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Abstract

Owing to the demand for genuine mozzarella, some 330 water buffaloes are being slaughtered
every year in Switzerland albeit a stunning procedure meeting animal welfare and
occupational safety requirements still remains to be established. In an effort to improve
concussion, we determined the distance from accepted contact points to the thalamus in water
buffaloes and cattle and we assessed brain lesions by diagnostic imaging after stunning with
captive bolts or handguns. In water buffaloes, the average distance from frontal skin to
thalamus was 143 mm, the maximum value being 172 mm. Consequently, captive bolt
stunners with a protruding length of 90 or 120 mm are insufficient. Handguns lead to
immediate collapse of the animal and caused more severe brain damage than bolts. Thus, free
projectiles are suited to stun buffaloes reliably. However, occupational safety hazards remain
to be resolved. The results presented herewith shall provide the basis for the development of a

device allowing proper stunning of water buffaloes.

Keywords: Bubalus bubalis, concussion, skull, anatomy, diagnostic imaging
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1. Introduction

Over the last decade, water buffalo husbandry has become increasingly popular in
Switzerland. According to the Swiss Animal Tracing Database, water buffalo livestock
amounted to approximately 1,750 animals in 2013 (Federal Food Safety and Veterinary
Office, Dr. Alexandra Briner, personal communication). The interest in rearing this species
increased as a consequence of an ongoing price decline for cow's milk (Zemp, 2012)
paralleled by an increasing demand for genuine mozzarella. This has made the production of
buffalo milk an economically interesting niche product; since 1996, when the first animals
were imported from Romania, the number of buffaloes has increased continuously. In
response to stock management requirement to eliminate culled animals and market demand

for water buffalo meat, approximately 330 water buffaloes per year in Switzerland.

To meet the Swiss legal requirements to ensure animal welfare at the time of slaughter,
adequate stunning must produce deep unconsciousness (Tierschutzgesetz, 2014). As
consciousness arises from thalamocortical projections, stunning methods aim to disrupt the
information transfer to and within the cerebral cortex. In cattle, this is usually achieved by
producing mechanical damage to the forebrain and or brain stem using percussive devices
(Fries, Schrohe, Lotz, & Arndt, 2012). Percussive stunning may be achieved by means of
either a non-penetrating percussive apparatus or a perforating tool. The perforating devices
may be either a captive bolt or a bullet, both of which must strike through the skin and skull to
enter the cranial cavity. As a consequence, the effectiveness of a perforating stunning
procedure is highly dependent on the given anatomical conditions and the device being used.
Penetrating stunning devices may be used in the frontal, crown, or occipital position.
Furthermore, Swiss legislation applicable to the slaughtering of cattle bans the use of
penetrating stunning devices in the occipital position in adult cattle over 6 months of age
(Verordnung des BLV uber den Tierschutz beim Schlachten, 2014). Although Bubalus

bubalus belongs to the same family of Bovidae as domestic cattle, the anatomical
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characteristics of the head differ considerably between the two species. The skull bones were
shown to be substantially thicker and the frontal and paranasal sinuses are noticeably wider in
buffaloes compared to bovines (Saigal & Khatra, 1977). Moreover, these anatomical features
vary markedly with the sex and age of the animals (Dyce, Sack, & Wensing, C. J. G, 2010).
Furthermore, skin thickness may be expected to play a significant role as well. To ensure
adequate stunning in compliance with animal welfare requirements (Atkinson, Velarde, &
Algers, 2013; Gouveia, Ferreira, Roque da Costa, VVaz-Pires, & Martins da Costa, 2009), these
anatomical characteristics need to be carefully taken into account. This is well illustrated by
the fact that conventional captive bolt devices usually fail to produce deep unconsciousness in
water buffaloes when used as in cattle (Camisasca & Calzolari, 1995). To date, several studies
dealing with the anatomy of the skull and the paranasal sinuses of water buffaloes have been
published (Kamel & Moustafa, 1966; Lakshminarasimhan, 1974; Meyer & Fiedler, 2005;
Moustafa & Kamel, 1971; Saigal & Khatra, 1977; Singh, Soni, & Manchanda, 1972).
However, neither age-related nor sex differences were considered, and findings have not been

exploited to assess or improve stunning techniques.

