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Abstract

Reproducibility in animal research is alarmingly low, and a lack of scientific rigor has been

proposed as a major cause. Systematic reviews found low reporting rates of measures

against risks of bias (e.g., randomization, blinding), and a correlation between low reporting

rates and overstated treatment effects. Reporting rates of measures against bias are thus

used as a proxy measure for scientific rigor, and reporting guidelines (e.g., ARRIVE) have

become a major weapon in the fight against risks of bias in animal research. Surprisingly,

animal scientists have never been asked about their use of measures against risks of bias

and how they report these in publications. Whether poor reporting reflects poor use of such

measures, and whether reporting guidelines may effectively reduce risks of bias has there-

fore remained elusive. To address these questions, we asked in vivo researchers about

their use and reporting of measures against risks of bias and examined how self-reports

relate to reporting rates obtained through systematic reviews. An online survey was sent out

to all registered in vivo researchers in Switzerland (N = 1891) and was complemented by

personal interviews with five representative in vivo researchers to facilitate interpretation of

the survey results. Return rate was 28% (N = 530), of which 302 participants (16%) returned

fully completed questionnaires that were used for further analysis. According to the

researchers’ self-report, they use measures against risks of bias to a much greater extent

than suggested by reporting rates obtained through systematic reviews. However, the

researchers’ self-reports are likely biased to some extent. Thus, although they claimed to be

reporting measures against risks of bias at much lower rates than they claimed to be using

these measures, the self-reported reporting rates were considerably higher than reporting

rates found by systematic reviews. Furthermore, participants performed rather poorly when

asked to choose effective over ineffective measures against six different biases. Our results

further indicate that knowledge of the ARRIVE guidelines had a positive effect on scientific

rigor. However, the ARRIVE guidelines were known by less than half of the participants

(43.7%); and among those whose latest paper was published in a journal that had endorsed

the ARRIVE guidelines, more than half (51%) had never heard of these guidelines. Our

results suggest that whereas reporting rates may underestimate the true use of measures

against risks of bias, self-reports may overestimate it. To a large extent, this discrepancy
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can be explained by the researchers’ ignorance and lack of knowledge of risks of bias and

measures to prevent them. Our analysis thus adds significant new evidence to the assess-

ment of research integrity in animal research. Our findings further question the confidence

that the authorities have in scientific rigor, which is taken for granted in the harm-benefit

analyses on which approval of animal experiments is based. Furthermore, they suggest that

better education on scientific integrity and good research practice is needed. However, they

also question reliance on reporting rates as indicators of scientific rigor and highlight a need

for more reliable predictors.

Introduction

Reproducibility is the cornerstone of the scientific method and fundamental for the ethical jus-

tification of in vivo research. Mounting evidence of poor reproducibility (e.g. [1,2]) and trans-

lational failure of preclinical animal research [3–5] has therefore raised serious concerns about

the scientific validity [6,7] and ethical justification [8,9] of in vivo research. Possible reasons

for poor reproducibility include a lack of education [10,11], perverse incentives [12], ignorance

of standards of good research practice [2], as well as scientific misconduct and fraud [13]. All

of these may result in poor experimental design and conduct, thereby compromising scientific

validity [5,14–17].

Poor scientific validity has important scientific, economic, and ethical implications. It ham-

pers scientific and medical progress and leads to translational failure through misguided

research efforts (e.g. [3,18–21]). It also increases R&D costs in drug development [22], result-

ing in higher health care costs (e.g. [17]). Based on estimates of irreproducibility in preclinical

research, up to USD 28B/year may be spent in the US alone on irreproducible preclinical

research [19]. Furthermore, poor scientific validity imposes unnecessary harm and distress

upon research animals (e.g. [8,9]), raises false hopes in patients awaiting cures for their dis-

eases, and puts patients in clinical trials at risk [23].

Much of the evidence of poor experimental design and conduct in animal research rests on

systematic reviews and meta-analyses revealing low rates of reporting of measures against risks

of bias (e.g., randomization: mean = 27% [range = 9–55%], blinding: 28.7% [0–61%], sample

size calculation: 0.5% [0–3%]) in the primary literature (e.g. [23,24–33]). Consequently, report-

ing guidelines such as the ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE)

guidelines [34] (https://www.nc3rs.org.uk/arrive-guidelines) or the revised ‘Reporting Check-

list for Life Science Articles’ by the Nature publishing group (http://www.nature.com/authors/

policies/reporting.pdf) were promoted in view of improving the situation. For example, the

ARRIVE guidelines consist of a checklist of 20 items of information that all publications

reporting animal research should include, including details of methods used to reduce bias

such as randomisation and blinding. Despite general consensus about the benefits of such

guidelines (> 1000 journals have endorsed the ARRIVE guidelines by September 2016), Baker

et al. [35] found that reporting rates of measures against bias remained low in PLoS and Nature

journals even after they had endorsed the ARRIVE guidelines. Although reporting rates are

generally increasing, they are still rather low [26].

In the past, the reporting of measures against bias such as randomization, blinding, sample

size calculation and others was largely optional and–to some extent–this is still the case today.

Therefore, reporting rates of these measures may not be reliable indicators of scientific rigor.

Whether poor reporting reflects poor scientific validity, however, has never been systematically
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studied. Nevertheless, some indications exist that scientific rigor is often lacking, and that risks

of bias are associated with poor reporting. For example, in neuroscience research most experi-

mental studies are underpowered, and low statistical power in combination with null hypothe-

sis significance testing and publication bias may lead to inflated effect size estimates from the

published literature (e.g. [36]); inappropriate statistical methods often lead to spurious conclu-

sions (e.g. [37,38,39]); and several systematic reviews indicate that low reporting rates of mea-

sures against bias are associated with larger effect sizes (e.g. [28,29,30,40]). This has raised

concerns that there may be systemic flaws in the way we conduct and report research [2]. Sev-

eral authors warned that the quality of animal research is (unacceptably) poor (e.g. [41]) and

stricter adherence to standards of best research practice is necessary if the scientific validity of

animal research is to be improved [15].

