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Abstract

In many countries, male piglets are castrated shortly after birth to avoid the
production of meat with an unpleasant smell and flavor known as boar taint.
Extensive research has been carried out during the last 40 years to delineate
compounds that are responsible for this problem. The most frequently
candidates are androstenone, skatole and indole. However, other factors must be
involved in causing boar taint, since a significant proportion of tainted pigs have
unchanged levels of these three compounds. The aim of this thesis was to
establish the conditions for a non-targeted metabolomics study and thereby
identify new potential biomarkers that correlate with the appearance of boar
taint. The adipose tissue of 16 nontainted and 17 strongly tainted pigs, selected
by an earlier sensory panel analysis, was homogenized with methanol. After
solid-phase extraction, the samples were analyzed by liquid chromatography
coupled to a time-of-flight mass spectrometer using a nanoUPLC®-ESI-QTOF-
HDMS™ system. By monitoring about 20’000 different masses with an accuracy
of around 5 ppm, we found a metabolic pattern that is characteristic for the
appearance of boar taint. A set of 16 masses can discriminate between tainted
and non-tainted carcasses with a mean predictive accuracy of 90%. These results
will be used to further develop a reliable test for the rapid detection of boar-
tainted meat.
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Introduction

Boar Taint

An Encyclopedia (The Veenman’s Agrarische Winkler Prins) from 1954 declares
that “Since boars’ meat is less tasty, the young boars which are intended for
fattening are always castrated”. The first attempt to identify the compound(s)
responsible for this unpleasant taste was made by Craig and Pearson, 1959.
Following this much research has been undertaken investigate the increase of
unpleasant odors and flavors in some male pigs, which is now known as boar
taint (see the reviews of Bonneau, 1982; Brooks and Pearson, 1986; Claus et. al.,
1994). Patterson (1968) identified the sexual hormone 5a-androst-16-en-3one
(androstenone) as a compound responsible for the urine-like odor associated
with boar taint. Two years later 3-methylindole (skatole) and indole, which are
produced from tryptophan by bacteria in the intestines (Yokoyama and Carlson,
1979; Wilkins, 1990; Deslandes et. al, 2001) were identified as additional
contributors by Walstra and Maarse (1970) and Vold (1970). In addition to these
findings, there are other compounds suggested to contribute to boar taint (Xue
and Dial, 1997; Rius et. al,, 2005) but none of them could be corroborated over
time. Until today androstenone, skatole and indole are still seen as the main
compounds. However, there are indications that some other factors could be
involved in causing boar taint (Annor-Frempong et. al., 1998; de Kook et. al.,
2001; Ampuereo and Bee, 2006; Pauly etal, 2010). Indeed, the level of
androstenone, skatole and indole correlates badly with results from classical
sensory panels (Bonneau et al,, 2000; Rius et. al, 2005; Ampuero and Bee, 2006).
The correlation coefficient between skatole levels and the appearance of boar
taint determined by a sensory panel is on order of 0.7, accounting for only 50%
of the total score (Bejerholm and Barton-Gade, 1993). If androstenone content is
included, about 66% of odor score can be accounted for. The magnitude of these
coefficients does not exclude the contribution of other compounds.

In most European countries, male piglets intended for fattening are still
castrated during their first days of life. This is to avoid the development of off-
odor, as the incidence of boar taint in entire males is ranging from 18% to 64%
at usual slaughter weights (Williams et al, 1963; Desmoulin et al, 1971;
Malmfors and Hansson, 1974; Bonneau et. al., 2000). Numerous studies have
established the advantages associated with the production of entire males
(reviewed by Walstra, 1974; Walstra and Vermeer, 1993; Desmoulin et. al,
1990). One of these advantages is the substantially lower production cost for
entire males than for castrates. The costs involved in performing castration are
averted and possible animal losses and temporary decrease in performance
following castration are avoided. Boars may also grow faster than castrates
(Walstra and Kroeske, 1968; Fowler et al., 1981; Andersson et al., 1997). The
smaller development of adipose tissue is another important advantage
associated with entire male pigs (Prescott and Lamming, 1967; Fortin et al,
1983; Hansen and Lewis, 1993). Therefore meat cuts from entire males are more
appealing to the consumer (Babol and Squires, 1995) and achieve a higher
grading result for the carcasses (Andersson et al, 1997). This leads to a higher
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income for the farmer. From the point of sustainable agriculture, entire males
would also be beneficial because they require less feed per gained kg of
bodyweight and have a better efficiency leading to a decreased output of
nitrogen in the manure (Desmoulin et al,, 1971).

With growing concern on animal welfare and aims for more sustainable
production of food, a European declaration on alternatives to surgical castration
of pigs was released on the 16t of December in 2010 (http://ec.europa.eu/food/
animal /welfare /farm/initiatives_enhtm). Representatives of European farmers,
meat industry, retailers, scientists, veterinarians and animal welfare non-
governmental organizations committed to a plan to voluntarily end surgical
castration of pigs in Europe by 1 January 2018. The great obstacle, however, is
that meat of non-castrated boars is not popular among retailers and in
international trade. Because of fear of boar taint causing consumers complains
and decreasing trading profits, considerably less is paid for boars’ meat. Some
importers will not accept any boars’ meat. As an important precondition to
increase the frequency of young boar fattening, the reduction of boar taint and
the development of an “on the slaughter line”-detector for tainted carcasses
would be desirable. The detection of the already known compounds
androstenone, skatole and indole alone will not be sufficient to meet the markets
demands of a method with predictive accuracy as close to 100% as possible
(Bonneau et al., 2000). With the innovative approach of metabolomics we intend
to contribute with new knowledge to this area.

Metabolomics

Metabolomics, also known as metabonomics, is concerned with the study of low
molecular weight compounds in biological samples and other complex matrixes
(Nicholson et. al. 1999, Fiehn, 2002). These compounds (typically <1500 Da)
make up what has been termed the “metabolome”. The concept of the
metabolome as the “total complement of metabolites in a cell” (Tweeddale et al,,
1998) has since been broadened to include not only endogenous small molecules
but also those introduced and modified by diet, environmental exposure, and
coexisting organisms (Dunn, 2008). Metabolomics plays an important role in
systems biology. It enables better understanding of complex interactions in
biological systems, and the idea is to look for changes in metabolic activity.
Metabolite amounts can change for multiple reasons. A down-regulated pathway
might produce less of a particular metabolite; an up-regulated pathway might
consume more. The influence of diet and environmental effects as well as
genetic-factors will also affect the metabolome (Vigneau-Callahan et. al., 2001,
Poste, 2011).

There are many approaches for metabolomics. They can be roughly classified
according to data quality and number of metabolites that can be detected. Firstly,
the “targeted metabolite analysis” or “targeted metabolomics” which refers to
the detection and precise quantification of a single or small set of chemically
defined compounds. Second, the “metabolic profiling” provides the identification
and approximate quantification of a group of metabolites. Third is “metabolite
fingerprinting” or ‘“nontargeted metabolomics”, it is used for complete




IIL

metabolome comparisons without knowledge of the compounds investigated,
therefore metabolite identification is not mandatory (Krastanov, 2010).

The definition of nontargeted metabolomics can also be used when analyzing
panels such as lipids, including phospholipids (i.e., lipidomics, Wenk, 2005;
Castro-Perez, 2010; Bicalho, 2008), amino acids (Paik et. al., 2008; Wei, 2010),
sugars (Wei, 2010), bile acids (Bobeldijk, 2008) or small molecules (Baker, 2011;
Neumann, 2010). It aims to gather information on as many metabolites as
possible by taking into account all information present in the data sets producing
detailed information on the relative abundance of thousands of mass signals
representing hundreds of metabolites. Subsequent statistics and bioinformatics
tools can then be used to provide a detailed view on the differences and
similarities between samples/groups of samples or to link metabolomics data to
other systems biology information, genetic markers and/or specific quality
parameters (Moco, 2007). The best practice stated by Poste 2011, is to test for
multiple biomarkers instead of just looking for one or two candidates. He termed
this approach multiplex profiling. Based on the questions asked, metabolites are
selected for analysis and specific analytical methods are developed for their
determination.

The presented metabolomics study is a comparative analysis of samples to
inquire, “Can these samples be distinguished on the basis of their qualitative and
quantitative endogenous chemical composition?” To answer this question, one
must identify those differences that are a direct result of the alteration and
distinguish them from normal biological variability. Ideally, differences between
samples from within the same group (control or altered) will be smaller, or at
least not the same as differences across groups (control versus altered).
Therefore, it is important to minimize any artificially introduced variability in
the samples at any step of the experiment. Following standardized and
minimalistic protocols typically facilitates this. Careful consideration must be
made of various parameters. The number of individuals/subjects per group,
since these impact the determination of statistical significance. The diet,
environment exposure, sample collection and sample storage, are also
components that need to be supervised since these can directly affect the
composition of the metabolome (Robertson, 2005; Scalbert, 2009).

Food science

Metabolomics has recently found its place in food science as reviewed by
Wishart, 2008 and Cevallos-Cevallo et. al.,, 2009. One of the main applications is
food safety or quality improvement where the analyst wants to correlate a
specific property, for example taste, origin or age, to metabolite patterns using
biostatistics. Taking taste as an example, the main goal is often to understand the
taste of food in terms of chemical composition and physical properties or to find
biomarkers that can be measured routinely and easier than the taste itself. A
typical workflow of a food quality metabolomics experiment is shown in Figure
1. Every aspect of this workflow has to be optimized in order to make
metabolomics studies a success. With respect to the analytical chemistry
involved in metabolomics, sample workup, analysis of sample and data
preprocessing are items that have to be dealt with.
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I Sensory evaluation |
Figure 1: Schematic diagram of the different steps in a food metabolomics

Mass spectrometry

Currently two analytical platforms are mainly being used for metabolomics
applications (Scalbert, 2009), namely nuclear magnetic resonance spectroscopy
(NMR) (Nicholson and Wilson, 2003; Lenz and Wilson, 2007) and mass
spectrometry (MS) (Dunn, 2008; Koulman et.al, 2009). These techniques are
used with direct infusion or are coupled to separation techniques. The
advantages and disadvantages of these analytical approaches are listed in Table
1.

Table 1: Comparison of different metabolomics technologies

Analyzers Advantages Disadvantages Technical
properties
NMR Quantitative, fast, Not sensitive, very expensive, huge instrument Sensitivity dependent
non-destructive, specific alteration of data, requires at least 0.5 pL on the presence of a
minimal sample sample magnetically-
preparation, susceptible nuclide
derivatization and (There are >5000
separation not resolved lines in
necessary, robust, single pulse 750 or
allows identification 800 MHz NMR
of novel chemicals, spectra)
good within and
across lab
reproducibility, easy
maintenance
MS Excellent sensitivity Sample not recoverable, not very quantitative, slow,  High resolution
and resolution, very less robust than NMR, novel compound (~20.000), mass
flexible technology, identification difficult, molecules unable to ionize accuracy <5 ppm
detects most organic can not detectable with internal
and inorganic calibration

compounds, minimal
sample size, has
potential for detecting
the largest portion of
the metabolome, fast
scan rate, data
analysis automation

NMR has the potential for high-throughput fingerprinting, as requires minimal
sample preparation, and it is a non-discriminating and non-destructive
technique. However, only medium to high abundance metabolites will be
detected with this approach. Additionally, identification of individual metabolites
based on chemical shift signals, which are causing sample clustering in
multivariate analysis is challenging in complex mixtures. Also the costly price
makes the accessibility of this technology highly limited (Lenz and Wilson,
2007). MS-based analysis offers relative quantitative measurements with high
selectivity and sensitivity and the potential to identify compounds. With the
many different MS detectors available on the market (differing in price,




resolution and accuracy), this analytical platform combines the most important
features for a successful metabolomics study (Dettmer et al,, 2007).

The linear Time Of Flight_ (TOF)' isa mthod Table 2: Types of mass analyzers
of mass spectrometry in which an ion's ) Time-of-Flight (TOF)
mass-to-charge ratio (m/z) is determined 2)  Quadrupole @

via a time measurement, with virtually 3  onTws(T/herinmaem
unlimited mass range. TOF instruments 5  Sector

offer high resolution, fast scanning [ Ny .
capabilities (milliseconds), and accuracy on  6)  Tandem and hybrids (Q-TOF, Q-Q-Q Q-
the order of 5 part per million (ppm) with LT IOF TOF)

internal calibration. The hybrid Quadrupole-Time Of Flight (Q-TOF) mass
spectrometers combine the filtering ability, efficient transmission from low to
high mass and stability of a Quadrupole (Q) analyzer with the high efficiency,
sensitivity, and accuracy of a time-of-flight mass analyzer. Q-TOF mass analyzers
are an obvious choice for obtaining metabolite MS and MS/MS data. The
quadrupole can act as any simple quadrupole analyzer to scan across a specified
m/z range, but can also be used to selectively isolate a precursor ion and direct
that ion into the collision cell. Q-TOF analyzers offer significantly higher
sensitivity and accuracy over tandem quadrupole (Q-Q-Q) instruments when
acquiring full fragment mass spectra. Other types of mass analyzers are listed in
Table 2 summering the reviews Domon and Aebershold, 2006 and Lenz and
Wilson, 2007.

With tandem MS instruments, it is possible to acquire second order mass spectra
(MS/MS) in data-dependent-acquisition mode (DDA™). This method obviates the
need to analyze the sample in MS mode to identify the target precursor ions and
then re-run the sample in MS/MS mode. The technique is particularly valuable in
the analysis of unknown samples using on-line chromatography where the target
precursor ions and their retention times may be different for each sample. When
acquiring data with DDA™, the MS instrument switches from full-scan MS mode
to full-scan MS/MS mode for any mass rising above a predefined threshold.
However, DDA results both in a loss of data in the MS mode when MS/MS data
are being acquired and in poor duty cycles, thus making it less than ideal for fast
analysis and narrow, rapidly eluting, peaks. Both of these approaches are
therefore perhaps less efficient than would be desired for the rapid analysis of
complex multicomponent samples. A different approach is the acquisition of
tandem mass spectra, by alternating between low and high collision energies
without any precursor mass filtering, termed MSE (Plumb et. al., 2006). Applying
low collision energy in the collision cell, precursor ion information can be
obtained, and with high collision energy full-scan accurate mass fragment,
precursor ion and neutral loss (loss of an uncharged fragment from a molecule)
information can be acquired.

