffzelle

CAN Controller Area Network

CHIC Clean Hydrogen In European Cities Empa Eidgenössische Material Prüfanstalt

EU Europäische Union

H2 Wasserstoff

HRS Hydrogen Refueling Station

FCH JU Fuel Cells and Hydrogen Joint Undertaking

N2 Stickstoff

ÖV Öffentlicher Verkehr

PA PostAuto
PL Projektleiter

PSI Paul Scherrer Institut SOC State of Charge

WEF World Economic Forum Davos

WP Work Package

WPL Work Package Leader

1. Ausgangslage

PostAuto betreibt gut 2'200 Fahrzeuge unterschiedlicher Grösse. Den grössten Anteil der Flotte machen 12 Meter lange Maxibusse aus. Die Fahrzeugflotte ist mit verschiedenen Antriebsvarianten ausgestattet. So verfügt die bestehende Flotte heute über 40 Diesel-Hybrid-Busse. Die meisten Fahrzeuge sind herkömmliche Dieselbusse mit Verbrennungsmotoren. Die gesamte PostAuto-Flotte ver-

PostAuto Schweiz AG Flotte nach Fahrzeugkategorien 2015	Anzahl Fahrzeuge
Mini (bis 17 Sitzplätze)	345
Midi (18 bis 33 Sitzplätze)	343
Maxi (34 bis 46 Sitzplätze)	1 212
Mega/Gelenkbusse/15-Meter-Busse	314
Doppelstockbusse	24
Total	2 2 3 8

Tabelle 1: Anzahl und Varianten der Gefässgrössen in der PostAuto Flotte

braucht jährlich mehrere Millionen Liter Diesel-Treibstoff. Bei einem anhaltend hohen Ölpreis, der Endlichkeit fossiler Energieressourcen und der zunehmenden Klima- und Umweltbelastung sowie absehbaren strengeren gesetzlichen Vorgaben bezgl. CO₂-Ausstoss kommt den Themen Energieeffizienz und postfossile Energietechnologien eine wachsende Bedeutung für die profitable Weiterentwicklung eines Unternehmens zu. Somit ist es auch im Interesse von PostAuto, nach allfälligen Alternativen zu fossilen Treibstoffen zu suchen. Dazu stehen nebst der Reduktion des Treibstoffverbrauchs oder der Durchführung von Oeko-Drive-Schulungen beim Fahrpersonal auch der Test von alternativen Antriebssystemen im Vordergrund. Diese Systeme sind im Busbereich häufig erst in einem frühen Entwicklungsstadium vorhanden oder stecken noch in der Entwicklungsphase.

PostAuto betreibt Fahrzeuge verschiedener Hersteller, wie die folgende Abbildung veranschaulicht.

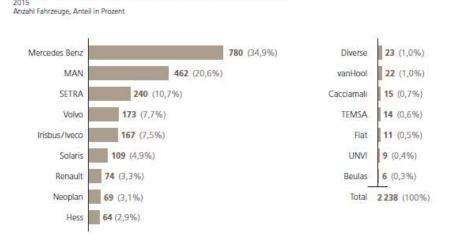


Tabelle 2 Anzahl Postautos nach Hersteller

PostAuto (Schweiz) | Fahrzeugflotte nach Marken (inkl. PostAuto-Unternehmer)

In Tabelle 3 sind verschiedene Antriebsvarianten dargestellt. Die Grafik zeigt, in welchen Bereichen die Antriebsvarianten bezüglich Reichweite (pro Tankfüllung resp. Batterieladung) bzw. Lärm- und Schadstoffemissionen liegen.

Auf der x-Achse sind die Reichweite pro Tankfüllung resp. Batterieladung und auf der y-Achse die schädlichen Abgase, Lärm, usw. aufgeführt. Das ideale Zielfeld (hohe Reichweite, wenig Abgase sowie wenig Lärm) kann bisher von keiner der heute bekannten Technologien abgedeckt werden.

Die Darstellung zeigt, dass der Brennstoffzellenantrieb dem Zielfeld von PostAuto mit einer grossen Reichweite und wenig schädlichen Umwelteinflüssen gemäss heutigem Stand der Erkenntnisse am nächsten kommt.

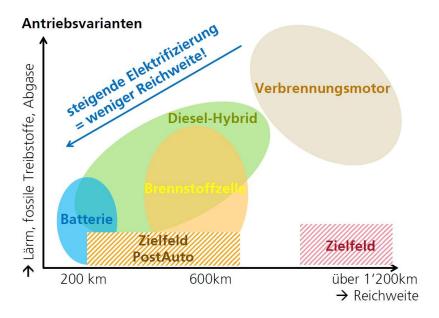


Tabelle 3. Darstellung bezgl. Reichweite pro Tankfüllung im Verhältnis zu schädlichen Umwelteinflüssen

Erklärungen zu weiteren in der Abbildung erwähnten Antriebsvarianten und deren Vor- und Nachteile können u.a. unter dem Link: www.swisstrolleyplus.ch eingesehen werden.

2. EU-Projekt CHIC

Das CHIC-Projekt (Clean Hydrogen in European Cities) hatte das ehrgeizige Ziel, Städte in Europa und Kanada dazu zu bewegen, eine Bussflotte mit reinem Wasserstoff als Treibstoff zuverlässig zu betreiben. Das Projekt startete 2010 und endete im Dezember 2016. Das Gesamtbudget dieses Projektes betrug € 81.8 Millionen.

Auf Empfehlung des Bundesamts für Energie nahm PostAuto an diesem international beachteten Projekt teil, um die Weiterentwicklung neuer Technologien (Brennstoffzellen-Technologie) aktiv mitzugestalten. In diesem Rahmen testete PostAuto seit Ende 2011 bis im Februar 2017 in Brugg fünf Brennstoffzellenpostautos im Linienbetrieb.

2.1. CHIC-Partner

Die Projektteilnehmer haben vom FCH JU (Fuel Cells and Hydrogen Joint Undertaking) Fördergelder in der Höhe von rund € 25.88 Millionen erhalten. FCH JU ist eine privat-öffentliche Industriegemeinschaft, welche die Forschung, Technologie, Entwicklung sowie weitere Aktivitäten rund ums Thema Brennstoffzellentechnologie in Europa fördert mit dem Ziel, die Einführung dieser Technologie zu forcieren. Weitere CHIC-Partner waren Industriepartner, Hersteller von Wasserstofftankstellen (meist Gaslieferanten) und Fahrzeughersteller. Sie erhielten via die am Projekt beteiligten Städte Fördergelder, um Fahrzeuge sowie Wasserstofftankstellen zu entwickeln. Hinzu kamen Universitäten und Hochschulen (bspw. Uni Stuttgart) als Partner. Das Unternehmen Spilett begleitete und analysierte den Fortgang des Projekts. Verschiedene Agenturen waren für die Öffentlichkeitsarbeit zuständig. Genauere Angaben und eine vollständige Liste aller Partner sind unter dem Link www.chic-project.eu zu finden.

Das CHIC-Projekt hatte das Ziel, Busbetreiber zu motivieren, Brennstoffzellenbusse anzuschaffen sowie eine eigene Wasserstofftankstelle zu bauen. Damit konnte Know-how für einen Linienbetrieb der Busse (Fahrpersonal, Werkstatt, Zulassungsbehörden usw.) sowie für den Betrieb einer eigenen Wasserstofftankstelle inklusive Produktion des Wasserstoffs vor Ort aufgebaut werden. Die Zulassungsbehörden (Gebäudeversicherung, SUVA, Starkstrominspektorat, SVGW, SVTI, ...) wurden stark in den gesamten Prozess miteinbezogen und konnten somit die vorhandenen Richtlinien auf die Vollständigkeit hin prüfen.

Die obersten Projektziele waren:

- 1. Aufbau von Know-how rund um das Thema Wasserstoff-Mobilität
- 2. Aufzeigen, dass Mobilität ohne fossile Treibstoffe funktioniert
- 3. Einsatz von Brennstoffzellenbussen als Alternative zu Dieselbussen im öffentlichen Verkehr

2.2. Partnerstädte inkl. Betrieb Brennstoffzellenbusse

Dank dem CHIC-Projekt gab es einen wertvollen internationalen Austausch zwischen den ehemaligen (Phase-0-Städte) und den nun aktuellen Betreiberstädten (Phase-1-Städte). Man hat die Städte daher in verschiedene Phasen unterteilt:

Phase 0: Städte, die schon in früheren Wasserstoffprojekten (CUTE, HyFLEET) mitgemacht hatten (sogenannte Altmeister) wie Hamburg, Köln, Berlin, Whistler.

Phase 1: Städte, die zum ersten Mal an einem Wasserstoffprojekt teilnahmen (aktive Städte). Dazu gehörten Brugg (Aargau), Bozen, Mailand, Oslo, London (CHIC-Städte).

Phase 2: Städte, die das Projekt beobachteten (Observer), weil sie sich noch nicht entschieden hatten oder weil das Geld noch nicht gesprochen wurde wie bspw. Frankfurt.

Unter dem Link <u>www.global-hydrogen-bus-platform.com</u> können weitere Details und nähere Informationen zu den bereits durchgeführten und aktuellen Wasserstoffprojekten abgerufen werden.

Der Fokus lag auf den **Phase-1-Städten**. Diese Städte haben unterschiedliche Bushersteller für das Projekt ausgewählt. In der nachfolgenden Tabelle werden die verschiedenen Brennstoffzellenbusse nach Anzahl, Standorten und Herstellern im CHIC-Projekt aufgelistet.

Fahrzeug	Standort	Hersteller	Anzahl Busse
Bruss Bruss	Brugg (Aargau)	EvoBus	5
CON EMPLOYED THE IN-	Bozen	EvoBus	5
	London	Wright busses	8
	Mailand	EvoBus	3
	Oslo	Van Hool busses	5

Tabelle 4: Übersicht Betreiberstädte mit der zugehörigen Anzahl Fahrzeugen und Hersteller

2.3. Tankstellen

Die Bauweisen der Tankstellen der Phase-1-Städte sowie die Produktion resp. die Anlieferung des Wasserstoffes waren unterschiedlich.

Tankstelle	Stadt	Herstel- ler	Inbe- trieb- nahme	Wasserstoffpro- duktion / Verfüg- barkeit	Elektrolyse und Füllmenge Kapazität / Tag
	Brugg (Aargau)	Carba- gas (Air Liquide)	2012	Produktion vor Ort inkl. Absicherung durch Belieferung mittels Trailer >94% (seit Januar 2015 >99%)	Elektrolyse / Tag 130 kg H ₂ Füllmenge / Tag 300 kg H ₂
	Bozen	Linde	2014	Produktion vor Ort inkl. Absicherung durch Belieferung mittels Trailer >99%	Elektrolyse / Tag 390 kg H ₂ Füllmenge / Tag 350 kg H ₂
Hydrogen Pharm of the fallowing of the	London	Air Products	2010	Keine Produktion vor Ort, stattdessen Anlieferung des flüssigen Wasser- stoffes mittels Trai- ler >98%	Keine Elektroly- se vor Ort Füllmenge / Tag 320 kg H ₂
	Mailand	Linde	2013	Produktion vor Ort inkl. Absicherung durch Belieferung mittels Trailer	Elektrolyse / Tag 215 kg H ₂ Füllmenge / Tag 200 kg H ₂
	Oslo	Air Liquide	2012	Produktion vor Ort inkl. Absicherung durch Belieferung mittels Trailer	Elektrolyse / Tag 260 kg H ₂ Füllmenge / Tag 250 kg H ₂

Tabelle 5: Übersicht Tankstellenkonzepte inkl. techn. Details der verschiedenen Teilnehmer

2.4. Vergleich der Städte untereinander

Um die Leistungen (vor allem die Verfügbarkeit der Fahrzeuge) der einzelnen Städte vergleichen zu können, wurden alle dazu erforderlichen Daten monatlich an die Universität Stuttgart übermittelt. Diese hat die dazugehörigen Auswertungen monatlich an die Partner verteilt. Um einen umfassenden Vergleich zu erhalten, beteiligten sich hier auch die Phase-0-Städte.

Beim Vergleich ist darauf zu achten, dass die Städte unterschiedlich viele Fahrzeuge in Betrieb hatten und zu verschiedenen Zeitpunkten gestartet sind.

In Brugg (Aargau) sind die Kilometerlaufleistungen pro Bus am höchsten. Dies ist das Ergebnis eines Mischprofils mit meist langen Fahrtabschnitten zwischen den Haltestellen. London hat im Vergleich dazu hohe Betriebszeiten mit geringer Laufleistung (typisch für Stadtfahrten). In der nachfolgenden Tabelle ist beispielhaft die monatliche Auswertung von August 2015 dargestellt.

City status (to end August 2015)

	City	No. of buses	Manufacturer	km travelled	FC runtime per bus [h]	Total FC runtime [h]	Availability (average) ¹	
Phase 0	Cologne	4	APTS, Van Hool	160,522	2,304	9,214	200-430-220	~4.5m km driven by Phase 0 cities ³
	Hamburg	4	EvoBus	332,247	5,445	21,780	64%	
	Whistler ²	20	NewFlyer	4,005,000	9,740	201,911		
Phase 1	Aargau	5	EvoBus	1,029,576	9,421	47,106		12
	Bolzano / Bozen	5	EvoBus	256,792	3,067	15,333		~ 2.96m km by Phase 1
	London	8	Wrightbus	1,046,862	12,320	98,563	72%	km driven se 1 cities
	Milan	3	EvoBus	100,052	2,975	8,926		
						1		2

¹ Availability calculation based on hours of operation (including when the bus is ready for operation, but there is no driver or hydrogen etc.);

4,604

23,020

522,667

Van Hool

Oslo

Tabelle 6: Beispiel einer öffentlichen Auswertung der Universität Stuttgart Ende August 2015

² Operations ceased on 31st March 2014; ³ Excluding Berlin

Damit die Städte von möglichst vielen Daten anderer Projekte profitieren konnten, haben sich die Verantwortlichen der parallel laufenden Brennstoffzellenbus-Projekte untereinander ausgetauscht. In der Karte unten sind die CHIC-Partnerstädte grün dargestellt. Die anderen Farben zeigen eine Auswahl weiterer Projekte mit Brennstoffzellenbussen.

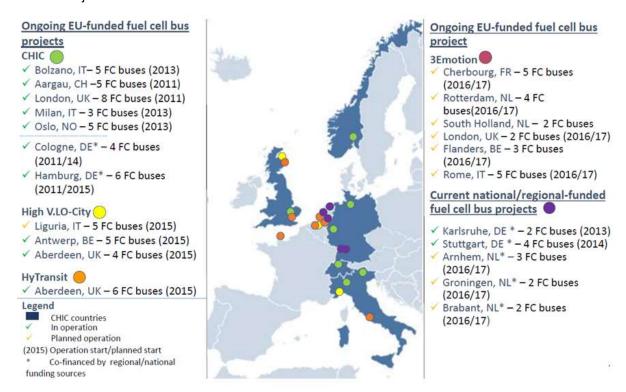


Abbildung 1: Übersicht über verschiedene Brennstoffzellenprojekte

2.5. Herausforderungen im Rahmen des CHIC-Projekts

Die nachfolgend beschriebenen Herausforderungen beziehen sich auf organisatorische sowie dokumentenpflichtige Vorgaben und Verpflichtungen, welche teilweise nur mit grossem Aufwand zu bewältigen waren.

2.5.1. Financial Reporting

Das Financial Reporting an die EU stellte sich als sehr aufwendig heraus, weil viele detaillierte Angaben verlangt wurden. Ein lokaler Wirtschaftsprüfer musste alle eingereichten Reportings zusätzlich prüfen. Auch das FCH JU prüfte die Reportings und es gab mehrmals Beanstandungen zu den eingereichten Financial Reportings. Dies hatte zur Folge, dass PostAuto und der lokale Wirtschaftsprüfer dieselben Reportings mehrfach bearbeiteten. Zusätzlich wurde ein Audit von der EU angeordnet. Ein weiterer Wirtschaftsprüfer überprüfte demnach erneut alle Daten. Die EU hat für das Projekt 4,6 Mio. Euro gesprochen, Währungsschwankungen haben den Wert dieses Betrags im Lauf des Projekts verringert. Die Auszahlungen der EU-Fördergelder erfolgten in sehr unregelmässigen Abständen.

2.5.2. Öffentlichkeitsarbeit

Um die Brennstoffzellen-Technologie in der Öffentlichkeit bekannt zu machen, hat PostAuto grossen Aufwand betrieben. Verschiedene Plattformen sowie Publikationen dienten auch den Herstellern, um ihre Produkte (Fahrzeuge und Tankstelle) zu bewerben. Nahezu alle teilnehmenden Städte haben informative Kurzfilme zum Thema Brennstoffzellenbusse erstellt, die unter unter den folgenden Links zu sehen sind.

Kurzfilm Brugg (https://www.youtube.com/watch?v=BrqAZWUs0gk&noredirect=1)

Kurzfilm Bozen (https://www.youtube.com/watch?v=QMuYIXyxh Y&feature=youtu.be)

Kurzfilm London (https://www.youtube.com/watch?v=yz3Vt6rsjO0)

Kurzfilm Oslo (https://www.youtube.com/watch?v=u1ZyNnlTn7M&feature=youtu.be)

2.6. Nationale Partner, Finanzierung

Die EU (FCH JU) hat das Projekt in Brugg mit 4.6 Mio. Euro unterstützt. Weiter gab es Beiträge von PostAuto und Post Innovation in der Höhe von rund 7.6 Mio CHF. Schliesslich gab es grosszügige Unterstützung von weiteren nationalen Partnern mit den folgenden Beiträgen:

Kanton Aargau / Swisslos-Fond: 1.5 Mio. CHF
 Bundesamt für Energie: 1.5 Mio. CHF

Die nachfolgend genannten Firmen und Institutionen haben das Projekt mit nicht verrechneten Arbeitsstunden unterstützt und somit auch einen entscheidenden Beitrag zum Erfolg des Projektes beigetragen. Die Unterstützung durch verschiedene Behörden und die gute kantonsübergreifende Zusammenarbeit, die kurze und unkomplizierte Entscheidungswege ermöglichte, haben ebenso einen wertvollen Beitrag für die gesamte Abwicklung und Bewältigung dieses Projektes geleistet.

- IBB Energie AG
- PSI (Paul Scherrer Institut)
- Carbagas
- EMPA
- Mercedes Benz

3. Details zum nationalen Projekt in Brugg

3.1. Einleitung

Bei der Suche eines geeigneten Betriebsstandortes fiel die Wahl auf die Stadt Brugg. Dafür gab es verschiedene Gründe. So hat sich der Kanton Aargau bereit erklärt, einen Teil der Kosten zu übernehmen und der dort ansässige, langjährige PostAuto-Unternehmer Voegtlin-Meyer AG hat grosses Interesse bekundet, den Linienbetrieb der Fahrzeuge durchzuführen sowie das Firmengelände für den Bau einer Wasserstofftankstelle zur Verfügung zu stellen. Ausserdem sprachen sowohl die Nähe zum Fahrzeuglieferanten EvoBus (Kloten) als auch zum Paul Scherrer Institut für den Standort Brugg. Das Einsatzgebiet der Fahrzeuge war mit städtischen und zugleich hügeligen Gebieten typisch für den Einsatz von Postautos im Schweizer Mittelland. Die Linie Nr. 1606 (Brugg – Linn via Gallenkirchen) weist mit 61 Metern zwischen «Umiken Abzw. Riniken» und «Bözberg Unterer Hafen» den höchsten Höhenunterschied auf dem gesamten Linienfahrplan der Fa. Voegtlin–Meyer auf.

Haltestelle	Länge	Fahrzeit	Höhe	Höhenunterschied
	[m]	[Min]	(m.ü.M)	[m]
Brugg AG, Bahnhof/Zentrum			354	
Brugg AG, Brücke	1020	00:01	340	-14
Umiken, Mühlehalde	740	00:01	354	14
Umiken, Oberdorf	610	00:01	361	7
Umiken, Abzw. Riniken	250	00:01	375	14
Bözberg, Unterer Hafen	850	00:02	436	61
Bözberg, Gäbi	310	00:00	465	
Bözberg, Mittlerer Hafen	370	00:01	487	22
Bözberg, Oberer Hafen	500	00:01	513	
Bözberg, Ursprung	940	00:02	501	-12
Bözberg, Kirchbözberg	980	00:01	477	-24
Bözberg, Bächle	1095	00:01	534	57
Bözberg, Gemeindehaus	400	00:01	540	6
Bözberg, Hübel	330	00:00	554	14
Bözberg, Riedacher	360	00:01	560	6
Bözberg, Egenwil	700	00:01	561	1
Bözberg, Altstalden	1200	00:02	583	22
Bözberg, Neustalden	720	00:02	570	-13
Bözberg, Sandbrunnen	370	00:00	560	-10
Bözberg, Gallenkirch	400	00:01	575	15
Bözberg, Linn	1420	00:02	581	6

Tabelle 7: Linienfahrplan Linie 1606

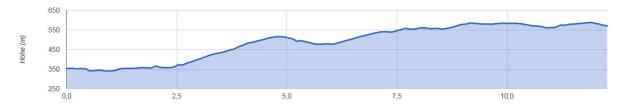


Abbildung 2: Höhenprofil Linie Nr. 1606

3.2. Einstellhalle

Für die fünf Brennstoffzellenpostautos musste ein Teil der zur Verfügung gestellten Garage der Fa. Voegtlin-Meyer AG in Brugg nach den bestehenden Wasserstoffrichtlinien umgebaut werden. Die wasserstoffbetriebenen Fahrzeuge führen auf dem Dach Wasserstoffbehälter mit sich. Damit sich bei einer Undichtheit kein explosiver Wasserstoff an der Decke ansammeln kann, wurde die Einstellhalle mit verschiedenen Sicherheitseinrichtungen ausgestattet und entsprechend angepasst.