In light of the many studies published on poor reporting of measures against bias and the

level of attention they received [5,7,18,42], it is surprising that so far no study has investigated

the relationship between what researchers do in the laboratory and what they report in their

publications. The primary aim of the present study, therefore, was to assess the researchers’

view of the quality of experimental conduct and how this relates to what they report in the pri-

mary literature. Using a questionnaire sent out to all registered animal scientists actively

involved with ongoing animal experiments in Switzerland, we assessed (i) the researchers’

awareness and knowledge of risks of bias in animal research, (ii) the measures they take to

avoid bias in their own research, and (iii) how they report these measures in their publications.

To aid interpretation of the results, we also conducted qualitative interviews with a small sub-

set of these researchers to get insight into personal viewpoints, underlying motivations, and

compliance with quality standards.

Methods

Online survey

An anonymous online survey was developed using the free software Limesurvey [43]. The sur-

vey contained a total of 21 questions divided into seven sections. Thus, participants were asked

about (i) their area of research, and the species they were mainly working with; (ii) their work

institution, including certification; (iii) experimental design and conduct, including which of

seven primary measures against risks of bias (Table 1) participants generally apply to their

own research; (iv) the journal of their latest scientific publication and which of the seven mea-

sures against bias listed in Table 1 they had reported in that publication (or the reasons for not

reporting them); (v) awareness of risks of bias, and knowledge about measures to prevent

them; (vi) familiarity with the ARRIVE (or similar) guidelines, and whether they adhered to

them; and (vii) the participants’ personal research experience. The questionnaire was piloted

among five animal researchers to ensure clarity. Participants had to answer all questions of a

section before being able to move on to the next section, however, for most questions they had

the option of not answering questions by ticking ‘no answer’, ‘do not know’, or ‘not relevant’.

The full questionnaire is available in S1 Text.

Study population and data collection

The online survey was set up as a partially closed survey, for which potential participants

(N = 1891) were invited via email. Email addresses were provided by the Swiss Federal Food

Safety and Veterinary Office (FSVO) and included all researchers involved in ongoing animal

experiments in Switzerland, which were registered by the FSVO as experimenters, study direc-

tors, or resource managers of animal facilities. The questionnaire was online for seven weeks;

Survey on Scientific Rigor

PLOS ONE | DOI:10.1371/journal.pone.0165999 December 2, 2016 3 / 20



after five weeks a reminder for participation was sent to all addressees to increase response

rate.

Ethics statement

Given that there were no known risks associated with this research study, participants of the

survey and the interviews were not a vulnerable group of people, and complete confidentiality

was guaranteed, we saw no need for formal ethical review before the study began.

Data analysis

The online survey generated 530 questionnaires (return rate: 28%), of which 302 (57%) were

fully completed while 228 were only partially completed. Partially completed questionnaires

were only used for assessing a potential bias in the sample of fully completed questionnaires,

while only the latter (16% of the total sample) were used for further analysis. Survey data were

exported to MS Excel, checked for inconsistencies, and revised if necessary with suitable cor-

rection rules. Each question of the survey was analyzed quantitatively in terms of proportions

of the answers given by the participants.

Besides analyzing each question separately, internal validity scores (IVS) were calculated for

each participant for a) experimental conduct (IVSExp), and b) reporting in the latest publica-

tion (IVSPub). The scores were based on the measures against risks of bias (Table 1) and were

equal to the number of these measures claimed to be applied (under a, Eq 1) or reported

(under b, Eq 2) by the participant, divided by the number of measures that were applicable to

a) or b), respectively.

IVSExp ¼ number of yes and depends = 7 � number of no answerð Þ ð1Þ

IVSPub ¼ number of yes ðfull detailsÞ � ð6 � Sðnumbers of no answer

þ does not apply to last manuscript þ have not published yetÞÞ: ð2Þ

For an overview of all possible answer options, please refer to the copy of the online survey

in S1 Text. Due to a mistake in the way the questions regarding allocation concealment were

formulated, data for this measure were excluded from both IVS in the case of a direct

Table 1. List of measures against risks of bias included in this study.

Measure Definition Bias

Allocation Concealment Concealment of allocation sequence from those assigning subjects to treatment groups, until

the moment of assignment.

Selection Bias

Randomization Allocation of study subjects randomly to treatment groups across the comparison, to ensure

that group assignment cannot be predicted.

Selection Bias

Blinding Keeping the persons involved in an experiment (i.e. experimenter, data collector, outcome

assessors) unaware of the treatment allocation.

Attrition Bias, Detection Bias,

Performance Bias

Sample Size

Calculation

Appropriate a priori determination of number of study subjects for a given test setup that

allows for a detection of a treatment effect given the power to find an effect of a defined size.

“Avoiding wastage of animals”

Inclusion and Exclusion

Criteria

A priori defined characteristics which describe on which basis subjects will be included in the

study or how they need to be treated in case of attrition.

Attrition Bias, Selective

Reporting

Primary Outcome A priori defined main variable of interest, on which the treatment effect is measured; with

sample size calculation being based on it.

Selective Reporting

Statistical Analysis Plan A priori definition of statistical methods by which the primary outcome variable is analyzed at

the end of the study.

Attrition Bias, Selective

Reporting

Definitions adapted from van der Worp et al. [5], CONSORT (www.consort-statement.org), the Cochrane Collaboration (methods.cochrane.org).

doi:10.1371/journal.pone.0165999.t001
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comparison between the scores (change of denominator in Eq 1 to “6—number of no answer”).

In addition, the inuence of several independent variables (descriptors of the participants

derived from the online survey) on these scores was investigated through an information theo-

retic modelling approach using generalized linear models (glm). The Bayesian Information

Criterion (BIC) was used to compare candidate models [44] and to retrieve the model which

best described the data [45]. The two scores were modelled with the following main effects

(descriptors): Knowledge of the ARRIVE guidelines (binary; yes, no), host institution (categor-

ical; academia, industry, governmental, private), animal research experience (continuous; no.

of years), the authority (cantonal veterinary ofce) responsible for approving the participants’

applications for animal experiments (categorical; 13 cantons), eld of research (categorical:

basic, applied, other), and the research discipline (categorical: Animal Welfare, Cell Biology/

Biochemistry/Molecular Biology, Ethology, Human Medicine, Para-clinics, Veterinary Medi-

cine, Zoology, other discipline).