Liquid chromatography

Due to the complex nature of biological samples, chromatographic separation is
often performed before MS analysis to achieve the detection of as many
metabolites as possible. Traditionally, gas chromatography (GC) was employed,
as it is well known for high resolution and reproducibility. However,
disadvantages of GC include cumbersome sample preparation (such as



derivatization), lengthy analysis time, and limitations as to size and type of
molecules that can be separated (nonvolatile, polar- and semi-polar molecules
and macromolecules are unsuitable). However, GC-MS is still widely used in
plant metabolomics due in part to the nature of the metabolites being
investigated (Jonsson el. al.,, 2004). Liquid chromatography coupled to mass
spectrometry (LC-MS) has in the last couple of years become a very popular
alternative. On the basis of coverage, ease-of-use, robustness to matrix and
robustness in routine operation, LC was identified as the optimal platform for
metabolomics experiments (Buescher et. al, 2009). With the separation of
molecules using LC, a decrease of the number of competing analytes entering the
mass spectrometer is achieved and this reduces ion suppression (Gangl et. al.,
2001). The result of this complexity reduction is a selective approach that allows
for both relative quantitation and structural elucidation, whereby sensitivities in
the pg/mL range can be achieved (Plumb et. al., 2004).

Metabolite extracts contain a diversity of small molecules that differ in their
physical chemical properties like size, polarity/hydrophobicity and charge. An
important factor is therefore the choice of the separation column. While various
LC methods are described in the literature, the most robust LC approach to small
molecule separation is reversed-phase (RP) chromatography using a nonpolar
stationary phase, for example Cig RP-LC (Idborg et.al. (1), 2005). Gradients begin
with high water content, gradually adding methanol or acetonitrile to elute
hydrophobic compounds. Polar molecules elute earlier and nonpolar molecules
later. Although Cis RP-LC is a good starting point for metabolome analysis
(Trauger et. al,, 2008), many polar metabolites do not retain adequately, thus
eluting near or within the void volume during the beginning of a
chromatographic run. Another approach is to enhance retention of polar
analytes using an ion-pairing agent as described by Buescher et. al,, 2010. An ion-
pairing reagent, for example 3-tributylamin, is a volatile charged compound that
pairs with oppositely charged analytes in solution, resulting in an ion-ion
complex. The ion-pairing reagent contains hydrophobic moieties that enhance
binding of the ion-ion complex to the Cig column and is typically added to the
aqueous mobile phase. Unfortunately, routine operation drastically increases
maintenance and cleaning of the syringes, tubing and fittings of the liquid
chromatograph to remove the contaminations caused by of the ion-pairing
reagent. In addition the initial stages of the mass spectrometer are also
contaminated. Therefore, such experiments can only be done on an instrument
dedicated just to ion-pairing. An Interesting alternative is hydrophilic interaction
liquid chromatography (HILIC) as presented by Tolstikov and Fiehn, 2002. They
used this approach for the analysis of highly polar compounds in plant extracts.
HILIC shows a good flexibility but is still lacking robustness and reproducibility
with respect to retention times (Idaborg et. al. (1), 2005).
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VI.

The ability of LC to separate
complex mixtures prior to
mass analysis comes at a cost
of speed. An alternative to
traditional high performance
liquid chromatography (HPLC)
approaches is ultrahigh per-
formance liquid chromato-
graphy (UPLC), which utilizes
columns with much smaller
particle size packing material
(1.4-1.8 pm) than traditional
columns (3-5 um), thus
improving  separation and
resolution. This technology
permits pumping and injection
of liquids at pressures
exceeding 10.000psi (Wilson
et. al, 2005; Swartz, 2005).
With UPLC, narrower chroma-
tographic peaks can be
achieved (peak widths at half-
height <1 ), resulting in

. ’ Figure 2: Waters nanoAqcuity® and Synapt
increased peak capacity, lower G2® (nanoUPLC-ESI-QTOF-HDMS)

ion suppression and improved

signal-to-noise ratio, and thus increased sensitivity. Recent studies comparing
UPLC and HPLC for their application to metabolomics studies showed that UPLC
can detect more components than HPLC (Plumb et. al,, 2004; Wilson et. al., 2005)
with a 20% increase reported over the same chromatographic length. These
studies also showed UPLC to display superior retention time reproducibility and
signal-to-noise ratios over HPLC. Figure 2 shows a state of the art UPLC-MS
system.

Electro spray ionization

A prerequisite for a mass spectrometry analysis is that the molecule is presented
as an ion (preferable as the protonated molecular ion [M+H]* in positive
ionization mode). During the past 20 years, electro spray ionization (ESI) has
grown to be the most popular ionization technique, whereby a strong voltage is
applied to the liquid stream exiting the tip of a needle. This seemingly simple
method enables efficient conversion of charged molecules from the liquid phase
into gas-phase ions. The physical mechanisms of ESI remain only partially
understood. Charged droplets are initially produced by electrostatic dispersion
when liquid emerges from the tip of a metal needle. Solvent then evaporates
from the charged droplets. As the droplets become smaller and smaller the ions
within them repel due to columbic forces, eventually resulting in release of gas-
phase ions (Nguyen and Fenn, 2007). A major pitfall of ESI is the competitive
nature of ion formation. If too many ions are present during their expulsion from
the charged capillary, ion production will not increase linearly with
concentration. This results in concentration underestimation. No undisputed
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method eliminating “ion suppression” exists. Instead, one needs to determine
the extent of ion suppression and correct for it. This is best done by using
isotopic internal standards, which will experience identical ion suppression as
the analyte of interest. Unfortunately for a typical nontargeted metabolomics
experiment such isotopic standards are not available or would be too costly to
produce. Therefore, an absolute quantification is not possible for this novel type
of experiments.

Raw data extraction

Techniques with high peak capacities such as UPLC-MS will still lead to partially
co-eluting peaks when analyzing complex mixtures. Moreover, low abundant
compounds may not be apparent by visual inspection of chromatograms.
Detection of single components from complex chromatograms is therefore
performed by peak picking and mathematical deconvolution algorithms. The
extraction of valuable conclusions from the raw metabolomics data is as
important as performing the analytical measurements. Raw data are usually
stored in sample files as series of mass spectra acquired at a given time point or
scan-number. Each of these scans represents pairs of mass, m/z, and intensity
vectors, counts (see Figure 3). It is necessary to extract information about all

Figure 3: Raw LC-MS data involves three dimensions including retention time, m/z,
and signal intensity. The blue line is indicating co-eluting mass peaks.

compounds, including mass and retention time (RT) as compound identifiers,
and intensity as relative quantitative representation of concentration. This is
followed by the combination of all data files to a uniform matrix to allow sample
comparison with statistical tools.

Instrument providers have only recently become active in producing automated
raw data extraction tools for metabolomics (e.g. Waters Corporation, Thermo
Scientific, Agilent Technologies, Bruker Corporation) as Plug & Play
Metabolomics Systems. Major disadvantages of these proprietary tools are: (1)

10
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they only work for specific types of data and data formats and (2) they are black
box systems (little is known about the underlying algorithms). At the same time
more and more 3rd party software is becoming available for automated data
extraction, for example GeneData (www.genedata.com), ACD-Labs
(www.acdlabs.com), Rosetta (www.rosettabio.com), Non-Linear Dynamics
(www.nonlinear.com) to name a few. These programs offer more flexibility with
respect to the format of the input LC-MS data. This is a clear advantage when
using instruments from different vendors. The “-omics” communities
(proteomics, transcriptomics, metabolomics) have also been very active the last
15 years in developing their own tools, mainly because commercial software
was/is not available and/or the poor performance of some of the available
software. In part these open source data extraction tools are available free of
charge on the web (XCMS, Smith et. al, 2006; OpenMS, Sturm et. al, 2008;
MZmine, Katajamaa et. al., 2006; MetAlign, Tolstikov et. al., 2003 to name a few).
They all appear to be inexpensive solutions to the data extraction problems.
However, they all require training and good understanding of the software’s
construction and operations. Additionally, issues such as support and long-term
continuity are not favorable. For an excellent overview and description of all
these tools and software see Katajamaa and Oresic 2007.

The functionality and performance of all data analysis tools is a white spot on the
metabolomics map, and it is widely known that all automated data extraction
tools have their specific problems, which result in data with a variable amount of
errors. Typical problems include:

- missed peaks

- wrongly binned signals

- integrated noise peaks

- misalignment

- integration errors
The fact that high quality raw data is being corrupted due to these errors is very
alarming. Indeed, these errors become more and more dominant at low signal to
noise ratios. All algorithms eventually stumble on classification problems such
as: is this noise or signal? Is this peak A or B or neither of the two? Are these
spectra the same? Unfortunately, many metabolites of interest happen to be
present at low concentrations and with low signal to noise ratios. That's why
such extraction errors have major detrimental effects on the outcome of
metabolomics studies. Because of this, it is favorable to use different raw data
extraction methods to be able to compare and get more confident in the results.

Chemometrics

In a LC-HDMS experiment, there are thousands of data entries per sample,
complicated by a vast amount of noise, artifacts, and redundancy. In addition, the
detection of minor but significant biomarkers among constitutive highly
expressed compounds, a challenging analytical and statistical problem.
Comparing samples has become a problem of high dimensionality (Weckwerth
et. al, 2005) and chemometrics methods are needed to reduce this large number
of variables. The goal is to obtain information-rich fingerprints suitable for
pattern recognition and classification. Chemometrics can be broadly thought of
as the application of mathematical and statistical methods to analytical

11



chemistry (Lavine and Workman, 2004). In the context of MS-based
metabolomics, it includes any mathematical or statistical tools used for spectral
processing, peak alignment, noise reduction, deconvolution, normalization and
so on. However, chemical compounds are not generally identified, only their
spectral patterns and intensities are recorded. Subsequently, they are
statistically compared to identify relevant spectral features that are unique for
sample classes (Nicholson et al, 2002; Trygg, Holmes & Lundstedt, 2007).
Statistical comparison and feature identification technique usually involves
unsupervised clustering, like principal component analysis (PCA). Another
possibility is supervised classification like partial least squares discriminant
analysis (PLS-DA) or orthogonal projection on latent structure discriminant
analysis (OPLS-DA). PCA is often used for metabolomics (Choi et. al,, 2004). Here
it is used for the reduction of data dimensionality, to investigate a clustering
trend, to detect outliers and to visualize data structures (Martens and Naes,
1991). However, PCA gives a crude representation of the information contained
in spectra and cannot generally be used for additional information about the
data, such as class information. Therefore, PCA is often followed by a supervised
analysis technique such as PLS-DA or OPLS-DA. Lutz and colleagues showed by
comparison of PCA with PLS-DA that there was a clear advantage in using a
supervised model when class details are known (Lutz et. al, 2006). In such
supervised two class classification cases, usually the values of the dependent
variable are given 1 for one class, and 0 or -1 for the other class. A frequently
used variant of PLS-DA is OPLS-DA. As here, the first components orthogonal to
the dependent variable are removed from the data (Trygg and Wold, 2002). This
gives a model with a single classification component (PC1). Variation that cannot
be described by the first component will be described by a second principal
component that is orthogonal to the class information. OPLS enhances the
interpretation of PLS by forcing all classification information into a single
component. The prediction power of both models is under particular conditions
the same (Trygg and Wold, 2002).

The classification problem in metabolomics data analysis is complex. There are
thousands of variables but often just around ten to one hundred samples. This
resulting in a very “short and fat” data matrix, which makes it possible to find
even with spurious data many solutions to separate the classes. This is termed
overfitting and is probably today the greatest multivariate analysis problem that
we observe. OPLS-DA is eager to please and thus results should be handled with
great care. The problem with a multi dimensional mega-variate space is, that
almost always a perfect separation between the small amounts of samples can be
achieved. OPLS-DA will have no problems finding it. For example, OPLS-DA
separates two groups on the base of completely random data (Westerhuis et al.
2008). Its use also becomes problematic when a high number of variables are
measured. Datasets not only become larger in size and more complex, they also
tend to need normalization and/or transformations. Selecting the right
pretreatment method is not intuitive, in spite of its crucial influence on the
outcome of a metabolomics experiment (van der Berg et. al. 2006). Moreover,
methods like PLS-DA and OPLS-DA are not very well suited when addressing a
typical multiple classification problem (Westerhuis et al. 2008). Here a given set
of objects, each of which belongs to a known class, and each of which has a
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known vector of variables, are used to construct a rule. This rule will than allow
to assign future objects to a class given only the vectors of variables describing
new and so far unseen objects. The construction of such rules is guided by the
goal of a “high out off sample prediction accuracy”. Problems of these kind, called
problems of supervised classification are typical for biological research, and
many methods for constructing such rules have been developed.

One very important solution is the Naive Bayes (NB) method, also called idiot’s
Bayes, simple Bayes, and independence Bayes. This algorithm was identified by
the IEEE International Conference on Data Mining (ICDM) and presented by Wu
et. al. (2008) as one out of four of the most important data mining algorithms
used to perform classification in the research community. It is very easy to
construct and does not need any complicated iterative parameter estimation
schemes. This means that it may be readily applied to huge data sets. It is easy to
interpret, so users unskilled in classifier technology can understand why it is
making a particular classification. Finally, it often performs surprisingly well: it
may not be the best possible classifier in any particular application, but it is
usually the most robust one (Domingos and Pazzani, 1997). NB is a probabilistic
algorithm based on Bayes Theorem. It is relying on an explicit probability model
by allocating a probability to each class that corresponds to the product of the
individual probabilities of every attribute value. The predicted label then
corresponds to the class with the greatest probability. By invoking conditional
independence assumption in Bayes rule, the likelihood term of Bayes rules can
be decomposed into product terms. One can label the new predictor variable to a
particular class based on highest posterior probability. NB methodology
simplifies classification tasks by allowing the computation of class conditional
densities for each variable separately. In effect, a multi-dimensional classification
task is reduced to multiple single dimension tasks, and is therefore not
depending on normalization of the data matrix (the probabilities do not need to
be normalized, since their normalization constant would be the same and not
affect the classification). Moreover, missing values in both design sets and new
cases can be easily handled (Hand and Yu, 2001). On the other hand, one should
not forget that NB, like all other classifiers, has a problem when fed with a very
short and fat data matrix (Eriksson et. al., 2006) and therefor it is a favorable to
filter the variables according to predefined criteria.