3.2.1. Aufbau Einstellhalle

In der Abbildung 3 ist ein sogenannter Ex-Zonenplan der Einstellhalle in Brugg dargestellt. In den schraffierten Flächen könnte sich Wasserstoff ansammeln, und somit wurden diese Zonen als EX-Zone 2 deklariert, die einige bauliche Massnahmen erforderten. In diesem Bereich ist bei normalem Betrieb nicht damit zu rechnen, dass ein explosionsfähiges Gemisch aus Luft und brennbaren Substanzen in Form von Gas, Dampf oder Nebel auftritt, und wenn, dann nur selten und auch nur kurzzeitig.

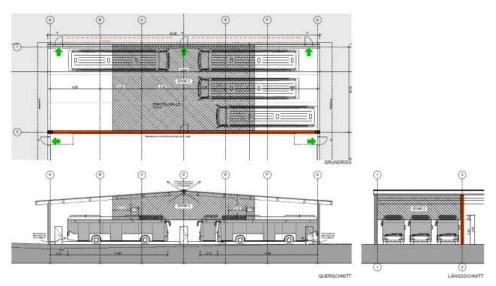


Abbildung 3: Ex Zonenplan Einstellhalle

Damit sich kein Wasserstoff an der Decke ansammeln kann, wurde am höchsten Punkt der Halle das Dach geöffnet, damit dort allfälliger Wasserstoss austreten könnte. Über der Öffnung wurde ein Regenschutz gebaut.

Abbildung 4: Darstellung der verschiedenen getroffenen Massnahmen

Über jedem Standplatz der Fahrzeuge wurden Wasserstoffsensoren («Wasserstoffschnüffler») installiert. Hätten diese Sensoren Wasserstoff detektiert, wäre Alarm ausgelöst worden. Bei einem Alarm hätten sich die Rolltore automatisch geöffnet und den Raum zusätzlich belüftet. Der Strom in der Halle wäre abgeschaltet worden. Ausserdem trennte eine Brandschutzwand die Halle von den unmittelbar nebenan geparkten Dieselbussen.

Die in den Fahrzeugen verbauten Brennstoffzellen wiesen alle einen Bauteilschutz auf, welcher ein unkontrolliertes Starten der Brennstoffzelle bei niedrigen Temperaturen (weniger als 6° Celsius) verhinderte. Dazu wurden die Fahrzeuge an den Strom angeschlossen. Der Strom wurde verwendet, um den Wasserkreislauf zu erwärmen und um damit die Brennstoffzellensysteme bei kalten Aussentemperaturen zu erwärmen. Zeitgleich wurde das 24-Volt-Board-Netz geladen.

Abbildung 5: Vorhandene Anschlüsse bezgl. Kaltstartverhinderung

3.2.2. Stromverbrauch der Fahrzeuge in der Einstellhalle

Auch als die Fahrzeuge in der Einstellhalle abgestellt waren, benötigten sie Strom, dies für folgende Funktionen:

- 1. Nachladen des 24 Volt Board-Netzes
- 2. Heizen der kälteempfindlichen Brennstoffzelle zur Kaltstartverhinderung

Die Grafik unten zeigt den Stromverbrauch in der Einstellhalle (inklusiv Strom für Beleuchtung). In roter Farbe ist der Tagesstrom und in Grün der Nachtstrom dargestellt. Gut zu erkennen sind die Jahreszeiten. Im Winter ist der Stromverbrauch wegen des Heizens der Hochvoltkomponenten höher als in den wärmeren Sommermonaten

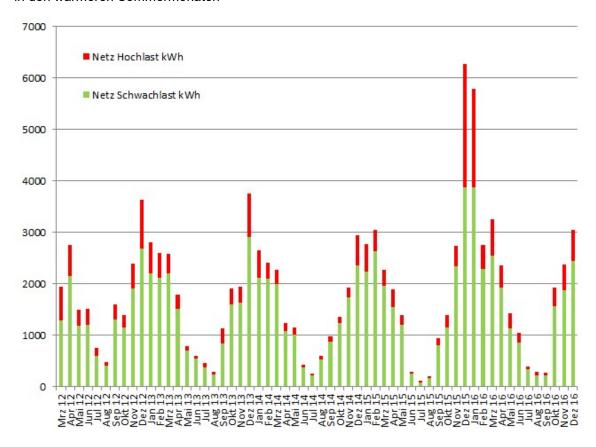


Tabelle 8: Darstellung Stromverbrauch der Fahrzeuge in der Einstellhalle

3.3. Brennstoffzellenpostauto

Abbildung 6: Eines der fünf Brennstoffzellenpostautos bei der Einweihung

Das Brennstoffzellenpostauto ist ein batteriebener Elektrobus, welcher mit Wasserstoff betrieben wird. Das Fahrzeug tankt gasförmigen Wasserstoff und wandelt diesen in den Brennstoffzellen in Strom um. PostAuto hat fünf Brennstoffzellenbusse des Herstellers EvoBus (Daimler Buses) im Rahmen des CHIC-Projektes vom 12.12.2011 bis 31.12.2016 erfolgreich in Brugg und Umgebung betrieben.

3.3.1. Aufbau Brennstoffzellenpostauto

Bei den Brennstoffzellenpostautos handelte es sich um 12-Meter-Maxibusse mit drei Türen. Der Grundaufbau ist ein herkömmlicher Citaro von EvoBus (Daimler Buses). Um die tiefe Einstiegshöhe beibehalten zu können, wurden die neuen, für diese Technologie notwendigen, Komponenten grösstenteils auf dem Dach platziert.

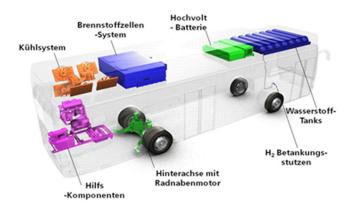
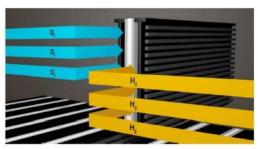
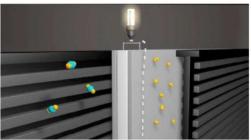


Abbildung 7: Technischer Aufbau des Citaro FuelCELL-Hybrid Brennstoffzellenbusses


3.3.2. Technische Daten des Mercedes-Benz Citaro O 530 Brennstoffzellen-Hybrid

Länge	11'950 mm
Breite	2'550 mm
Höhe inkl. Dachaufbauten	3'419 mm
Sitzplätze	27
Stehplätze	40
Zulässiges Gesamtgewicht	18'000 kg
Leergewicht	ca. 13'400 kg
Antriebsart	Serieller Hybrid mit Brennstoffzellentechnik
Radnabenmotoren	2 elektrische Asynchronmotoren, integriert in der Antriebsachse, 2 x 125kW entspricht 340 PS / 2 x 11'000 Nm Drehmoment
Hochvolt-Batterie	Lithium-Ionen, 700 Volt (180 kW bei 26.9 kWh)
Brennstoffzellensystem	2 identische Brennstoffzellen mit PEM (Proton Exchange Membrane)
Gesamtleistung	120 kW (Dauerbetrieb) / 140 kW (Spitze)


Tabelle 9: Übersicht technische Daten Mercedes Benz Citaro O 530 Brennstoffzellen - Hybrid

3.3.3. Funktion einer Brennstoffzelle

Die Brennstoffzelle bildet das Herzstück im Brennstoffzellenbus. Hier wird gasförmig getankter Wasserstoff mit Sauerstoff aus der Umgebungsluft in Strom umgewandelt. Dieser Strom wird für den Antrieb oder das Laden der Hochvoltbatterien verwendet. Die Brennstoffzellenpostautos kamen auf weit mehr als 12'000 Betriebsstunden. Die Brennstoffzellen selber wurden nach ca. 9'000 Betriebsstunden in allen Fahrzeugen ausgewechselt, wobei der Tausch der Brennstoffzellen-Stacks nach einem festen Wartungsplan erfolgte. Die Daten der Stacks wurden von einem Datenlogger erfasst und über eine Datenkarte an die Spezialisten von EvoBus gesendet. Dort wurde monatlich ein Bericht über den Status des Fahrzeuges sowie über den Zustand der Brennstoffzellen-Stacks erstellt. Wenn die Leistung eines Stacks einen bestimmten Wert unterschritt, wurde der Stack ausgewechselt. Die Laufleistung der Stacks liegt zwischen 6'000 und 9'000 Betriebsstunden.

Wasserstoff und Sauerstoff wird kontrolliert zusammengeführt.

Wasserstoffatome können die Membran durchqueren.

Die Elektronen werden zurückgehalten und müssen einen anderen Weg gehen.

Wenn Elektronen fliessen, spricht man vom elektrischen Strom.

Abbildung 8: Funktion Brennstoffzelle inkl. kurzer Beschreibung

3.3.4. Preisentwicklung

Die Fahrzeuge hatten einen Einkaufspreis von insgesamt 1.8 Mio Euro pro Fahrzeug. Davon schlagen 1.2 Mio Euro Fahrzeugpreis zu Buche, die anderen 600'000 Euro waren für ein sogenanntes «Rundum-Sorglos-Paket», das die Wartung und Instandhaltung aller wasserstoff- und hochvoltführenden Bauteile für 5 Jahre umfasste. Zusätzlich schloss PostAuto mit EvoBus noch einen Wartungsvertrag für die Verschleissbauteile (Bremsen, Türen, Reifen, etc.) ab.

Der Hersteller ist davon ausgegangen, dass sich die hohen Wartungskosten bezüglich der wassertoffund hochvoltführenden Bauteile nach 5 Projektjahren reduzieren würden, was sich leider nicht bewahrheitet hat.

Anlässlich einer von der EU aufgegebenen Studie (http://www.fch.europa.eu/sites/default/files/150909 FINAL Bus Study Report OUT 0.PDF) werden zumindest die Fahrzeugpreise laut Angaben der Fa. Van Hool in den kommenden Jahren deutlich fallen. Bei einer Bestellung im Verlaufe 2017 soll der Neupreis bei ca. 650'000 Euro liegen. Zusätzlich 22/76

bestünde die Möglichkeit, vom FCH JU weitere 200'000 Euro pro Fahrzeug zu beantragen. Dazu muss man jedoch Mitglied in einem sogenannten Cluster sein. PostAuto ist bis dato nicht Mitglied in einem Cluster, darf aber als Observer das Geschehen in den Clusters verfolgen. Mehr Informationen gibt es unter dem folgenden Link:

http://www.fch.europa.eu/sites/default/files/Strategies%20for%20joint%20procurement%20of%20FC%20buses 0.pdf)

Die nachfolgende Übersicht zeigt die verschiedenen Clusters. Die Bildung der Gruppen ist individuell, wobei die Zusammensetzung nach den Kriterien Sprache, gute Beziehungen zu bestimmten Fahrzeugherstellern sowie ähnliche politische Bedingungen erfolgte. Jedes Land kann somit das Cluster frei wählen. Die Schweiz (PostAuto) hat sich noch nicht auf ein Cluster festgelegt. Naheliegend wäre ein Cluster mit Deutschland, oder Frankreich.

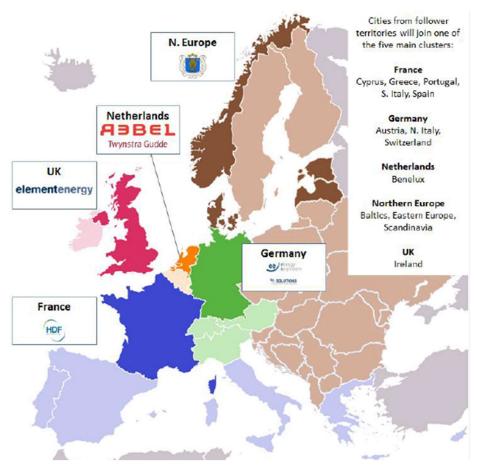


Abbildung 9: Übersicht der verschiedenen Clusters

3.3.5. Betanken

Das Brennstoffzellenpostauto wird ähnlich wie ein Erdgasfahrzeug betankt. Das Fahrpersonal muss sich an der Zapfsäule mittels eines Kennwortes anmelden und die Anlage anschliessend in den Modus «stromfrei» schalten (das Einschalten des Modus «stromfrei» soll ab der nächsten Generation von Fahrzeugen entfallen). Anschliessend wird geerdet und der Zapfhahn auf dem Einfüllstuten positioniert, dann kann der Tankvorgang gestartet werden.

Die Tankstelle kommuniziert mittels einer Infrarotschnittstelle zwischen Zapfpistole und Betankungsstutzen am Fahrzeug. Bevor die Betankung beginnt, erfolgt ein System-Dichtheitstest. Dabei wird für kurze Zeit der Druck auf der Leitung erhöht. Gibt es keinen Druckabfall (System ist dicht), wird die Betankung vorbereitet und das Fahrzeug informiert die Tankstelle über den vorhandenen Druck und die Temperatur im Fahrzeugtank. Daraufhin berechnet die Wasserstofftankstelle die optimale Befüllgeschwindigkeit. Dadurch können Tankzeiten von ca. 10 Minuten erreicht werden. Zum Vergleich: Bei einem Dieselbus dauert der Tankvorgang ca. 3 Minuten und bei einem batteriebetriebenen Bus mehrere Stunden.

Abbildung 10: Betankungsreihenfolge

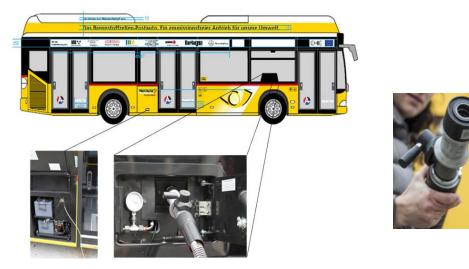


Abbildung 11: Anschlusspositionen inkl. Detail Befüllungsstutzen mit Infrarotstelle 24/76

3.3.6. Wasserstoffverbrauch der einzelnen Fahrzeuge

Bei den Brennstoffzellenfahrzeugen wird Treibstoff in Form von Wasserstoff benötigt. Wasserstoff wird in der Mobilität in «kg» angegeben. In der Gasindustrie berechnet man Wasserstoffmengen mit Nm³ (Normkubikmeter, Umrechnungsfaktor 11,1 Nm³ = 1 kg).

Die Abbildung unten zeigt den Verbrauch der einzelnen Fahrzeuge pro Monat über die gesamte Projektdauer. Der durchschnittliche Wasserstoff-Verbrauch liegt bei 8kg/100km. Nur im Winter 2013 war der Verbrauch wegen einem vom Hersteller gewünschten und kurzzeitig durchgeführten fahrzeugseitigem Softwareupdate massiv höher. Das Update führte unter anderem zu Anpassungen an den Heizparametern, was unerwünscht zu einem deutlichen Mehrverbrauch führte. Im Mai 2014 wurden dann die Heizparameter mit einem erneuten Softwareupdate wieder zurückgestellt. Die Wasserstoffmehrkosten für PostAuto zwischen September 2013 und Mai 2014 betrugen dadurch mehrere Zehntausend Franken. In diesem Zeitraum waren zwei Brennstoffzellenpostautos für Shuttlefahrten am WEF in Davos im Einsatz. Der Einsatz musste vorzeitig eingestellt werden, da der erhöhte Verbrauch vor Ort zu deutlichen Mehrkosten geführt hätte.

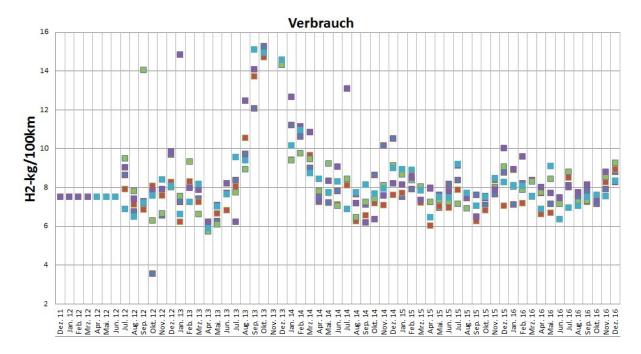


Tabelle 10: Verbrauch der einzelnen Fahrzeuge pro Monat

Weitere Erläuterungen zur Verbrauchsgrafik (Tabelle 10)

Auffallende Abweichungen in der Darstellung sind meist auf Messfehler zurückzuführen. Hinzu kamen der tatsächlich hohe Verbrauch nach einem Software-Update sowie Wartungsarbeiten an wasserstoffführenden Bauteilen. Dazu wurde der gesamte Wasserstoff aus den Tanks abgelassen und somit ergab sich ein sehr hoher Wasserstoff-Kilometerverbrauch.

Sehr niedrige Verbrauchszahlen sind auf das Tanken an einer nicht erfassten Tankstelle oder durch das irrtümliche Verwenden eines falschen Logins beim Tanken (Betanken mit Login eines anderen Fahrzeuges) zurückzuführen. Das führte zu Mehrverbräuchen bei anderen Fahrzeugen.

Vergleich der Verbrauchswerte

Um den Verbrauch mit anderen Antriebssystemen vergleichen zu können, wurden verschiedene Darstellungen herangezogen und Parameter definiert. In der Tabelle 11 wird versucht, die Verbräuche mit anderen Antriebssystemen zu vergleichen.

Der Verbrauch der Brennstoffzellenfahrzeuge beträgt ca. 8kg H₂ / 100km. Als Referenzfahrzeuge zum nachfolgenden Vergleich dienen zwei herkömmliche Citaro-Dieselbusse. Diese beiden Busse bedienten zeitgleich dieselben Strecken in Brugg wie die Brennstoffzellenfahrzeuge. Die beiden Dieselbusse verbrauchten ca. 38 Liter Diesel / 100km. Mit der Berücksichtigung des oberen Heizwertes (ca. 39 kWh/kg Wasserstoff) sowie dem eigentlichen Brennwert von 10.5 kWh/Liter Diesel wurde der Verbrauch der Brennstoffzellenbusse in kWh und anschliessend in Liter Diesel umgerechnet. Die Werte sind der Tabelle unten zu entnehmen. Somit ergeben 8kg H₂/100km einen rechnerisch ermittelten Verbrauch von 30 Liter Diesel / 100 km.

PostAuto betreibt in Frauenfeld zwei Diesel-Seriell-Hybridbusse des Herstellers MAN. Die in Erfahrung gebrachten Verbrauchswerte sind ca. 10% geringer gegenüber einem konventionellen Dieselantrieb. Für eine vereinfachte Vergleichsdarstellung wurden hier die -10% auf den Basisverbrauch von 38 Liter/100km angenommen.

Weiter betreibt PostAuto 37 Diesel-Parallel-Hybrid-Fahrzeuge des Herstellers Volvo. Bei diesen Fahrzeugtypen konnte eine Verbrauchsersparnis von ca. -25% gegenüber dem Basisverbrauch eines herkömmlichen Dieselbusses nachgewiesen werden.

Die Tabelle 11 zeigt somit einen groben Vergleich der verschiedenen Antriebssysteme. Um jedoch eine genauere Aussage machen zu können, sollten alle erwähnten Antriebsvarianten an einem Standort mit denselben topografischen Bedingungen gefahren werden. Dies war hier mit den verschiedenen Einsatzorten Brugg, Frauenfeld und Tessin leider nicht möglich.