Starting with the full model (all descriptors including the interaction term knowledge of

ARRIVE x institution), single term deletion was performed by a stepwise backwards procedure

(drop1 function), eliminating the descriptor with the largest p-value to produce a set of candi-

date models for the model selection process. Besides this set of candidate models, we also

included all univariate models (single descriptors) as well as the null model (only intercept;

total of 12 models). The model comparison was conducted using the function model.sel from

the R-package MuMIn [46]. The model with the lowest BIC was chosen as the one fitting the

data best. Model estimates and 95% confidence intervals were corrected for overdispersion of

the data (glm link function = quasibinomial).

In order to investigate whether the IVSExp and IVSPub were correlated, a Spearman’s Rank

Correlation was performed with the reduced IVS scores (only considering six validity criteria,

i.e., without allocation concealment). Mean differences in IVS between participants of certified

institutions vs. non-certified institutions were investigated with a Wilcoxon Rank Sum Test

for both scores. Values for IVS are presented as means ± SD. All statistical analysis were per-

formed using the statistical software R, Version 3.0.3 [47].

Personal Interviews

The online survey was complemented by interviews with five selected researchers representing

the diversity of institutions and areas of research among the participants of the survey. The

interviews are not described in the main text of this article, however, complete information

about the methods, study population, analysis and results of the interviews is provided in S2

Text.

Results

Study population

The 302 participants returning fully completed questionnaires had an average of 15.5

(SD ± 8.6) years of experience in animal research. Most of them were affiliated with academic

institutions (74.5%, N = 225), 14.9% (N = 45) with industry, 4.6% (N = 14) with governmental

research institutions, and 6% (N = 18) with private research institutions. Only 23.8% of the

participants (N = 72) indicated that their institution was formally certified, and 27.2% (N = 82)

that it was not, while almost half of the participants (44.7%) did not know this or did not

answer this question (4.3%) (for a complete table, see S1 Table). Among the 72 participants

indicating that their institution was certified, academics were relatively underrepresented with

only 45.8% compared to 74.5% among the total sample, whereas researchers from
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pharmaceutical industry (29.2% vs. 14.9%), governmental institutions (8.3% vs. 4.6%), and pri-

vate institutions (16.7% vs. 6%) were relatively overrepresented.

Most participants (58.9%, N = 178) attributed their work to basic research and 40.4%

(N = 122) to applied research, while two participants (0.7%) were undecided. The large major-

ity of participants (86.8%) were engaged in biomedical or medical research (for details see

Table 2), and the animals used as experimental subjects were mainly mice (60.6%) and rats

(15.6%) (for details see Table 3). While 14 participants (4.6%) had not yet published their first

paper, most participants (57%, N = 172) had published between 1 and 20 papers, and 116 par-

ticipants (38.4%) had published more than 20 papers.

Measures to avoid bias

When asked which of the seven measures against risks of bias the participants normally used

in the conduct of their experiments (including the answers ‘yes’ and ‘depends’), a large major-

ity ticked primary outcome variable (90%, N = 264), inclusion and exclusion criteria (84%,

N = 245), randomization (86%, N = 248), and statistical analysis plan (82%, N = 240). More

than half also ticked sample size calculation (69%, N = 203) and allocation concealment (52%,

Table 2. Research Disciplines of Survey Participants.

Discipline Number Proportion [%]

Human Medicine 108 36

Biochemistry, Cell or Molecular Biology 105 35

Veterinary Medicine 27 9

Para-clinics 22 7

Other 15 5

Animal Welfare 12 4

Zoology 11 4

Ethology 2 1

doi:10.1371/journal.pone.0165999.t002

Table 3. Primary Research Species of Survey Participants.

Primary Species Number Proportion [%]

Mice 183 60.60

Rats 47 15.56

Fish 15 4.97

Cattle 10 3.31

Dogs 9 2.98

Birds (incl. Poultry) 7 2.32

Amphibians, Reptiles 6 1.99

Donkeys, Horses 5 1.66

Pigs 5 1.66

Sheep, Goats 5 1.66

Primates 3 0.99

Rabbits 2 0.66

Cats 1 0.33

Guinea Pigs 1 0.33

Invertebrates 1 0.33

Other Mammals 1 0.33

Other Rodents 1 0.33

doi:10.1371/journal.pone.0165999.t003
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N = 143), whereas less than half (47%, N = 135) ticked blinded outcome assessment (see Fig

1A white bars). These proportions were corrected for the number of participants ticking ‘no

answer’ (for full results including absolute numbers see S2 Table).

To put these numbers in relation to reporting rates derived from published papers, we

asked participants to state explicitly which of these seven measures against risks of bias they

had reported in their latest published research article. Most of the participants indicated that

they had reported in full details a statistical analysis plan (71%, N = 180) and the primary out-

come variable (78%, N = 177), whereas reporting rates for inclusion and exclusion criteria

(45%, N = 97), randomization (44%, N = 87), sample size calculation (18%, N = 40) and blind-

ing (27%, N = 49) were considerably lower (Fig 1A grey bars). Again, reporting rates were cor-

rected for the number of participants having ticked ‘does not apply to last manuscript’, ‘have

not published so far’, and ‘no answer’.

For each of these bias avoidance measures, between 5.3% (statistical analysis) and 27.5%

(blinding) of the 302 participants considered these measures to be irrelevant with respect to

their latest publication (see “NA” in S2B Table). The most common reason (chosen from a

drop-down list) for not reporting measures against risks of bias in their latest publications was

that it was ‘not necessary’ (from 30% for sample size calculation up to 80% for statistical analy-

sis). Additional reasons were that it was ‘not common’ (up to 39% for sample size calculation),

that they ‘did not think of it’ (up to 19% for primary outcome variable) or space limitations by

the journals (up to 8% for sample size calculation).