The goal of the present study was to revisit the anatomical specifics of the head of water
buffaloes compared to cattle. The heads from buffaloes and domestic cattle were investigated
after stunning, taking into account both sex and age. The anatomical specifics and brain
lesions were assessed by gross anatomical dissection and diagnostic imaging using magnetic
resonance imaging (MRI) and computer tomography (CT). The use of these imaging
techniques enabled us to gain accurate information on the topography of the skull and brain
with respect to the landmarks that are relevant to stunning. In addition, an assessment of the
brain lesions after exertion of various stunning methods was used to judge their potential in

producing deep unconsciousness.
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2. Materials and Methods

Head collection and stunning techniques

The heads of the water buffaloes were collected from 8 different abattoirs that were selected
based on data from the Federal Food Safety and Veterinary Office FSVO. One single person
was in charge of stunning for any given slaughterhouse. Three butchers used different
handguns, one butcher used a bullet casing gun and four butchers relied on three different
types of captive bolt stunners (Table 1). The heads were collected from animals that had been
stunned in the context of regular slaughterings. Immediate collapse was considered as
evidence of effective concussion. This was the case for all animals included in this study.

Heads were assigned to four different groups according to sex and age.

Two buffalo brains were removed immediately after slaughter and fixed in 10% formalin to
macroscopically assess the severity of the lesions. Another two heads were sectioned in a
mid-sagittal plane after diagnostic imaging to monitor the dimension of the sinuses, the extent

of the cavum cranii and their topographical relationships.

Thirty-five heads were used for diagnostic imaging. Four MRI scans were discarded for

technical reasons, thus yielding 35 CT datasets and 31 MRI datasets (Table 1).

The stunning of water buffaloes was performed with one of the following methods:
conventional penetrating captive bolt devices (Cash Magnum 9000S, EFA Schmid & Wezel
GmbH & Co. KG Maulbronn, Germany or Schermer KL, Karl Schermer GmbH & Co KG,
Ettlingen, Germany; protruding length: 121 and 125 mm, respectively) in either the frontal or
occipital position, with a pneumatic captive bolt gun (EFA VB 215, EFA Schmid & Wezel
GmbH & Co. KG Maulbronn, Germany; protruding length: 135 mm) in the occipital position,
with a bullet-casing gun in the frontal position (“humane killer”, no manufacturer’s data
available) (Anonymous, 2008), with a revolver or pistol in the frontal position (44 S&W

Magnum, Smith and Wesson, Springfield, USA; Ruger GP 100 Double Action Revolver,
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Sturm, Ruger & Co., Inc., Mayodan, USA; Swiss Army Pistol SIG P220, SIG Sauer GmbH &
Co. KG, Eckernforde, Germany). Specifications of the stunning devices and ammunition as
well as information regarding their application are provided in Table 1. The heads of the
water buffaloes were documented photographically with respect to the bullet holes and skin
lesions prior to further examination. All but two heads were polled prior to further

examination.

The cattle heads were collected from three slaughterhouses (Table 1) in which the stunning
was performed with captive bolt devices in frontal position (Kuchen, NATURaktiv AG,
Winterthur, Switzerlan or Cash Magnum 9000S, EFA Schmid & Wezel GmbH & Co. KG
Maulbronn, Germany; protruding length: 90 and 121 mm, respectively; Table 1) or with an
air-operated captive bolt gun (EFA VB 215, EFA Schmid & Wezel GmbH & Co. KG
Maulbronn, Germany; protruding length: 135 mm) according to standard procedures
(Verordnung des BLV uber den Tierschutz beim Schlachten, 2014; Fries et al., 2012).
Diagnostic imaging was also used to assess the 12 heads from domestic cattle as controls,
yielding 12 CT datasets and 8 MRI datasets as 4 MRI datasets had to be discarded for
technical reasons. MRI data sets were obtained from two females over 30 months (category
f2), four males between 15 and 30 months (category m1) and two males older than 30 months
(category m2). Cattle heads were not photographed because stunning was performed

according to established standard procedures.