Erfahrungen bei PostAuto	*	*		
	Brennstoffzellen- Hybrid	Diesel-	Hybrid	Diesel
	Seriell-Hybrid	Paralell- Hybrid	Seriell- Hybrid	
Wasserstoff (kg pro 100 km)	8		144	=
Entspricht kWh pro 100 km	312	299	359	399
		28.5	34.2	38
Diesel (Liter pro 100 km)	30	ca25%	ca10%	Basis: 100%

Wasserstoff in kWh Umrechnung mit oberem Heizwert Faktor 39 H2-kg in Diesel Umrechnung mit Faktor 10.5

Tabelle 11: Verbrauchswerte in der Übersicht

3.3.7. Herausforderungen beim Brennstoffzellenpostauto

Im Laufe des Projekts gab es bei den Fahrzeugen unterschiedliche Herausforderungen. Die Fahrzeuge wurden mit technischen Problemen (Fehlerspeicher; DC/DC-Wandler; Ausfall Brennstoffzellensystem) angeliefert, in den ersten Monaten waren deshalb Anpassungsarbeiten nötig. Einige technische Probleme wurden behoben, andere sind bis Projektende geblieben, wie z.B. der Ausfall eines Brennstoffzellensystems beim Nichtfunktionieren einer von zwei Wasserpumpen. Allgemein war auffällig, dass nicht die wasserstoffführenden Bauteile Probleme machten, sondern die damals schon durch die Diesel-Hybrid-Technologie bekannten Hochvoltbauteile. Es folgt eine Auswahl der erwähnten Fehler:

Fehlerspeicher

Bei der Auslieferung der Fahrzeuge war der Fehlerspeicher nicht fertig programmiert. Die Fehlermeldungen waren im Text nicht eindeutig, wodurch es zu Verwirrungen beim Fahrpersonal kam. Der Fehlerspeicher wurde weiter optimiert. Bis zum Ende des Projektes gab es Fehlermeldungen, die keine Auswirkung auf das Fahrzeug hatten, die aber trotzdem angezeigt wurden. Eine dieser Fehlermeldungen ist beispielsweise «Störung E-Antrieb». Dieser Fehlertext tauchte auf und verschwand wieder.

DC/DC-Wandler

Der DC/DC Wandler war am Anfang des Projektes das Bauteil im Fahrzeug, das am meisten ausgefallen ist. In diesem DC/DC-Wandler ist eine Leistungsdiode in einer Vergussmasse eingegossen. Durch Erwärmung und Abkühlung entstand Kondenswasser, welches dann zu einem Kurzschluss und letztlich zum Ausfall der Diode führte.

Ausfall eines Brennstoffzellensystems

Das Brennstoffzellensystem wurde von der Mercedes A-Klasse übernommen. Da ein Bus mehr Energie für den Antrieb benötigt als ein Kleinwagen, wurde zweimal das gleiche Brennstoffzellensystem in den Bus eingebaut. Während des Betriebs kam es immer wieder zu sehr niedrigen SOC («State of Charge» - Ladezustand der Hochvoltbatterie). Die Ursache hierfür war lange nicht klar, bis sich herausstellte, dass während der Fahrt eine Brennstoffzelle ausgefallen war. Durch ein kurzes Aufleuchten des «Gelbfehlers» und des gleich darauffolgenden «Rotfehlers» wurde der Fahrer informiert, dass das Fahrzeug gleich nicht mehr fahren kann und es drohte somit ein unmittelbarer Stillstand des Fahrzeuges. Zur Kühlung einer Brennstoffzelle sind zwei Wasserpumpen eingebaut. Fällt eine Wasserpumpe aus, wird die Brennstoffzelle infolge dieser Fehlermeldung automatisch ausgeschaltet, obwohl eine Wasserpumpe pro Brennstoffzelle ausreichen würde, um mit dem Fahrzeug problemlos weiterzufahren. Um das Fahrzeug wieder fahrbar machen zu können, musste ein Mitarbeiter von EvoBus das System zurücksetzten. EvoBus hat den Ausfallfehler der Brennstoffzelle nicht behoben. Stattdessen hat die Firma am Fahrerarbeitsplatz zwei LEDs installiert. Falls eine der beiden LED aufleuchtete, hiess das, dass ein Brennstoffzellensystem «ausgefallen» war. Um dieses wieder zu aktivieren, musste das Fahrpersonal das Fahrzeug abstellen (Zündung aus) und wieder einschalten. Dieser Vorgang benötigte Zeit und konnte zu Verspätungen im Betrieb führen.

Start und Reset

Um das Brennstoffzellenpostauto zu starten, musste das Fahrpersonal darauf achten, dass die Kontrolllampen erloschen waren und das ganze System unter Inanspruchnahme einer gewissen Zeitspanne vollständig runtergefahren war. Wird das Fahrzeug vor dem Erlöschen der Kontrolllampen gestartet, kann das zu einem Fehler führen, welcher nur durch einen EvoBus-Mitarbeiter behoben werden kann.

3.3.8. Ergebnisse Brennstoffzellenpostauto

Die fünf Brennstoffzellenpostautos wurden mit den Nummern P274, P275, P276, P277 und P278 gekennzeichnet.

Um die erfolgreiche Verfügbarkeit der Fahrzeuge zu bewerten, stützte sich PostAuto auf die Kilometerleistung. Im Projekt CHIC hingegen rechnete man mit Betriebsstunden. Die Anforderungen an die Kilometerleistungen wurden bei PostAuto am Anfang des Projektes wie folgt definiert:

ein Bus		alle fünf Busse	
monatlich	5'000-5'500 km	27'500 km	
jährlich	60'000 km	300'000 km	

In den unten folgenden Abbildungen werden die Kilometerlaufleistungen der einzelnen Fahrzeuge pro Monat aufgezeigt, was eine Aussage bezüglich der Verfügbarkeit ermöglicht.

In **Rot** werden die im ÖV gefahrenen Kilometer angegeben. In **Grün** sind andere gefahrene Kilometer, z.B. Leerfahrten zur Haltestelle etc. markiert. Die Werte der beiden Säulen (**Rot** und **Grün**) können auf der linken Seite der Abbildungen abgelesen werden. In **Violett** werden alle gefahren Kilometer kumuliert. Die entsprechenden Werte können auf der rechten Seite abgelesen werden.

In der Abbildung 12 sind die Laufleistungen aller fünf Brennstoffzellenpostautos dargestellt. Das gelb hinterlegte Feld zeigt das Zielfeld zwischen 25'000 - 30'000km pro Monat an. Eine 100%ige Verfügbarkeit aller Fahrzeuge entspricht 27'500 km / Monat. In den ersten Betriebsmonaten ist die schrittweise Einführung der Fahrzeuge durch die langsam ansteigende Kilometerlaufleistung deutlich.

Im Winter 2013 gab es bei der Wasserstofftankstelle ein technisches Problem, zeitgleich sorgte ein Software-Update dafür, dass der Wasserstoffverbrauch stark anstieg. Der Verbrauch war so hoch, dass die Fahrzeuge ihre Tagesleistung nicht erbringen konnten und somit deutlich weniger Kilometer pro Tag fahren konnten. In den darauffolgenden Wintermonaten der Jahre 2014 und 2015 hatte man mit technischen Problemen der Kompressoren an der Tankstelle zu kämpfen.

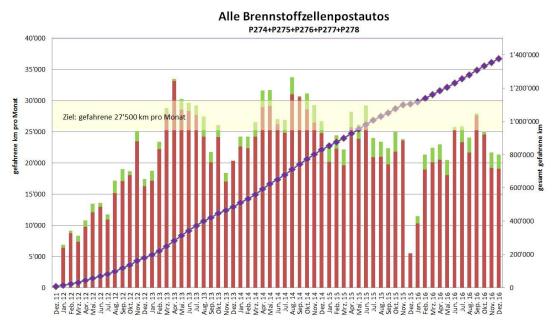


Tabelle 12: Laufleistung resp. Verfügbarkeit aller fünf Brennstoffzellenfahrzeuge

Es folgen die Einzelbetrachtungen der Kilometerlaufleistungen der fünf Brennstoffzellenpostautos. Die Verfügbarkeit der einzelnen Fahrzeuge wird auch hier durch die monatliche Kilometerlaufleistung sichtbar gemacht. Dabei gilt: 5'500 km / Monat entspricht 100 % Verfügbarkeit.

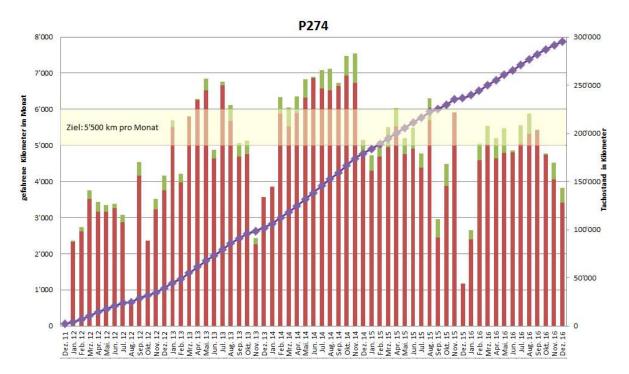


Tabelle 13: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 274

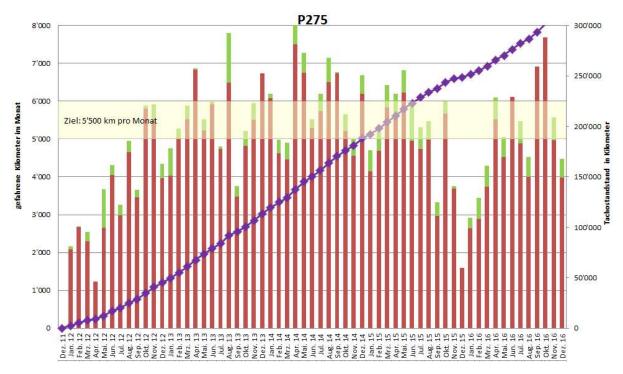


Tabelle 14: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 275 29/76

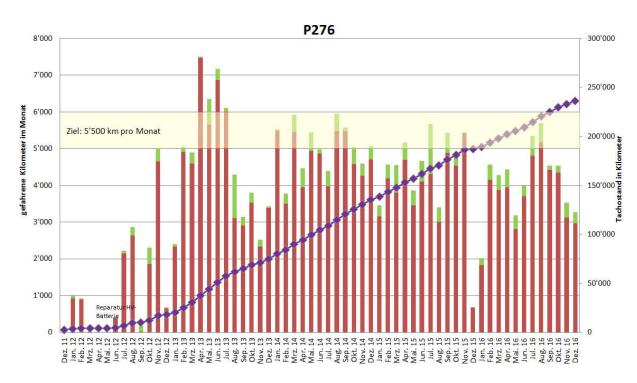


Tabelle 15: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 276

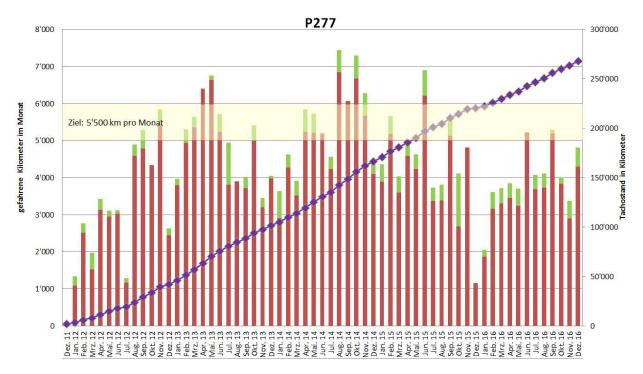


Tabelle 16: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 277

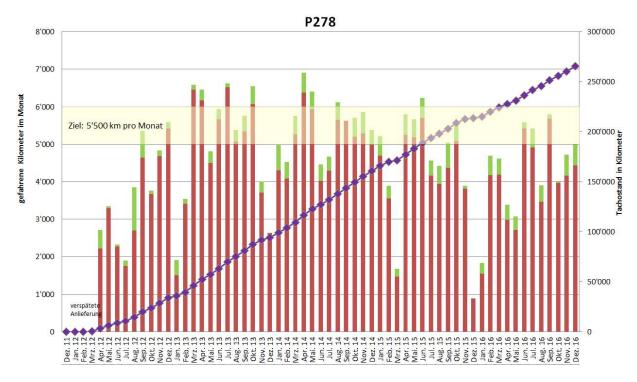


Tabelle 17: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 278

3.3.9. CO₂- Bilanz (Herstellung und Anlieferung Wasserstoff)

Wasserstoff wurde mit Hilfe der Elektrolyse sowohl vor Ort in Brugg wie auch bei der Firma Cabb in Pratteln produziert. Dort war es ein Nebenprodukt der Chlor-Alkali-Elektrolyse. Für den 5-jährigen Betrieb wurden rund 102.5 Tonnen Wasserstoff für die Betankung der Brennstoffzellenpostautos produziert.

Herstellungsort	Produzierte Menge [t]
Elektrolyse in Brugg	89.7
Fa. Cabb	12.8
Total	102.5

Tabelle 18: Übersicht produzierte Menge Wasserstoff nach Herstellungsort

Die Herstellung von Wasserstoff vor Ort in Brugg, der bei der Firma Cabb produzierte Wasserstoff sowie die Einstellhalle zur Unterbringung der Fahrzeuge haben zusammen eine grosse Menge Strom verbraucht. Der Strom zur Produktion des Wasserstoffs in Brugg wurde zu 100% als «naturmade basic» zertifizierter Strom bezogen mit einem Anteil gem. Zertifikat von 5.1 gCO₂/kWh. Für die Stromversorgung der Einstellhalle wurde herkömmlicher Schweizer Mixstrom (u.a. auch Importstrom) mit einem Anteil von 93 gCO₂/kWh verwendet. Die Anlieferung des Wasserstoffes der Fa. Cabb erfolgte mit Hilfe eines Trailers.

Übersicht Stromverbrauch und «CO₂ Gehalt» des verwendeten Stroms für die Wasserstoffproduktion (sowie der Einstellhalle) vor Ort in Brugg:

	Stromverbrauch [GWh]	Anteil CO ₂ [gCO2/kWh]	CO ₂ -Gehalt des verwendeten Stroms [t]
Herstellung Wasserstoff (mittels Elektrolyse)	6.53	5.1	33.3
Einstellhalle	0.103	93	9.58
Total			42.9

Tabelle 19: Stromverbrauch und «CO₂-Gehalt» des verwendeten Stroms für die Wasserstoffproduktion vor Ort in Brugg

Bemerkung:

Für die Elektrolyse wurde ausschliesslich «naturmade basic» zertifizierter Strom mit folgenden Anteilen der Energiegewinnung verwendet:

- Wasser 95%
- Photovoltaik 2 %
- Biomasse 2%
- Windkraft 1%

Produktion von Wasserstoff bei der Firma Cabb in Pratteln:

Da der produzierte Wasserstoff als Nebenprodukt der Chlor-Alkali-Elektrolyse gewonnen wird, gibt es einen gewissen Ermessenspielraum bezüglich dem berechneten CO₂-Gehalt. Die Annahmen sind in Tabelle 20 dargestellt. Bei der Berechnung kommt es darauf an, welcher Stromanteil für das Nebenprodukt Wasserstoff berechnet wird und welche Stromqualität man zur Berechnung verwendet.

Bei einem Gesamtverbrauch der Chlor-Alkali-Anlage wurde die Annahme getroffen, dass aus 100 kWh Strom 17 kg Chlor, 1 kg Wasserstoff sowie 50 Liter (Anteil von 30%) NaOH–Lauge entstehen.

CO₂-Gehalt pro kg Wasserstoff aus Pratteln in kg CO₂/kg H2

Stromanteil für Wasserstoff der Produktion bei der Firma	CH-Strom Verbrauchsmix mit 93 gCO ₂ /kg H2 ¹	D-Strom Herstellmix mit 530 gCO ₂ /kg H2 ²	
Cabb	[kg CO ₂ / kg H2]	[kg CO ₂ / kg H2]	
0%	0	0	
10%	0.93	5.3	
33%	3.07	18	

Tabelle 20: CO₂-Gehalt pro kg Wasserstoff

Die nachfolgende Tabelle zeigt den CO₂-Gehalt des Wasserstoffs, welcher bei der Firma Cabb bezogen wurde. Wir gehen von der Annahme aus, dass 10% des für den Chlor-Alkali Prozess verwendeten Stroms dem Wasserstoff zugeteilt werden.

Bezogene Menge	CO ₂ -Gehalt Wasserstoff	CO ₂ -Emissionen des hergestellten	
Wasserstoff [t]	[kgCO ₂ /kg H2]	Wasserstoffes [t]	
12.8	5.3	68	

Tabelle 21: CO₂-Gehalt des von der Firma Cabb bezogenen Wasserstoffs

Für die Anlieferung des bei der Cabb angefallen Wasserstoffs wurde ein Lastwagen eingesetzt, welcher den Trailer mit den Wasserstoffflaschen von Pratteln nach Brugg transportierte. Dabei sind auch CO₂-Emissionen angefallen, welche in der nachfolgenden Tabelle dargestellt sind.

Anteil CO₂-Emissionen durch die Anlieferung des bei der Cabb hergestellten und in Brugg verwendeten Wasserstoffs mittels Lastwagen:

	Strecke Fa. Cabb – Voegtlin - Meyer	Anzahl Fahrten	Km Total (hin und zurück)	Verbrauch / 100 km [l]	Umrechnungsfaktor «Tank to Wheel» und «Well to Tank»	CO ₂ [t]
Emissionen durch Anlieferung Fahrzeug	52 km	47	4888	32 I	3.18 kg CO ₂ / Liter Diesel	4.97

Tabelle 22: CO₂-Emissionen «Wheel to Tank» bei der Anlieferung mittels Trailer

Bemerkung:

Anlieferung mittels Trailer vom 01.01.2012 bis 31.12.2016

Total angelieferte Menge H2 hergestellt bei der Firma Cabb: 12.8 Tonnen

Auf Konzernstufe verwendet die Post für Diesel einen «Tank-to-Wheel»-Wert von 2.67 kg CO₂/Liter Diesel. Der Emissionsfaktor der gesamten Vorkette («Well-to-Tank») beträgt 0.51 kg CO₂/Liter Diesel (gemäss ecoinvent 2.2, 2010). Aus diesen beiden Werten ergibt sich dann ein Umrechnungsfaktor von 3.18 kg CO₂/Liter Diesel, welcher für die Berechnungen verwendet wurde.

Gesamtübersicht CO₂ Emissionen Brennstoffzellenpostauto und Dieselpostauto

Mit den Tabellen 23 und 24 ist ein direkter Vergleich der beiden Antriebsarten «Diesel» und «Brennstoffzelle» möglich. Der Begriff «Tank to Wheel» beschreibt die CO₂-Emissionen, welche beim eigentlichen Verbrennungsprozess des Kraftstoffes entstehen, während der Begriff «Well to Tank» den CO₂-Anteil bei der Herstellung des Kraftstoffes resp. des Wasserstoffes beschreibt.

CO₂-Emissionen Dieselpostauto (Verbrauch ca. 38 I Diesel/100 km)

	km Total	Verbrauch Diesel [l]	Diesel Emission- faktor [kg CO2/l Diesel]	Emission CO2 [t]
Tank to Wheel	1'370'136	520'652	2.67	1'390
Well to Tank	1'370'136	520'652	0.51	266
Total				1'656

Tabelle 23: CO₂-Emissionen beim Betrieb mit Dieselbussen für 1'370'136 km Kilometerleistung

CO₂-Emissionen Brennstoffzellenpostauto

	km Total	CO ₂ -Emission durch Elektroly- se sowie Strom- verbrauch für Einstellhalle [t]	CO ₂ -Ausstoss durch Anlieferung des Wasserstoffs auf Trailer [t]	Emission CO2 [t]
Tank to Wheel	1'370'136	0	0	0
Well to Tank	1'370'136	42.9	73	116
Total				116

Tabelle 24: CO₂-Emissionen Betrieb Brennstoffzellenpostauto für 1'370'136 km Kilometerleistung

Die Emissionen (Tank-to-Wheel) eines Brennstoffzellenfahrzeuges sind CO₂ frei, allerdings gibt es bei der Produktion des Stroms, der zur Herstellung von Wasserstoff verwendet wird, CO₂-Emssionen. Untenstehende Abbildung gibt einen Überblick über die vermiedene ausgestossene Menge CO₂ im Vergleich zum Betrieb eines herkömmlichen Dieselbusses. Bei einer gesamthaften Kilometerleistung von rund 1'370'000 km konnte unter Berücksichtigung der Herstellung des Wasserstoffes gegenüber einem Dieselbus mit gleicher km-Leistung rund 1540 t CO₂ vermieden werden.

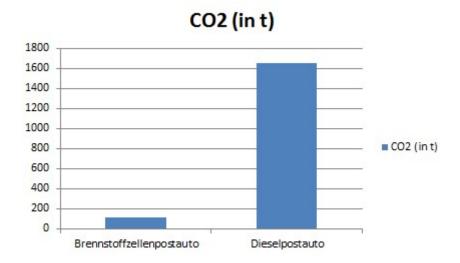


Abbildung 12: Darstellung CO₂-Emissionen der beiden Antriebskonzepte

3.3.10. Energiebilanz (Herstellung und Anlieferung Wasserstoff)

Wie in Kapitel 3.3.9 in Tabelle 18 bereits beschrieben, wurden total 102.5 Tonnen Wasserstoff (89.7 Tonnen durch Elektrolyse in Brugg und 12.8 bei der Fa. Cabb in Pratteln) hergestellt, resp. gewonnen.