The receiver operator characteristic (ROC) is widely considered to be one of the
best means by which to describe the utility of a variable in binary classification
(Egan, 1975; Zweig and Campbell, 1993; Zhou et al., 2002; Baker, 2003; Linden,
2006 see also http://gim.unmc.edu/dxtests/ROC1.htm, http://www.anaesthetist
.com/mnm/stats/roc/). To understand the ROC concept, one should have a look
at the confusion matrix shown in Figure 4, which summarize the number of false
positives, false negatives, true positives and true negatives (Broadhurst and Kell,
2006) of a classification. The case individuals, the fraction of true positives is
referred to as the sensitivity while the fraction of false positives is referred to as
1-specificity. Combining the two qualifiers of a classification leads to the
receiver operator characteristic. The ROC unifies two characteristics that are
often used to evaluate the performance of a test or method. A ROC curve
represents the sensitivity of a test as a function of the 1-specificity of a test. The
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sensitivity is defined as the
number of true positives
found as a percentage of all
positives. 1-specificity is the
number of false positives as a

Figure 4: A so called confusion matrix
describing the outcome of predictive models
that cross-tabulates the observed and predicted
+/- or 1/0 patterns in a binary classification

percentage of all negatives, S/St€m.
Sensitivities are between 0

Actual -/0
and 1 and should be close to Actual +/ 1 c ./ .
1. The specificity should Predicted +/1 True positive False positive
preferably be close to 1, and Predicted -/1 False negative True negative

1-specificity should be close

to 0. Both, specificity and -
sensitivity depend on the setting of the classification boundary of the classifler
used in the method. By shifting the classification boundary, more true positives
may be detected, but the number of false positives also increases, and the
converse also occurs. The ROC curve, therefore, is a characteristic of a method
describing the sensitivity and specificity of the method for different classification
boundaries. Using ROC for filtering the variables is especially attractive. It is
insensitive to the nature of any underlying population distributions, i.e. it is non-
parametric and independent of the prevalence of a property (Westerhuis, 2008).

Validation techniques

In order to address the already mentioned issue of overfitting, the data mining
community has developed several validation techniques. Cross validation is the
standard validation technique used for classification models. The major interest
of cross validation lies in the universality of the data splitting heuristics. It only
assumes that data are identically distributed, and training and validation
samples are independent, which can even be relaxed under particular
circumstances. The main idea behind cross validation is to split data, once or
several times, for estimating the prediction error of each algorithm: Part of data
(the training set) is used for training each algorithm, and the remaining part (the
validation set) is used for estimating the prediction error of the algorithm. A
single data split yields a validation estimate of the error, and averaging over
several splits yields a cross-validation estimate. Cross validation selects the
algorithm with the smallest estimated prediction error (Arlot and Celisse, 2010).

Compound identification

Once potential biomarkers have been selected and tested with a classifier,
identification is desirable, Metabolite assignments using LC-MS as a tool for
compound identification are usually obtained by combining accurate mass,
isotopic distribution, fragmentation patterns and any other MS information
available. Calculation of the chemical combinations that fit a certain accurate
mass is generally one of the first steps to obtain a set of alternatives that can lead
to the identity of the metabolite detected. This set of alternatives becomes less
extensive if the mass spectrometer can provide a more accurate mass value
(Kind and Fiehen, 2006). Using an instrument that can provide very high mass
accuracies, the range of possibilities molecular formulae (MF) is limited and can,
especially for lower m/z values, lead to the correct MF. Furthermore, in most
cases, chemical elements can be preselected, avoiding the generation of
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excessive false alternatives, which would occur if all elements of the periodic
table were included. For general applications in plant, food or animal
metabolomics, only the core elements are C, H,0, N, P and S are used whilst most
metals can be excluded (except perhaps Na or K, which form common adduct
ions in mass spectra). Another aspect to take into account when MFs are
calculated from molecular masses (MM) is the algorithm used for the
calculations. There are more possible mathematical combinations of elements
that fit certain MM than the number of MF existing chemically. This is related to
chemical rules (e.g., the octet rule, or the nitrogen rule) that dictate certain
limitations on chemical bonding derived from the electronic distribution of the
participating atoms. Another useful factor is the presence of rings and double
bonds. As described by (Bristow, 2006), the number of rings and double bonds
can be calculated from the number of C, H and N atoms that a molecule contains.
One of the most powerful methods for narrowing the number of MF is to make
use of the isotopic pattern of a mass signal. For most small organic molecules, the
intensity of the second isotopic signal, corresponding to the 13C signal, indicates
the number of carbons that the molecular ion contains based on that the natural
abundance of *3C (1.11%). According to Kind and Fiehn (Kind and Fiehen, 2006),
this strategy can remove more than 95% of false positives. The fragmentation
pattern of a mass signal can provide structural information about the fragmented
ion. From the fragments obtained, the structure of the molecule can be deduced,
knowing that the breakages will occur at the weakest points of the ion. The
possibility of isolating one ion and performing MS/MS on the successively
obtained fragments can be highly informative for tracking functional groups and
connectivity of fragments. In addition, the possibility of obtaining accurate mass
fragments is another advantage when there is little knowledge about the
possible atomic arrangements of the molecular ion. There are still only a few
tools that can automatically produce a list of possible metabolites from the m/z
signals at a particular retention time. Therefore, the assignment of metabolites
from experimental data implies an intensive manual effort, limiting the
throughput of the analytical set-up. The bridge between experimental data (MS,
retention time, fragmentation pattern, chemical shift, coupling constant) and the
available chemical databases is still very weak. Some identification tools (for
example elemental composition calculation or MM calculation) are included in
the software of different instruments, but these seldom allow spectral matching
linked to a public database, as already implemented in proteomics applications.
One of the few examples of spectral databases for metabolomics is the NIST
database. It provides mass spectral data for some known metabolites, which can
mostly be used for identifying GC-MS signals, but the newest version is also
applicable to LC-MS data. Other databases are listed in Table 3.
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Table 3: Available databases applicative for metabolomics studies

Access Theme Provider/ URL
ChemSpider Free General www.chemspider.com
i Max Plank Institute {Germany) www.csbdb.mpimp-
Golm Free Plant, with spectral data colmmpEde ’ o
i Department of Computing Science, University o erta,

Human metabolome database  Free Human metabolites Canada i hindboesforirinden htm )

Kyoto University Bioinformatics Center (Japan
KEGG Free General www.genome.jp/kegg/ligand.html — )

ipi ini i Japanese Conference on the Biochemistry of Lipids (Japan.
Lipidbank Free Lipidomics wwwlinidbankeny o
i Kelo University, University of Tokyo, Kyoto University,
a
MassBank Free General, with spectral data RIKEN (fapan) stwit matomank o
i i i Scripps Center for Mass Spectrometry
w
Metlin Free le;t;x;r;ln;:‘gbolltes, ith iy
s
i Wageningen University (Netherlands)
MoTo Free Tomato metabolites www.appliedhioinformatics.wur.nt )
i i National Institute for Standard and Technology (USA

NIST Partially free  General, with spectral data VWi oSt AT o

National Center for Blotechnology Information
PubChem Free Genereal www.nchinlm.nih.gov/entrez/query.fegi?db=pccompound
SciFinder Licensed General American Chemical Society (USA)

Aim of this study

Taking all the information mentioned above into account, the aim of this work
was to carry out a nontargeted metabolic study of pig back-fat samples. These
samples were classified as tainted or non-tainted according to the evaluation of a
trained test panel. Using different chemometrics approaches we intend to
evaluate the possible contribution of some other unknown metabolites to boar
taint.

Experimental Section

Chemicals

Indole (ID), skatole (SK), androstenone (AND), 2-carboxyindole (2CID), formic
acid and human [Glul]-Fibrinogen peptide B (Glu-Fib) were obtained from
Sigma-Aldrich (Steinheim, Germany), leucine enkephaline (Leu-Enk) from
Waters, Milford, USA (for chemical properties see Table 4). High-purity HPLC
grade solvents from different suppliers were used: methanol (MeOH) and
acetonitrile (ACN) from Merck (Darmstadt, Germany) and HPLC-water from
Scharlan S.L. (Sentmenat, Spain). Deionized pure water was prepared by using a
Millipore Milli-Q system (Bedford, USA).

Animals, treatments and sampling

A total of 33 Swiss Large White male pigs originating from a study performed by
Pauly et. al. (2009) were included in this study. All pigs had ad libitum access to
the same growing and finishing diets (see Table 5). Individual feed intake was
recorded and the body weight (BW) of all animals was determined once a week.
From 80 kg BW until slaughter, pens were cleaned daily and barn ventilation was
set at maximum-power. Animals were slaughtered 2 days after reaching 103 kg
BW. Feed was withdrawn from the pigs 12 h before transportation to a nearby
commercial abattoir. Animals were electrically stunned, exsanguinated, scalded,
mechanically de-haired and eviscerated. Internal organs were removed and hot
carcass weight was obtained. Thirty minutes after exsanguination, the carcasses
entered air-chilling system (3°C) for 24 h. Adipose tissue samples (ca. 5 x 2 x 1
cm) consisting of the whole fat layer were collected from the right carcass side at
the 1013t rib Jevel the day after slaughter. The collected samples were stored
at -80°C until extraction. At the same time about 1 kg of the longissimus dorsi
muscle (LD) at the 13t~15t rib level and the neck (containing trapezius muscle
and LD, 5%-7th rib level) were collected from the right carcass side of the
selected animals for testing in the sensory panel study.
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Table 4: Name, chemical formula, structural formula, monoisotopic mass and the most
abundant adducts for the test compounds.

Chemical Structural Monoisotopic

Name Formula Formula Mass (Da) [M+H]* M+NH, M+Nar
Indole CsH7N 117.057849 118.0657 135.0922 140.0476
Skatole (3- CoHoN 131.073499 132.0813 154.0633
Skatole (= oHy 07349 0813  149.1079  154.063
Androstenone

(5a-androst-16-en-3- C19Hz250 272.214016 273.2218 290.2484 295.2038

one)

2-carboxyindole CoHyNO: @—{ 161.0477 Da 162.0555 179.0821 184.0374
H

Glu-Fib 785.8421

III. A) Selection and training of the test panel

The selection and training of the panelists, as well as the sensory evaluation
conditions are described in detail by Pauly et. al. (2010). Briefly, the sensory
study was carried out at the sensory laboratory of Agroscope Liebefeld-Posieux
(ALP) Research Station (Posieux, Switzerland). Personnel of the research station
were selected as panelists, the main selection criteria was their ability to detect
androstenone. First they conducted a basic training program in sensory
assessment. After that, panelists were specially trained in two sessions on boar
taint. In the 1st session, the profiles of sensory attributes of boar taint were
taught. In the second session, they were instructed to evaluate boar odor, boar
flavor, juiciness and tenderness. The LD and neck chops from pigs with low,
medium and strong AND and SK concentrations in the adipose tissue were
cooked and given to the panelists with information on the concentrations of the
samples. The day after the second training session the panelists retested the
samples used in session two. Without receiving any information they had to
score them for boar odor, boar flavor, juiciness and tenderness. Subsequently,
the results were discussed in groups in order to obtain a consensus on sample
evaluation.

B) Classification of selected samples considering AND and SK concentration
The pigs were classified in three categories of SK and AND concentrations (low,

medium and high). The AND and SK concentrations in the adipose tissue were
measured by HPLC with a diode-array detector as described by Pauly et. al.
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(2008).

;‘(t;escsoercllcegst re:lté(;r;s ti‘s,‘;ir: Table 5: Composition of the growing and finishing
The concentration of indole  diet, as-fed basis
was also measured but was

not considered for the Ingredients (%) Growing Finishing
classification. The cut-off

Diet

Wheat 27.2 62.2
levels for each compound Barley 15.0 38
were established according Com 6.9 ;;
to previous studies and \S/Vheatbstatrchl 12: o
. < ugar beet pulp . .
were: low (AND: <0.5 pg/g Soybean cale 227 124
and SK: <0.12 Hg/gl Sugar beet molasse 3.0 3.0
medium (AND: 1.0 or 1.1 L-lysine-HCl 0.28 0.25
ug/g and SK: 0.13 or 0.16 DL-rznethi.onine g:g g.gg
i s L-threonine . .
1g/g) and high (AND: 22.5 tryptophane 001
ug/g and SK: 20.33 pg/g). Dicalcium phosphate 1.0 0.71
Results  from  sensory Sodium chloride 0.36 02
analysis and concentrations Eenla_n* - 8;8 8;
aldlum carbonate . .
of AND, _SK and ID are Vitamin-mineral-premix 0.4 0.4
presented in Table 6. Analysed composition (g/100g DM)
Crude protein 18.6 16.6
Sample preparation Lysine 11.4 9.2
AND, SK, ID and potential gruge 'f'};'d gi i;
: rude fipre . .
boar taint ma{*kers were Caldium 0.80 070
extracted with pure Phosphorus 0.61 0.54
methanol from the coll- Calculated energy content
ected back fat samples. A DE* (MJ/kg DM) 158 15.4
800 pL volume of methanol DM = dry matter, N o .
and 20 I.LL volume of 2- Pellan = a binder that aids in pellet formation (Mikro-Technik GmbH & Co.