Fig 1. Prevalence of the measures used and reported to avoid risks of bias by the participants to online survey. (A) Prevalence of use of bias

avoidance measures during experimental conduct and reporting in the participants’ latest publication (percentages are corrected for ‘no answer’, ‘does

not apply to last manuscript’ and ‘have not published so far’. (B) Internal validity scores (IVS) for experimental conduct and reporting in publications.

doi:10.1371/journal.pone.0165999.g001
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IV scores

The mean IVSExp based on all seven measures against risks of bias was 0.73 (SD ± 0.24,

N = 301). However, to facilitate comparison with the IVSPub, we also calculated an IVSExp

based on six measures only (excluding allocation concealment), resulting in a mean IVSExp of

0.76 (SD± 0.23; N = 301) compared to a mean IVSPub of 0.49 (SD ± 0.29, N = 261). There was a

weak but significant positive correlation between IVSExo and IVSPub (Spearman’s Rank Corre-

lation: S = 2322088, Rho = 0.22, p- value = 0.0004).

Variation in IVSExp was best explained by knowledge of the ARRIVE guidelines and by the

participants’ field of research (BIC = 1132, BICweights = 0.967; ΔBIC to second best model [only

including ARRIVE knowledge] = 7.38). There was a positive effect of ‘ARRIVE knowledge’ on the

IVSExp compared to ‘no knowledge’ (model estimate = 0.406, 95% CI = 0.133–0.683), and negative

effects of ‘basic research’ (model estimate = -0.299, 95% CI = -0.579–-0.0223) and ‘other research’

(model estimate = -2.052, 95% CI = -3.912–-0.526) compared to ‘applied research’ (Fig 2A).

The model including knowledge of the ARRIVE guidelines performed best in explaining

variation in the IVSPub (BIC = 874.24, BICweights = 0.995, ΔBIC to second best model [null

model with intercept only] = 11.4). Again, knowledge of the ARRIVE guidelines had a positive

effect on the IVSPub compared to ‘no knowledge’ (model estimate = 0.461, 95% CI = 0.201–

0.723) (Fig 2B). An overview of the models and selection procedure can be found in S3 Table.

Fig 2. Boxplot of IVS versus descriptors of model selection process. Descriptors are selected for the models with lowest BIC, thus best explaining

the variation in IVS for (A) experimental conduct and (B) for publications. For (A) one value is missing as no IVS could be calculated, and for (B) 41

values are missing, because participants ticked ‘have not yet published’, gave ‘no answer’ or declared that these questions ‘do not apply to last

manuscript’. For experimental conduct (A), the model including ARRIVE knowledge and research field best explained the IVSExp, whereas for

publications (B), the model including only ARRIVE knowledge best explained the IVSPub. Red squares indicate the mean IVS; black circle the mean of

IVSExp of participants with ARRIVE knowledge; grey triangle the mean IVSExp of participants without ARRIVE knowledge. Whiskers are 1.5*interquartile

range.

doi:10.1371/journal.pone.0165999.g002
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The IVSExp was slightly higher in participants from certified institutions (mean IVSExp cer-

tified = 0.81, SD ± 0.30, N = 72) compared to non-certified institutions (mean IVSExo non-cer-

tified = 0.73 ± 0.23, N = 82; Fig 3A), however, this difference was not significant (Wilcox Rank

Sum Test, W = 2490, p = 0.087). Similarly, IVSPub was slightly but not significantly higher

(W = 2144, p = 0.60) in participants working at certified institutions (mean IVSPub =

0.54 ± 0.27, N = 62; mean IVSPub = 0.51 ± 0.30, N = 73; Fig 3B).

Awareness of risk of bias and measures aimed to avoid them

As summarized in Table 4, most participants indicated that they were aware of risks of bias

caused by selective reporting (67.5%, N = 204), selection bias (65.2%, N = 197), and detection

bias (61.9%, N = 187), and that they avoid these risks routinely in their research. Furthermore,

about half of the participants indicated being aware of publication bias (57.6%, N = 174) and

performance bias (48.7%, N = 147), whereas less than one third (29.8%, N = 90) indicated

being aware of attrition bias. However, depending on the type of bias only between 15.6% and

41.7% of the participants indicated being concerned about these biases with respect to their

own research, and between 15.2% and 35.8% of the participants indicated that these biases did

not apply to their own research. Moreover, 10.9% (N = 33) of the participants indicated not

being aware of any of these biases, and 24.2% (N = 73) indicated that they were not concerned

about any of these biases with respect to their own research (Table 4).

Next, we assessed the participants’ knowledge of specific measures against risks of bias. Fig 4

presents their responses when asked what measures they would take to avoid the different types of

Fig 3. Boxplot of IVS versus certification of institution. Comparison of IVS for (A) experimental conduct, and (B) for the reporting in publications

with respect to working institutions being certified. Mean IVS are slightly but non-significantly higher for participants working for certified institutions.

doi:10.1371/journal.pone.0165999.g003
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bias. As indicated by the distribution of responses across the different panels, apart from publica-

tion bias (panel D), there was no clear pattern of preference for effective over ineffective measures.

The ARRIVE guidelines were known by 43.7% of the participants (N = 132), of which 24

indicated that they were familiar with these guidelines, 35 that they had read them, and 73 that

they had heard of them. However, the majority of participants (56.3%, N = 170) indicated that

they had never heard of the ARRIVE guidelines before (Fig 5). Among the 132 participants

being aware of the ARRIVE guidelines, most indicated that they adhere to them either gener-

ally (30.3%, N = 40) or occasionally 34.8%, N = 46), while 15.2% (N = 20) answered that they

did not adhere to them and 19.7% (N = 26) did not answer this question.

Consulting the NC3rs Website (https://www.nc3rs.org.uk/arrive-animal-research-

reporting-vivo-experiments#journals, accessed July 6th 2015), the journals in which partici-

pants had published their latest paper was checked for endorsement of the ARRIVE guidelines.

Of all participants having published at least one research paper (N = 288), 79 (27.4%) had pub-

lished their latest paper in a journal that had endorsed the ARRIVE guidelines (86.1% [N = 68]

from academia, 6.3% [N = 5] from governmental institutions, 5.1% [N = 4] from industry,

2.5% [N = 2] from private research institutions). Among these participants, 16.5% (N = 13)

indicated that they were familiar with the ARRIVE guidelines, 11.4% (N = 9) that they had

read them, and 21.5% (N = 17) that they had heard of them. However, more than half of the

participants who had last published in a journal endorsing the ARRIVE guidelines (51%,

N = 40) indicated that they had never heard of these guidelines.

