

# The slaughterhouse as data source for monitoring programmes

Martin Reist<sup>1</sup>, Jakob Zinsstag<sup>2</sup>, Roger Stephan<sup>3</sup>, Gertraud Schüppach<sup>1</sup>, Sara Schärer<sup>1</sup>, Patrick Korff<sup>1</sup>, Anna Fahrion<sup>1</sup>

<sup>1</sup>Veterinary Public Health Institute, Vetsuisse Faculty, University of Berne, Berne

<sup>2</sup>Swiss Tropical and Public Health Institute, Universits of Basel, Basel

<sup>3</sup>Institute for food safety and hygiene, University of Zurich, Zurich

## Key words

Monitoring, Surveillance, slaughterhouse, data source, IBR, EBL, STEC, ESBL, MRSA

## Aim of the study

To investigate methods and developing concepts for an efficient and effective (efficacious) use of slaughterhouses as data source for monitoring and control programmes on animal diseases, zoonoses, food safety and animal-oriented animal welfare parameters.

## Material and methods

To assess the feasibility of routine sampling and collect animal welfare parameters, the biggest Swiss slaughter houses were visited and blood and fecal samples were taken during pilot studies. Furthermore stakeholder workshops and questionnaires gave the study practical relevance. The coverage and cost efficiency of slaughterhouse samples was investigating by analyzing the data in the animal movement database.

## Results and significance

To render surveillance programmes for proofing absence of disease with given international standards at the slaughterhouse efficient, a centralized data management system is necessary. Currently such a system is developed and tested based on the results of this study.

For prevalence studies the slaughterhouse gives a cost-efficient alternative to on-farm sampling. The prevalence of ESBL-producing Enterobacteriaceae for Swiss cattle was found to be 8.4 %.

## Publications, posters and presentations

Hofer, E.; Stephan, R.; Reist, M.; Zweifel, C. Application of a real-time PCR-based system for monitoring of O26, O103, O111, O145 and O157 Shiga toxin-producing *Escherichia coli* in cattle at slaughter. *Zoonoses Public Health*. 2012, 59:408-15.

Reist, M.; Geser, N.; Hächler, H.; Schärer, S.; Stephan, R.. ESBL-producing Enterobacteriaceae: occurrence, risk factors for fecal carriage and strain traits in the Swiss slaughter cattle population younger than 2 years sampled at abattoir level. *PLoS ONE* 8(8): e71725. doi:10.1371/journal.pone.0071725

Schärer, S.; Fahrion, A.; Lindberg, A.; Reist, M.. (2013). Feasibility of slaughterhouse sampling for surveillance of beef cattle in Switzerland. *FLWI*, 6:59-63.

Schärer, S.; Presi, P.; Hattendorf, J.; Chitnis, N.; Reist, M.; Zinsstag, J. (2014). Demographic model of the Swiss cattle population for the years 2009-2011 stratified by gender, age and production type. *PLoS ONE* , Published: October 13, 2014, DOI: 10.1371/journal.pone.0109329

Schärer, S.; Schwermer, HP.; Presi, P.; Lindberg, A.; Zinsstag, J.; Reist, M. (2015). Cost and sensitivity of on-farm versus slaughterhouse surveys for prevalence estimation and substantiating freedom from disease. *Prev Vet Med.*;120(1):51-61. doi: 10.1016/j.prevetmed.2015.01.020. Epub 2015 Feb 11.

Schärer, S.; Widgren, S.; Schwermer, HP.; Lindberg, A.; Vidondo, B.; Zinsstag, J.; Reist, M. (2015). Evaluation of farm-level parameters derived from animal movements for use in risk-based surveillance programmes of cattle in Switzerland. *BMC Veterinary Research*. 11:149, DOI: 10.1186/s12917-015-0468-8 <http://www.biomedcentral.com/1746-6148/11/149>

**Project 1.11.12**

**Project duration** November 2011-December 2014