KG, Germany).
carboxyindole solution (2 *DE = digestible energy content (Mi/kg) calculated from nutrient content

pg/mlL in methanol) used as (expressed in g/g DM) according to ALP (2005).

an internal standard was

added to 800 mg of back fat. Portions of 800mg back fat were extracted with
800uLl. methanol in the presence of 40ng of the internal standard 2-
carboxyindole, added as 20uL of a solution with 2ng carboxyindole/pL). Extracts
were homogenized by means of a Retsch MM300 homogenizer (F. Kurt Retsch
GmbH & Co. KG, Haan, Germany) for 5 minutes at 25 Hz using stainless steel
grinding balls of 5mm diameter (Schierlitz & Hausenstein AG, Zwingen,
Switzerland). After homogenization, the samples were cooled for 30 min at -20
°C. After centrifugation at 1600 rcf for 10 min by 0° C, the supernatants were
transferred on a reversed solid phase extraction cartige (Sep-Pak® Cig column,
Waters, Milford, USA) previously chilled and conditioned with 2 m] -20 °C
methanol. The first 300 uL of the eluate were discarded and the next 500 uL
were collected. The samples wear stored at -20 °C until metabolite profiling on
the nanoUPLC-QTOF-HDMS system describer below. Storage time of the extracts
was no longer than one-week post extraction.
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Table 6: Identity, AND, SK, ID content and sensory classification of all the pigs analyzed
with nanoUPL(C®-ESI-QTOF-HDMS™,

Pig ID (ﬁ:/lél;-'g) ?S;‘/Tg?:tl; (l:;?:; % HPLC class :12‘:_2;; Sensory class Gender
v26_798 0.200 0.039 0.025 n 2489 n IMP
v26_740 0.200 0.030 0.025 n 2513 n CAS

) v26_790 0.200 0.056 0.025 n 2.854 n CAS
v26_737 0.200 0.076 0.025 n 3.129 n IMP
v26_864 0.471 0.032 0.025 n 3.310 n ENT
v26_839 0.306 0.058 0.025 n 3.427 n ENT
v26_834 0.200 0.030 0.025 n 3.507 n CAS
v26_823 0.200 0.035 0.025 n 3.557 n CAS
v26_775 0.200 0.030 0.025 n 3.621 n CAS
v26_866 0.200 0.030 0.025 n 3.665 n IMP
v26_842 0.200 0.030 0.025 n 3.695 n IMP
v26_776 0.200 0.033 0.025 n 3.726 n IMP
v22_8903 0.200 0.029 0.029 n 1.307 n CAS
v22_8677 0.200 0.041 0.029 n 2.094 n CAS
v22_8882 0.200 0.037 0.029 n 2.446 n CAS
v22_8847 0.200 0.029 0.029 n 3.026 n CAS
v26_788 0.832 0.241 0.038 S 5.009 5 ENT
v26_826 0.200 0.085 0.025 n 5176 s IMP
v26_659 0.200 0.048 0.025 n 5.211 s CAS
v26_777 0.297 0.085 0.025 n 5.220 s ENT
v26_841 0.757 0.051 0.027 w 5.394 s ENT
v26_729 0.467 0.030 0.025 n 5.402 s ENT
v26_726 0.200 0.035 0.025 n 5.409 s IMP
v26_825 0.491 0.101 0.025 n 5.456 s ENT
v26_835 1.212 0.094 0.026 s 6.147 s ENT
v26_658 0.439 0.205 0.032 s 6.982 s ENT
v26_836 1.091 0343 0.025 s 8.010 s ENT
vZ22_8900 0.990 0.145 0.032 w 5.239 S ENT
v22_8894 0.752 0.137 0.031 w 5.580 s ENT
v22_ 8676 1.136 0.027 0.114 s 6.531 s ENT
v22_8849 1.937 0.044 0.039 ] 7.194 s ENT
v22_8885 0.819 0.192 0.045 s 7212 s ENT
v22_8883 1.669 0.124 0.121 s 7.734 s ENT

Abbreviations: s, strong tainted pig; n, non tainted pig; w, weak tainted pig; CAS, castrated pig; IMP,
immunocastrated pig; ENT, entire male pig
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V. NanoUPLC®-QTOF-HDMS™ Analysis
Ultra performance liquid chromatography (UPLC) was performed on a Waters
Technologies (Manchester, UK) nanoAcquity UPLC® system. All columns were
packed in-house into pieces of 200um inner diameter untreated fL}sed sxlllca
capillaries (BGB Analytik Vertrieb Bernhard Fischer, Schlossbockelhelm,
Germany) with a length of 200mm. A 3um inner diameter Atlantis® C1s material
was used to pack the first 10 mm of the columns and a 1.8 pm inner diameter
High Strength Silica (HSS) T3 Cismaterial was used to fill the column to a length
of 130 mm (Waters, Milford, USA). The column was kept at room temperature
during storage and measurement. The temperature of the sample manager was 4
°C and the injection volume was 0,5 pL. The mobile phases consisted of (A) 0,1%
formic acid in water and (B) 0,1% formic acid in acetonitrile and a flow rate of 3
uL/min was applied. For the biological samples an isocratic period of 5 min at
50% A was followed by a linear change from 50% to 95% B in 15 min. Next, the
gradient remained 15 min at 95% B (between the 25t to 32nd minute the flow
was increased to 5 uL/min to achieve a higher cleaning volume) followed by a

Box 1
nanoUPLC®-QTOF-HDMS SETUP: CONDITIONING THE nanoUPLC®-SYSTEM

1. Prepare all solvents (A, B, strong needle wash, week needle wash and seal wash) and

degas them for at least 5 min using an ultrasound bath. Prime A and B nanoUPLC® pump

and tubing for a minimum of 10 minutes and syringes at least for seven cycles.

Install the column on the NanoFlowSprayer™.

Precondition column system by starting at 98% B with 3 uL/min for 20 min and than

slowly decrease % of B until the initial gradient conditions are reached, Wait for

additional 10 min for the pressure to stabilize.

4. Program the inlet file according to the gradient settings given in the text. In the standard
setup, we use relatively long chromatographic runs of 55 min, including column washing
and re-conditioning, with a mobile phase flow rate of 3 ML/min into the analytical column
(diameter of 200 um) resulting in a backpressure of approximately 6000 psi.

5. Check UPLC® pump for air bubbles and connections for leakage by verifying pressure
stability and performing an auto zero flow transducer test. The mass spectrometer can be
calibrated and checked for performance as described in Box 2.

6. Place the methanol extracts in trays inside the autosampler (4°C) during the analysis
series. Program the injection system to operate in partial loop mode (with a 5 pl loop
mounted on the injection valve). The injection needle is washed with 0.6 ml weak needle
wash and 0.6 ml strong needle wash between injections.

7. Our nanoUPLC® system does not provide reproducible results for the first few injections
for biological samples. For this reason, it was our general practice to run several (usually
5 to 10) QC samples prior to the start of the main analytical runs. In this way we were
“conditioning” the system and were able to dem onstrate that it has achieved stability. We
have observed that there is an absolute requirement for the injection of biological
samples to achieve retention time stability for the adipose tissue components, at least in
the system described here. Thus, the repeated injection (up to 10 cycles) of the mixture of
pure standards prior to the start of analysis of the QCs was ineffective in “conditioning”
the system.

(AN

zigzag gradient for 7 min (from 95% B to 5% B, repeated three times) and
returned linearly in 1 min to 50% A, remaining at this level for 8 min until the
next injection. For the test mixtures (Glu-Fib 600 ng/uL in water/ACN (19:1) and
a mixture of the key compounds (KeyMix) AND, SK, ID, 10 ng/uL and 2CID 50
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ng/pL in MeOH) an isocratic period of 5 min at 95% A was followed by a linear
change from 95% A to 95% B in 5 min. Next, the gradient remained 5 min at 95%
before returning linearly in 30 seconds to 95% A, remaining at this level for 4.5
min until the next injection. Between the biological samples and the test
compounds, injections of the week needle wash solvent (0.1% formic acid in
95% water and 5% ACN) were performed to compensate the changes in starting
and ending condition (95% A vs. 50% A). Starting at 50 % A respectively 95% A
for 5 min going to 95% A respectively 50% A in 30 seconds, remaining at this
condition 4.5 min. The injection system was subjected to two washing cycles
with a strong (0.1% formic acid in ACN) and a weak needle wash solvent after
each injection, and one cycle prior to each injection to minimize carryover. The
pump seals were washed with MilliQ water/ACN (9:1 v/v) every 15 minutes. For
details of the conditioning of the LC-system see Box 1.

The nanoUPLC® was directly interfaced with a Waters Synapt G2™ HDMS™ mass
spectrometer equipped with a dual electrospray ionization probe, Zspray™-
NanoLockSpray™, operating in positive electrospray ionization mode (ESI+). The
source temperature was 80°C with a cone gas flow of 30 L/h and desolvation
temperature of 180°C. The capillary voltage was set at 2.00 kV, with a sampling
cone voltage of 30 V and an extraction cone voltage of 2.50 V. The data
acquisition rate was 0.25 s, with an interscan delay of 0.024 s. Leu-Enk was
employed as the lockmass compound, infused straight into the MS at a

Box 2
nanoUPLC®-QTOF-MS SETUP: CONDITIONING THE HDMS™- SYSTEM
Before starting with sample analyses, the mass spectrometer should be conditioned and
calibrated to obtain a good performance in terms of mass accuracy and resolution. The
procedure and settings described here are for a Waters Synapt® G2 HDMS™ with an ESI
source and the TOF tube in V-mode, in combination with the nanoUPLC® conditions
described above.

1. Attach the NanoFlowSprayer™ with the mounted column and an eluent flow of 3 uL/min
to the stage platform of the Zspray™. Push the NanoFlowSprayer™ into the source and use
the settings described in the text.

2. Adjust pump flow, capillary voltage, cone voltage, desolvation gas flow and/or collision
energy (depending on room temperature and humidity these values are subjected to
changes) until an ion intensity of at least 103 for the background is reached, and 105 for
the lockmass compound Leu-Enk. Mass resolution is calculated by dividing the m/z value
of the centered mass signal by the mass difference at half height of the Gaussian-shaped
mass peak in continuum mode, and should be higher than 20.000. Combine spectra of
about 50 scans during acquisition of the lockmass at optimal settings in continuum mode.
Do an automatic peak detection and check the mass accuracy. The observed mass should
be within 2 ppm deviation of m/z 556.2771 in positive mode. If resolution and accuracy
are satisfying the basic criteria for a measurement are fulfilled; if not, a recalibration of
the instrument is needed.

3. Prepare MS method file to acquire mass data from m/z 50~1.200, at a scan rate of 0.25
scan/s and an interscan delay of 0.024 s using the same settings as for the lockmass. The
range of masses to be detected in sample extracts should fall within the range of
calibration masses. The HDMS is programmed to switch from sample to lock spray every
20 s and to average 3 scans for lock mass correction (m/z 556.2771 + 0.5 Da in positive
mode). Adjust flow rate or concentration of the lock mass solution to obtain an intensity
of about 2000 counts per scan during measurement, to enable accurate mass calculation
of as many compounds in the extracts as possible. Polarity switch during the run should
be avoided because it causes contamination of inner lenses and quadrupoles. Therefore,
all measurements were in positive mode.
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concentration of 2 ng/uL in 5% ACN and 95% water containing 0.1% formic acid
at a flow rate of 0.5 puL/min. The lockmass was the monoisotopic positive ion
peak observed at m/z 556.2771. All mass spectral data were acquired in the MSE
continuum mode with direct lock mass correction by scanning a m/z 50-1200
range. The collision energy in function two was ramped from 20-40 kV. All parts
were controlled by the MassLynx™ Software 4.1 SCN 833 (Waters, Milford, USA).
For the conditioning of the HDMS™-systems see Box 2.

We acquired all data in continuum mode. Here the mass signal is represented by
a Gaussian curve. In comparison the mass signal in centroid mode, is the
projection of an accurate m/z value by on-the-fly mathematical transformation.
In this way, we do not loose relevant information on mass peak shape and purity,
which can vanish during “centroiding”. In addition, by using the separate lock
mass spray as reference and by continuously switching between sample and
reference, the MassLynx™ software can automatically correct the continuum
mass values in the sample for deviations from the exact mass measurement. The
procedure results in a mass accuracy higher than 5 ppm. A disadvantage is that
the raw data files are markedly bigger, raging from about 600 to 700 MB,
whereas a centrioded file just accounts for around 200 to 300 MB per sample
(for a MSE experiment over 55 min with 4 scans per second). However, after the
acquisition a centroiding of the data is still possible. This is also desirable to
achieve accurate mass and to avoid long processing time of the data by the
software.

To supervise the stability of the system a standardized analysis protocol (Figure
5) was used. Glu-Fib 600 ng/uL in water with 5% ACN, a mixture of the key
compounds AND, SK and ID (10 ng/uL) and 2CID (50 ng/uL) in MeOH (KeyMix)
and a quality control (QC) sample containing 10 pL of every pig backfat extract
were injected throughout the whole experimental run. A blank sample consisted
of a methanol solution that had also been subjected to preparation procedures as
described above, was analyzed to include any contaminating peaks that may
have come from preparation steps. The pooled QC sample was injected 6 times at
the beginning of the run to ensure system equilibration and then every 10
samples to further monitor the stability of the analysis. We analyzed the fat
extracts in triplicate, distributing each replicate in random order in a different
analysis series. In total, three series, each containing one of the 33 pigs were
analyzed by nanoUPLC®-ESI*-QTOF-HDMS™ during a time span of 5 days.
Transformation of continuous mass spectra into centroid spectra was than
performed on the resulting 114 measurements, using Accurate Mass Measure
with the function “Accurate mass measure” selected. This step is to be
considered as a first to reduce spectra complexity before peak extraction.

.

Figure 5: Standardized analysis scheme used for metabolomics studies. Adapted
and modified from Coulier et. al, 2011,
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LC/MS raw data extraction

Three different methods were used for the raw data extraction. The first two
were based on the software delivered together with the instruments. The
metabolomics group at the FGCZ developed the third method, mainly as a part of
the ongoing PhD studies of David Fischer (publication in preparation).

A) The MassLynx™ raw data files were processed using MarkerLynx™ software
(Waters, Milford, USA). The MarkerLynx™ parameters were the following: initial
retention time 2.00 min, final retention time 24.00 min, lowest mass 100 Da and
highest mass 1150 Da with mass tolerance 0,05 Da. Peak width at 5% height 20
s, peak to peak baseline noise 500, intensity threshold 500, mass window 0.05
Da, retention time window 0.2 min, noise elimination level turned off and the
deisotope data turned on. The settings for the internal standard was: Name 2CID,
Mass 162.0555 Da, Mass window # 0.050 Da, Retention time 6.40 * 0.3 min.
Masses belonging to the same peak ‘cluster’ are merged together and then
aligned according to retention time if their masses differ by less than the
specified tolerance. The data were shown as height of the peak and normalized
to total marker intensity (the marker intensities are scaled such that their sum
totals 10000).