Apart from the ARRIVE guidelines, 235 participants (77.8%) indicated that they adhered to

other guidelines either regularly (N = 217, 71.8%) or occasionally (N = 18, 6%), while 26 partic-

ipants (8.6%) never followed any guidelines (41 participants [13.6%] did not answer this ques-

tion). Among the 235 participants who did adhere to other guidelines either regularly or

occasionally, 72.3% (N = 170) referred to internal SOPs (Standard Operating Procedure),

59.6% (N = 140) to specific journal guidelines, and 24.2% (N = 57) to various other guidelines

(multiple answers were possible).

Assessment of possible bias in study sample

To assess whether our study sample of fully completed questionnaires (N = 302; 16% of total

survey population) might be biased, we exploited our sample of partially completed question-

naires (N = 228) and compared participant characteristics between these two samples as well

as the primary outcome variable of this study, IVSExp.

Table 4. Participants’ Assessment of Different Types of Experimental Biases.

A) Awareness B) Concerned C) Avoidance D) Not Relevant

Selective Reporting 67.5 (204) 37.4 (113) 58.9 (178) 17.5 (53)

Selection Bias 65.2 (197) 39.7 (120) 58.3 (176) 17.9 (54)

Detection Bias 61.9 (187) 41.7 (126) 52.3 (158) 15.2 (46)

Publication Bias 57.6 (174) 35.4 (107) 41.7 (126) 24.5 (74)

Performance Bias 48.7 (147) 29.1 (88) 45.7 (138) 22.8 (69)

Attrition Bias 29.8 (90) 15.6 (47) 22.8 (69) 35.8 (108)

None of Above 10.9 (33) 24.2 (73) 13.9 (42) 42.7 (129)

Other Types of Bias 3.0 (9) 1.7 (5) 2.0 (6) 1.7 (5)

Questions included (A) what biases participants were generally aware of, (B) which biases they were concerned with in their own research, (C) which types

of bias they were trying to avoid routinely, and (D) which of these biases did not apply to their own research. Shown are percentages with the absolute

numbers in brackets.

doi:10.1371/journal.pone.0165999.t004
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Similar proportions of participants returning partially vs. fully completed questionnaires

ascribed their research to basic research (51.2% vs. 58.9%), applied research (45.5% vs. 40.4%),

or were undecided (2.4% vs. 0.7%), respectively (N = 167 partially completed questionnaires).

Fig 4. Experimental biases and measures to avoid them. Bars indicate percentage of participants (y-axis) giving that answer (corrected for

participants choosing ‘no answer’), red bars indicate effective measures to avoid a given bias (A-F), respectively. The red circle is indicative of the

mean of effective measures (sensu stricto according to Table 1), while the grey rectangle is the mean of ineffective measures. Number of

participants answering to questions: attrition bias N = 172; detection bias N = 224; performance bias N = 212; publication bias N = 180; selective

reporting N = 213; selection bias N = 219. The list of possible answers (x-axis) included: AlloCon = allocation concealment; Blind = blinding; In /

Excl = inclusion / exclusion criteria; PriOut = primary outcome variable; IndRep = independent replication; ITT = Intention-to-Treat analysis;

SSCal = sample size calculation; AllRes = reporting of all results; PubHI = publishing in high impact journals; Rand = randomization; Other = other

measures.

doi:10.1371/journal.pone.0165999.g004
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Also, similar proportions were involved in biomedical and medical research (85.6% vs. 86.8%;

N = 167); were using mice (71.5% vs. 60.6%) and rats (13.9% vs. 15.6%; N = 165); and were

affiliated with academic institutions (71.1% vs. 74.5%), industry (15.1% vs. 14.9%), govern-

mental research institutions (5.7% vs. 4.6%), and private research institutions (8.2% vs. 6%;

N = 159), respectively.

In terms of the primary outcome variable, IVSExp, the comparison between our study sam-

ple of fully completed questionnaires and that of partially completed questionnaires for which

the necessary answers were available yielded identical results, with a mean IVSExp of 0.73

(SD ± 0.24; N = 301) for the study sample and a mean IVSExp of 0.73 (SD ± 0.20; N = 99) for

the sample of partially completed questionnaires.

Fig 5. Knowledge of ARRIVE Guidelines by participants to the online survey. Shown are absolute numbers of

participants being ‘familiar’ with the guidelines, ‘having read’ and ‘having heard of’ them, and having ‘never heard of’

the guidelines, split according to the participants’ affiliations (private institutions, pharma, governmental institutions

and academia).

doi:10.1371/journal.pone.0165999.g005
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Discussion

Summary of results

Low reporting rates of measures against risks of bias in the primary literature are widely con-

sidered as a proxy measure of poor experimental conduct. Reporting guidelines (e.g., ARRIVE)

have thus become a major weapon in the fight against risks of bias in animal research. Here we

studied, for the first time, how reporting rates of measures against risks of bias in in vivo

research (e.g. [23,26,28–30,33]) relate to the rates at which such measures are implemented,

according to researchers’ self-reports. Our findings indicate that scientific rigor of animal

research may be considerably better than predicted by reporting rates, as researchers may be

using measures against risks of bias to a much greater extent than suggested by systematic

reviews of the published literature. The large discrepancy suggests that reporting rates may be

poor predictors of scientific rigor in animal research. This is further supported by our finding

that the rates at which researchers claimed to have reported measures against bias in their latest

publication were considerably lower than the rates at which they claimed to have used these

measures in their research.

On the other hand, we found a weak but positive correlation between self-reported use and

self-reported reporting of measures against risks of bias, supporting findings from systematic

reviews indicating that higher reporting rates reflect more rigorous research (e.g. [26,29,48]).