Head/skull examination

Based on topographical relationships as determined on sagittally sectioned heads of water
buffaloes, the frontal point of entry for captive bolt guns was chosen at the intersection of two
lines connecting the lower edge to the upper edge of the contralateral horn. The occipital point
of entry was located at the level of the lower edge of the horns, i.e., above the insertion of the

nuchal ligament. For cattle, the point of entry for captive bolt stunning was selected according
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to the standard procedure, i.e. at the intersection of the two lines connecting the nasal ocular
angle to the lower edge of the contralateral horn. Handguns used by three butchers were fired
at a distance of approximately 5 cm from the head. All the corresponding points of entry of
the free projectiles were between a line connecting the medial ocular angles and a line at

midlevel of the horn bases.

Unless scanning was carried out within 2 days of slaughter, the heads from both water
buffaloes and cattle were stored at -20°C in a deep freezer and thawed for 72 hours before
scanning. For the scanning procedure, all the heads were wrapped in heavy-duty plastic bags.
The heads were examined with a 3-Tesla MR scanner (Achieva 3.0 TX, Philips Medical
System, Best, The Netherlands) using a 16-channel SENSE-XL-torso coil. The sequences
included an axial, coronal and sagittal T2-weighted (T2 W) sequence with fat saturation. Slice
thickness was 3.0 mm for all the sequences. Computer tomograms were obtained with a dual-
source CT scanner (SOMATOM FlashDefinition, Siemens, Forchheim, Germany) with 2x128
slices. Data reconstruction was performed with 0.6 mm slice thickness in a soft (B30) and a
hard (B70) reconstruction algorithm. Multiplanar and 3-dimensional reconstructions were
performed at a multimodality workstation (LEONARDO, SynGo, Siemens Medical Solutions,
Forchheim, Germany).Data were analyzed with the Osirix® software (Pixmeo, Bernex,

Switzerland).

The following landmarks were identified prior to proceeding with data assessment: optic
canal including its lateral edge, nasal, frontal, occipital, basisphenoid and presphenoid bones,
hypophyseal fossa, cribriform plate and crista galli of the ethmoid bone, hard palate and nasal

septum.

Several anatomical measurements were taken. Hide thickness and sinus width were assessed
in CT datasets whereas MR datasets were used to determine brain damage and the fate of

free projectiles. Hide thickness (HT) without coat was measured at a right angle to the frontal
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bone at the level of the dorsal end of the crista galli (HT1) and at the level of the rostral end of
the hypophyseal fossa (HT2). Similarly, the distance between the layers of compact bone
delimiting the frontal sinus was measured twice at the same locations as for the skin (Sinus
width SW1 and SW2) (Fig. 1a). Furthermore, the distance from any chosen contact point
(frontal or occipital stunning) to the thalamus as the target region was determined either from

the skin surface or from the bone when specimens had been skinned previously.

MRI and CT datasets were used to determine the localization and extent of brain injuries
produced by the weapons and devices used and to assess the path and effect of bolts and
bullets. Lesions were graded as 0 (no detectable lesion), 1 (detectable lesion, affected
anatomical structures still identifiable) or 2 (severe damage or destruction, loss of identifiable
anatomical detail) (Fig. 1b). Damage was assessed separately for the following brain regions:
right and left frontal lobes, right and left olfactory, parietal, occipital and temporal lobes,
diencephalon, mesencephalon, cerebellum and rhombencephalon.