B) Using MarkerLynx™ software with the same settings as mentioned above but
with the noise elimination level set to 6. In the noise elimination feature within
MarkerLynx™ it is assumed that the intensity distribution of the component
spectra is a Gaussian distribution due to noise with signals as outliers. The noise
level, N, is defined as a user defined gain of the standard deviation above the
mean, or N = Xo + X where X is the mean, o is the standard deviation and X is the
user defined gain.

C) For the in FGCZ method, the MassLynx™ raw data files was converted into
netCDF (.cdf) files using DataBridge (Waters, Milford, USA) and imported into
MATLAB (MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc.,
2010). For data matrix generation, mass bins were selected based on the total
mass abundance in all files. All mass spectra (from 2-24 min) were combined
into one spectrum. From this “master” mass spectrum, accurate masses and left
and right locations of the full width at half height for each peak were identified
using the mspeaks function. Based on this information, mass bins were selected
and for each bin we combined the ion intensities from the whole LC-MS run. Each
feature in the data matrix therefore corresponds to the total intensity of one
respective accurate mass during the whole LC-MS run. For normalization
purpose, the data matrix was logz-transformed and for each sample, values were
calculated against the median feature intensity. A log transform was applied to
the observed intensities for each compound because, in general, the variance
increased as a function of a compound’s average response. In order to test
normalization success, the intensity of the internal standard was monitored.

Statistical analysis

The data matrices generated with MarkerLynx™ were subjected to two different
statistical methods to identify significantly altered metabolites between non-
tainted pigs and tainted pigs. One based upon ROC classification and the second
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one was based on OPLS-DA. The data matrix generated with the “FGCZ method”
was subjected to a student’s two sample t-test to identify significantly altered
metabolites.

OPLS-DA: The MarkerLynx output tables were used as an input for EZinfo
(Umetrics, Umed, SE) to visualize each data matrix with PCA and OPLS-DA. Data
were scaled using pareto scaling, where the weight factor is the square root of
the standard deviation of each column. Pareto scaling is recommended for
metabolomics data (Trygg, 2007). PCA was used to detect trends, patterns and
outliers. OPLS-DA was used to do a supervised classification using the results
from the sensory panel (n relate to non-tainted pig and s to strongly tainted
pigs) and find potential marker candidates. The OPLS-DA loadings visualization
tool “S-plot” (the modeled covariance and modeled correlation from the OPLS-
DA model are combined in a scatter plot) was used to pick those marker
candidates, that have high reliability and medium to high magnitude of
differences between the sample classes (the pl-axis describes the magnitude,
p(corr)-axis represents the reliability of each variable in the data matrix).

Students t-test: Significant features between the two group ,strongly-tainted”, s,
vs ,nhon-tainted“, n, were calculated using the t-test function in MATLAB.
Features with a p-value lower than 0.01 were considered as significant.

ROC: The MarkerLynx™ file was exported as a comma separated value file (.csv)
and imported into ‘R’ (The R-project for statistical computing and graphics,
www.cran.r-project.org/), which is a freely available open-source software
package. The first step was to calculate the mean and the median of every pig. ‘R’
was programmed to take the triplicates of a pig for this computation. In cases
where a response was not detected, it was assumed that the value was missing
because the compound was below the limit of detection (due to ion-suppression,
unstable ESI or other problems with the analytical platform). In those cases, the
mean and the median was calculated from the responses detected, if all
responses were zero the mean/median was set to zero. Each marker was than
filtered separately with Receivers Operating Characteristic using 10.000
different cut-offs for intensity. Compounds achieving >80% for observed within
sample statistical sensitivity and specificity was than selected. These selected
marker candidates were checked on the acceptance criteria and was kept for
further analysis.

Naive Bayes: Marker candidates originated from OPLS-DA, Students t-test and
ROC evaluations were crosschecked. Those entries, that were significant in three
or more of the chemometric methods, were kept. The mean and the median
value of these markers were than given to a naive Bayes classifier to determine
the predictive performance of unseen data. We used a 90/10 cross-validation to
estimate the predictive out-of-sample accuracy and repeated this 1000 times.

Tentative metabolite identification

From accurate mass measurements, the elemental composition was determined
using MarkerLynx™ Elemental Composition Method. The settings were: mass
tolerance 5.0 mDa, mass mode monoisotopic; electron state, even electronic ion;

24



double bond equivalence, from -1.5 to 50.0; elements allowed, 0-10 C, 0-100 H,
0-5 N, 0-10 O, 0-2 S, 0-1 Na, 0-3 P and 0-1 K. The elemental composition was
used to search for matching compounds within a mass window of 0.02 Da. The
online open source libraries used were ChemSpider, Human Metbolome
Database, KEGG, LipidBank, MassBank, Metlin and PubChem. Additionally NIST
Mass Spectral Search Program 2.0 g (Standard Reference Data Program of the
National Institute of Standards and Technology, USA) was used to perform an
exact mass search. All hits within an accuracy of 10 ppm were listed and closely
examined. Considering the results from both methods and the likelihood of
biological significance tentative metabolite identification was made.

Results

. Experimental setup of sample extraction

When entering the terms “metabolomics and adipose tissue” in the search field
of PubMed, we received 29 hits. From these 29 hits, two concerning
metabolomics approaches applied to adipose tissue (Mattila et. al. 2008;
Zyromsky et. al, 2009). None of these publications were discussing how to
extract adipose tissue for measuring the metabolome. Two older protocols from
Folch (Folch et. al. 1957) or Bligh and Dyer (Bligh, E. G., & Dyer, W.].,1959) were
than our first choice of extraction method. Lipids of all major classes are
recovered via chloroform/methanol extraction, where they are mostly enriched
in the chloroform phase. The second phase, containing water/methanol and
more polar metabolites, could also be subjected to analysis if desired. However
using these two protocols, we were not able to get extracts suitable for
measurements. The lipid phase was adversely affected by fat precipitation and
the polar fraction was hardly containing any metabolites. In addition, it is not
recommended to use chloroform when working with the nanoUPLC® equipment.

Another interesting approach was described by Masson et. al. (2010). Here, they
compared six different extraction protocols for nontargeted metabolic profiling
of liver samples. They concluded that an aqueous extraction with
methanol /water followed by an organic extraction with
dichloromethane/methanol and reconstitution of both dried extracts in
methanol/water was the best method. This protocol adopted to our fat samples
led to a very nice and clear aqueous extract but the organic extract was suffering
from micelle formation after reconstitution. We also got followed the suggestions
of Matyash et. al. (2008) to use methyl-tert-butyl ether (MTBE) instead of
chloroform. Here, lipids are recovered into the MTBE phase, that, because of its
lower density, is the upper phase of the two-phase solvent system. In contrast to
the Folch (Folch et. al. 1957) method, non-extractable matrix residuals are in the
aqueous phase at the bottom of the extraction vial. The organic phase enriched
with lipids is easily accessible by a micropipette from the top. The author finally
states that the MTBE extraction procedure allows faster and cleaner recovery of
most of the major lipid classes. Additionally it is also well suited for shotgun
profiling, in which total extracts are infused directly into a mass spectrometer
with no prior cleanup. Unfortunately, implementing this protocol did not lead to
any improvement because the extracts still contained too many suffering
impurities.
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The literature on fat extractions for the detection of boar taint we include fQur
main methods (Mortensen and Sorensen, 1984; Garcia-Regureiro and Diaz,
1989; Hansen-Mgller, 1994; Toumola et. al,, 1996). In all these publications the
scientists had been working with adipose tissue and recognized the problem
with the high content of lipids in the extracts. Due to the fact that
chromatographic systems are disturbed by very lipidrich samples, extracts. must
be cleaned prior to injection. The removal of as many lipids as possible, w?thout
loosing the lipophilic boar taint compounds, is therefore a critical step in th_e
sample preparation. In the method described by Toumola et. al. (1996) the fat is
liquefied in a microwave prior to extraction with methanol. Bearing in mind that
we were searching for unknown compounds, this idea seemed to be fraught with
the risk of loosing interesting compounds. Hansen-Mgller (1994) presenting
another approach where they kept the samples chilled throughout the entire
extraction procedure, using a solid phase extraction column to eliminate lipids.
He states that chilling of the solid-phase extraction columns prior to application
of tissue homogenates and the application of cold homogenate is essential. If
homogenates were at ambient temperature, the lipids would melt, with the risk
of excessive amount of lipids passing through the column. Consequently, lipids
would be injected on to the analytical column leading to an increase of
backpressure, which could even damage the column. The risk of contaminating
the injection system of the LC and the source of the MS is also not to be
underestimated. With this method the interfering fat and cell debris is retained
by the stationary Cis phase of the column. We therefor adopted the method of
Hansen-Mgller (1994) and transformed it in to a minimalistic metabolomics
protocol.

LC-MS analysis

The chromatographic conditions applied are always a compromise to achieve
best chromatographic resolution, retention time stability and sample
throughput. The settings in this protocol were selected after testing different
types of solvent systems (different concentrations of acetic acid, water and ACN
in A, different concentrations of acetic acid, water and ACN in the week needle
wash) gradients and columns (HELIC and BEH C18 both from Waters, Milford,
USA) for their ability to retain and separate compounds of our prime interest
(AND, SK, ID and 2CID). A long cleaning and re-equilibration time was necessary
to avoid carry-over and ensure stability of the chromatographic separation. The
reliable multicomponent analysis of complex biological samples via LC-MS-based
methods provides a number of challenges. The limitations of the technique must
be kept in mind and controlled at all times (potential for drift in both
chromatographic and mass Spectrometer performance, for example decreased
detector response, altered ionization efficiency, decreased mass-accuracy and
shifting retention times). To eliminate the bias due to a gradual change in the
performance of the system, the samples must be analyzed in a random order, In
addition, quality control samples should be used to rigorously monitor the
performance of the platform. We have used standard mixtures of test
compounds (Glu-Fib, KeyMix).
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These test mixtures of pure standards provided an initial screen. A very rapid
visual examination of the performance of the system was obtained by overlay
and comparison of the 10 runs performed during the experiment. A pooled fat

Figure 6: Data acceptance and analysis workflow
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extract sample (QC) enabled us to demonstrate that the nanoUPLC-HDMS system
was providing useful and reliable data also for biological samples. Fulfilling the
first acceptance level with pure standards, the QC samples are than evaluated
against a set of predefined criteria to enable acceptance or rejection of the batch.
Random selections of masses are monitored against predetermined acceptance
criteria for peak shape, intensity, mass accuracy and retention time. If the QC
samples pass this preliminary screen, multivariate statistical analysis can be
performed to determine if the QC data show no time related trends and cluster
closely together. Highly variable QC data would mean that the run failed while
close QC data do not automatically mean that the run was successful, but justify
further data analysis. When potential biomarkers have been identified, it is
necessary to reexamine the QC data. For variability of the QCs results obtained
with selected marker candidates. Every step in the “Data acceptance and analysis
workflow” is described in Figure 6, and the results are shown according to this
scheme.

i. Inspection of KeyMix and Glu-Fib
Any change or deterioration, in either chromatographic or detector performance
would be evident as alteration in retention time, peak shape and mass accuracy.
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Peak shape was unchanged and the maximum deviation in retention time for all
of the test compounds was 0.021 min. The mass accuracy never exceeded 5.5
ppm, which was considered to be acceptable. All standard compounds are sh.own
in Figure 7 as overlaid extracted ion chromatogram (XIC, + 50 mDa). S}gnal
intensity was the most significant source of variability (coefficient of variance
(CV) ranging from 9.4% to 69%) rather than retention time or changes in mass
accuracy. This fact is not surprising, because the data is not yet normalized to
accommodate variations across experiments. In addition, the same two samples
were measured throughout the whole experimental run. After the first
measurement, the top cover is damaged and MeOH will start to evaporate,
leading to an increase of concentration. However, low abundant compounds are
more biased than high abundant compounds.

Quality control base peak chromatogram and extracted ion chromatogram
for 7 selected ions

Next, the internal standard 2CID and a small subset of six peaks present in the QC
samples, covering a range of retention times and signal intensities, were
examined. We looked at extracted ion chromatograms as a further means of
screening the QC raw data prior to processing with the peak finding algorithm.
This enabled us to determine whether retention time, detector response, and the
mass accuracy over the course of a biological sample run were altered (for
example due to matrix effects). The deviation from accurate mass of the internal
standard was 0.56 ppm. The deviation from standard retention time was 0.013
min (Figure 8). Figure 9 shows a section of the whole chromatographic run, were
the overall profile can be assessed. Figure 10 shows the extracted ion
chromatograms intensities in all the 13 QCs for a peak eluting shortly after the
void volume at 4.19 min (m/z: 146.0599), one of the most intense peak eluting at
12.80 min (m/z: 522.354), a peak eluting towards the very end of the gradient at
22.90 min (m/z: 326.306) and two intermediate eluting peaks with different
intensities (m/z 277.215 at 8.62 min and m/z 324.293 at 16.30 min). This
showed that the stability of the retention times for the five components over the
120 h run was good (standard deviation 0.021 min to 0.038 min from the mean)
and measured mass also acceptable (CV ranging from 3.1 ppm to 5.7 ppm). Thus,
once the system had come to equilibrium, the main cause of variability over the
120 h of the experiment was also here the intensity.

Quality control and Pigs: Inspection of internal standard 2CID

After centroiding all raw data, the entire set of 114 samples was processed with
MarkerLynx™. All analytical information in the raw profiles is first transformed
into coordinates on the basis of mass, retention time and signal amplitude
(Idborg et. al. (2), 2005). MarkerLynx™ extracts m/z chromatograms (XIC), if a
peak is detected above the given threshold peak top mass (single scan). A
retention time is used and assigned to an extracted mass retention time bin
(predefined time- and m/z-slot) accordingly. The m/z reported in the marker
table is the intensity weighted mean m/z of the detected markers in all samples
and not the m/zof any single sample, ie. it is the m/zof the bin. These
coordinates are then aligned across all samples and presented as a matrix in the
MarkerLynx™ result window. The first matrix resulted in 67569 marker
candidates (referred to as A). The second matrix, using the noise elimination
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algorithm set to 6, resulted N 8286 e uomwsin weor wotsscs comm 000201t sumes sum so0um 136
marker candidates (referred to as B). The ‘=~ iy
matrices were normalized to the total
marker intensity. Subsequently the
intensity of the internal standard in the
QC samples was investigated. The
coefficient of variance was computed to
11.3% (X 138.78, SD +24.6), which means
that the normalization led to decrease of
CV of almost 10%. This confirms the |
efficiency of normalization of acquired
UPLC-HDMS data. The internal standard
was also detected in all of the pig samples
with a SD for retention time of just 0.012
min. The CV for intensity was computed
to 17.6% (x =140.8, SD +24.8). This
means that the extraction accounts for
additional 6% of the intensity variance.