Furthermore, self-reported reporting rates of measures against risks of bias in the researchers’

latest publication were considerably higher than the reporting rates commonly found by sys-

tematic reviews. Taken together, these findings suggest that whereas reporting rates may

underestimate scientific rigor, self-reports may overestimate it. The latter is further supported

by our finding that the researchers’ knowledge of risks of bias, and effective measures to pre-

vent them, was rather limited. Thus, the discrepancy between reporting rates and self-reports

may be partly explained by the researchers’ ignorance of potential risks of bias and measures

to prevent them.

Our findings, therefore, highlight a need for better education and training of researchers in

good research practice to raise their awareness of risks of bias and improve their knowledge

about measures to avoid them. Furthermore, they indicate a need for more reliable predictors

of scientific rigor.

Validity of self-reports

The researchers’ self-reports of their use of measures against risks of bias should be interpreted

with caution, as self-reports may not necessarily reflect the true quality of experimental con-

duct. That the reporting rates of measures against bias claimed by the researchers for their lat-

est publication were considerably higher than the reporting rates generally found by

systematic reviews of the published literature (e.g., randomization 44% vs. 27%, sample size

calculation 18% vs. 0.5%) indicates that the researchers’ self-reports should not be taken at face

value. There are two main ways in which the self-reports may be biased. First, our study popu-

lation (participants having returned fully completed questionnaires) may differ from the over-

all population of in vivo researchers. For example, participants of the survey may be

particularly conscious of risks of bias and the problem of poor reproducibility, which may

have predisposed them to take part in this survey. This could explain better experimental con-

duct and better reporting, compared to the overall population. Alternatively, participants may

have been prone to overestimate their own performance (e.g. [49]). We have only limited data

to assess these two alternatives. However, when comparing the population of participants who

returned fully completed questionnaires with the population of participants who started but
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did not complete the questionnaire, we did not find any major differences in the characteristics

of the participants (e.g., host institution, research animals, type of research), nor in the primary

outcome variable of this study, the internal validity score for experimental conduct (IVSExp).

Given that these two populations of participants together accounted for almost one third of

the overall population of registered in vivo researchers in Switzerland, the difference in report-

ing rates between self-reports and systematic reviews are unlikely to be explained by a system-

atic bias towards better performers in our study sample. This is further supported by the fact

that the participants performed rather poorly when asked about their knowledge of specific

types of bias, and effective measures to avoid these. Overestimation of one’s own performance

tends to be the more pronounced, the less skilled and competent individuals are (i.e., the Kru-

ger-Dunning Effect, [50]). Although researchers are generally highly skilled and competent in

their field of research, the researchers’ limited knowledge of types of bias and measures to

avoid them renders their self-reports at risk for overestimation. We thus conclude that the dif-

ference between what researchers claimed to have reported in their latest paper and reporting

rates found by systematic reviews are more likely explained by the researchers overestimating

their own performance than a bias towards better performers in our study sample.

Subjective bias resulting in overestimation of their own performance may also have affected

the researchers’ self-reports on the actual use of measures against risks of bias. Thus, the true

use of measures against risks of bias may lie anywhere between what has been found to be

reported by systematic reviews, and the researchers’ self-report presented here. Given the large

difference between IVSExp and IVSPub, however, reporting rates found in the literature are

likely to underestimate scientific rigor to a considerable extent.

Reasons for low reporting rates

The main reason for not reporting the use of measures against risks of bias in publications is

that researchers do not find it necessary to report it. This was further corroborated by personal

interviews. Thus, researchers argued, for example, that “certain things are self-evident and do

not need to be reported”, that “the journal did not request to describe it [e.g., randomization]”,

that “good scientific practice” actually implies that the criteria of good research practice are

met without having to stress (i.e., report) this, or that “there is a threshold for what is relevant

to the own laboratory and [what is relevant] to the research community outside the

laboratory”.

However, given the negative relationship between the reporting of measures against risks of

bias and overstatement of treatment effect size (e.g. [28,29,30,40]), and the positive correlation

between IVSPub and IVSExp found here, these statements appear questionable.

Although our findings suggest that scientific rigor in animal research may be considerably

better than predicted by systematic reviews, there clearly is scope for improvement as, for

example, only half of the participants self-reported using blinded outcome assessment (47%)

or allocation concealment (52%). Blinding and allocation concealment, together with proper

randomization procedures, are key measures to avoid selection bias and detection bias (cf.

Table 1) and should be used in every study and reported in every publication (e.g. [5,31,51]).

Effect of knowledge of reporting guidelines on measures of scientific

rigor

To assess the effects of specific characteristics of the researchers or their research on measures

of scientific rigor, we calculated scores of experimental conduct (IVSExp) and reporting

(IVSPub). Similar scores have previously been used to assess scientific rigor in systematic

reviews and meta-analyses of reporting rates in the published literature (e.g., CAMARADES
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checklist [24]). Variation in IVSExp was best explained by knowledge of the ARRIVE guidelines

(yes vs. no) and type of research (applied vs. basic vs. other). Thus, researchers being familiar

with the ARRIVE guidelines and researchers in applied research scored higher on IVSExp, and

researchers knowing the ARRIVE guidelines also scored higher on IVSPub. These findings sup-

port the view that reporting guidelines may improve not only reporting but may actually

improve the use of measures against risks of bias (e.g. [48]). The positive effect of applied

research on IVSExp is more difficult to explain. It has previously been argued that the incentive

for reliable results may be higher in applied research, for example in pharma research where

also economic values are at stake (e.g. [19,52]). However, given the small size of this effect, and

the fact that participants from academia and industry did not differ on both scores (IVSExp:

academia = 0.73 vs. industry = 0.73, Wilcox test: W = 5243, p = 0.70; IVSPub: academia = 0.51

vs. industry = 0.46, Wilcox test: W = 3900, p = 0.40) suggests that it should be interpreted with

caution.

Despite loud calls for better reporting (e.g. [53]) and the widespread endorsement of report-

ing guidelines by many scientific journals (e.g. [34,54–56]), reporting has not yet improved

much [35]. Thus, without active enforcement of reporting guidelines by journal editors and

reviewers, the situation may not change [57]. This is also confirmed by results of this study:

more than half of the participants having published their latest article in a journal that has

endorsed the ARRIVE guidelines admitted that they had never heard of these guidelines. This

ignorance is surprising given the wide coverage that the ARRIVE guidelines have received and

we may only speculate about the reason for this. Most likely, researchers can still ignore them–

and may continue to do so–as long as the journals do not enforce them more strictly.