Der Energieverbrauch für die Herstellung von Wasserstoff vor Ort in Brugg, als auch der produzierte Wasserstoff aus der Fa. Cabb, sowie die Einstellhalle zur Unterbringung der Fahrzeuge wird in den nachfolgenden Tabellen berechnet und dargestellt.

Übersicht bezgl. dem Energieverbrauch für die Wasserstoffproduktion und dem Unterbringen der Fahrzeuge in die Garage:

	Stromverbrauch [GWh]
Elektrolyse in Brugg	6.53
Einstellhalle	0.103
Total	6.63

Tabelle 25: Stromverbrauch für die Wasserstoffproduktion und Unterbringung der Fahrzeuge in der Einstellhalle (Heizung der Einstellhalle) der Fahrzeuge vor Ort in Brugg

Der Energieverbrauch des bei der Fa. Cabb durch die Chlor-Alkali-Elektrolyse gewonnen Wasserstoffes ist in der nachfolgenden Tabelle ersichtlich. Es ist der Energieverbrauch pro kg Wasserstoff ersichtlich. Dabei gelten die gleichen Annahmen wie in Tabelle 20.

Stromanteil für Wasserstoff der Produktion bei der Fa. Cabb	Stromverbrauch pro Tonne Wasserstoff	Energieverbrauch total bei einer Herstellung von 12.8 t Wasserstoff bei der Fa. Cabb
	[MWh/t]	[GWh]
0%	0	0
10%	10	0.128
33%	3	0.426

Tabelle 26: Annahmen Energieverbrauch Herstellung Wasserstoff bei der Fa. Cabb

Wie beschrieben wurde der Wasserstoff mittels Trailer von Pratteln nach Brugg transportiert. Der Energieverbrauch für diese Fahrten ist in der nachfolgenden Tabelle ersichtlich:

	Strecke Fa. Cabb - Voegtlin - Meyer	Anzahl Fahrten	Km Total (hin und zurück)	Verbrauch Diesel total bei 32 I / 100 km	Energie- Inhalt Diesel	Energieverbrauch total Anlieferung mittels Trailer [GWh]
				['J	[[[] [[] [] [] [] [] [] [] [] [] [] [] [[OVVII]
Energieverbrauch für Anlieferung	52 km	47	4888	1564	10.4	0.016

Tabelle 27: Energieverbrauch "Wheel to Tank" für Anlieferung mittels Trailer

Energie-Inhalt Diesel gem: https://de.wikipedia.org/wiki/Dieselkraftstoff [Dichte 0.53; 12.6 kWh/kg]

In den nachfolgenden beiden Tabellen sind nun die beide Energieverbräuche der Brennstoffzellen - und Dieselpostautos ersichtlich.

Energieverbrauch Brennstoffzellenpostauto:

km Total	Energie für Wasser- stoff Elektrolyse inkl. Einstellhalle [GWh]	Energie für Wasserstoff von Fa. Cabb [GWh]	Energie- verbrauch Total [GWh]	Primärenergie- verbrauch pro km [kWh/km]
1'370'136	6.63	0.29	6.92	5.0

Tabelle 28: Energieverbrauch für den Betrieb Brennstoffzellenpostauto

Energieverbrauch Dieselpostauto:

km Total	Verbrauch Diesel [l]	Energieinhalt Diesel Tank-to- Wheel [kWh/L]	Energieinhalt Diesel Well-to- Tank [kWh/L]	Energieverbrauch [GWh]	Primärenergie- verbrauch pro km [kWh/km]
1'370'136	520'652	10.4	2.0	6.45	4.7

Tabelle 29: Energieverbrauch für den Betrieb Dieselpostauto

Der Energieverbrauch des Brennstoffzellenpostautos zum Dieselpostauto ist ungefähr gleich. In Zukunft muss es bei der Elektrolyse als auch bei der Brennstoffzelle Verbesserungen geben, damit nicht nur der CO2-Ausstoss, sondern auch der Energieverbrauch günstiger als beim Dieselbus wird.

3.3.11. Fazit zum Brennstoffzellenpostauto

Es konnten wertvolle Erfahrungen im Umgang und im täglichen Betrieb mit solchen, in der Technologie noch nicht ausgereiften, Fahrzeugen gemacht werden. Der Erfahrungsaustausch mit Partnern und anderen Städten hat dazu beigetragen, dass Probleme zielgerichtet gelöst werden konnten.

Folgende Punkte gilt es auch im Hinblick auf die positive Aussenwirkung der Brennstoffzellenfahrzeuge zu erwähnen:

Gut temperierter Fahrgastraum

Linienbusse sind schlecht isoliert und somit kühlen die Fahrzeuge im Winter schnell aus und im Sommer überhitzt der Fahrgastraum sehr schnell. Postautos stehen sehr oft an den Endhaltestellen. Dort muss das Fahrpersonal den Motor abstellen, um Lärm- und Schadstoffemissionen zu vermeiden. Dadurch ist es nicht möglich, die Heizung oder die Klimaanlage über längere Zeit laufen zu lassen. Nicht so bei den Brennstoffzellenpostautos: Das Fahrpersonal konnte die Fahrzeuge an den Endhaltestellen emissionslos laufen lassen. Dies führte dazu, dass das Fahrpersonal und die Fahrgäste während der Wartezeit in einem angenehm temperierten Fahrzeug sitzen konnten. Dies wurde von allen sehr geschätzt.

Lärmreduzierung

Da es sich bei einem Brennstoffzellenpostauto um einen Elektrobus handelt, gibt es nur Wind- sowie Abrollgeräusche der Reifen. In Innenraum ist bloss noch die Lüftung und der Verkehr von draussen zu hören. Durch das Wegfallen des klassischen Verbrennungsgeräusches des Motors hat das Fahrpersonal einen komfortablen und lärmreduzierten Arbeitsplatz erhalten. Auch die Fahrgäste profitieren vom geräuscharmen Fahrgastraum. Zusätzlich hat PostAuto positive Rückmeldungen von Anwohnern erhalten, welche die deutlich leiseren Fahrzeuge schätzten.

3.3.12. Zukunft Brennstoffzellenpostauto

Der Gesetzgeber wird in den kommenden Jahren die Abgasgrenzwerte weiter verschärfen. Zugleich wird auch die Lärmreduktion wichtiger werden. Aus heutiger Sicht werden die Richtlinien in diesen Bereichen mit einem Verbrennungsmotor kaum oder nur mit sehr viel Aufwand erreicht werden können. Die heute auf dem Markt verfügbaren, rein batteriebetriebenen Busse sind für die geforderten Reichweiten für den Betrieb im öffentlichen Verkehr noch nicht ausreichend. Hinzu kommt, dass das zeitgleiche Laden vieler Batterien das derzeit vorhandene öffentliche Stromnetz stark belasten würde. Die Brennstoffzellentechnologie ermöglicht den Transportunternehmen, den Busbetrieb im gewohnten Rahmen aufrecht zu erhalten. PostAuto konnte beweisen, dass Dieselbusse durch mit Wasserstoff betriebene Brennstoffzellenbusse ersetzt werden können. Zusätzlich werden keine lokalen Emissionen ausgestossen und die Fahrzeuge sind leise unterwegs.

Ein mögliches Szenario besteht darin, dass sich die rein batteriebetrieben Busse und die Brennstoffzellenbusse den Markt aufteilen werden. Für kurze Strecken könnten rein batteriebetriebene Busse eingesetzt und zum Bedienen von längeren Strecken könnten Brennstoffzellen als Range Extender (Reichweitenausdehnung) eingebaut werden. Die Fahrzeuge würden somit mit Strom und Wasserstoff betankt.

3.4. Wasserstofftankstelle

Die Wasserstofftankstelle war Teil des CHIC-Projektes. Bei der Auslegung der Wasserstofftankstelle haben die Empa (Eidgenössische Materialprüfanstalt) und das PSI (Paul Scherrer Institut) PostAuto unterstützt. Nachdem das Grobkonzept der Wasserstofftankstelle bekannt war, hat PostAuto über ein Einladeverfahren Offerten bei möglichen Herstellern eingeholt. Dabei hat Carbagas die Ausschreibung gewonnen. Die Firma konnte mit dem nachhaltigsten und kostengünstigsten Konzept überzeugen. Carbagas selber bezog die Wasserstofftankstelle vom Mutterkonzern Air Liquide.

3.4.1. Bau der Wasserstofftankstelle

Um den Bau der Wasserstofftankstelle zu realisieren, mussten verschiedene Partner involviert werden.

Das Architekturbüro Tschudin + Urech wurde mit dem Bau der Wasserstofftankstelle beauftragt. Das Büro erstellte den Grundrissplan und begleitete die Bauarbeiten.

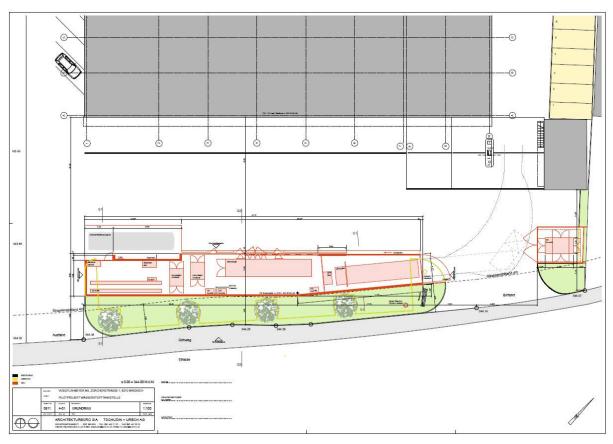


Abbildung 13: Grundrissplan Gelände Tankstelle

Um den Grundriss erstellen zu können, mussten das Architektenbüro und die Carbagas AG eng zusammenarbeiten. Die einzelnen Elemente mussten so positioniert werden, dass alle Anweisungen zur Arbeitssicherheit (z.B. Abstände zwischen den Containern etc.) sowie alle baulich erforderlichen

Massnahmen umgesetzt werden konnten. Die Gewichte, die Schwingeigenschaften sowie die Akustikwerte der Bauelemente mussten vorab bekannt sein. Beim Verdichten erzeugen die Kompressoren Schwingungen. Um die gewünschte Stabilität zu erreichen, sind die Kompressoren auf den Sockel betoniert worden. Zusätzlich wurden die Kompressoren soweit möglich akustisch isoliert. Der Elektrolyseur musste so installiert werden, dass es möglich war, die Türen des sich in einem Container befindlichen Elektrolyseurs ganz zu öffnen, damit der Zugang zu den Stacks möglich war. Auch dieser wurde auf einem Sockel positioniert. Die Dockingstation für die Wasserstofftrailer-Anlieferung musste so ausgelegt werden, dass der Lastwagen seinen Anhänger tauschen konnte. Dazu wurden die Schleppkurven (in der Abbildung 13 in grau) ermittelt. Der Hochdruckspeicher musste zwingend hinter einer Brandschutzwand positioniert werden. Diese Wand soll den Hochdruckspeicher vor der angrenzenden Strasse und umgekehrt schützen. Über dem Hochdruckspeicher und dem Trailer wurde jeweils eine Sprinkleranlage installiert, um im Brandfall die Speicher zu kühlen. Damit bei Betätigung der Sprinkleranlage das anfallende Wasser geschluckt werden konnte, musste der Wasserablauf (Kanalisation) angepasst werden. Unter der Wasserstofftankstelle wurden die Stromversorgungskabel und die Wasserrohre verlegt. Der lokale Stromversorger IBB stellte den dazugehörigen Trafograf rechts neben der Einfahrt auf. Ein Statiker hatte vorgängig die Belastungen des Grundrisses berechnet und daraufhin die Stärke des Bodens festgelegt. Weiter wurde für den Betankungsplatz ein spezieller Belag ausgesucht, der keine antistatische Entladung zulässt. Zu beachten ist, dass die Brandschutzbestimmungen kantonal geregelt sind. Alle anderen Bestimmungen sind national geregelt.

PostAuto reichte das Baugesuch für die Tankstelle am 29.08.2011 beim Stadtbauamt Brugg mit den folgenden Unterlagen ein:

Baugesuchformulare

- Grundbuchauszug
- 0811/3-01 Situationsplan Mst. 1:500
- Baueingabepläne Mst. 1:100: 0811/4-01 Grundriss; 0811/4-02 Fassaden / Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Anlagenbeschrieb

Gesuch Kanton Aargau

- 0811/3-01 Situationsplan Mst. 1:500 → 2-fach
- Baueingabepläne Mst. 1:100: 0811/4-01 Grundriss; 0811/4-02 Fassaden /Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Anlagenbeschrieb

Gesuch Brandschutzbewilligung (AGV) 1-fach

- 0811/3-01 Situationsplan Mst. 1:500
- Baueingabepläne Mst. 1:100; 0811/4-01 Grundriss; 0811/4-02 Fassaden /Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Brandschutzkonzept: 0811/4-04 Brandschutzkonzept/Berieselung Mst. 1:100
- Explosionsschutzdokument mit Ex-Zonenplan 0811/4-05 Mst. 1:200 und Sicherheitsblatt
- Anlagenbeschreibung

Gesuch AWA

- 0811/3-01 Situationsplan Mst. 1:500
- Baueingabepläne Mst. 1:100; 0811/4-01 Grundriss; 0811/4-02 Fassaden /Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Brandschutzkonzept: 0811/4-04 Brandschutzkonzept/Berieselung Mst. 1:100
- Explosionsschutzdokument mit Ex-Zonenplan 0811/4-05 Mst. 1:200 und Sicherheitsblatt
- Anlagenbeschreibung

Störverordnung (AVS) 1-fach

- 0811/3-01 Situationsplan Mst. 1:500
- Baueingabepläne Mst. 1:100; 0811/4-01 Grundriss; 0811/4-02 Fassaden /Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Formular Chemiesicherheit mit Liste Stoffbezeichnung
- Anlagenbeschreibung

Sonderfälle Entwässerung 1-fach

- 0811/3-01 Situationsplan Mst. 1:500
- Baueingabepläne Mst. 1:100; 0811/4-01 Grundriss; 0811/4-02 Fassaden /Querschnitt
- Kanalisation: 0811/3-02 Übersicht Kanalisation Mst. 1:500; 0811/4-03 Kanalisation Mst.1:100
- Anlagenbeschreibung

Es gab keine Einsprachen, so dass mit dem Bau ohne Verzug gestartet werden konnte.

3.4.2. Wasserstofftankstelle, Ex-Zonenplan und Explosionsschutzdokument

Für die Erstellung des Ex-Zonenplans und des Explosionsschutzdokuments beauftragte PostAuto das SVTI (Schweizer Verein für technische Installationen). Diese Dokumente können jedoch auch von einem anderem Anbieter erstellt werden.

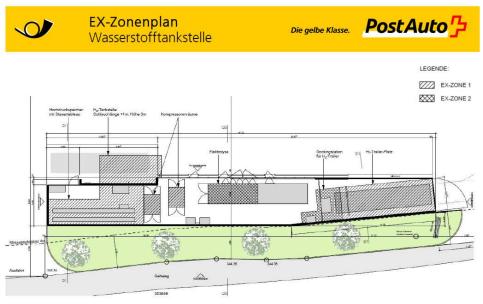


Abbildung 14: Ex-Zonenplan

Die SUVA hat den Ex-Zonenplan sowie das Explosionsschutzdokument kontrolliert. Der Ex-Zonenplan wurde an der Wasserstofftankstelle gut ersichtlich angebracht. Die beiden Zoneneinteilungen Ex-Zone 1 und Ex-Zone 2 beschreiben die Wahrscheinlichkeit, Wasserstoff anzutreffen.

- Ex-Zone 1 = im Normalbetrieb gelegentlich Wasserstoff anzutreffen
- Ex-Zone 2 = normalerweise keinen, oder nur kurzzeitig Wasserstoff anzutreffen

3.4.3. Konzept Wasserstofftankstelle

Die Wasserstofftankstelle wurde von der AirLiquide-Gruppe entwickelt. Das Konzept beruht auf einer modularen Bauweise, wobei die einzelnen Elemente von verschiedenen Herstellern angeliefert wurden. Die Firma AirLiquide hat diese zu einem funktionierenden System zusammengeführt und die dazugehörige Steuerung entworfen.

Kernstück der Tankstelle war eine Elektrolyse, welche vor Ort aus Wasser und Strom den benötigten Wasserstoff produzierte. Zwei Hochdruckkompressoren verdichteten den Wasserstoff auf mindestens 410 bar. In Hochdruckspeichern wurde der Wasserstoff dann gelagert, bis dieser an der Zapfsäule vollautomatisch in die Brennstoffzellenbusse getankt wurde. Um hohe Wasserstoffbezüge zu überbrücken, ist zusätzlich ein Trailer mit Wasserstoff an das System angeschlossen worden. Carbagas hat den Trailer überwacht, damit bei Engpässen die Wasserstofflieferungen an PostAuto rechtzeitig und ohne Unterbruch stattfinden konnte.

Von der Tankstelle gelangte der Wasserstoff über eine Schnellkupplung in den Tank des Fahrzeugs. Um die Betankungsdauer zu senken, kommunizierte das Fahrzeug mit der Tankstelle über eine Infrarotschnittstelle. Alle vorhandenen Daten der Tankstelle konnten jederzeit online abgerufen werden:

3.4.4. Anlagenübersicht

Die Anlage bestand im Wesentlichen aus den folgenden Komponenten:

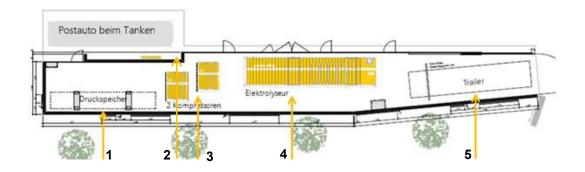


Abbildung 15: Übersicht Tankstelle inkl. Komponenten

1. Hochdruckspeicher

Der Hochdruckspeicher, resp. Hochdruckpuffer dient dem raschen Befüllen der Busse auf 350 bar. Der Hochdruckpuffer bestand aus 10 Stahlfaschen mit einem Inhalt von je ca. 1'200 Litern.

Pufferinhalt (Wasserinhalt): ca. 12'360 Liter
 Druck nach Füllung: 410 bar
 Gasinhalt gefüllt: 5000 Nm³

2. Zapfsäule

An der Zapfsäule kann man die Fahrzeuge mit 350 bar in weniger als 10 Minuten betanken.

3. Wasserstoff-Kompressoren

Zur Anwendung kamen Membrankompressoren, welche aufgrund eines statischen Dichtungsrings gefährliche H₂-Lecks verhindern konnten. Die sogenannte «Top-off Funktion» der Membrankompressoren erlaubte hohe Ansaugdrücke, sodass der bereits im H₂-Trailer vorhandene Druck für die weitere Kompression auf 410 bar bzw. 350 bar, wenn direkt über den Füllstutzen in die Busse komprimiert wurde, benützt werden konnte. Damit konnte zusätzliche Kompressionsenergie gespart werden.

Kompressoren-Typ: MembranAnzahl Kompressoren: 2 Stk.

- Kapazität pro Kompressor: 60Nm³/h bei 10 bar

4. Elektrolyseur

Der gesamte Elektrolyseur war in einem mobilen, herkömmlichen Container untergebracht und diente der Herstellung von Wasserstoff.

Masse (L x B x H): 12.2m x 2.5 m x 3 m

- Produktionsenergie H₂: 60Nm³/h

5. Anlieferung von Wasserstoff per Trailer

Zur Sicherstellung einer uneingeschränkten H₂-Versorgung der Busse auch bei Betriebsstillstand der Elektrolyse sowie für die sekundäre Versorgung der H₂-Tankstelle (d.h. für die Differenzmenge zwischen On-Site-Produktionskapazität und tatsächlichem Bedarf) erfolgte die Zuführung von H₂ aus einer externen Quelle mittels eines H₂-Trailers. Es wurde ein Trailer mit einem Nutzinhalt von mindestens 3'600Nm³ an die Anschlussstation angeschlossen.

Fassungsvermögen Trailer: grösser 3600Nm³

- Fülldruck: 200 bar

Die Betriebsbewilligung für die Wasserstofftankstelle wurde erst nach verschiedenen Abnahmen erteilt.

Folgende Abnahmen wurden durchgeführt:

01.771	
SVTI und SVGW	Abnahme der wasserstoffführenden Bauteile
Starkstrominspektorat	Isolierungen und Blitzableiter
AWA	Arbeitssicherheit
Amt für Wirtschaft u. Arbeit	
Baurechtsamt	Bau, Beschriftung usw.

Hinweis: Fast baugleich wie die Wasserstofftankstelle in Brugg ist die Wasserstofftankstelle in Oslo. Das Unternehmen Air Liquide hat beide Tankstellen entworfen und hat die gleichen Hauptkomponenten verwendet. Die Probleme an den Standorten Brugg und Oslo waren während der Projektlaufzeit sehr ähnlich.