650 656

Quality controls within +2SD limit Figure 8: 2CID exact mass

PCA was performed on the thirteen QC  162.0555, CV 3.2 ppm

samples separately, to determine trends (X 162.0556, SD 0.52 mDa);

and shifts depending upon time. Their Intensity CV 18.45% (X 447656,
scores represent weighted average SD82612); Retention time CV
trajectories of the original variables. Figure 0.2% (X 6.397 min SD 0.013 min)

11 shows the time series properties of the

first PCA component. The second PCA component is describing how the QC
samples behaved as the run progressed. This type of result gives some
confidence that the analysis was stable for the duration of the run considering all
of the detected marker candidates. Thus, it provides a pragmatic means of
assessing the quality of the data and deciding if it is sufficient to warrant further
statistical analysis of the results to detect biomarkers. In PCA scores plots,
multiple injections of the QC samples should cluster tightly together and ideally
show random variation without any drift over time.

PCA with all Markers: trends, outliers, QCs

PCA was performed on matrix A as a preliminary step of data examination to
assess the samples' distribution with respect to their class labels. Samples were
not clearly separated on the first principal plane (PC1 10.8% vs. PC2 7.0%).
Indeed, principal components correspond to the directions that maximize the
variance and there is no guarantee that these dimensions are discriminant
(Hotelling, 1933). Additionally an underlying structure was discovered within
total experimental run. Figure 12 shows the samples colored by measurement
date (16th, 17th, 18th, 19th and 20 of November 2011).
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Figure 7: a) Glu-Fib: Exact mass 785.8421, CV 1.4 ppm (X m/z 785.8417, SD 1.11 mDa); Intensity CV
69% (x 67704, SD 46802.7); Retention time CV 0.06% (% 9.671 min, SD 0.056)

b) 2CID: Exact mass 162.0555, CV 2.7 ppm (X m/z 162.0557, SD 0.43 mDa); Intensity CV 9.4%

(x 914167, SD 89206); Retention time CV 0.05% (X 10.945 min, SD 0.005)

¢): ID: Exact mass 118.0657, CV 2.9 ppm (X m/z 118.0662, SD 0.34 mDa); Intensity CV 12.3% (i 177708,
SD 21802.7); Retention time CV 0.07% (X 11.567 min, SD 0.0675)

SK: Exact mass 132.0813, CV 5.5 ppm (x 132.08172 SD 0.72 mDa) Intensity CV 49.5% (x 4903, SD
2426); Retention time CV 0.42% (x 11.975 min, SD 0.005)

d) AND: Exact mass 273.2220, CV 1.1 ppm (X m/z 273.2216, SD 0.31 mDa); Intensity CV 47.7 % (k
124328 SD 59314); Retention time CV 0.14% (x 15.002 min, SD 0.139)
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Figure 9: Section of the complete run of all of the 13 QC as overlaid graphs with linked
vertical axes. Visualizing the reproducibility within the body of the runs.
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Figure 10: Intensity fluctuation of the internal standard (6.39_162.0569) and six randomly

selected peaks (RT_m/z) collected by MassLynx™ software in the thirteen QC samples analyzed
during five days with an interval of approximately ten hours
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Figure 11: PCA first (a) and second (b) component for the QC samples
versus time. Component 1 R2X [1 | =0.4461, Component 2 R2X [2] =
0.09747

It is clearly visible that the first component describes a time-dependent
variation. However, looking at PC2 and PC3 (6.8%) we can conclude that the
measurements are reproducible, as the QCs are clustering tightly together in the
middle of the Score-Plot (Figure 13). As already stated, signal intensity was the
most significant source of variability rather than retention time or changes in
mass accuracy. With a matrix containing all of the chromatographic noise, it is
not surprising that the PC1 describes the changes over time. On the basis of these
results, it seems reasonable to suggest that for the type of samples studied here,
a fairly strict acceptance criterion must be applied to candidate markers,
Evidence of high variability within the body of the run, would constitute a
significant reason for concern. Sample data obtained either side of that QC
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cannot be considered to be reliable, and might indeed require the whole run to
be repeated. Here, we don’t find any indication which would ratify that this is the
case in our experiment. However, the matrix contains a lot of noise that could be
responsible for a high false discovery rate. Therefore, we concluded that the use
of matrix B is more appropriate for the subsequent selection of marker
candidates. Matrix A is used as a safety net to ensure that we don’t miss any
relevant markers present in the noise.

Hotelling’s T? Range is a multivariate generalization of Student’s t-distribution
and by defining the “normal” area in the score plot, simplifies the identification
of strong outliers. Figure 14 shows the summary of the 12 scores. The larger the
distance, the more extreme is the sample. If the sample is above the green or the
red horizontal line, the probability that the sample is similar to others is less
than 5% and 1% respectively. The first run of sample n866, s726, s729 and the
third run of sample s841 and s8883 are significantly different from the other two
runs. Therefore, they were excluded from any further analysis. The third run of

sample s8676 was kept as it is not significantly different from the other two
runs.

The distance to the model X (DModX) indicates how well an observation fits the
PCA model. It is a summary of the unexplained variance in the model space (i.e.
the noise in each sample). A value for DModX can be calculated for each
observation; based on considering the elements of the residual Matrix and
summarizing these row by row. These values can be plotted in a control chart
where the maximum tolerable distance (Dcrit) for the data set is given. Moderate
outliers have values larger than Dcrit. Samples well above the red line are
significantly different from the others (Eriksson et. al, 2006). The 114
measurements are plotted in Figure 15. It was concluded that the noise of the
samples being outliers in the Hotelling’s T2 Range are not the cause of the
differences, and therefore it is correct to exclude them.

OPLS-DA

The first component includes all variation that differentiates the two groups. To
simplify the visualization of OPLS-DA, we used the S-plot. The S-plot combines
the modeled covariance and modeled correlation from the OPLS-DA model and
displays it as a scatter plot (Figure 16). The p(corr)1P-axis represent the
reliability of each variable and varies between -1 and 1. I[deal marker candidates
have high magnitude and high reliability. Unlikely cases have high magnitude
with low reliability. Using the S-plot it is possible to get more information on the
selected marker candidate, and subsequently look at the raw data, to ensure that
the marker candidate is selected correctly. Because of this uncertainty it is not
possible to specify a cut off, and the marker candidates were picked by hand. We
collected those marker candidates with high contribution and high confidence.
Altogether 107 marker candidates were selected, 39 for tainted pigs and 68 for
non-tainted pigs. The procedure was repeated with matrix B and here 30 marker
candidates for tainted pigs and 13 marker candidates for non-tainted pigs were
selected. Doing this process, we ensured that we were not missing any relevant
markers, which may be of low abundance. Indeed, they could be removed
inadvertent when using the Noise elimination algorithm.
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vii

viii.

. ROC

Prior to filtering with the ROC algorithm we calculated the mean and the median
of the three measurements for each pig originating from matrix A and B. Taking
the mean and the median, we ensured that the time dependent variation was
accounted for. This resulted in four new matrices:

a: mean of the sample without noise elimination (67569 variables, 33 subjects)
a: median of the sample without noise elimination (67569 variables, 33

subjects)

b: mean of the sample with noise elimination(8286 variables, 33 subjects)

B: median of the sample with noise elimination (8286 variables, 33 subjects)
Compounds achieving >80% for “observed within sample statistical sensitivity
and specificity” were then selected using two different decision rules: “> than
cutoff means tainted”, collecting those marker which are significant for pigs
achieving high score in the sensory panel, and “> than cutoff means non-tainted”,
collecting markers which are highly abundant in pigs without boar taint. The
results are shown in Table 7.

Table 7: Number of marker candidates within the different matrices using two different decision
rules

Selected Number of Sum of markfzrs
markers present (mean+median
marker . .
. ina/eand b/f after duplicate
candidates . ;
(i.e. duplicates) was removed)
a = mean per sample, only compounds included which had >=80 4 25
within sample accuracy, RULE: >=cutoff is non tainted 4
167
@ = median per sample, only compounds included which had 51 25
>=80 within sample accuracy, RULE: >=cutoff is non tainted
b = mean per sample, only compounds included which had >=80 9 3
within sample accuracy, RULE: >=cutoff is non tainted B 1
;12
P = median per sample, only compounds included which had 6 3
>=80 within sample accuracy, RULE: >=cutoff is non tainted
a1 = mean per sample, only compounds included which had >=80 36 33
within sample accuracy, RULE: >cutoff is boar tainted A:40
Q= median per sample, only compounds included which had 37 33 '
>=80 within sample accuracy, RULE: >cutoff is boar tainted
b = mean per sample, only compounds included which had >=80 17 15
within sample accuracy, RULE: >cutoff is boar tainted 518
B=median per sample, only compounds included which had 16 15 ’

>=80 within sample accuracy, RULE: >cutoff is boar tainted

FGCZ methode

All the mass spectra are added up to yield one single “master spectrum” where
there is no misalignment and the sensitivity is increased. However, by this
procedure the information about retention time is lost and isomers will be added
up as one single m/z.

Detected masses are actually present and therefore there will be no zeros in this
data matrix. Another benefit is the decrease of the process time with almost
66%. This method generated 14264 m/z values. 97 of these marker candidates
have a p-value lower than 0.01 and were therefor considered as significant and
kept for further analysis.
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ix.  Validating candidate markers with acceptance criteria
The Food and Drug Administration (FDA) published guidance on analytical
method validation for bio-analytical methods in the industry (2001). In this
guidance they are listing some criteria on acceptable degree of reproducibility
for a particular maker candidate. Their criteria allow 5 QC samples out of 13 QC
(i.e. 33%) to fall outside the acceptance criteria. The CV should not exceed 20%,
a‘ 0.8 y -
»
R LR LT Fr
b 0.9
0.8
0.7 T
0.6
g‘O.S
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Figure 17: a) Marker candidate m/z 299.2379 at 7.88 min ; : ———— _© * i
. . wa
approach but invalidated because it was detected in just 8 of the 13 5Cfelected by the OPLS-DA and ROC

b) Marker candidate m/z 271. 2062 at 17.5617 was selected b
. OPLS-D i
and was detected in all of the QC. Eliminating 3 QC gave q CV ofJ119%, 4 ROC and the in House method
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xi.

which represents an acceptable degree of reproducibility for a particular maker
candidate. Therefore, we examined the subset of marker candidates, in total 323,
originated from our three different chemometrics methods, using such
guidelines. Practical examples of how the QC data is used to validate the results
are shown in Figure 17. In “a” the plot profiles of one mass selected to be
significant for a strong tainted pig is shown. It is clearly seen that this mass is not
a reliable marker, because it is just detected in 60% of the QC. Therefore it is not
valid and should be excluded. 283 marker candidates were omitted because they
did not fulfill the acceptance criteria. Over 90% of the marker candidates
generated from the A matrix were not passing the acceptance criteria. However,
we eliminated the risk to miss any important low abundant marker. The
remaining 40 markers are presented in the Table 8, together with the
information with which methods they were detected. We decided to do a
tentative annotation of those markers listed in three or more of the result tables.
The 16 candidate markers fulfilling this criterion were tested on out of sample
accuracy with the naive Bayes classifier.

Naive Bayes

Naive Bayes is an algorithm relying on an explicit probability model by allocating
a probability to each class that corresponds to the product of the individual
probabilities of every attribute value. The predicted class label then corresponds
to the class with the greatest probability. The 16 selected marker candidates
were tested with a naive Bayes classifier to determine the predictive
performance of unseen data (Figure 18). We used a 90/10 cross-validation to
estimate the predictive out-of-sample accuracy and repeated this 1000 times.
Naive Bayes predicts with 90% accuracy if the pig is going to be tainted or not.
Identical results were obtained looking at A mean/median or B mean/median.

Marker annotation /Marker Candidates

The Metabolomics Standards Initiative (MSI) has published several guidelines
(http://msi-workgroups.sourceforge.net/) for the publication of metabolomics
experiments. One of these covers the “proposed minimum reporting standards
for chemical analysis” that define confidence levels for the identification of
compounds, ranging from unidentified signals at level 4, to level 1 for a rigorous
identification based on independent measurements of authentic standards.

4) Unknown compounds: Although unidentified or unclassified these metabolites
can still be differentiated based upon spectral data, thus enabling relative
quantifications.

3) Putatively characterized compound classes: Based upon characteristic
physicochemical properties of a chemical class of compounds, or by spectral
similarity to known compounds of a chemical class.

2) Putatively annotated compounds: Without chemical reference standards,
based solely upon physicochemical properties and/or spectral similarity with
public/commercial spectral libraries.

1) Identified compounds: A minimum of two independent and orthogonal types
of data relative to an authentic standard analyzed under identical experimental
conditions. In MS-based techniques this could include: retention time/index and
mass spectrum, or accurate mass and tandem MS.
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Table 8: A list of 40 markers passing the acceptance criteria stated by the FDA.

" B A B "FGCZ"
RT m/z Marker for ROC ROC OPLSDA  OPLS-DA t-Test
13.6368 1111181 n X X
55302 146.0599 n X X
13.6399 185.1539 n X X
133974 187.149 n X X
13.6232 193.16 n X X
8.603 219.1751 s X X
13.9004 2252229 n X X
8603 2351687 s X X X
5.5221 2441185 s X
13.6282 2452257 n X X
5.5195 261.1462 s X X
13.6314 263.2392 n X X
17.5613 2712062 s X X X X
202881 273.2215 s X X X
8.6047 2772151 s X X
13.6326 281.2462 n X X
8.8091 287.2024 s X X
106721 287.2053 s X
7.812 289.2169 s X X X X
8.605 295.2268 s X X
8.6038 313.2396 s X X
6.3871 317212 n X X
5.9234 322.2005 s X X
8.6033 335.2179 s X X X
59269 340.2125 s X
6396 350.2342 s X X
86013 351.1914 s X
59271 358.2226 s X X X
63974 368.241 s X X
106415 3743166 s X X
59239 380.206 s X X X
63992 386.2546 s X X
5926 396.1774 s X X X
5.7805 4102505 s X X X X
7.51 4103282 s X X X
62767 414.3287 s X
5782 4242302 s X X X
58096 426247 s X X
126437 4622974 n X X X
5.6004 528.2956 n X X
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Figure 18: The naive Bayes classifier allocate a probability to each class that
corresponds to the product of the individual probabilities of every value. Here the
selected m/=z values are displayed.