This may reflect a general attitude we observed among the scientists we interviewed. While

they agreed that guidelines for the design and conduct of experiments may be useful, they

were skeptical towards reporting guidelines. As one interviewee put it, “introducing more

checklists to tick boxes does not increase the quality of science”. Thus, publication checklists

are perceived as a sign of increasing over-regulation and bureaucracy and may therefore be

ignored. Similarly, Begley and Ioannidis [39] warned that the burden of bureaucracy might

lead to normative responses without measurable benefits for the quality of research and repro-

ducibility. However, Minnerup and colleagues [48] recently showed that the quality of research

published in the journal Stroke increased after the implementation of the ‘Basic Science Check-

list’. Thus, if enforced by reviewers and editors, adequate checklists may well be conductive to

the quality of research.

Knowledge of risks of bias and measures to avoid them

Increasing evidence of bias associated with poor experimental conduct and reporting (e.g.

[5,23,26,29,30,33]) is only partly mirrored by the participants’ answers to the questionnaire.

Thus, only about two thirds of the participants (58–68%) indicated being aware of selective

reporting, selection bias, detection bias, and publication bias, and less than half of them were

actually ‘concerned’ about such biases (35–42%) with respect to their own research. Further-

more, between 15% and 25% indicated that these biases were ‘not relevant’ to their own

research. These results reflect a certain ignorance of risks of bias in experimental conduct,

combined with a lack of knowledge about these risks and about effective measures to avoid

them. Thus, when participants were asked about effective measures against specific types of

bias from a list of 10 potential measures, there was no consistent preference of effective over

ineffective measures, except for publication bias (and, to some extent, for selective reporting).

In particular, participants performed poorly when asked for measures against attrition bias,

detection bias, and performance bias, respectively. This lack of understanding may have
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contributed to the participants overestimating the quality of their own experimental conduct.

Therefore, besides the implementation of reporting guidelines (e.g. [34,48,56,58,59]), which

will raise awareness of risks of bias, we conclude that researchers may need better training in

scientific integrity and good research practice in view of minimizing risks of bias in future

research.

Conclusions

Our findings indicate that reporting rates of measures against risks of bias may not be reliable

measures of scientific rigor in animal research, and that better measures are needed. However,

although the researchers’ self-reports suggest that the actual use of measures against risks of

bias may be considerably higher than predicted by the low reporting rates in the published lit-

erature, self-reports may overestimate their true use. Indeed, the results presented here indi-

cate that there may be considerable scope for improvement of scientific rigor in experimental

conduct of animal research, and that concepts and methods of good research practice should

play a more important role in the education of young researchers (e.g. [11]). It is quite possible

that lack of scientific rigor contributes to the so called “reproducibility crisis” (e.g. [3]). How-

ever, scientific rigor in experimental conduct is not the only factor affecting reproducibility,

and perhaps not even the most important one; poor construct validity of animal models (e.g.

[9,17]) and poor external validity due to highly standardized laboratory conditions (e.g. [8,60–

63]) are important alternative causes. Further research is therefore needed on the effects of dif-

ferent aspects of scientific validity on reproducibility, to assess their scope for improvement

and in view of prioritizing strategies towards improvement beyond reporting guidelines.
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sors in animal model experiments implies risk of observer bias. J. Clin. Epidemiol. [Internet]. 2014 [cited

2014 Aug 25]; 67:973–83. Available: http://www.ncbi.nlm.nih.gov/pubmed/24972762 doi: 10.1016/j.

jclinepi.2014.04.008 PMID: 24972762

52. Howells DW, Sena ES, O’Collins V, Macleod MR. Improving the efficiency of the development of drugs

for stroke. Int. J. Stroke [Internet]. 2012 [cited 2013 Jun 4]; 7:371–7. Available: http://www.ncbi.nlm.nih.

gov/pubmed/22712738 doi: 10.1111/j.1747-4949.2012.00805.x PMID: 22712738

Survey on Scientific Rigor

PLOS ONE | DOI:10.1371/journal.pone.0165999 December 2, 2016 19 / 20

http://www.ncbi.nlm.nih.gov/pubmed/15060322
http://dx.doi.org/10.1161/01.STR.0000125719.25853.20
http://www.ncbi.nlm.nih.gov/pubmed/15060322
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2779358&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2779358&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1371/journal.pone.0007824
http://www.ncbi.nlm.nih.gov/pubmed/19956596
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2893951&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2893951&amp;tool=pmcentrez&amp;rendertype=abstract
http://dx.doi.org/10.1371/journal.pbio.1000412
http://www.ncbi.nlm.nih.gov/pubmed/20613859
http://dx.plos.org/10.1371/journal.pbio.1001756
http://dx.plos.org/10.1371/journal.pbio.1001756
http://dx.doi.org/10.1371/journal.pbio.1001756
http://www.ncbi.nlm.nih.gov/pubmed/24409096
http://www.ncbi.nlm.nih.gov/pubmed/23571845
http://dx.doi.org/10.1038/nrn3475
http://www.ncbi.nlm.nih.gov/pubmed/23571845
http://dx.doi.org/10.1038/506150a
http://www.ncbi.nlm.nih.gov/pubmed/24522584
http://dx.doi.org/10.1038/492180a
http://www.ncbi.nlm.nih.gov/pubmed/23235861
http://circres.ahajournals.org/cgi/doi/10.1161/CIRCRESAHA.114.303819
http://circres.ahajournals.org/cgi/doi/10.1161/CIRCRESAHA.114.303819
http://dx.doi.org/10.1161/CIRCRESAHA.114.303819
http://www.ncbi.nlm.nih.gov/pubmed/25552691
http://www.ncbi.nlm.nih.gov/pubmed/18635842
http://dx.doi.org/10.1161/STROKEAHA.108.515957
http://www.ncbi.nlm.nih.gov/pubmed/18635842
http://www.ncbi.nlm.nih.gov/pubmed/24879816
http://www.ncbi.nlm.nih.gov/pubmed/24879816
http://www.limesurvey.org
http://www.ncbi.nlm.nih.gov/pubmed/24804445
http://cran.r-project.org/package=MuMIn
http://cran.r-project.org/package=MuMIn
http://www.r-project.org/
http://stroke.ahajournals.org/lookup/doi/10.1161/STROKEAHA.115.011695
http://stroke.ahajournals.org/lookup/doi/10.1161/STROKEAHA.115.011695
http://dx.doi.org/10.1161/STROKEAHA.115.011695
http://dx.doi.org/10.1161/STROKEAHA.115.011695
http://www.ncbi.nlm.nih.gov/pubmed/26658439
http://www.ncbi.nlm.nih.gov/pubmed/12518967
http://www.ncbi.nlm.nih.gov/pubmed/24972762
http://dx.doi.org/10.1016/j.jclinepi.2014.04.008
http://dx.doi.org/10.1016/j.jclinepi.2014.04.008
http://www.ncbi.nlm.nih.gov/pubmed/24972762
http://www.ncbi.nlm.nih.gov/pubmed/22712738
http://www.ncbi.nlm.nih.gov/pubmed/22712738
http://dx.doi.org/10.1111/j.1747-4949.2012.00805.x
http://www.ncbi.nlm.nih.gov/pubmed/22712738


53. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent

reporting to optimize the predictive value of preclinical research. Nature [Internet]. Nature Publishing

Group; 2012 [cited 2013 Feb 27]; 490:187–91. Available: http://www.ncbi.nlm.nih.gov/pubmed/

23060188 doi: 10.1038/nature11556 PMID: 23060188

54. Cressey D. Surge in support for animal-research guidelines. Nature. News [Internet]. 2016; Available:

http://www.nature.com/doifinder/10.1038/nature.2016.19274

55. Kontinen VK. From clear reporting to better research models. Scand. J. Pain [Internet]. Elsevier B.V.;

2013 [cited 2013 Oct 9]; 4:57. Available: http://linkinghub.elsevier.com/retrieve/pii/

S1877886013000074

56. Editor. Reducing our irreproducibility. Nature. 2013; 496:198.

57. Glasziou P, Altman DG, Bossuyt P, Boutron I, Clarke M, Julious S, et al. Reducing waste from incom-

plete or unusable reports of biomedical research. Lancet [Internet]. Elsevier Ltd; 2014 [cited 2014 Jan

20]; 383:267–76. Available: http://www.ncbi.nlm.nih.gov/pubmed/24411647 doi: 10.1016/S0140-6736

(13)62228-X PMID: 24411647

58. Kontinen V. Raising the standards of preclinical pain studies. Scand. J. Pain [Internet]. Elsevier B.V.;

2015; 7:38–9. Available: http://linkinghub.elsevier.com/retrieve/pii/S1877886015000063

59. Mullane K, Enna SJ, Piette J, Williams M. Guidelines for manuscript submission in the peer-reviewed

pharmacological literature. Biochem. Pharmacol. [Internet]. 2015; 97:225–35. Available: http://www.

sciencedirect.com/science/article/pii/S0006295215003585 doi: 10.1016/j.bcp.2015.06.023 PMID:

26208784

60. Würbel H. Behaviour and the standardization fallacy. Nat. Genet. [Internet]. 2000; 26:263. Available:

http://www.ncbi.nlm.nih.gov/pubmed/11062457 doi: 10.1038/81541 PMID: 11062457

61. Würbel H. Behavioral phenotyping enhanced–beyond (environmental) standardization. Genes, Brain

Behav. [Internet]. 2002; 1:3–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/12886944

62. Richter SH, Garner JP, Auer C, Kunert J, Würbel H. Systematic variation improves reproducibility of ani-

mal experiments. Nat. Methods [Internet]. Nature Publishing Group; 2010 [cited 2013 Apr 4]; 7:167–8.

Available: http://www.ncbi.nlm.nih.gov/pubmed/20195246 doi: 10.1038/nmeth0310-167 PMID:

20195246

63. Voelkl B, Würbel H. Reproducibility crisis: Are we ignoring reaction norms? Trends Pharmacol. Sci.

2016; 37:509–10. doi: 10.1016/j.tips.2016.05.003 PMID: 27211784

Survey on Scientific Rigor

PLOS ONE | DOI:10.1371/journal.pone.0165999 December 2, 2016 20 / 20

http://www.ncbi.nlm.nih.gov/pubmed/23060188
http://www.ncbi.nlm.nih.gov/pubmed/23060188
http://dx.doi.org/10.1038/nature11556
http://www.ncbi.nlm.nih.gov/pubmed/23060188
http://www.nature.com/doifinder/10.1038/nature.2016.19274
http://linkinghub.elsevier.com/retrieve/pii/S1877886013000074
http://linkinghub.elsevier.com/retrieve/pii/S1877886013000074
http://www.ncbi.nlm.nih.gov/pubmed/24411647
http://dx.doi.org/10.1016/S0140-6736(13)62228-X
http://dx.doi.org/10.1016/S0140-6736(13)62228-X
http://www.ncbi.nlm.nih.gov/pubmed/24411647
http://linkinghub.elsevier.com/retrieve/pii/S1877886015000063
http://www.sciencedirect.com/science/article/pii/S0006295215003585
http://www.sciencedirect.com/science/article/pii/S0006295215003585
http://dx.doi.org/10.1016/j.bcp.2015.06.023
http://www.ncbi.nlm.nih.gov/pubmed/26208784
http://www.ncbi.nlm.nih.gov/pubmed/11062457
http://dx.doi.org/10.1038/81541
http://www.ncbi.nlm.nih.gov/pubmed/11062457
http://www.ncbi.nlm.nih.gov/pubmed/12886944
http://www.ncbi.nlm.nih.gov/pubmed/20195246
http://dx.doi.org/10.1038/nmeth0310-167
http://www.ncbi.nlm.nih.gov/pubmed/20195246
http://dx.doi.org/10.1016/j.tips.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27211784