3.4.5. Bezug Wasserstoff, Funktionsweise der Wasserstofftankstelle

Wasserstoff konnte von zwei unabhängigen Systemen bezogen werden:

1. Anlieferung des Wasserstoffs auf Trailern

Die H₂-Anlieferung erfolgte durch die Fa. Cabb in Schweizerhalle. Dort wird bei der Herstellung von Chlor über die Chlor-Alkali-Elektrolyse Wasserstoff als Nebenprodukt erzeugt. Dieser wurde in die auf dem Trailer befindlichen Wasserstoffspeicherflaschen auf bis zu 200bar befüllt und an der Wasserstofftankstelle in Brugg angeliefert und bis zum erforderlichen Einsatz gelagert.

2. Produktion Wasserstoff vor Ort

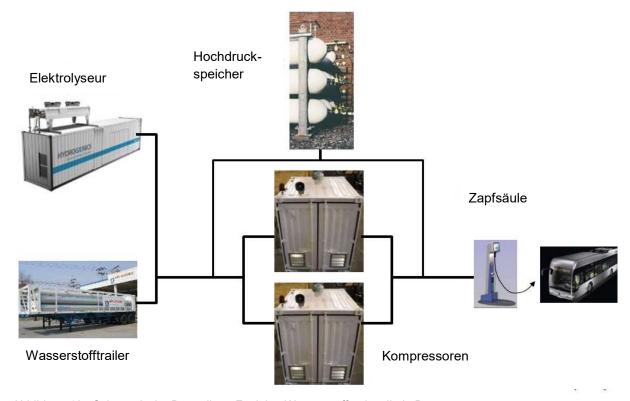
Die Produktion vor Ort wurde mittels eines Elektrolyseurs von Hydrogenics durchgeführt. PostAuto hat diesen Elektrolyseur nur geleast. Der Elektrolyseur produzierte mit bis zu 60Nm³/h Wasserstoff. Dafür wurde «naturemade basic»-Strom verwendet. Die gesamte Installation des Elektrolyseurs war in einem Container untergebracht und hatte die folgenden Masse:

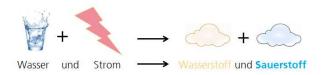
Länge : 12.2mBreite : 2.5mHöhe : 3.0m

Abbildung 17: Elektrolyseur

Abbildung 16: Wasserstofftankstelle in Brugg

3.4.6. Funktion der Wasserstofftankstelle




Abbildung 18: Schematische Darstellung Funktion Wasserstofftankstelle in Brugg

Druckverlauf

Im Elektrolyseur wurde Wasserstoff produziert. Der Elektrolyseur gab den Wasserstoff mit ca. 10 bar weiter an einen der beiden Kompressoren. Der Membrankompressor komprimierte den Wasserstoff über 2 Stufen von 10 bar auf 120 bar und anschliessend auf den endgültigen Druck von 410 bar. Der Wasserstoff wurde mit 410 bar im Hochdruckspeicher gespeichert. Das Betanken der Brennstoffzellenpostauto erfolgte mittels Überströmen mit 350 bar.

Elektrolyse

Der Elektrolyseur produziert Wasserstoff, indem er elektrischen Strom durch Leitungswasser fliessen lässt. Damit spaltet sich das Wasser in seine Elemente Wasserstoff und Sauerstoff auf. Der Wasserstoff wird komprimiert und im Hochdruckspeicher gelagert. Der Sauerstoff wird nicht weiter benötigt und über eine Öffnung an die Umgebungsluft abgegeben.

Bei dem von PostAuto geleasten Elektrolyseur handelte es sich um folgenden Typ: Alkali-Wasser-Elektrolyseur mit einer Produktionsleistung von 60Nm³/h (5.4 kg/ H2) Wasserstoff bei 10 bar.

3.4.7. Stromverbrauch und Produktionsmenge der Wasserstofftankstelle

Die Produktion vor Ort hat ca. 90% des Bedarfs abdecken können. 10% des getankten Wasserstoffs stammte aus der Anlieferung per Trailer.

In der nachfolgenden Grafik wird der monatliche Stromverbrauch der Wasserstofftankstelle dargestellt. In **Grün** wird der Nachtstrom und in **Rot** der Tagesstrom angezeigt.

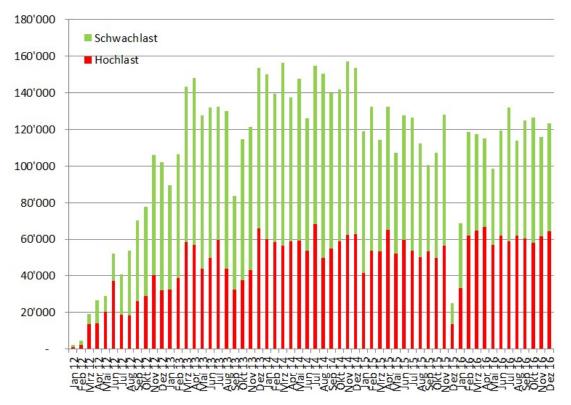


Tabelle 31: Darstellung monatlicher Stromverbrauch in Tag – und Nachtstrom

In der nachfolgenden Abbildung wird die vor Ort produzierte Menge Wasserstoff in kg pro Monat dargestellt. Der Verlauf der Grafik entspricht im Wesentlichen dem Verlauf des Stromverbrauchs.

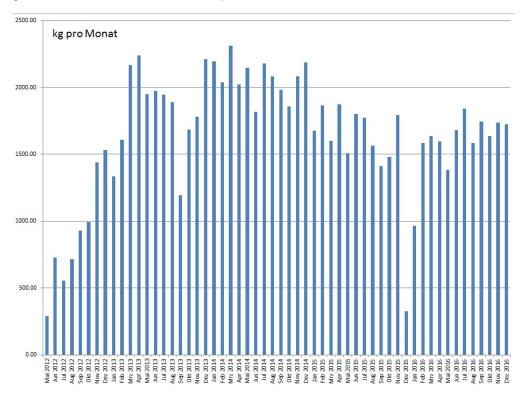


Tabelle 32: Produzierte Menge Wasserstoff

3.4.8. Störungen vor Ort

Die Bauteile der einzelnen Installationen und Geräte waren unterschiedlich störungsempfindlich. Die nachfolgende Tabelle soll einen groben Überblick der Bauteile und deren Auffälligkeiten geben:

Bauteil / Installation	Verwendung	Auffälligkeit / Verfügbarkeit
Elektrolyseur	H ₂ -Produktion	Unauffällig, stabiler Betrieb / 98.75% Verfügbarkeit
Trailer (Anbindung Dockingstation)	Passive Wasserstoffversorgung	Zu Beginn auffällig, anschlies- send stabiler Betrieb / mehr als 99% Verfügbarkeit
Hochdruckspeicher	Lagerung Wasserstoff	Unauffällig, stabiler Betreib / mehr als 99% Verfügbarkeit
Kompressoren	Aufpufferung (bis 400 bar) in Hochdruckspeicher	Sehr auffällig, instabiler Betrieb 93% Verfügbarkeit
Zapfhahn	Schnittstelle zu Fahrzeug	Unauffällig, stabiler Betrieb /

		mehr als 98% Verfügbarkeit
Sensoren	Sicherheits- und Zustandsele- mente	Zu Beginn auffällig, anschlies- send stabiler Betrieb / mehr als 99% Verfügbarkeit

Tabelle 33: Übersicht der Bauteile der Wasserstofftankstelle und deren Auffälligkeiten

3.4.9. Auswahl von Fehlerbildern

Kompressor

Das Bild unten zeigt einen Riss im Kopf des Kompressors. Wie es zu diesem Riss kam, ist nicht bekannt. Eine Fehlbedienung seitens PostAuto ist auszuschliessen.

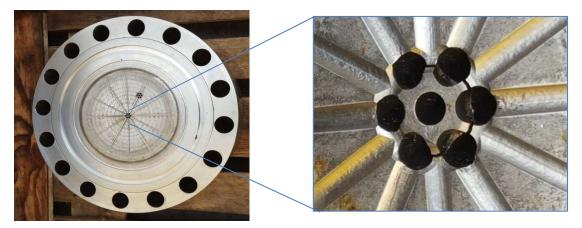


Abbildung 19: Riss im Kompressorenkopf

Membrane

Die Membrane des Herstellers PDC erwies sich als wartungsintensiv und musste oft gewechselt werden.

Abbildung 20: Membrane alt und neu

3.4.10. Herausforderungen bei der Wasserstofftankstelle

Die grösste Herausforderung der Wasserstofftankstelle waren die Kompressoren. Diese waren extrem anfällig und sind immer wieder ausgefallen.

Kompressoren

Die beiden baugleichen Membran-Kompressoren stammten vom amerikanischen Hersteller PDC. Beide Kompressoren waren sehr anfällig, wiesen jedoch überraschenderweise nicht dieselben Fehlerbilder auf. Einer der beiden verlor über längere Zeit sehr viel Öl, welches sich auf dem Boden verteilte, wobei die Leitungen glücklicherweise verschont blieben. Entgegen den Herstellerangaben mussten bei beiden Kompressoren die Membranen sehr oft gewechselt werden. Auch musste der Betriebsdruck entgegen der Herstellerangaben für einen ruhigeren Lauf massiv niedriger eingestellt werden. Einer der beiden Kompressoren erlitt innerhalb eines Betriebsjahres zweimal Totalschaden in Form eines Kolbenbruches. Obwohl PostAuto keinen Bedienungsfehler gemacht hat, waren Carbagas und PDC nicht bereit, die hohen Kosten (mehrere Zehntausend Franken) zu tragen. Als der gleiche Kompressor erneut einen Totalschaden erlitt, wurde der Kompressor nach langen Verhandlungen nicht mehr instandgesetzt. Denn die Verantwortlichen konnten keine Garantie abgeben, dass der Kompressor nicht erneut einen Totalschaden erleiden würde. Letztlich war niemand bereit, die angefallenen Kosten von ca. 50'000 CHF zu bezahlen, sie gingen zulasten von PostAuto.

Messgenauigkeit

In Brugg wurde der gasförmige Wasserstoff vom Hochdruckspeicher der Tankstelle mittels Überströmen in die Wasserstofftanks der Brennstoffzellenpostautos geführt. Durch die hohen Druckunterschiede zwischen Hochdruckspeicher der Wasserstofftankstelle und dem «leeren» Wasserstofftank des Fahrzeuges entstanden beim ersten Überströmen hohe Druckspitzen. Diese hohen Druckspitzen wirkten in den ersten Millisekunden und konnten von den Messgeräten nicht erfasst werden. Hinzu kommt, dass das Überströmen zu schnell ändernden Druckverhältnissen führte und sich durch die entstehende Reibung das Gas (nicht gleichmässig) erwärmte. Schliesslich ist Wasserstoff das kleinste Element von allen. Diese Faktoren führen dazu, dass das genaue Messen von Wasserstoff noch nicht möglich ist. Die in diesem Bericht aufgezeigten Messergebnisse weisen deshalb eine Genauigkeit von ca. +/- 5 bis 10% auf.

Reinheit

Der getankte Wasserstoff musste eine bestimmte Reinheit (Richtlinie J2719) aufweisen. Diese Reinheit wird in der Gasindustrie und im Automotivbereich unterschiedlich dargestellt. Die Reinheit, welche heute von den Fahrzeugherstellern gefordert wird, ist sehr hoch und kann bei genauer Betrachtung vermutlich nicht eingehalten werden. Ausserdem wurde der Wasserstoff vor Ort produziert. Somit müsste laufend eine Gasanalyse stattfinden. Weltweit gibt es nur sehr wenige autorisierte Labors, welche diese sehr aufwendige und kostenintensive Analyse durchführen können.

Im Projekt in Brugg hat die Firma Carbagas vereinzelt Wasserstoffproben genommen und selber analysiert.

3.4.11. Ergebnisse aus dem Betrieb der Wasserstofftankstelle

Anlieferung Wasserstoff mit Trailern

Die Anlieferung des Wasserstoffs hat im Allgemeinen sehr gut funktioniert. Die Bestellung eines neuen Trailers erfolgte automatisch, indem der Druck des Trailers stets überwacht wurde. Unterschritt dieser ein bestimmtes Druckniveau wurde eine automatische Bestellung ausgelöst. Für das Wechseln des Trailers braucht es geschultes Personal. In Brugg war das Fahrpersonal des Trailertransports dafür zuständig.

Produktion (Elektrolyse)

Die Produktion von Wasserstoff mittels Elektrolyse vor Ort hat sehr gut funktioniert. Die dazugehörige Technik für die Herstellung scheint ausgereift zu sein. Über die 5 Jahre Projektlaufzeit hat die Elektrolyse keine besonderen Auffälligkeiten aufgezeigt. Die Wartungen sind problemlos verlaufen. Die involvierten Personen haben die Durchführung der Elektrolyse als einfachen Ablauf wahrgenommen.

Kompressoren

Die Elektrolyse produziert den Wasserstoff mit ca. 10 bar. Um den Hochdruckspeicher zu befüllen, muss ein Druck von 410 bar erreicht werden. Dies wurde mit einem Kompressor (Verdichter) über zwei Stufen erreicht: Elektrolyse: 10 bar → Erste Stufe: 120 bar → Zweite Stufe: 410 bar

Schon bei der Planung der Wasserstofftankstelle wurde der Kompressor als technischer Schwachpunkt erkannt. Um ein redundantes System zu haben, ist ein zweiter Kompressor eingeplant worden. Beide Kompressoren waren sehr auffällig, hatten aber unterschiedliche Fehlerbilder. Der Wartungsaufwand war sehr gross, eine Wechselbelastung (Produktion auf Bedarf) ist für diese Kompressoren nicht empfehlenswert. Die Verfügbarkeit der Tankstelle hing von den Kompressoren ab.. Durch den Einbau eines zweiten Kompressors konnte die Verfügbarkeit der Tankstelle erhöht werden. Die Technik hat sich während der Projektlaufzeit kaum verbessert und es bestand nur wenig Willen seitens der Hersteller, an diesem Zustand etwas zu ändern. Die Redundanz ermöglichte lediglich, einen Kompressoren zu reparieren, während der andere in Betrieb war.

3.4.12. Fazit zur Wasserstofftankstelle

Das Betreiben einer Wasserstofftankstelle mit Produktion vor Ort ist möglich. Die Technik gewisser Bauteile ist jedoch noch sehr pannenanfällig, und man benötigt viel Know-how seitens der Gasindustrie. Unsere Empfehlung ist daher, den notwendigen Wasserstoff als Massenprodukt (vergleichbar zu Diesel) einzukaufen und auf einen eigenen Betrieb einer Wasserstofftankstelle zu verzichten.

3.4.13. Zukunft der Wasserstofftankstelle

Ein Weiterbetrieb der Wasserstofftankstelle ohne einen weiterführenden Betrieb der Brennstoffzellenpostautos rechnet sich nicht. Die Standkosten sind zu hoch. Das Öffnen der Tankstelle für den Privatverkehr geht aus folgenden Gründen nicht:

1. An der Tankstelle in Brugg kann nur bis 350 bar betankt werden. Die meisten Autos werden mit 700 bar betankt. Für die Aufrüstung wären zusätzliche Investitionen in die Wasserstofftankstelle nötig. Zudem müssten auch die Wartungskosten übernommen werden.

2. Air Liquide hat die Betankung bis 350 bar für Autos nachträglich verboten. Um eine Freigabe von Air Liquide zu erhalten, müsste PostAuto 7'000-10'000 CHF für ein Software Update bezahlen. Dazu ist PostAuto nicht bereit.

Die Wasserstofftankstelle in Brugg wurde nach Projektende vollständig zurückgebaut. Die Elektrolyse ging zurück an Carbagas und die beiden Kompressoren wurden verschrottet.

Coop wird nach eigenen Angaben in den kommenden Jahren das Tanken von Wasserstoff an den bereits vorhandenen Coop-Tankstellen ermöglichen. PostAuto wurde eingeladen, anzugeben welche Coop-Tankstellenstandorte am attraktivsten sind (Nähe zu den Postauto-Betriebshöfen). Dabei stellte sich heraus, dass mit einer späteren Kooperation zwischen PostAuto und der Coop eine Win-Win-Situation entstehen könnte. So könnte Coop an seiner Tankstelle die Produktionsmenge an Wasserstoff erhöhen, was den Preis senken würde. Für PostAuto ist die Anlieferung von Wasserstoff (wie der Einkauf von Diesel als Massenware) die einfachste und finanziell beste Variante zum Bezug dieses Treibstoffs.

3.4.14. Mobile Wasserstofftankstelle

Die mobile Wasserstofftankstelle besteht aus einer Konstruktion mit Zapfhahn und herkömmlichen Trailern. Die Einrichtung wurde anfangs als Zwischenlösung während des Baus der stationären Wasserstofftankstelle entwickelt und später für verschiedene Anlässe wie das World Economic Forum (WEF) oder das Filmfestival Locarno verwendet. Zeitweise hat PostAuto die Anlage an andere Brennstoffzellenbusprojekte vermietet. Die Anlage funktioniert nach dem Prinzip einer Überströmungsanlage. Die Befüllung der Fahrzeuge erfolgte mittels Kaskaden-Befüllung.

Abbildung 21: Mobile Wasserstofftankstelle hier im Einsatz am WEF in Davos

4. Kosten

Nachfolgend ein grober Überblick über die Kosten:

Investition	Anzahl	Preis pro Stück		gesamt	
Brennstoffzellenpostauto (mit Wartung HV und H2 Bauteile)	5	1'800'000	<u>Euro</u>	9'000'000	<u>Euro</u>
Wasserstofftankstelle (mit Bau Grund, Zuleitungen,)	1	2'200'000	CHF	2'200'000	CHF
Einstellhalle (Umbau)	1	100'000	CHF	100'000	CHF

Unterhalt	
Brennstoffzellenpostauto	Hierzu wurde eine Kilometerpauschale mit EvoBus festgelegt:
(Wartung konventionelle Bauteile: z.B. Bremsen,	
Türen,)	Die Abrechung erfolgte jeweislam Monatsende
Wasserstofftankstelle	Diese Dienstleistung wurde durch einen monatlichen Betrag an die
(Wartung und Service)	Carbagas abgedeckt.

Miete	
Wasserstofftrailer	Der Wasserstofftrailer ist Eigentum der Carbags
Elektroyseur	Die Elektrolyse ist Eigentum der Carbagas

Strom	
Wasserstofftankstelle	Der Stromverbrauch wurde zu ca. 95% an die Carbagas weiterverrechnet. Der durchschnittliche Stromverbrauch war ca. 130'000
	kWh/Monat
Einstellhalle	Je nach Jahreszeit unterschiedlich. Durchschnittlicher Jahresverbrauch ca.
(Heizen der Brennstoffzelle bei kalten Aussentemp.)	300 CHF/Monat. Diese Position wird bei zukünfitgen Projekten entfallen, da die Brennstoffzellen der neuen Generationen nicht mehr beheizt werden müssen.

Vergleich der Treibstoffkosten	Verbrauch auf 100km	Kosten pro km
Dieselbus (Verbrauch gleiches Fzg-Modell in der Region)	38 Liter Diesel	Säulenpreis - anteilsweise Mineralölsteuer
Hinweis: TU sind teilweise von der Mineralölsteuer befreit, somit ist der Dieselpreis ca. 0.58 Rp. günstiger als der Säulenpreis		58 Rp. günstiger als der Säulenpreis
Brennstoffzellenpostauto	8 kg-H2	*

^{*} je nachdem welcher Umfang für die Berechnung des Wasserstoffpreises ergeben sich unterschiedliche Wasserstoffpreise

Anlieferung + Produktion vor Ort

Anlieferung + Produktion vor Ort + Miete Trailer + Miete Elektrolyseur

Anlieferung + Produktion vor Ort + Miete Trailer + Miete Elektrolyseur + Dienstleistung Tankstelle

 $Anlie ferung + Produktion \ vor \ Ort + \ Miete \ Trailer + \ Miete \ Elektrolyseur + \ Dienstleistung \ Tankstelle + Ersatzteile$

 $An lie ferung + Produktion \ vor \ Ort + Miete \ Trailer + Miete \ Elektrolyseur + Dienstleistung \ Tankstelle + Ersatzteile + Aschr. \ Tanke \ Tankstelle + Dienstleistung \ Tankstelle + Ersatzteile + Aschr. \ Tankstelle + Dienstleistung \ Dienstleistung$

Hinweis: die Kosten sind nicht abschliessend, diverse andere Kosten kommen hinzu (Strom, Inspektionen,...), sie geben einen groben Überblick

Neu: wenn Wasserstoff als Massenprodukt eingekauft werden würde: Preisspanne zwischen 7.50 - 10.00 CHF/kg-H2 Mit dem gleichem Verbrauch von 8 kg-H2/100km ergeben sich folgende Kosten: 0.60 - 0.80 CHF/km

5. Sicherheit auf dem Areal

5.1. Rettungsplan

In Zusammenarbeit mit der Feuerwehr hat PostAuto einen Evakuierungsplan erstellt. Bei einem Vorfall vor Ort wissen die Beteiligten, wo die nötigen Schlüssel hinterlegt sind. Weiter ist beschrieben, wie die Sprinkleranlage zu betätigen ist, wo die Ex-Zonen sind und wo Hochspannung anzutreffen ist. Mit dem Fahrpersonal wurde eine Evakuation des kompletten Busdepots erprobt. Dazu wurden die Fahrzeuge auf dem grossen Parkplatz der benachbarten Kantonspolizei abgestellt. Im Bild unten ist der Evakuierungsplan dargestellt.