With modern high-resolution mass spectrometers, the determination of the
elemental composition for low to medium weight metabolites from accurate
measurements is clearly feasible. However, this is only the first step of
compound identification. Appropriate tools have long been a part of most vendor
software’s, and many of today’s algorithms are known to perform well in
practice (Bocker et. al., 2009). Yet, the American Society for Mass Spectrometry
(ASMS) presented a survey in 2009, were the 600 participants revealed that the
identification of compounds was still perceived as the bottleneck in the
interpretation of metabolomics data (http://metabolomicssurvey.com/). This
shows the difficulty still present in the annotation workflow. It is often stated
that mass accuracy is the most important parameter for the determination of
elemental compositions. Nevertheless, the number of possible elemental
compositions increases exponentially with increasing ion mass, even with ultra-
high resolution instruments (for example 33 different molecular formulas for
mass 200 Da within a 1-ppm window). Therefore, restrictive criteria based on
physicochemical rules and spectral information, as found in mass spectrometry
textbooks (i.e. nitrogen rules, valence considerations, isotopic patterns), are
required to remove irrelevant proposals. The most popular of these chemical
rules is the nitrogen rule that states that odd nominal molecular mass
compounds contain an odd number of nitrogen atoms (McLafferty, 1993).

43



The MarkerLynXTM elemental r;)za’:)mIIHGN_Z“J_Finuizglgé‘za) Cuf0 0Ty, fa (1 00,1 00) C19H380 1 TR tbli;» :3[&}4:
composition (EC) function yielded BioBAMGAED

up to twenty-five possible
elemental compositions for the 16
m/z values, sorted after their
accuracy in mDa. The nitrogen
rule has been automatically
applied. Isotope peaks were
eliminated with the MarkerLynx™
Software. Adducts and fragments
were treated as separate features.
Adduct formation occurs during
lonization and each analyte
present in the samples may
generate multiple adduct ions.
Accordingly, different adducts of
the same metabolite co-elute

chromatographically. In positive A
ion mode LC-MS, quantitation is
typically based on [M+H]*
however, one may also see
[M+Na]*, [M+K]* and [M+NH4]". .

For a more comprehensive list of H ™
ionization adducts, see Crutchfield  Figure 19: Isotopic distribution of CisHas0. The
et.al. (2010). The proposed ECwas  red line is the distribution in the raw data. The
crosschecked with the isotopic purp{e _Iine is the calculated theoretical
pattern in the raw data. Figure 19  distribution.

shows the isotopic distribution of C19Hz0. The best fit was subsequently used to
carry out an online library search. We also performed an exact mass search in

the NIST library (m/z + 10 ppm), where also the fragment pattern is considered.
The results are presented in Table 9.

o
b
h,

Once a molecular structure is proposed and the isotopic distribution inspected,
its likely hood can be further evaluated. This is possible by an interpretation of
fragments found at the MSE stage. A difficulty is the superposition of fragments
from all co-eluting compounds, including background ions. The assignment to
precursor and product ions was therefor possible just for those compounds for
which the fragments were already known. Figure 20 shows the [M+H]*adduct in
the low (MS1) and high (MS2) energy spectrum and the most abundant fragment
from testosterone. Taking its Isotopic and fragmentation pattern into account,
compound reached the confidence level 2 for identification,



Table 9: EC generated with MarkerLynx™ and through exact mass search within NIST. If EC is
inconsistent both results are listed. Different annotation possibilities are listed starting with the best

hit.
Elemental . .
m/z Composition MarkerLynx (Systematic name) NIST (Systematic name)
1) Benzyl octanoate
1) 4-
Qi mehenlotamned | Q(RSRASIAR 304 Dimsty
235.1687 C15H220 methyl 4-methylenedecahydrospiro[furan-
yipropanoate 3,2-inden]-2-one 3) Hexyl 3-
3) 3-Phenylpropyl hexanoate phenylpropanoate
1) 10,17-Dimethylgona-4,13(17)-dien-3-
271, one .
712062 C19H260 2) Androsta-4,16-dien-3-one 3) Androsta- No hits
3,5-dien-7-one
1)(50)-Androst-16-en-3-one 1)(50)-Androst-16-en-3-one
273.2215 (191280 (Androstenone) (Androstenone)
1) Androst-4-ene-3,17-dione
287.2024 C19H2602 2)(17p)-17-Hydroxyandrosta-1,4-dien-3- 1) Androst-4-ene-3,17-dione
one
1) Androst-4-ene-3,17-dione
287.2053 C19H2602 2) (17@)-17-Hydroxyandrosta-1,4-dien-3- 1) Androst-4-ene-3,17-dione
one
289.2169 C19H2802 1)(17)-17-Hydroxyandrost-4-en-3-one 1}(17B)-17-Hydroxyandrost-4-en-3-
(Testosterone) one (Testosterone)

1) (Z2)-7-((1R,28)-2-((S,E)-3-
hydroxyoct-1-enyl)-5-oxocyclopent-
3-enylJhept-5-enoic acid

1)(2E,4E,6E,8E)-2,4,6,8- (Prostaglandin AZ)
335.2179 C20H3004 Icosatetraenedioic acid 2)(57)-9,15-Dioxoprosta-5,10-dien-1-
oic acid 2)(5Z,13E,158)-15-
Hydroxy-9-oxoprosta-5,10,13-trien-
1-oic acid (dhk-PGAZ)

1) L-proline,N-furoyl-2}-,decyl ester

350.2342 C20H31NO4 No hits 2) L-valine, N-(2-methoxybenzoyl)-,
heptyl ester

1) 6-amino-2-{[1-(2,4-diamino-4-oxo-

1) 7a-{2-Hydroxy-2-propanyl)-3-(2- butanoyl)pyrrolidine-2-carbonyl]
358.2226 C4H3104 methyl-2-propanyl)-1-oxotetrahydro- amino]hexanoic acid 2) 6-amino-2-
) C15H27N505 1H-pyrrolo[1,2-c][1,3]oxazol-6-yl 3- [[4-amino-4-o0x0-2-(pyrrolidine-2-
hydroxy-3-methylbutanoate carbonylamino)butanoyljaminolhex
anoic acid
380.206 C20H30NO6 No hits No hits
396.1774 C27H26NS No hits No hits
410.2505 C29H32NO No hits No hits
1) 1-Allyl 2-pentadecyl 1,2-
pyrrolidinedicarboxylate 1) 1-Allyl 2-pentadecyl 1,2-
410.3282 C24HA4NO4 2) 1-Allyl 2-pentadecyl 1,2- pyrrolidinedicarboxylate
pyrrolidinedicarboxylate
1) (2R)-1-{[(2-Aminoethoxy) (hydroxy) 113'- lechiupinine /3"
4242302 g;gggg:g;}) phosphoryl]oxy}-3-hydroxy-2-propanyl ) acei;tlegy?;séglrf;irrl:?e/
(92)-9-tetradecenoate
1) 1-tetradecanoyl-sn-glycero-3- No hit
426.247 C19HAONOT7P phosphoethanolamine onits
462.2974 C20H39N507 No hits No hits
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Figure 20: a) XIC for m/z 298.217 from MS1 (vellow) and MS2 (purple)
b) Spectra of M+H* adduct of testosterone m/:

2289.217 in MS1 (purple) and MS2 (black)
¢) Spectra of the main fragment of testosterone m/z 189.1668 in MS1 (purple) and MS2 (, black)
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Another very well known candidate was AND, also reaching the MS] confidence
level 2 for identification. The relative quantification
the measurements at ALP. These results

)

for the mass 335.2179 was prostaglandin A2. Prostaglandins are a group of lipid
compounds that are derived enzymatically from fatty acids. Prostaglandin A2
reached the confidence level 3 for identification. A fragmentation pattern for
Prostaglandin A2 was available in EST, which can’t be used for ESJ+ data. For the

46



most suggested annotations, a search within the NIST library revealed no
spectral hits for ESI*. Therefore, annotations were not possible with the data
obtained within this study. Further experiments with a targeted approach, where
the precursor is filtered and subsequently fragmented in an MS/MS data
accusation mode, is necessary. This in order to obtain fragments from the

particular m/z, and the same time avoiding superposition of co-eluting
compounds and background ions.

Discussion

The pigs used in this study are representing the male pig population in
Switzerland, fattening entire males (ENT), surgical castrated males (CAS) and
immunocastrated males (IMP) (Improvac® is approved for the Swiss market
since 2007). A classification based on AND, SK and ID concentrations in the
adipose tissue, resulted in 27% of misclassified pigs (9 out of 33 pigs were
misclassified, see Table 6). Using the method presented within this work, we
reached an out of sample predictive performance of 90%, which means a
decrease of misclassification of 14%. Figure 21 shows a PCA-plot with the mean
of the 16 selected marker candidates. The nontainted pigs are clustering very
tightly with two exceptions. The strong tainted pigs seem to have a bigger
diversity in the intensities of the above-mentioned markers. This leads to a
broader distribution in the PCA-plot. Another possibility to visualize the data, is
coloring the samples according to pig gender group (i.e. ENT, CAS, IMP) as shown
in Figure 22. This representation unveils that also found markers correlate to
some extent with pig gender. We conclude that for future metabolomics studies
it is recommendable to consider only entire mal pigs. Most notably
representatives of European farmers, the meat industry, retailers, scientists,
veterinarians and animal welfare non-governmental organizations committed to
a plan to voluntarily end surgical castration of pigs in Europe by 1 January 2018.

NanoUPLC®-HDMS™ nontargeted metabolomics in positive ionization mode has
been applied to fat samples for the assessment of the presence or the absence of
some metabolites in tainted pig carcasses. The comprehensive metabolomics
approach described in this thesis enabled us to examine small molecules in fat
extracts. Through chemometrics models, a selection of 16 compounds could be
identified and putatively annotated. These markers also showed a respectable
out off samples accuracy of 90%. All the different parts of the metabolomics
workflow should be of high quality in order to be successful. Via a combination of
test mixtures of known compounds and a pooled fat sample “QC”, it has been
possible to demonstrate that the nanoUPLC®-HDMS™ system is suitable for
sample analysis. Using the data from the QC samples we were able to identify the
factors that contributed to non-reproducibility between runs and to put control
measurements in place. Variability in both mass accuracy and retention time
could be neglected. However, signal intensity had a major effect on
reproducibility. In particular, the variability of lower intensity peaks was
significantly higher than those of higher intensity.

47



O
e d w

‘AYsianIp asow smoys sbid s ay3 sp 31am ‘snouabowoy AiaA 310 sbid
u 3y (buloas An) Burdisn> smoys yd ay3 Siayiow pajaajas 9T ay1 43pisu02 3snf pup sBid Jjp fo ubaw ay3 burypl Ag :1Z a4nbi4
=]
n 6 8 L 9 S 14 € 4 T 0 T~ z £- s- 9- i 8-

n\su\u%nvbsﬁtﬂn% « s

rd S ™~
s
2:008 w e 2 z
\ i
v i rony
SepadiL ]
v i W ] 15
// P 4
/,/ seedW z
N ¢
. Lray
¥
5£88% §
C]
eTo=[ZIxey 4
&7289F Losvo=I1ixzy
(6155 2852) =is6s6) asdinng 71 s Puptrnon|

i

48



‘INF pPUD SV 430q Yim u133od s>1j0qolaw
D buiioys dnoib 2)DIPawWia}ul UD 21D S[DUWIUD diN] Y| "ANS1anip asow Buimoys sbid | N3 ay3 spa1aym ‘snouabowoy Aian a1p sbid Sy
Yy “(buypss An) Buiia3snyd 103D D SMOYS YDd 3Y3 S13¥10W paIAfas 9T ayl 1apisuod isnf puo sbid |jo Jo ubaw ay) buiyo) Ag :0zZ 34nbi4

12d
n 6 8 L [ 8
m!
v
Ma
we z
o196 / LY -
/ g
oo 3R 4 \ ooy mﬂa ¢ \ ' Z
] 1
dNI ¥ ] ses3¥ sty V 0
ITER £ / T La _h
{ °
SO v s o vso - e
./. \\._._ N
/// el / €
/ v
S
9
rezo=Izlxoy L
ergely L0.vo=D1xcy
l6¥£5 L85 L) = (%s6) osdnia 21 . Bugpioy




It is practically impossible to measure simultaneously the levels of all metabolites in
the biological sample with a single analytical platform. The reason is that
metabolites are biochemically diverse and can cover a dynamic range of over 10
orders of magnitude in concentration. Therefore, a single extraction and detection
method for all metabolites from biological matrices is Impracticable. Yet it is a first
step to gain more knowledge and set up a workflow. An interesting complement to
the present metabolomics study would be measurement in ESI-mode or a
chromatographic method suitable for polar metabolites, which would add more
knowledge as to the metabolites present within the adipose tissue of a pig, Using this
platform, we have encountered many promising marker candidates. However,
identification was often not possible. The reasons being very low intensity peaks, co-
fragmentation and ambiguous Spectra, as well as in some cases complex spectra

metabolites and theijr modifications is far from reality. As a result, assignment of
metabolites to all or even most metabolite profiles in a nontargeted screening
continues to be a challenging task (Baker, 2011). The appearance of unidentified
data is therefore a common observation in such experiments. Therefore, when exact
identifications are not available, functional labe] annotations for unidentified peaks
may be a helpful intermediate step, both as part of data analysis, as well as a guide
towards the further analytical Steps to identify the compounds (Broadhurst and Kell,
2006). Here, we address this challenge by creating a putative elemental composition

and comparing its isotopic distribution with the isotopic distribution in the raw data
of the selected marker.

further (Dettmer et, al., 2006). Generalizability, sometimes called ‘external validity’,
is a separate problem. It concerns the results of the comparison of two groups. The
generalizability of a study depends on the characteristics of the subjects and how
they are selected, regarding age, gender, morbidity, diet, environment, etc. Initial
studies have limited generalizability but are satisfactory to establish a ‘proof of
principle’ and provide the basis for larger and potentially more expensive studies
that assess broader generalizability. Strong internal validity is critically important

for initial studies, to avoid wasted effort and costs in follow up research (De Vos et.
al., 2007).