The pathways of bolts and the free projectiles fired with handguns or with the bullet casing
gun were tracked from entry to endpoint or exit point and assessed in MRI and CT datasets
whenever possible. Points of entry as well as points of exit were identified where applicable.
The length of the trajectories from entry point to endpoint and first deflection point,
respectively, were determined. Shots were considered through and through when the bullet
exited the cranial cavity. Projectiles were considered retained when the bullet did not exit the
cranial cavity. Finally, imaging data were scrutinized for bone fragments, bullet disintegration
and fate of the main bullet fragment. Heads from domestic cattle were analyzed

correspondingly as far as measurements were applicable to captive bolt stunning.

Statistical analysis

Data were subjected to statistical analysis using StataCorp. 2011 (Stata Statistical Software:

Release 12. College Station, TX: StataCorp LP, Texas, USA). The data were first checked for
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outliers, missing variables and errors in data entry, and comprehensive descriptive statistical
analysis was then performed. Considering the limited number of observations (n = 31), and
since the main objective of the study was to detect anatomic differences between subgroups of
the study population, a Student’s t-test was used after verifying that the outcome variable was
normally distributed using the Shapiro—Wilk Normality Test (p-value < 0.05 was considered
indicative of non-normality). For non-normally distributed data or statistical comparisons with
an observation number < 10, the more conservative and non-parametric Wilcoxon Rank Sum
Test was used. Intergroup comparisons of the hide thickness, sinus width, as well as the
distance from the point of entry to the thalamus were performed, and a p-value of < 0.05 was

considered statistically significant.
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3. Results

All the cattle examined collapsed immediately at the first stunning attempt.

The measurements of hide thicknesses in water buffaloes and domestic cattle as a function of
sex and age are summarized in Fig. 2a, b. The distance from the superficial border of the
epidermis to the outer surface of the skull was typically larger in water buffaloes than in
cattle. However, the difference in hide thicknesses 1 and 2 were significant in female animals
only (n =10, p=0.04 and 0.03, respectively) whereas the difference in hide thicknesses 1
and 2 were not significant (n = 12 and 15, p > 0.05) in either age group of males (Fig. 2a, b).
With respect to the width of the frontal sinus, the distance between the layers of compact bone
was considerably larger in water buffaloes than in cattle of corresponding age and sex (n =17

for f2 and m2, n =17 for m1, all p-values < 0.05) (Fig. 2c, d).

Although no obvious landmarks were used when stunning was performed with handguns, the
pathways of the projectiles as seen in the diagnostic imaging were observed to be very
constant for a given butcher. The number of retained missiles and through and through shots
as a function of devices used and animals stunned are shown in Table 1. As opposed to free
projectiles, captive bolts did not leave a detectable mark within the brain as the bore canal
collapsed completely. The extent and localization of brain lesions in water buffaloes and
cattle are given in Table 1. In water buffaloes, the destruction of the diencephalon was
achieved in 2/5 when applying a captive bolt gun, in 3/4 when using the Swiss army pistol
and in 6/14 when the Ruger GP 100 Double Action Revolver was used. Similarly, maximum
damage to the frontal lobe ensued in 3/5 animals when using a captive bolt gun and in 11/14
when the Ruger GP 100 revolver was used (Table 1). The through and through shots resulted
in 3/3 when using the 44 S&W Magnum with 44 Rem. Mag ammunition, in 2/11 with the
Ruger GP 100 revolver and the 357 Mag. ammunition, in 0/3 with the Ruger GP 100 revolver

and 38 spl. ammunition, in 4/4 with the Swiss army pistol, and in 1/5 with the bullet casing
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gun. Bullet fragmentation occurred with the Ruger GP 100 Double Action Revolver and with

the bullet-casing gun.