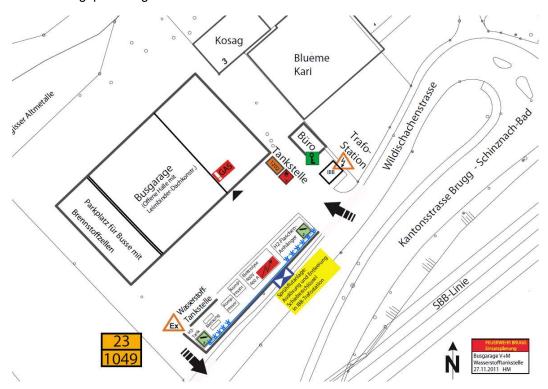


Abbildung 22: Rettungsplan / Konzept

6. Öffentlichkeitsarbeit

Während der Planung des Projektes wurde eingehend darüber diskutiert, wie der Auftritt der neuen Technologie kommuniziert und in der Öffentlichkeit dargestellt werden sollte. Man entschied sich, die Fahrzeuge von aussen zu beschriften und den Fahrgast nicht detaillierter über die neue Technologie zu informieren. Schon sehr bald stellte sich heraus, dass Fahrgästen und Anwohnern das «geräuscharme» Postauto auffiel. Während des Projektverlaufs gab es sehr viele positive Kundenreaktionen. Die Fahrgäste haben Ausfälle der neuen Technik toleriert. Negative Rückmeldung, wonach die Brennstoffzellenpostautos zu teuer sind oder dass die Billette billiger werden sollten, gab es kaum. Zu Beginn des Projektes war eingeplant, die Fahrzeuge nur unter der Woche fahren zu lassen. Schon in den ersten Einsatzwochen wurde jedoch beobachtet, dass immer mehr Fahrgäste sich am Wochen-

ende Zeit nahmen und eigens nach Brugg kamen, um mit einem Brennstoffzellenpostauto zu fahren. PostAuto entschied daraufhin, die Fahrzeuge auch an den Wochenenden einzusetzen.

Auch andere nutzten die Ausstrahlung des Projektes. In den Jahren 2013 und 2014 bedienten zwei Brennstoffzellenpostautos das WEF in Davos als Shuttlebusse. In der nachfolgenden Abbildung ist Klaus Schwab (Gründer des Weltwirtschaftsforums) mit seiner Frau zu sehen. Mit dem Shuttleservice konnte PostAuto einen Beitrag leisten, um den Verkehr in Davos zu reduzieren.

Abbildung 23: Auftritt Brennstoffzellenfahrzeug von PostAuto in Davos

6.1. Interessengruppen

Das Projekt erreichte sehr viele Interessensgruppen. Schüler, Studenten, Forschende, Industrievertreter, Transportunternehmen (auch internationale), Verbände, Reporter und viele weitere besuchten das Projekt. In den ersten Jahren waren regelmässig Gruppen vor Ort. Die Führungen waren in die Sequenzen Begrüssung vor Ort, Anschauen der Wasserstofftankstelle und der Einstellhalle, kurze Präsentation allgemein, kurze Fahrt mit einem Brennstoffzellenpostauto, Anschauen des Fahrzeuges und des Betankungsvorgangs gegliedert.

Die Einstellhalle für die Brennstoffzellenpostautos und die Wasserstofftankstelle befanden sich auf dem gleichen Grundstück, wie in Abbildung 24 dargestellt.



Abbildung 24: Einstellhalle und Wasserstofftankstelle

6.2. Medienberichte

Das Brennstoffzellenpostauto hat grosse Aufmerksamkeit in den nationalen und internationalen Medien erhalten. Nachfolgend eine Liste mit ein paar Beispielen von Artikeln.

Medien	Titel	Datum
24 heures	Le bus de futur roule à Brugg	29. August 2012
Aargauer-Zeitung	Probefahrt mit dem Wasser- stoff-Postauto	17. April 2013
Aqua & Gas	Ruhige Fahrt dank Wasserstoff	2014
Efficience 21	Interview mit Projektleiterin Nikoletta Seraidou	8. Oktober 2014
SRF Regionaljournal Aargau- Solothurn	Innovationsprojekt knackt eine Million Kilometer-Marke	6. August 2015
Aargauer-Zeitung	Busse knacken die Millionen- Marke	7. August 2015
Aargauer-Zeitung	Wasserstoff-Zeitalter ist vorbei – vorerst	2. Februar 2017
DWV-Magazin	Schweizer Projekt beendet	Februar 2017

Tabelle 34: Überblick bezgl. veröffentlichter Berichte in den verschiedenen Medien

Auszug aus der Finale Brochure CHIC Ausgabe Juni 2016

6.3. Auszeichnung

Das Bundesamt für Energie hat das Brennstoffzellenpostauto-Projekt im Jahre 2013 mit dem Watt d'Or Preis ausgezeichnet. Dank dieser Auszeichnung haben weitere Interessengruppen den Betrieb der Brennstoffzellenpostautos wahrgenommen. Dadurch entstand ein Austausch mit verschiedenen Interessengruppen.

Abbildung 25: Impressionen diverser Auszeichnungsanlässe

7. Diskussion, Würdigung der Ergebnisse und Erkenntnisse

PostAuto hat beweisen können, dass ein lokal emissionsfreier öffentlicher Verkehr heute schon möglich ist. Die (Brennstoffzellen-) Technologie ist vorhanden und ab sofort einsetzbar. Noch nicht ganz geklärt ist die Frage, wie diese Technologie zum weiter verbreiteten Einsatz kommen soll. Die Fahrzeugpreise sind in den letzten 5 Jahren deutlich gefallen. Sie bewegen sich zurzeit knapp über dem Anschaffungspreis eines Diesel-Hybrid-Busses. Die hohen Wartungskosten sind nach wie vor ein Handicap, was einen rentablen Betrieb beinflusst. Um diese Technologie einsetzen zu können, muss jemand bereit sein, die Mehrkosten gegenüber einem herkömmlichen Dieselbus zu tragen. Naheliegend wäre, dass der Besteller der Leistung für diese Lücke aufkommen würde. Der Besteller ist in der Regel der Kanton. Weiter müsste die Wasserstoffversorgung flächendeckend gewährleistet sein. Hier könnten sich Tankstellenbetreiber wie bspw. COOP auf dem Markt positionieren.

Rahmenbedingungen ändern sich

Durch eine immer strengere Gesetzgebung im Bereich der Abgasreduzierung und der Lärmreduzierung stellt sich die Frage, welche Antriebsarten künftig noch tragbar sind. Der Verbrennungsmotor mit der immer aufwendiger werdenden Abgasnachbehandlung ist nahe an seiner Umsetzungsgrenze angekommen. Auch das Verbrennungsgeräusch wird immer aufwendiger gedämpft. Es bleibt die Elektromobilität. Diese kann für kurze Strecken mit rein batteriebetriebenen Fahrzeugen umgesetzt werden. Wenn man an der gleichen Flexibilität wie bei einem Dieselbus festhalten möchte, dann bleibt aus heutiger Sicht nur die Technologie mit der Brennstoffzelle.

Treibstoffabhängigkeiten und Kosten

Die fossilen Treibstoffe stehen begrenzt zur Verfügung. Durch den Bezug dieser Treibstoffe begibt man sich in die Abhängigkeit von verschiedenen exportierenden Ländern und muss marktbedingte Preisschwankungen in Kauf nehmen. Der Preis von fossilen Treibstoffen kann kaum aus der Schweiz beeinflusst werden. Um diese Abhängigkeiten zu umgehen, ist der Aufbau einer Wasserstoffinfrastruktur eine heute schon mögliche Lösung. Wie im Projekt ersichtlich wurde, waren die Kosten zu Beginn sehr hoch. Während den 5 Jahren sind die Kosten gesunken. Zurzeit sind fossile Treibstoffe günstig auf dem Markt erhältlich. Falls sich das nicht ändert, bleibt es vorderhand schwierig, eine Umstellung umzusetzen.

Kostentoleranz

Während der Projektlaufzeit haben viele Interessenten nach den Kosten und der Höhe der Fördergelder gefragt. Obwohl diese im Millionenbereich lagen, wurde dies nicht als «Verschwendung», sondern als Investition in die Zukunft betrachtet. Die Vorstellung, unabhängig von fossilen Treibstoffen zu sein und der damit zusammenhängende Ausbau von Arbeitsplätzen in der Schweiz voranzutreiben, wurde als gutes Konzept bewertet. Die hohen Investitionskosten und die verwendeten Fördergelder wurden ausserdem als gerechtfertigt bezeichnet.

8. Schlussfolgerungen

Das Projekt in Brugg war ein Erfolg. PostAuto hat zusammen mit seinen Partnern beweisen können, dass Dieselbusse durch Busse ersetzt werden können, die mit Wasserstoff betrieben werden. Somit würde einer lokal emissionsfreien Mobilität kaum noch etwas im Wege stehen. Die Kooperation mit den Partnern war während des Projekts unterschiedlich fortschrittlich. Der Tankstellenhersteller beispielsweise bewegte sich bei der Weiterentwicklung der Anlage sehr langsam und versuchte seine Entwicklungskosten auf PostAuto zu überwälzen.

Abbildung 26: Grafische Darstellung Ersatzteilverfügbarkeit inkl. Lücke 2019 und Forecast

Zu erwähnen ist, dass der Fahrzeughersteller während der Projektlaufzeit seine Strategie änderte. Demnach sanken die Wartungskosten nach Ablauf des CHIC-Projektes nicht wie anfänglich angedeutet. Weiter wurde der neue angekündigte Brennstoffzellenbus für 2017 auf die Zeit vermutlich nach 2020 verschoben. Die Ersatzteilversorgung konnte ausserdem nur für zwei weitere Jahre (2017 und 2018) garantiert werden, sodass eine Lücke im Jahr 2019 entstehen würde.

Da mit den vorhanden Brennstoffzellenbussen keine neuen Erkenntnisse gewonnen werden können, hat sich PostAuto entschieden, das Projekt nach Ablauf der regulären Projektlaufzeit zu beenden. PostAuto wird weiterhin aktiv den Markt von Brennstoffzellenbussen beobachten und die entstandenen internationalen Beziehungen weiter pflegen.

9. Ausblick, nächste Schritte nach Projektabschluss

Die Elektromobilität wird in den kommenden Jahren einen starken Aufschwung erleben. Dabei werden allmählich neue Technologien den heutigen Verbrennungsmotor verdrängen. Die Antriebe von batteriebetriebenen Bussen werden auch während des Betriebs Energie aufladen. Dazu könnte das zum Teil heute schon vorhandene Oberleitungsnetz der Trolleybusse verwendet werden. Die Trolleybusse wiederum werden immer grössere Strecken ohne Oberleitungen zurücklegen können. Dies dient dem Stadtbild und zusätzlich könnte der Bau von teuren Oberleitungen vermieden werden.

Das Streckenprofil von PostAuto umfasst hauptsächlich Überlandfahrten. Dies führt dazu, dass das Zwischenladen der Fahrzeuge kaum umsetzbar ist. Das Laden der Fahrzeuge in den Depots ist nur begrenzt möglich. Rein batteriebetriebene Busse brauchen pro Bus 63-125 Ampere. Somit können pro Garage nur 1-3 batteriebetriebene Busse zeitgleich geladen werden. Der Ausbau der Elektroinstallationen wird nur begrenzt möglich sein.

Folglich wird sich aus heutiger Sicht die Brennstoffzelle durchsetzen. Vielleicht wird diese als Range Extender (Reichweiten-Verlängerung) ihren Einsatz in der Mobilität finden.

10. Schlusswort

PostAuto ist für das entgegengebrachte Vertrauen und die Unterstützung durch die verschiedenen Partner sehr dankbar. Gemeinsam konnte aufgezeigt werden, dass ein Wandel in der Mobilität schon heute möglich ist. Das Projekt war eine Bereicherung in vieler Hinsicht. Der ÖV konnte beweisen, dass emissionsfreier Busverkehr ohne Komforteinbussen möglich ist. Die lokale Bevölkerung konnte selber täglich an einem wegweisenden Projekt teilhaben. Mit viel Freude haben wir über die Projektlaufzeit unzähligen Besuchergruppen das Projekt vorgestellt und haben parallel viele Schülerarbeiten und akademische Projekte begleitet. Durch den regen Austausch der verschiedenen Gruppen entstanden neue Ideen. Wir freuen uns, einen wichtigen Beitrag zur emissionsfreien Mobilität geleistet zu haben.

11. Abbildungsverzeichnis

Abbildung 1: Übersicht über verschiedene Brennstoffzellenprojekte	14
Abbildung 2: Höhenprofil Linie Nr. 1606	16
Abbildung 3: Ex Zonenplan Einstellhalle	17
Abbildung 4: Darstellung der verschiedenen getroffenen Massnahmen	18
Abbildung 5: Vorhandene Anschlüsse bezgl. Kaltstartverhinderung	18
Abbildung 6: Eines der fünf Brennstoffzellenpostautos bei der Einweihung	20
Abbildung 7: Technischer Aufbau des Citaro FuelCELL-Hybrid Brennstoffzellenbusses	20
Abbildung 8: Funktion Brennstoffzelle inkl. kurzer Beschreibung	22
Abbildung 9: Übersicht der verschiedenen Clusters	23
Abbildung 10: Betankungsreihenfolge	24
Abbildung 11: Anschlusspositionen inkl. Detail Befüllungsstutzen mit Infrarotstelle	24
Abbildung 12: Darstellung CO ₂ -Emissionen der beiden Antriebskonzepte	36
Abbildung 13: Grundrissplan Gelände Tankstelle	40
Abbildung 14: Ex-Zonenplan	42
Abbildung 15: Übersicht Tankstelle inkl. Komponenten	43
Abbildung 16: Wasserstofftankstelle in Brugg	45
Abbildung 17: Elektrolyseur	45
Abbildung 18: Schematische Darstellung Funktion Wasserstofftankstelle in Brugg	46
Abbildung 19: Riss im Kompressorenkopf	49
Abbildung 20: Membrane alt und neu	49
Abbildung 21: Mobile Wasserstofftankstelle hier im Einsatz am WEF in Davos	53
Abbildung 22: Rettungsplan / Konzept	55
Abbildung 23: Auftritt Brennstoffzellenfahrzeug von PostAuto in Davos	56
Abbildung 24: Einstellhalle und Wasserstofftankstelle	56
Abbildung 25: Impressionen diverser Auszeichnungsanlässe	58
Abbildung 26: Grafische Darstellung Ersatzteilverfügbarkeit inkl. Lücke 2019 und Forecast	60
12. Tabellenverzeichnis	
12. Tabelleliverzeichnis	
Tabelle 1: Anzahl und Varianten der Gefässgrössen in der PostAuto Flotte	7
Tabelle 2 Anzahl Postautos nach Hersteller	7
Tabelle 3. Darstellung bezgl. Reichweite pro Tankfüllung im Verhältnis zu schädlichen	
Umwelteinflüssen	8
Tabelle 4: Übersicht Betreiberstädte mit der zugehörigen Anzahl Fahrzeugen und Hersteller	11
Tabelle 5: Übersicht Tankstellenkonzepte inkl. techn. Details der verschiedenen Teilnehmer	12
Tabelle 6: Beispiel einer öffentlichen Auswertung der Universität Stuttgart Ende August 2015 62/76	13

Tabelle 7: Linienfahrplan Linie 1606	16
Tabelle 8: Darstellung Stromverbrauch der Fahrzeuge in der Einstellhalle	19
Tabelle 9: Übersicht technische Daten Mercedes Benz Citaro O 530 Brennstoffzellen - Hybrid	21
Tabelle 10: Verbrauch der einzelnen Fahrzeuge pro Monat	25
Tabelle 11: Verbrauchswerte in der Übersicht	26
Tabelle 12: Laufleistung resp. Verfügbarkeit aller fünf Brennstoffzellenfahrzeuge	28
Tabelle 13: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 274	29
Tabelle 14: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 275	29
Tabelle 15: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 276	30
Tabelle 16: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 277	30
Tabelle 17: Laufleistung resp. Verfügbarkeit Brennstoffzellenfahrzeug Nr. 278	31
Tabelle 18: Übersicht produzierte Menge Wasserstoff nach Herstellungsort	32
Tabelle 19: Stromverbrauch und «CO ₂ -Gehalt» des verwendeten Stroms für die Wasserstoffproduktion vor Ort in Brugg	32
Tabelle 20: CO ₂ -Gehalt pro kg Wasserstoff	33
Tabelle 21: CO ₂ -Gehalt des von der Firma Cabb bezogenen Wasserstoffs	33
Tabelle 22: CO ₂ -Emissionen «Wheel to Tank» bei der Anlieferung mittels Trailer	34
Tabelle 23: CO ₂ -Emissionen beim Betrieb mit Dieselbussen für 1'370'136 km Kilometerleistung	35
Tabelle 24: CO ₂ -Emissionen Betrieb Brennstoffzellenpostauto für 1'370'136 km Kilometerleistung	35
Tabelle 25: Stromverbrauch für die Wasserstoffproduktion und Unterbringung der Fahrzeuge in de Einstellhalle) der Fahrzeuge vor Ort in Brugg	
Tabelle 26: Annahmen Energieverbrauch Herstellung Wasserstoff bei der Fa. Cabb	
Tabelle 27: Energieverbrauch "Wheel to Tank" für Anlieferung mittels Trailer	38
Tabelle 28: Energieverbrauch für den Betrieb Brennstoffzellenpostauto	38
Tabelle 29: Energieverbrauch für den Betrieb Dieselpostauto	38
Tabelle 30: Wasserstofftankstelle in Brugg (Aargau)	45
Tabelle 31: Darstellung monatlicher Stromverbrauch in Tag – und Nachtstrom	47
Tabelle 32: Produzierte Menge Wasserstoff	48
Tabelle 33: Übersicht der Bauteile der Wasserstofftankstelle und deren Auffälligkeiten	49
Tabelle 34: Überblick bezgl. veröffentlichter Berichte in den verschiedenen Medien	57

13. Quellenverzeichnis

¹ gem. Ecoinvent 3.3 (Stand April 2016)

² gem. Website Umweltbundesamt Deutschland (Stand Juli 2017) http://www.umweltbundesamt.de/themen/klima-energie/energieversorgung/stromwaermeversorgung-in-zahlen?sprungmarke=Strommix#Strommix

14. Anhang

14.1. Projekttagebuch

Es folgt die Liste der wichtigsten Ereignisse während der Projektlaufzeit

· ·	,
Dez.10	
21.12.2010	Bestellung von 5 Citaro FuelCell Hybrid Bussen
Jan.11	
Jan. 2011	Planung der Wasserstofftankstelle. Dazu wurden verschiedene Varianten geprüft und
	ein für das Projekt angepasstes Konzept erstellt. Ergebnis: Wasserstoffanlage mit
	Elektrolyseur und Wasserstoff-Trailer-Anlieferung.
Feb. 11	
Feb. 2011	Start Abstimmung mit verschiedenen Behörden und Ämtern (Feuerwehr, Gebäudever-
	sicherung, Bauamt, Amt für Wirtschaft und Arbeit, Sicherheitsberater)
Feb. 2011	Start Planung Umbau Abstellhalle zur Einhaltung der Wasserstoffrichtlinien
Jun. 11	
15.06.2011	Kick-Off Meeting mit dem Tankstellhersteller Carbagas, Start Detailplanung Tankstelle
30.06.2011	Information der direkt angrenzenden Nachbarn über das Vorhaben
Jul. 11	
05.07.2011	Fahrpersonal über den Projektumfang informiert
14.07.2011	Umbaugesuch für die Einstellhalle eingereicht
Aug. 11	<u> </u>
29.08.2011	Baugesuch für die Wasserstofftankstelle eingereicht
Sep. 11	
30.09.2011	Informationsveranstaltung für die Feuerwehren in Brugg und Umgebung. Dabei wur-
	den die Fahrzeugtechnologie und die Wasserstofftankstelle vorgestellt.
Okt. 11	<u> </u>
10.10.2011	Start Tiefbau für die Wasserstofftankstelle
28.10.2011	Fahrschule: 14 Fahrlehrer wurden geschult. Start der ersten Tankversuche.
Nov. 11	
09.11.2011	Erste Medienkonferenz in Brugg
14.11.2011	Start Schulung Fahrpersonal: 50 Fahrerinnen und -fahrer
28.11.2011	Verfeinerung Alarmierungskonzept mit der Feuerwehr
Dez. 11	
05.12.2011	Fertigstellung Fundament Wasserstofftankstelle und Brandschutzmauer
05.12.2011	Start Aufbau des ersten Teils der Wasserstofftankstelle. Aufbau einer mobilen
	Wasserstofftankstelle. Diese soll als Übergangslösung bis zum 16.01.2012 dienen.
12.12.2011	Start Linienbetrieb mit einem Brennstoffzellenpostauto. Weitere Brennstoffzellen-
	postautos sollen schrittweise eingeführt werden.
Jan.12	
	Erster Teil der Tankstelle fertig