The distance from the chosen point of entry (skin surface) to the thalamus was determined
irrespective of the stunning device used. The mean values including the hide were 143 mm
versus 105 mm in the frontal position for water buffaloes and cattle, respectively (Table 5),
and 106 mm for the one buffalo stunned in occipital position. The corresponding maximum
values were 172 mm versus 121 mm in the frontal position for water buffaloes and cattle of
both sexes, respectively. The average distance from the frontal point of entry to the thalamus
was significantly larger in all male water buffaloes compared to cattle (Wilcoxon Rank Sum
Test, p <0.05). In young males (m1, n = 13), the distance was 136 mm vs 102 mm; in
animals older than 30 months (m2, n = 8), the distance was 160 mm and 112 mm,
respectively. As poll stunning is not allowed in adult cattle, the distance from the occipital
point of entry to the thalamus was determined in water buffaloes only. Not considering the
skin, the corresponding values were 89 mm for the mean and 98 mm for the maximum

distance.
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4. Discussion

The present study provides a comprehensive and accurate analysis of brain damage resulting
from various stunning procedures currently being used for slaughtering water buffaloes in
Switzerland. The brain lesions produced were assessed by diagnostic imaging and were
compared to the effects of conventional captive bolt stunning in domestic cattle. Our results
show that bolt length in commercially available devices may be sufficient to stun young
animals (Table 1) but may not be expected to reliably and consistently produce adequate loss
of consciousness in adult water buffaloes; thus, they cannot be recommended as a standard
practice. When used properly, free projectiles are suitable to achieve correct stunning.
However, the use of handguns is demanding and entails safety hazards for the personnel
involved. Thus, neither technique currently being used meets all the requirements for a
reliable, humane and occupationally safe stunning of water buffaloes, and further

development to resolve the issue is urgently needed.

Swiss laws in effect (Tierschutzgesetz, 2014; Verordnung des BLV (ber den Tierschutz beim
Schlachten, 2014) require deep concussion prior to exsanguination within 60 seconds from
stunning. Consciousness in turn is bound to the activity of the cerebral cortex (Daly, Kallweit,
& Ellendorf, 1988). On their way to the cortex, however, nearly all sensory afferents need to
pass the thalamus as a central gateway. Therefore, this inner area of the diencephalon is the
clue to conscious perception related to all the senses but olfaction (Gregory, Spence, Mason,
Tinarwo, & Heasman, 2009; Min, 2010). This makes the thalamus an ideally suited and

effective target region for inducing concussion besides the cortex itself.

An adequate stunning procedure must immediately induce an irreversible loss of
consciousness without causing pain, distress, anxiety or apprehension. It must be reliable, safe
to use and should preclude abuse as far as possible (Gregory, Lee, & Widdicombe, 2007).
These criteria are largely met for the well-established captive bolt stunning of livestock,

although the inadequate depth of concussion has remained a problem even under standard
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slaughtering conditions (Grandin, 1998; Gregory, 2005; Gregory et al., 2007).
Notwithstanding, this technique was used as a reference, and the matching of sex and age
groups of domestic cattle vs water buffaloes were assessed. As the number of young female
water buffaloes being slaughtered is negligible and this category poses the least challenge
with respect to stunning, this group was not further examined. On the other hand, maximizing
the number of male animals older than 30 months was deliberately pursued, as any method
providing adequate stunning in this category may be expected to be effective in all the other

groups as well.

The anatomy of the buffalo’s head is substantially different from its counterpart in domestic
cattle (Kamel & Moustafa, 1966; Meyer & Fiedler, 2005; Moustafa & Kamel, 1971). The
frontal sinus is significantly wider, and its depth in older males may easily exceed the length
of conventional captive bolts. Although by trend the hide thickness tended to be larger in
water buffaloes than in cattle, the differences were largely insignificant; male cattle under 30
months of age had a slightly thicker skin than their exotic counterparts. The fur itself could
not be taken into account, as it was not mapped in diagnostic imaging. The distances
measured thus constitute slight underestimates. Overall, the distance from a frontal contact
point to the thalamus as the target region was substantially and significantly larger in water
buffaloes than in cattle. The maximum value determined for domestic bulls was slightly
above 120 mm, with an average of approximately 100 mm. By contrast, the average value for
water buffaloes was more than 140 mm, with the maximum value exceeding 170 mm. As
cattle may not be stunned in the occipital position, the corresponding distance from the
occiput to the thalamus was not determined in this species. Notwithstanding, adopting the
occipital position in water buffaloes would dramatically reduce the distance from the contact
point to the thalamus compared to the frontal approach, with the distance from the occipital
point of contact being no more than 80 — 100 mm. This results from the fact that the frontal

sinus does not extend up to the occipital contact point, as defined in the present study. In
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conventional poll stunning as recommended by the Humane Slaughter Association
(Anonymous, 2011) and as adopted by Gregory et al. (Gregory et al., 2009), the bolt does
penetrate through the cerebellum and may affect the brain stem as well. In the occipital
approach investigated in the present study, however, the bolt passed dorsally to the
cerebellum and completely spared the rhombencephalon as well. Bovine spongiform
encephalopathy has never been reported in water buffaloes (Zhao et al., 2012), thus making
the collection of brain stem samples obsolete. Notwithstanding, the rhombencephalon with its

autonomous circulatory control center should be spared to support adequate bleeding.

MRI and CT provided a means to assess brain damage resulting from captive bolts or free
projectiles. The present study relied on material collected from regular, workmanly
slaughterings of animals which underwent bleeding after adequate loss of consciousness only.
Our goal was not to validate concussion as based on clinical findings but to compare brain
lesions with respect to the stunning procedure used. Captive bolts produced only unimpressive
brain lesions as seen in diagnostic imaging. These observations are in accordance with other
reports (Finnie, 1993). Free projectiles, however, left severe damage on their trajectory. This
IS consistent with the immediate collapse of animals when stunned with handguns. This
observation and MRI and CT data indicate that free projectiles are at least as effective in
producing concussion as captive bolts. However, future stunning devices for water buffaloes
will need a thorough clinical assessment with respect to an immediate and complete loss of

CONSCiousness.

Taken together, these results show that conventional guns with a bolt length of no more than
90 mm are inadequate. Furthermore, even specially designed captive bolt guns with a
protruding length of 120 mm may only be effectual in younger animals but may not be
considered to be reliable enough to stun water buffaloes in the frontal position irrespective of

the animal’s age and sex. Provided that the energy delivered is adequate, however, the
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diencephalon might be reached with these devices when used in the occipital position. Thus,
the use of penetrating bolts in the occipital position might be considered to provide a solution.
Unfortunately, the feasibility of an occipital approach remains questionable for practical
reasons. Efforts to reach the neck in a standard environment failed consistently as the animals
were alienated when personnel was acting outside of their field of vision and constantly
attempted to turn their heads back. To reach the animal’s neck would require the animals to be
immobilized. The requirement of a very accurate positioning of the captive bolt gun can
hardly be met in a common setting considering the behavior of the conditionally tame water
buffaloes. Therefore, a frontal approach seems inevitable. This, however, will require the
length of the bolt to be increased to 180 mm and adaptation to the delivered energy to reach
the thalamus. Retraction of the bolt is a prerequisite for the butcher to retain the stunning
device in his hands. Furthermore, retention of the bolt in the skull would exacerbate the
difficulties of shooting the animal a second time. However, lengthening of the bolt is likely to
dramatically impede its retraction, and, thus, is highly undesirable. Indeed, all the skull holes
observed in this study were sharp-edged as punched-out, and no cracks were observed in the
surrounding bone tissue. This results in a very tight guiding of the bolt by the two holes being
produced in the inner and outer tables delimiting the frontal sinus. Even a slight tilt will thus
be enough to block the withdrawal of the bolt. Current investigations aim at optimizing bolt

shape to facilitate retraction.