65/76

	Rückmeldung von Fahrgästen und Fahrpersonal positiv
	Viele Anfragen von Schülern und Studenten
Feb.12	Anlieferung des Elektrolyseurs Trotz sehr tiefen Aussentemperaturen laufen die Fahrzeuge und die mobile Tankstelle sehr zuverlässig.
Mär.12	
	Brennstoffzellenpostauto-Flyer veröffentlicht Hochdruckspeicher angeliefert
13.03.2012	bis 15.03.2012 Brennstoffzellenpostauto an der CleanTecCity, Bern ausgestellt
14.03.2012	bis 15.03.2012 CHIC-Meeting in Mailand. Austausch mit den anderen EU Partnern.
28.03.2012	Besuch von Belenos, dem Entwickler des Schweizer Brennstoffzellenautos
Apr.12	·
05.04.2012	Besuch der Stuttgarter Strassenbahnen SSB, Erfahrungsaustausch
26.04.2012	PostAuto stellt das Projekt im Forum Freiburg vor
Mai.12 22.05.2012	Wasserstofftankstelle wird offiziell eingeweiht.
25.05.2012	ENERGIE St.Gallen. Brennstoffzellepostauto fährt die Besucher vom Olma-Gelände
20.00.2012	zur Empa und wieder zurück.
Jun.12	
	EU führt Interviews, um den Projektstand im Projektteam und in der Bevölkerung zu
	erfassen. Ergebnis: das Projekt kommt gut an.
28.06.2012	H ₂ -Mobilität Schweiz: Kick-Off-Meeting. Das Brennstoffzellenpostauto wird als erfolg-
Jul.12	reiches Beispielprojekt vorgestellt.
03.07.2012	Zwei französische Städte schauen sich das Projekt vor Ort an
05.07.2012	Erfolgreiche Höhenerprobung. Brennstoffzellenpostauto fährt auch in hoch gelegenen
	Regionen (Sauerstoffdichte geringer) ohne Leistungsverlust.
10.07.2012	Vertreter der Partnerstadt Mailand kommen zu Besuch. Erfahrungsaustausch vor Ort.
19.07.2012	Vorstellung des Projekts vor der eidgenössischen Zollverwaltung. Prüfung ob Wasser-
	stoff mineralölsteuerpflichtig ist. Ergebnis: zurzeit sind die 5 Brennstoffzellenpostautos von der Mineralölsteuer befreit.
24.07.2012	Vorstellung des Projekts beim Bundesamt für Verkehr (BAV)
Aug.12	vorstellung des i rojekts beim bundesamt für verkem (bAv)
01.08.2012	bis 11.08.2012 Brennstoffzellenpostauto fährt Shuttlefahrten für die Besucher des
	Filmfestivals Locarno. Durchgehend positive Rückmeldung von Fahrgästen und Medi-
	envertretern.
28.08.2012	Besuch des Deutschen Wasserstoffverbunds (DWV)
Sep.12 05.09.2012	Besuch der Führungsebene des Schweizerischen Verbands für Gas- und Wasser-
03.09.2012	installationen (SVGW)
07.09.2012	Besuch der BOGG (Schweizer Busunternehmen)
10.09.2012	Ölwehr: Schulung Gelände und Brennstoffzellenpostauto
12.09.212	Medienmitteilung: Brennstoffzellenpostautos werden während dem WEF 2013 im Ein-
	satz sein.
14.09.2012	Bluetec Winterthur, Shuttlefahrten für die Ausstellung
24.09.2012	Erster planmässiger Service für die Tankstelle. Dauer 2 Tage. Brennstoffzellenpostautos können während dieser Zeit nicht betankt werden und sind somit 2 Tage nicht im
	Einsatz.
25.09.2012	Starkstrominspektorat führt während des Services der Tankstelle Messungen zur Er-
	dung und Isolationen durch.
Okt.12	
44.40.0040	Start Vorbereitungen für den Linienbetrieb während des WEF
14.10.2012	SF2 zeigt in der «tcs Motorshow» einen Beitrag zum Brennstoffzellenpostauto.

24.10.2012	bis 25.10.2012: CHIC-Meeting Oslo. Berichte über Projektstand, Erfahrungsaustausch mit den Partnern.
Nov.12	Nachschulung / Erfahrungsaustausch mit dem Fahrpersonal, Auffrischen der Grundlagen. Schulungsdauer: 2 Stunden.
Okt. 12 02.10.2012	Vorbereitung für Unterstützung Linienbetrieb während dem World Economic Forum (WEF) in Davos 2013. Abstimmungsarbeiten sehr aufwendig. Das Aufstellen der mobilen Wasserstofftankstelle erfordert viel Abstimmung und Bewilligungen/Stellungnahmen
10.10.2012 14.10.2012	BfE-Reportage vor Ort. Bericht für den Preis «Watt d'Or». SF2 berichtet in der Sendung «tcs Motorshow» über das Brennstoffzellenpostauto. Start ab Minute 14:25, http://www.srf.ch/player/video?id=104e5596-2154-496d-bad5-9231087b1c4d
23.10.2012 24.10.2012	Reportage des Magazins «Schweizer Familie» vor Ort mit verschiedenen Interviews bis 25.10.2012: CHIC (Clean Hydrogen In European Cities) Biannual Meeting in Oslo. Austausch mit den Projektpartnern.
Nov.12 15.11.2012	bis 16.11.2012: Nachschulung des Fahrpersonals, Auffrischung der Kenntnisse und Erfahrungsaustausch.
30.11.2012	Hoher Stickstoffeintrag im Wasserstoff-Hochdruckspeicher. Grund: ein Servicetechniker hatte vergessen, nach dem Spülen einer Wasserstoffleitung mit Stickstoff das Ventil wieder zu schliessen. Dadurch ist ein hoher Stickstoffeintrag im Hochdruckspeicher entstanden. Anschliessend wurden die Brennstoffzellenpostautos betankt. Da die Reinheit auf Grund des Stickstoffs für die Brennstoffzellenpostauto zu schlecht war, fuhren die Fahrzeuge nicht mehr. Der Hochdruckspeicher und die Fahrzeuge mussten mit «frischem» Wasserstoff gespült werden. Durch den Vorfall war die Wasserstofftankstelle und der Betrieb der Fahrzeuge für eine Woche nicht möglich. Damit dies nicht mehr passiert, wurde ein Sicherheitsventil installiert.
Dez.12 05.12.2012	H2-Mobility Swiss Meeting, PostAuto berichtet über die Erfahrungen für die Genehmigung der Wasserstofftankstelle.
13.12.2012 17.12.2012	Das Französische Fernsehen FR3, macht eine kurze Reportage über das Brennstoff- zellenpostauto und über das PSI. H2-Mobility Swiss Meeting. PostAuto unterstützt mit den Erfahrungen aus dem lau-
	fendem Betrieb.
Jan.13 10.01.2013	Das BfE verleiht PostAuto den Preis «Watt d'Or» in der Kategorie 4 (energieeffiziente Mobilität).
16.01.2013	Wolf-Dieter Deuschle Amtsvorsteher AöV des Kanton Bern, besucht das Projekt vor Ort.
21.01.2013	bis 27.01.2013 Word Economic Forum (WEF) in Davos. Zwei Brennstoffzellenpostautos und eine mobile Wasserstofftankstelle unterstützen in Zusammenarbeit mit dem «WEF – Greener Davos» und dem Verkehrsverbund Davos den ÖV. Die beiden Fahrzeuge fahren auf dem Rundkurs der Linie 3 und unterstützen den Veranstalter. Teilnehmer können schnell und in grösserer Zahl zu Veranstaltungen gefahren werden.
23.01.2013	Radio RTR sendet einen Beitrag über den Einsatz der Brennstoffzellenpostautos in Davos. http://www.rtr.ch/home/novitads/archiv/2013/01/23/Tests-cun-bus-d-idrogen.html

Feb.13

Studenten und Lernende besuchen das Projekt vor Ort und schreiben Maturaarbeiten, Studienarbeiten oder machen Kurzfilme.

67/76

07.02.2013	Telefonkonferenz mit den CHIC Partnern. Fokus sind die Daten. Probleme machen Mess-Ungenauigkeiten, Menge der zu erfassenden Daten, Datenverarbeitung, Daten-
26.02.2013	erfassung, Interpretation. Besuch von Vertretern der Verkehrsbetriebe Luzern. Das Projekt wird vorgestellt, anschliessend machen die Teilnehmer (Fahrpersonal) Testfahrten mit dem Brennstoff-
	zellenpostauto.
Mär.13	
	Veröffentlichungen:
18.03.2013	Umweltperspektiven Energetische Vorbilder
21.03.2013	DWV Ausgabe 2/13 (Deutscher Wasserstoff Verbund)
25.03.2013	Geschäftsbericht der Post
26.03.2013	Personalzeitung Die Post
0.4.00.00.40	
01.03.2013	Abstimmung der Wartungsumfänge Brennstoffzellenbus
06.03.2013	Vor Ort Informationsaustausch mit NUCELLSYS, Hersteller des Brennstoffzellensys-
40.00.0040	tems der Busse
12.03.2013	Besuchergruppe von bus.ch
13.03.2013	Planung eines Regendachs, damit das Fahrpersonal während des Tankens geschützt
15 02 2012	ist.
15.03.2013	Besuch der ABB Turgi Meeting mit Carbagae, wie kann man die Betriebestrategie der Tanketelle verbessern?
18.03.2013 28.03.2013	Meeting mit Carbagas: wie kann man die Betriebsstrategie der Tankstelle verbessern? Nachbesprechung mit Vertretern des WEF.
Apr. 13	Nachbesprechung mit Vertretem des WEF.
Apr. 13	Veröffentlichungen:
14.04.2013	Fernsehbericht in Bozen (Italien), Lokalsender-Sendung «mobil»
17.04.2013	Aargauer Zeitung: Erlebnisbericht – Chefredaktor schreibt über seine Testfahrt mit
17.04.2013	dem Brennstoffzellenpostauto http://www.aargauerzeitung.ch/aargau/brugg/der-az-chefredaktor-auf-probefahrt-mit-dem-wasserstoff-postauto-126405529
18.04.2013	Probetanken mit einem Brennstoffzellenpostauto an der Wasserstofftankstelle von
	Belenos in Marin. Es konnten ca. 4-8kg getankt werden.
23.04.2013	HBA (Hydrogen Bus Alliance) Meeting. Austausch unter Busbetreibern von wasser-
	stoffbetrieben Bussen (meist Brennstoffzellenbusse)
24.04.2013	bis 25.04.2013: CHIC (Clean Hydrogen In European Cities) Biannual Meeting in Ber-
	lin. Informationsaustausch aller Partner (auch Vertreter aus den USA anwesend)
Mai.12	
21.05.2013	H2 Mability Swigg veräffentlicht Depart Finachlicaglich Erfahrungswortsgusteusch
21.05.2013	H2-Mobility Swiss veröffentlicht Report. Einschliesslich Erfahrungswerteaustausch zum Projekt.
	Zuiii Fiojeki.
08.05.2013	Projekt wird vor der LITRA in Luzern vorgestellt.
15.05.2013	Besuch des SSM (Strasse Schweiz)
22.05.2013	Besuch des AMMV (Aargauischer Militär Motorfahrer Verband)
23.05.2013	Vorstellung Projekt an der Generalversammlung von Hydropole
26.05.2013	bis 30.05.2013: Ausstellung UITP Genf 2013 (Internationale ÖV-Messe, die alle 2
20.00.2010	Jahre in einem anderem Land stattfindet). Besucher wurden über das Projekt infor-
	miert und konnten kurze Testfahrten machen.
	PostAuto hat zusammen mit der EU Studenten aus der Schweiz an die UITP eingela-
	den und das Projekt vorgestellt.
31.05.2013	bis 02.06.2013: Brennstoffzellenpostauto wird am Stadtfest Brugg ausgestellt.
Aug.12	
-	Veröffentlichungen:
	Feuerwehr-Magazin «118», Ausgabe Juni 2013
	Mercedes TV: Start ab Minute 2:02 http://www.youtube.com/watch?v=R-Hkug8IPXg
04.06.2013	Besuch der Stuttgarter Strassenbahnen

06.06.2013	Brennstoffzellenpostauto fährt Shuttle für Etats Généraux des Transports, von Glatte-
14.06.2013	res nach Payerne Meeting mit Carbagas. Fokus: Anpassung Wasserstoffversorgung, technische Ver-
	besserungen.
20.06.2013	Besuch der FDP
29.06.2013	bis 30.06.2013: Brennstoffzellenpostauto wird am Truckerfestival Interlaken ausgestellt (keine Fahrten möglich). Besucher wurden über das Projekt informiert. Auffälligkeit:
	Die Kompressoren der Wasserstofftankstelle fallen immer wieder mit kleineren Störungen auf.
Jul.12	<u> </u>
03.07.2013	bis 04.07.2013 European Fuel Cell Forum Luzern. Ein Brennstoffzellenpostauto ausgestellt. PostAuto bietet Fahrten zum Verkehrshaus und zurück an.
17.07.2013	Telefonkonferenz mit den CHIC-Partnerstädten, die auch ein Fahrzeug von EvoBus haben. Fokus: Ersatzteilversorgung und Werkstattunterstützung.
25.07.2013	Besuchergruppe aus Lausanne. Erfahrungsaustausch mit den Entwicklern eines Brennstoffzellen-Bootes. Fokus: Erfahrungsaustausch und Wasserstofftankstelle.
Aug.13	11 47 00 0040 F" f 41
06.08.2013	bis 17.08.2013: Filmfest Locarno. Wie im Vorjahr wird ein Brennstoffzellenpostauto für Shuttlefahrten eingesetzt. Betankt wird das Fahrzeug an der mobilen Wasserstofftankstelle.
22.08.2013	Nach verschiedenen Wartungsarbeiten berechnet die Tankstelle die Wasserstoffmenge nicht mehr richtig. Weiter gibt es Probleme mit der Datenübertagung.
Sep.13	
10.09.2013	Schüler informieren sich vor Ort und schreiben eine Maturaarbeit.
13.09.2013	bis 15.09.2013: Fahrzugmesse in Montebéliard (Frankreich). Besuchern wird das Projekt vorgestellt und es gibt Testfahrten auf dem Messegelände.
	Im Fachmagazin «bus&car» (Frankreich) erscheint ein 6-seitiger Bericht über das
	Brennstoffzellenpostauto.
19.09.2013	Besuch der Wertekommission St. Gallen
20.09.2013	Drei Tage vor der Jahresrevision der Tankstelle sind beide Kompressoren ausgefallen . Das Betanken der Fahrzeuge ist nur schwer möglich. Der Betrieb der Fahrzeuge
	wird bis zum Ende der Revision eingestellt. Der Hersteller der Kompressoren ist eine
	Woche vor Ort, um die Kompressoren genauer zu prüfen. Diese waren seit Juni 2013 immer wieder mit verschiedenen Störungen auffällig.
23.09.2013	In Zusammenarbeit mit EvoBus werden die Schulungsunterlagen aufgefrischt.
23.09.2013	bis 26.09.2013: grosse Jahresrevision der Wasserstofftankstelle.
24.09.2013	Informationsaustausch mit Professoren der Hochschule Heig Yverdon.
Okt. 13 08.10.2013	CHIC-Meeting in Brüssel mit folgendem Fokus: Austausch mit neuen Städten, welche
00.10.2010	interessiert sind, wasserstoffbetriebene Busse im ÖV einzusetzen.
15.10.2013	HBA (Hydrogen Bus Alliance) Meeting. Austausch unter Busbetreibern mit wasser- stoffbetrieben Bussen
15.10.2013	bis 16.10.2013: CHIC (Clean Hydrogen in European Cities) Biannual Meeting in Hamburg. Informationsaustausch aller Partner.
16.10.2013	bis 17.10.2013: Fuel Cell Bus Workshop. Internationales Meeting. Teilnehmer aus der EU sowie aus Nord- und Südamerika. Fokus: Projekte, Zulieferer, Probleme, Förderprogramme.
24.10.2013	Fahrzeugdesigner aus Japan kommen nach Brugg, um das Brennstoffzellenpostauto zu fotografieren und um eine reguläre Linienfahrt zu erleben.
26.10.2013	Einweihung Bahnhof Aarau. Ausstellung des Brennstoffzellenpostautos.

0406.11.2013	Nachschulung für Fahrpersonal. Fokus: Brennstoffzellenpostauto, Wasserstofftank-
	stelle, Sicherheit + Feedback des Fahrpersonals.
21.11.2013	Die Sendung «Einstein» berichtet über Wasserstoffinfrastrukturen und dabei wird die
	Wasserstofftankstelle in Brugg als Beispiel gezeigt. Video srf zu diesem Artikel (ganz
	unten auf der Website, ab Minute 17:28).
\rightarrow	EvoBus aktualisiert die Software der 5 Brennstoffzellenpostautos
\rightarrow	Die Kompressoren fallen immer häufiger durch kleinere und grössere Auffälligkeiten
	auf. Infrarotschnittstelle funktioniert nicht, dadurch dauert die Betankung länger.
Dez. 13	
03.12.2013	PostAuto organsiert einen Workshop, damit sich andere Städten, die auch Brennstoff-
	zellenbusse betreiben, abstimmen können. Dabei wird der technische Stand und Er-
04.40.0040	wartungshaltung gegenüber dem Fahrzeughersteller formuliert.
04.12.2013	Das Bundesamt für Energie lädt eine internationale Delegation (HIA) zur Wasserstoff-
	tankstelle ein (Präsentation Projekt und Testfahrt).
\rightarrow	Der Wasserstoffverbrauch der Brennstoffzellenpostautos ist massiv gestiegen. Die
	Busse müssen während des Dienstes eine Pause zum Nachtanken einplanen.
	
Jan. 14	
20.01.2014	Besprechung diverser Themen mit der Führungsspitze von EvoBus
2025.01.2014	Zwei Brennstoffzellenpostautos unterstützen den ÖV während dem WEF in Davos. Dazu wird die mobile Wasserstofftankstelle in Davos aufgebaut.
30.01.2014	CHIC Midterm Conference, folgende Schwächen eruiert: Verfügbarkeit der Fahrzeuge
30.01.2014	und die Disseminationarbeiten.
	and the Bloodining to Hardinary
\rightarrow	Der Wasserstoffverbrauch der Brennstoffzellenpostautos ist wegen falsch angepass-
	ten Softwareparametern stark angestiegen. Der Verbrauch ist so massiv, dass der
	Shuttlebetrieb für das WEF einen Tag früher als geplant abgebrochen worden muss.
	Die Busse in Brugg werden nicht mehr auf allen Strecken eingesetzt. Das Nachtanker
	erweist sich als sehr schwierig.
\rightarrow	Die Kompressoren fallen nicht mehr aus, die Infrarotschnittstelle funktioniert. Die
Feb. 14	Wasserstofftankstelle läuft wieder zuverlässig.
20.02.2014	Meeting in Basel (H2 Swiss Mobility) von PostAuto mit den Basler Verkehrsbetrieben
20.02.20	(BVB) mit dem Ziel, ein Wasserstoffprojekt für Basel zu prüfen.
	(2 - 2) 20
\rightarrow	Der Wasserstoffverbrauch der Brennstoffzellenpostautos ist immer noch massiv er-
	höht. Die Busse können nur auf kurzen Strecken eingesetzt werden. Das Fahrperso-
	nal reagiert vermehrt unzufrieden.
Mär. 14	Decreased with a stancial law or even Decision and a sur-
04.03.2014 05.03.2014	Besprechung mit potenziellen neuen Projektpartnern Abstimmung Tankstelle, um die Problemen mit Kompressoren zu reduzieren.
11.03.2014	Abstimmung mit EvoBus, um die Weiterentwicklung der Busse zu beschleunigen.
26.03.2014	Hydrogen Bus Alliance Meeting → Austausch von Informationen mit diversen Städten
20.00.2017	(ohne Hersteller).
2627.03.2014	Projekt Meeting Clean Hydrogen in European Cities Meeting (CHIC). Austausch mit
	allen Projektpartnern
\rightarrow	Der Wasserstoffverbrauch der Brennstoffzellenpostautos ist immer noch erhöht.
	EvaPus wird die Software erst im Mai 2014 appassen. Das Echrographal ist achr un

EvoBus wird die Software erst im Mai 2014 anpassen. Das Fahrpersonal ist sehr un-

Die Kompressoren fallen wieder häufiger negativ auf.

 \rightarrow

Apr. 14	
02.04.2014	Abstimmungsgespräch in Brüssel für Brennstoffzellenbusse und Wasserstofftankstelle-Folgeprojekt (Erarbeitung einer neuen EU-Projektstruktur, Erhöhung Anzahl der wasserstoffbetriebenen Busse). Es folgen wöchentliche Telefonkonferenzen und weitere Treffen, um das Projekt voranzutreiben.
22.04.2014	Abstimmung zwischen EvoBus Schweiz und PostAuto (Fortschritt Weiterentwicklung Fahrzeug): Erwartungshaltungen werden abgeglichen.
25.04.2014	ECO-Coach-Treffen beim Depot in Brugg. Eco-Coaches werden über das Projekt informiert und haben die Möglichkeit, das Brennstoffzellenpostauto zu fahren.
\rightarrow	Der Wasserstoffverbrauch der Brennstoffzellenpostautos ist immer noch erhöht. Nicht alle Linien können bedient werden. Das Fahrpersonal ist unzufrieden.
\rightarrow	Die Kompressoren sind nach wie vor anfällig. Der Serviceaufwand der Tankstelle ist deshalb massiv angestiegen.
Mai 14	accidio maccivaligotiogoni
08.05.2014	Besprechung mit EvoBus in Brugg. Erwartungshaltungen und Fahrzeug- Schwachpunkte werden intensiv besprochen
17.05.2014	Brennstoffzellenpostautos als Shuttle beim kt. Energieforum
21.05.2014	Projektvorstellung beim VÖV (Verband öffentlicher Verkehr)
27.05.2014	Interne Revision der Post untersucht das Projekt
28.05.2014	Bilanzbesprechung Wasserstofftankstelle
)	Brennstoffzellenpostautos erhalten verbesserte Software. Durch die temporär fehlerhafte Software sind dem Projekt zusätzliche Treibstoffkosten von über 60'000 CHF entstanden. Wegen des erhöhten Verbrauchs konnten die Brennstoffzellenpostautos nicht alle Linien bedienen. Aus diesem Grund brauchte es zusätzliche Postautos. EvoBus will sich an den Kosten nicht beteiligen.
\rightarrow	
Jun. 14	Mit den Kompressoren gibt es nach wie vor Probleme.
	Grosse Revision der Wasserstofftankstelle und zeitgleiche Aktualisierungsarbeiten an den Fahrzeugen. Während dieser Zeit wurden die fünf Brennstoffzellenpostautos nicht eingesetzt.
24.06.2014	Auffrischung/Schulung Fahrdienstleiter: neues Bedienelement Tankstelle, neue LED im Fahrzeuge, die das Abschalten eines Brennstoffzellensystems anzeigen.
25.06.2014	Filmteam von EuroNews dreht eine Dokumentation zum Thema Wasserstoff im ÖV. Ausstrahlung im Juli 2014.
	Brennstoffzellenpostauto am Truckerfestival http://www.youtube.com/watch?v=vzeENLDBEuk&feature=youtu.be
30.06.2014	Abstimmungsgespräch aller Städte, die Brennstoffzellenbusse von EvoBus betreiben, mit Daimler Buses in Stuttgart
\rightarrow	Busse laufen zuverlässig. Daimler will sich nicht an den entstandenen Mehrkosten durch die fehlerhafte Software beteiligen.
\rightarrow	Tankstelle läuft zuverlässig.
Jul. 14	<u> </u>
02.07.2014	PostAuto unterstützt die EU bei der Kreation eines Folgeprojekts mit Brennstoffzellenbussen
03.07.2014	Schlussbesprechung mit der internen Konzernrevision der Post
07.07.2014	Belenos stellt dem PostAuto-Fahrpersonal ein Brennstoffzellen-Auto zum Probefahren während zwei Wochen zur Verfügung (dient dem Erfahrungsaustausch).
14.07.2014	Abstimmung mit Carbagas: Dienstleistung, Qualität der Tankstelle, Weiterentwicklung der Tankstelle

Ca. zwei Wochen lang wird Anfang Juli 2014 auf EuroNews eine Dokumentation gezeigt:

(Beitrag PostAuto ab Minute 5:25)

http://de.euronews.com/2014/07/07/fliegen-mit-pflanzenkraft/

Aug. 14

13.-15.08.2014 EU-Financial-Audit. Zwei von der EU beauftragte Auditoren arbeiten drei Tage vor Ort. Der Bericht wird Ende 2014 vorliegen

Wasserstofftankstelle

Immer wieder fallen die Kompressoren wegen Unzuverlässigkeit auf. Dadurch hat der Dienstleister Carbagas (Gruppe Air Liquide) viel Arbeit vor Ort. Auch bei anderen Transportunternehmen (Oslo, Karlsruhe), die eine Tankstelle von Air Liquide haben, fallen die wartungsintensiven Kompressoren häufig aus.

CHIC-Projektteam

Die Koordination des Projekts erfolgt mittels eines von der EU bezahlten Koordinators, der von EvoBus gestellt wird. Er koordiniert seit zwei Jahren das Projekt nicht ausreichend. Die Projektteilnehmer konnten den Mangel lange Zeit kompensieren. Der Mehraufwand führt mittlerweile zu Spannungen im CHIC-Team.

Sep. 14

17.09.2014 Gespräch mit dem Fahrzeuglieferanten EvoBus in Stuttgart. Städte mit Brennstoffzel-

lenbussen und Hersteller versuchen, die Weiterentwicklung des Produktes schneller

voranzutreiben.

22.09.2014 Schwachpunkt der Wasserstofftankstelle (Kompressoren) werden in einem Experten-

gespräch erläutert.

CHIC-Projektteam

Die Spannungen im Projekt sind immer noch vorhanden.

Okt. 14

14.10.2014 HBA (Hydrogen Bus Alliance) Meeting in London

15.-16.10.2014 CHIC-Meeting in London, Austausch Projektdaten mit allen internationalen Partnern 22.10.2014 Betriebsausflug BAV: Besichtigung Projekt und Präsentation mit Fahrt zum PSI

Wasserstofftankstelle

Die Tankstelle ist erneut durch mehrere kleinerer Ausfälle aufgefallen. Der Hersteller arbeitet an verschiedenen Lösungsansätzen, die im November 2014 vorgestellt werden sollen. Eine Umsetzung könnte im Frühjahr 2015 erfolgen.

CHIC-Projekt-eam:

In den letzten Monaten gab es erneut Spannungen im CHIC-Team. Im letzten CHIC-Meeting wurde eine neue Projektkoordinatorin von EvoBus vorgestellt.

Nov. 14

17.11.2014 Besuch des Rotary Clubs Lenzburg

28.11.2014 Besuch von Michelin mit einem durch Wasserstoff betriebenen Renault Kangoo

Brennstoffzellenpostauto

Angebot von EvoBus wird Ende Dezember 2014 erwartet.

Wasserstofftankstelle

Durch die vielen Reparaturen sind die Kosten der Tankstelle für Carbagas sehr hoch (PostAuto hat ein fixen Vertrag)

Dez. 14

Brennstoffzellenpostautos und Wasserstofftankstelle laufen gut.

Brennstoffzellenpostauto

EvoBus versäumt das Einreichen einer Offerte für die Weiterführung des Projekts.

Jan. 15

28.01.2015	Besuch und Informationsaustausch mit EPFL. Die EPFL plant eine eigene Wasserstofftankstelle zu bauen. Brennstoffzellenpostauto EvoBus hat immer noch keine Offerte eingereicht.
Feb. 15 02.02.2015 04.02.2015	Treffen aller Betreiber von Brennstoffzellenbussen in Kloten (Sitz von EvoBus) EvoBus hat mit über einem Monat Verzug die Offerte für die künftige Wartung eingereicht. Der offerierte Preis ist viel höher als erwartet.
Mär. 15 05.03.2015 06.03.2015 18.03.2015	Besuch des VÖV beim Depot in Brugg Meeting zum Thema Ersatzteilverfügbarkeit der Busse Besuch von Vertretern der Stadt Dole (Fr). Brennstoffzellenpostautos Die Fahrzeuge fallen vermehrt durch kleine Unzulänglichkeiten auf. Wasserstofftankstelle Carbagas hat die Rechnung für die Reparatur des Kompressors in der Höhe von 50'000 CHF eingereicht.
	«Tele M1» berichtet über die Wasserstofftankstelle in Brugg 5 CHIC-Meeting in Baden
Mai 15 07.05.2015	Carbagas stellt das neue Serviceteam vor. Grund: interne Umstrukturierung bei Carbagas Wasserstofftankstelle Erneuter Kompressorenschaden in Höhe von ca. 57'000 CHF. Es ist unklar, wer die Kosten übernehmen soll. Bis zum Vorliegen einer Antwort wird der Kompressor nicht repariert.
Jun. 15 25.06.2015	Shuttle mit Brennstoffzellenpostauto in Martigny
Jul. 15 02.07.2015 15.07.2015	Gespräch mit EvoBus über die eingereichte Offerte für die Wartung 2017-2018 Angepasste Offerte von EvoBus Wasserstofftankstelle Grosse Jahresrevision der Tankstelle. Dazu wird der Betrieb der Brennstoffzellenpostautos eingestellt.
Aug. 15 06.08.2015	Medienmitteilung: die fünf Brennstoffzellenpostautos haben eine Laufleistung von über 1 Million Kilometer erreicht. Wasserstofftankstelle Verhandlungen für die Weiterführung nach 2016
Sep. 15 08.09.2015	Erneute Verhandlungen mit EvoBus über den Wartungsvertrag für 2017-2018.
Okt. 15 10.10.2015 1217.10.2015	Fahrt eines Brennstoffzellenpostautos an der OLMA als Teil des Gastkantons Aargau. 5 Road Show mit einem Brennstoffzellenpostauto in Frankreich. Veranstaltungen in den Städten Belfort, Dole, Bourg-en-Bress, Grenoble, Salon-de-Provence
Nov. 15 0405.11.2015 09.11.2015 10.11.2015 72/76	5 EU CHIC (Clean Hydrogen In European Cities) Meeting in Mailand. Austausch unter den Projektpartnern Austausch mit Hyundai Austausch mit möglichen neuen Brennstoffzellenbus-Lieferanten

17.11.2015	Austausch mit Bushersteller HESS und Swiss Hydrogen (ehem. Belenos – Swatch
	Group). Die Beteiligten prüfen, ob der Bau eines Schweizer Brennstoffzellenbusses
	möglich wäre
19.11.2015	Financial Reporting für EU
20.11.2015	Jahresgespräch mit Bundesamt für Energie
24.11.2015	Besuch von PL Umweltmanagement in Brugg

Allgemein

Die Verhandlungen mit dem Tankstellenhersteller zur Weiterführung ab 2017 laufen. Erneuter Kompressorenschaden (Kosten ca. 57'000 CHF).

Hyndai betankt seine PW an der Wasserstofftankstelle in Brugg (TOYOTA hat auch eine Anfrage bei uns platziert).

Die AirLiquide-Gruppe arbeitet an einer Lösung. Sobald diese erarbeitet ist, werden wir Hyundai und TOYOTA das Betanken bei uns ermöglichen.

Dez. 15	
01.12.2015	Austausch mit Fraunhofer Institut Freiburg (D)
01.12.2015	Erneute Eingabe des Financial Reports
04.12.2015	TelKo mit verschiedenen Partnern: Weiterführung Projekt, Einladung durch die EU
07.12.2015	Austausch Axpo und weitere Wasserstoff-Infrastruktur-Player bei der EMPA Dübendorf
08.12.2015	Info zum Projektstand zuhanden der GL PostAuto
10.12.2015	Austausch von HESS, Swiss Hydrogen und PostAuto, ob eine Machbarkeitsstudie möglich ist
15.01.2016	Hydropole: Austausch aller Schweizer Wasserstoffprojekte (Input per Mail eingereicht)

Allgemein

Die Verhandlungen mit dem Tankstellenhersteller laufen (Themen: Weiterführung ab 2017 und erneuter Kompressorschaden).

Austausch mit Heuliez Bus (Frankreich). Das Unternehmen könnte in Zusammenar-
beit mit Swiss Hydrogen (ehem. Belenos) Brennstoffzellenbusse für PostAuto bauen.
Die Stadt würde evtl. Fördergelder zur Verfügung stellen. Es wird überlegt, ob PA
Geld für eine Machbarkeitsstudie vorstrecken könnte.
Teilnahme am Power-to-Gas-Workshop (Ziel: Ausloten, welche Bereiche von PA
Wasserstoff beziehen können).
Schrittweise Wiedereinführung der Brennstoffzellenpostautos
Austausch mit Hydropole; TelKo mit CHIC (EU Partnern)

Feb. 16	
02.02.2016	Abstimmung Finanzen mit Tankstellenhersteller Carbagas
10.02.2016	Die Projektleitung und Vertreter der PostAuto-Region Nordschweiz informieren den
	Kanton Aargau über den Projektstand
11.02.2016	Abstimmung mit dem PSI, inwiefern Begleitstudien von PA unterstützt werden können
16.02.2016	Abstimmung mit der Hochschule Rapperswil bezüglich Verteilung Informationen / Vorträge zum Projekt
18.02.2016	Abstimmung mit der EU-Koordinatorin für das kommende CHIC-Meeting. Fokus: Tankstellenprobleme und Forderung einer Stellungnahme der Hersteller
23.02.2016	Austausch mit dem Hightechzentrum Aargau

Allgemein

Das Projektteam ist weiter auf der Suche nach neuen Fahrzeugzulieferern.

Mär. 16

10.03.2016	Vertreter der ewz besuchen das Projekt vor Ort. Es gibt Überlegungen, beim Thema Wasserstoff als Energielieferant mitzumachen. Kontakte zur anderen Playern werden vermittelt.
11.03.2016	Technischer Austausch mit Carbagas (wo können wir besser werden, wo gibt es Stagnation?).
16.03.2016	Einladung des BfE ist erfolgt (Austausch mit Experten zum Thema Wasserstoffmobilität).
16.03.2016	Besuch der Gruppe Swiss Engineers (technischer Austausch mit Besichtigung vor Ort).
21.03.2016	PA-GL entscheidet, das Projekt regulär auf Ende 2016 zu beenden.
22.03.2016	Austausch mit Coop zum Thema Wasserstofftankstellen
23.03.2016	Austausch mit dem BfE zum Projekt Brennstoffzellenpostauto und weiteres Vorgehen hat stattgefunden

Allgemein

Wir sind weiter auf der Suche nach neuen Fahrzeugherstellern.

Apr. 16	
01.04.2016	Austausch mit Hydropole
14.04.2016	Austausch mit H2Energy (Consulting von Coop) zum Thema Wasserstofftankstelle
	Brugg und Wasserstoffanlieferung durch Coop
2021.04.2016	CHIC-Meeting in Oslo, Austausch mit allen internationalen Projektpartnern

Allgemein

Viele Anfragen für Fachvorträge treffen ein.

Verschiedene Gespräche mit dem BfE für Folgeprojekte oder Kooperationen sind am Laufen.

Mai 16	
10.05.2016	Besprechung mit HESS Bus und Swiss Hydrogen: Ist ein Schweizer Brennstoffzellen- bus für den Einsatz bei PostAuto möglich? Kosten und Machbarkeitsstudie werden besprochen.
11.05.2016	Gedankenaustausch für die Weiterführung der Wasserstofftankstelle in Brugg: Teil- nehmer: Bund, Kanton, Zulieferer.
19.05.2016	Projektstand an der Tagung der PostAuto-Betriebsleiter vorgestellt
23.05.2016	Unterstützung einer Studienarbeit zur H2-Mobilität (HEIG)
25.05.2016	Projektstand vorgestellt an der VÖV-Tagung. Vortrag 21
	https://www.voev.ch/de/Service/Tagungen

Allgemein:

Viele Anfragen für Fachvorträge. Vorbereitungen für EU Proiektende

Vorbereitunge	n für EU Projektende.
Jun. 16	
03.06.2016	Austausch mit Projektinteressierten
09.06.2016	Austausch mit der Erfahrungsgruppe Power-to-Gas der Hochschule Rapperswil
10.06.2016	Austausch mit Hydropole
13.06.2016	Gespräch «Wie weiter nach 2016?» mit Carbagas
15.06.2016	Vortag an der FHNW Windisch
27.06.2016	Planung für die Revision der Wasserstofftankstelle
Jul. 16	
04.07.2016	Austausch mit Infracom (im Auftrag des BAV)
05.07.2016	Studentenaustausch

Allgemein

Kündigungen für das Projektende wurden verschickt und bestätigt.

Die Kommunikation für das Projektende ist in Arbeit.

Der Schweizer Bushersteller HESS ist bereit, für PostAuto zwei Brennstoffzellenbusse zu bauen.

Das Bundesamt für Energie signalisiert finanzielle Unterstützung und würde eine Weiterführung des Projektes mit Brennstoffzellenpostautos begrüssen.

Aug. 16 Allgemein:

Es folgen wieder vermehrt Anfragen für Studienarbeiten.

Verschiedene Anfragen für den Verkauf der Brennstoffzellenpostautos und der Wasserstofftankstelle

Se	p.	10)
07	.09	9.2	0.

Austausch zur Wasserstofftankstelle Brugg unter der Führung von Novatlantis 07.09.2016 Planung Rückbau der Wasserstofftankstelle mit Architekten und Carbagas Besuch in Dole (FR). Vertreter der Stadt wollen 1-2 unserer Brennstoffzellenpostau-15.09.2016 tos einsetzen. Abstimmung Umbau Einstellhalle und Gewährleistung Service 27.09.2016 HBA-Meeting Hydrogen Bus Alliance CHIC-Meeting in Bozen (28.9 bis 29.09.2016) 28.09.2016

Allgemein

Austausch mit verschiedenen Beratungsunternehmen

der Schweiz in Luzern

Okt. 16

Hinweis: Die Projektleitern Nikoletta Seraidou wird PostAuto zum 31.12.2016 verlassen. Die Projektaufgaben werden von René Krieger übernommen. Die Übergabe startet im November 2016.

Nov. 16	
01.11.2016	Erster Arbeitstag von René Krieger bei PostAuto
23.11.2016	Besprechung beim Bundesamt für Energie zum Abschlussbericht über die Brennstoff- zellenfahrzeuge

Dez. 16	
20.12.2016	Vollständige Übernahme des Projektes durch René Krieger
Jan. 17	
12.01.2017	Erster Entwurf des Abschlussberichts an das BfE
13.01.2017	Korrekturvorschlag inkl. Anmerkungen zum Abschlussbericht durch das BfE
17.01.2017	Geschäftsleitungssitzung Voegtlin-Meyer bezgl. weiterem Vorgehen der Wasserstofftankstelle, Beschluss: Vollständiger Rückbau
30.01.2017	Regelmeeting aller beteiligten Parteien bezgl. Umsetzung vollständigem Rückbau der Wasserstofftankstelle
30.01.2017	Definitiver Verkauf von zwei Brennstoffzellenfahrzeugen (Transport im Verlauf des Februars 2017)
Feb. 17	
01.02.2017	Offizielle Medienkonferenz in Brugg bezgl. Ende Betrieb Brennstoffzellenfahrzeuge und Wasserstofftankstelle per Ende Februar 2017
09.02.2017	Ausfüllen Form C für den Financial Report EU mit Karin Dolder und für die Fa. KPMG
17.02.2017	Wirtschaftsprüfung durch die Fa. KPMG vor Ort in Bern bezgl. Financial Report an die EU
22.02.2017	Regelmeeting Rückbau Wasserstofftankstelle in Brugg (Fa. IBB, Fa. Carbagas, Architekt Tschudin + Urech)
28.02.2017	Erster Abgabetermin CHIC Financial Report an die EU

Besprechung und Organisation Transport Brennstoffzellenfahrzeug ins Verkehrshaus

März 17 02.03.2017

15.03.2017	Regelmeeting Rückbau Wasserstofftankstelle in Brugg (Fa. IBB, Fa. Carbagas, Architekt Tschudin+Urech)
23.03.2017	Besprechung weiterer Entwurf Brennstoffzellenbericht für BFE
27.03.2017	Erste Fragerunde bezgl. Unklarheiten Financial Report
April 17	
06.04.2017	Zweite Fragerunde bezgl. Unklarheiten Financial Report
10.04.2017	Berichterstattung bezgl. Unklarheiten Financial Report
11.04.2017	Definitiver Financial Report an EU übermittelt -> keine weiteren Fragen im Moment
Mai 17	
24.05.2017	Besprechung Abschlussbericht intern
30.05.2017	Abtransport Elektrolyseur und Hochdruckspeicheranlage in Brugg durch Fa. Carbagas
Juni / Juli 17	
27.07.2017	Definitiver Schlussbericht inkl. Zusammenarbeit mit PSI bezgl. umfassender CO2 und
	Energiebilanz
28.07.2017	Übermittlung Schlussbericht an das Bundesamt für Energie
August 17	
07.08.2017	Start Rückbauarbeiten Tankstelle Brugg