The use of handguns by the experienced butchers participating in the present study reliably
produced immediate collapse. Reproducibility was impressively confirmed in diagnostic
imaging, where the pathways of the projectiles were observed to be very constant for a given
butcher. This was all the more astounding as the weapons were not put on the head at a right
angle but were fired at different oblique angles according to the slaughterer’s experience and
preference. Notwithstanding, the use of handguns in dealing with barely tamed animals is

highly demanding and ultimately remains hazardous. Bullets exiting the cranial cavity were
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noted in a substantial number of cases (Table 1), and projectiles exiting the animal’s body
after proper stunning were reported by butchers in several instances. Unfortunately, the
bullet’s final trajectory could not be tracked any further through the body, as only the heads
were available for investigation. Although such incidents were reported when the Swiss Army
Pistol was used in combination with full jacket bullets only, this observation makes such an

approach highly questionable from an occupational safety point of view.

In conclusion, the results presented in this study show that deep concussion is difficult to
achieve in water buffaloes with commercially available captive bolt guns when used in the
frontal position. Although the thalamus might be reached more easily from the occipital
contact point, this approach is not compatible with common slaughtering settings. Free
projectiles, however, produce adequate loss of consciousness in accordance with animal
welfare requirements. Yet, occupational safety hazards associated with handguns remain to be
resolved. Thus, the challenge of developing a reliable device allowing the stunning of water

buffaloes and fulfilling both the welfare and safety requirements remains to be met.
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7. Table headings

Table1 Analysis of MRI data and assessment of brain lesions resulting from various
stunning devices used for water buffaloes taking into account age and sex
Age and sex groups: m1 = male animals up to 30 months of age; m2 and f2 = male
and female animals older than 30 months of age, respectively.
Points of entry: F = frontal, O = occipital.
Damage to brain regions: 0 = undamaged, 1 = damaged, 2 = destroyed.
Behavior of bullet: R = Ricochet, BFS = Bullet already fragmented within the
sinus, FMJ = full metal jacket — no deformation, * Presphenoid and basisphenoid
bones were partly broken away, ** Projectile stopped above the eye, *** No
ricochet - Focal lifting of the calvarium resulted from the increase in intracranial
pressure, # The projectile ricocheted from the petrosal bone and left the cranial
cavity through the Foramen magnum, ## The projectile ricocheted from the
temporal bone and then became stuck within the brain, ### Metal fragments were
found within the sinus and the cranial cavity as well as in the presphenoid bone

where the projectile ricocheted.



436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

8. Figure Captions

Figure 1:

Figure 2:

Computer tomography and Magnetic resonance imaging of water buffalo
heads.

a: CT image of unskinned head from a male water buffalo older than 30 months.
Green lines show how measurements of hide thickness and sinus width were
established. 1: HT1 and SW1 were measured at a right angle to the frontal bone
at the level of the dorsal end of the Crista galli. 2: HT2 and SW2 were measured
at a right angle to the frontal bone at the level of the rostral end of the
Hypophyseal fossa. b: Assessment of brain lesions based on an MRI image of a
head from a male water buffalo under 30 months of age that was stunned with
the Ruger GP 100 Double Action with 38 spl ammunition. The frontal lobe was
rated as undamaged (score 0), and the diencephalon, the rhombencephalon and
the cerebellum were rated as destroyed (score 2). When assessing brain damage,

the complete dataset was taken into account.

Statistical analyzes of length measurements

a, b: Hide thickness in water buffaloes and cattle according to age and sex
groups. a: Hide thickness 1 (HT1), b: Hide thickness 2 (HT2). Specification of
measurements: see Fig. 1.

¢, d: Sinus width in water buffaloes and cattle according to age and sex groups
c: Sinus width 1 (SW1), d: Sinus width 2 (SW2). Specification of measurements:
see Fig. 1.

m1 = male animals up to 30 months of age; m2 and f2 = male and female
animals older than 30 months of age, respectively; * = statistically significant

difference (Student’s t-test or Wilcoxon Rank Sum Test, p < 0.05)
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