In future we propose that this nontargeted metabolomics approach, may provide the
basis of a population-screening tool to select pigs according to their suitability as
meet for the food Industry. Furthermore, this approach could allow a breeding
selection depending on the phenotype. In particular, the hontargeted metabolomics

approach has the potential to provide new biomarkers that are predictive of
individual responses

50



Literature

Ampuero, S., & Bee, G. (2006). The potential to detect boar tainted carcasses by using
an electronic nose based on mass spectrometry. Acta Veterinaria Scandinavica, 48.

Andersson, K, Schaub, A,, Lundstrom, K., Thomke, S., & Hansson, I. (1997). The
effects of feeding system, lysine level and gilt contact on performance, skatole levels
and economy of entire male pigs. Livestock Production Science, 51(1-3), 131-140.

Annor-Frempong, L. E,, Nute, G. R, Wood, |. D., Whittington, F. W., & West, A. (1998).
The measurement of the responses to different odour intensities of 'boar taint' using
a sensory panel and an electronic nose. Meat Science, 50(2), 139-151.

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model
selection. Statistics Surveys, 4, 40-79.

Babol, ]., & Squires, E. ]J. (1995). QUALITY OF MEAT FROM ENTIRE MALE PIGS. Food
Research International, 28(3), 201-212.

Baker, M. (2011). Metabolomics: from small molecules to big ideas. Nature Methods,
8(2),117-121.

Baker, S. G. (2003). The central role of receiver operating characteristic (ROC) curves
in evaluating tests for the early detection of cancer. Journal of the National Cancer
Institute, 95(7), 511-515.

Bejerholm, C,, & Gade, P. B. (1993). THE RELATIONSHIP BETWEEN SKATOLE
ANDROSTENONE AND ODOR FLAVOR OF MEAT FROM ENTIRE MALE PIGS. In: M.
Bonneau, Measurement and Prevention of Boar Taint in Entire Male Pigs, vol. 60 (pp.
75-79). Paris: Inst Natl Recherche Agronomique.

Bicalho, B, David, F., Rumplel, K,, Kindt, E., & Sandra, P. (2008). Creating a fatty acid
methyl ester database for lipid profiling in a single drop of human blood using high

resolution capillary gas chromatography and mass spectrometry. Journal of
Chromatography A, 1211(1-2), 120-128.

Bligh, E. G, & Dyer, W.]. (1959). ARAPID METHOD OF TOTAL LIPID EXTRACTION
AND PURIFICATION. Canadian Journal of Biochemistry and Physiology, 37(8), 911-
917.

Bobeldijk, I, Hekman, M., de Vries-van der Weij, ., Coulier, L., Ramaker, R., Kleemann,
R, Kooistra, T., Rubingh, C., Freidig, A., & Verheij, E. (2008). Quantitative profiling of
bile acids in biofluids and tissues based on accurate mass high resolution LC-FF-MS:
Compound class targeting in a metabolomics workflow. Journal of Chromatography
B-Analytical Technologies in the Biomedical and Life Sciences, 871(2), 306-313.

Bocker, S., Letzel, M. C,, Liptak, Z., & Pervukhin, A. (2009). SIRIUS: decomposing
isotope patterns for metabolite identification. Bioinformatics, 25(2), 218-224.

51



Bonneau, M. (1982). Compounds responsible for boar taint, with special emphasis on
androstenone - a review. Livestock Production Science, 9(6), 687-705.

Bonneau, M., Walstra, P., Claudi-Magnussen, C., Kempster, A. J,, Tornberg, E., Fischer,
K., Diestre, A, Siret, F., Chevillon, P, Claus, R, Dijksterhuis, G., Punter, P., Matthews, K.
R, Agerhem, H,, Beague, M. P,, Oliver, M. A, Gispert, M., Weiler, U., von Seth, G., Leask,
H., Furnols, M. F. I, Homer, D. B, & Cook, G. L. (2000). An international study on the
importance of androstenone and skatole for boar taint: [V. Simulation studies on
consumer dissatisfaction with entire maje pork and the effect of sorting carcasses on

the slaughter line, main conclusions and recommendations, Meat Science, 54(3), 285-
295.

Bristow, A. W. T. (2006). Accurate mass measurement for the determination of
elemental formula - A tutorial. Mass Spectrometry Reviews, 25(1), 99-111.
Broadhurst, D. 1,, & Kell, D. B. (2006). Statistical strategies for avoiding false
discoveries in metabolomics and related experiments, Metabolomics, 2(4), 171-196.

Egan, ]. P. (1975). Signal detection theory and ROC -analysis. New York Academic
Press.

Brooks, R. I, & Pearson, A. M. (1986). Steroid Hormone Pathways in the Pig, with
Special Emphasis on Bear Odor: A Review. Journal of Animal Science, 62(3), 632-645.

Buescher, J. M,, Czernik, D., Ewald, J. C, Sauer, U, & Zamboni, N. (2009). Cross-
Platform Comparison of Methods for Quantitative Metabolomics of Primary
Metabolism. Analytical Chemistry, 81 (6),2135-2143.

Buescher, J. M,, Moco, S, Sauer, U., & Zamboni, N. (2010). Ultrahigh Performance
Liquid Chromatography-Tandem Mass Spectrometry Method for Fast and Robust

Quantification of Anionic and Aromatic Metabolites. Analytical Chemistry, 82(11),
4403-4412,

9(5), 2377-2389. '

Cevallos-Cevallos, J.M,, Reyes-De-Corcuera, J.L, Etxeberria, E, Danyluk, M. D, &

Rodrick, G. E. (2009). Metabolomic analysis in food science: a review Trends in Food
Science & Technology, 20(11-12), 557-566.

Choi, H. K., Choi, Y. H,, Verberne, M., Lefeber, A. W, M., Erkelens, C,, & Verpoorte, R.

(2004). Metabolic fingerprinting of wild type and transgenic tobacco plants by H-1
NMR and multivariate analysis technique. Phytochemistry, 65 (7), 857-864.

Claus, R., Weiler, U, & Herzog, A. (1994). Physiological-aspects of androstenone and

skatole formation in the boar- a review with eXperimental-data. Meqt Science, 38(2),
289-305

52




Coulier, L., Tas, A., & Thissen, U. (2011). Food Metabolomics: Fact or Fiction? Lc¢ Gc¢
Europe, 24(2), 60-71

Craig, H. B., & Pearson, A. M. (1959). Some preliminary studies on sex odor in pork.
Journal of Animal Science, 18: 1557.

Crutchfield, C. A,, Lu, W. Y., Melamud, E., & Rabinowitz, ]. D. (2010). MASS
SPECTROMETRY-BASED METABOLOMICS OF YEAST. In: ]. Weissman, C. Guthrie, &
G. R. Fink, Methods in Enzymology, Vol 470: Guide to Yeast Genetics: Functional
Genomics, Proteomics, and Other Systems Analysis, Znd Edition, vol. 470 (pp. 393-
426). San Diego: Elsevier Academic Press Inc.

de Kock, H. L., Heinze, P. H,, Potgieter, C. M., Dijksterhuis, G. B., & Minnaar, A. (2001).
Temporal aspects related to the perception of skatole and androstenone, the major
boar odour compounds. Meat Science, 57(1), 61-70.

Deslandes, B., Gariépy, C., & Houde, A. (2001). Review of microbiological and
biochemical effects of skatole on animal production. Livestock Production Science,
71(2-3),193-200

Desmoulin, B., Dumont, B. L. and Jacquet, B. (1971) Le port male de race Large-
White: aptitudes a la production de viande. Journees de la Recherche Porcine en
France 3, 187-195.

Desmoulin, B, Bonneau, M. and Bourdon, D. (1974) Etude en bilan azote et
composition corpor- elle des ports males entiers ou castrb de race Large White.
Journees de la Recherche Porcine en France 6, 247-255.

Desmoulin, B., Aumaitre, A., & Peiniau, J. (1990). INFLUENCE OF WEIGHT AT 10 D
AND AGE AT CASTRATION IN MALE PIGLETS ON GROWTH-RATE AND CARCASS
QUALITY. Annales De Zootechnie, 39(3-4), 219-227

Dettmer, K., Aronov, P. A,, & Hammock, B. D. (2007). Mass spectrometry-based
metabolomics. Mass Spectrometry Reviews, 26(1), 51-78.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning, 29(2-3), 103-130.

Domon, B., & Aebersold, R. (2006). Mass Spectrometry and Protein Analysis. Science,
312(5771),212-217.

Dunn, W. B. (2008). Current trends and future requirements for the mass
spectrometric investigation of microbial, mammalian and plant metabolomes.
Physical Biology, 5(1).

Eriksson, L., Johansson, E., Ketteneh-Wold, N., Trygg, ]., Wikstrém, C., & Wold, S.

(2006). Multi- and Megavariate Data Analysis Part I: Basic Principles and Applications.
Umead: Umetrix Academy.

53



Fiehn, 0. (2002). Metabolomics - the link between genotypes and phenotypes. Plant
Molecular Biology, 48(1-2), 155-171.

Folch, ], Lees, M,, & Stanley, G. H. S. (1957). A SIMPLE METHOD FOR THE ISOLATION
AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES., Journal of
Biological Chemistry, 226(1), 497-509.

Fortin, A, Friend, D. W,, & Sarkar, N. K. (1983). ANOTE ON THE CARCASS
COMPOSITION OF YORKSHIRE BOARS AND BARROWS. Canadian Journal of Animal
Science, 63(3), 711-714.

Fowler, V. R, McWilliam, R,, & Aitken, R. (1981). VOLUNTARY FEED-INTAKE OF
BOARS, CASTRATES AND GILTS GIVEN DIETS OF DIFFERENT NUTRIENT DENSITY.
Animal Production, 32(JUN), 357-357.

Gangl, E. T, Annan, M,, Spooner, N., & Vouros, P. (2001). Reduction of Signal
Suppression Effects in ESI-MS Using a Nanosplitting Device. Analytical Chemistry,
73(23), 5635-5644.

Garcia-Regueiro, J. A, & Diaz, 1. (1989). EVALUATION OF THE CONTRIBUTION OF
SKATOLE, INDOLE, ANDROSTENONE AND ANDROSTENOLS TO BOAR-TAINT IN
BACK FAT OF PIGS BY HPLC AND CAPILLARY GAS-CHROMATOGRAPHY (CGC). Meat
Science, 25(4), 307-316.

Hand, D.], & Yu, K. (2001). Idiot's Bayes—Not So Stupid After All? International
Statistical Review, 69(3), 385-398.

Hansen-Mgller, . (1994). RAPID HIGH-PERFORMANCE LIQUID-
CHROMATOGRAPHIC METHOD FOR SIMULTANEOUS DETERMINATION OF
ANDROSTENONE, SKATOLE AND INDOLE IN BACK FAT FROM PIGS. Journal of
Chromatography B-Biomedical Applications, 661(2), 219-230.

Hansen, B. C, & Lewis, A. ]. (1993). EFFECTS OF DIETARY-PROTEIN
CONCENTRATION (CORN-SOYBEAN MEAL RATIO) ON THE PERFORMANCE AND
CARCASS CHARACTERISTICS OF GROWING BOARS, BARROWS, AND GILTS -
MATHEMATICAL DESCRIPTIONS. Journal of Animal Science, 71(8), 2122-2132.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(7), 498-520.

Idborg, H., Zamani, L., Edlund, P. 0., Schuppe-Koistinen, L., & Jacobsson, S. P. (2005).
Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic
interaction liquid chromatography-electrospray ionization mass spectrometry.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life
Sciences, 828(1-2), 9-13.

54



Idborg, H., Zamani, L., Edlund, P. 0., Schuppe-Koistinen, 1, & Jacobsson, S. P. (2005).
Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods
for handling of complex data. Journal of Chromatography B-Analytical Technologies in
the Biomedical and Life Sciences, 828(1-2), 14-20.

Jonsson, P., Gullberg, ]., Nordstrom, A., Kusano, M., Kowalczyk, M., Sjostrom, M., &
Moritz, T. (2004). A strategy for identifying differences in large series of
metabolomic samples analyzed by GC/MS. Analytical Chemistry, 76(6), 1738-1745.

Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: toolbox for processing and
visualization of mass spectrometry based molecular profile data. Bioinformatics,
22(5), 634-636.

Katajamaa, M., & Oresic, M. (2007). Data processing for mass spectrometry-based
metabolomics. Journal of Chromatography A, 1158(1-2), 318-328.

Kind, T., & Fiehn, 0. (2006). Metabolomic database annotations via query of
elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC
Bioinformatics, 7.

Koulman, A, Woffendin, G., Narayana, V. K,, Welchman, H,, Crone, C., & Volmer, D. A.
(2009). High-resolution extracted ion chromatography, a new tool for metabolomics
and lipidomics using a second-generation orbitrap mass spectrometer. Rapid
Communications in Mass Spectrometry, 23(10), 1411-1418.

Krastanov, A. (2010). METABOLOMICS - THE STATE OF ART. Biotechnology &
Biotechnological Equipment, 24(1), 1537-1543.

Lavine, B., & Workman, J. ]. (2004). Chemometrics. Analytical Chemistry, 76(12),
3365-3371.

Lenz, E. M., & Wilson, L. D. (2007). Analytical strategies in metabonomics. Journal of
Proteome Research, 6(2), 443-458.

Lutz, U, Lutz, R. W., & Lutz, W. K. (2006). Metabolic Profiling of Glucuronides in
Human Urine by LC-MS/MS and Partial Least-Squares Discriminant Analysis for
Classification and Prediction of Gender. Analytical Chemistry, 78(13), 4564-4571.

Malmfors, B., & Hansson, 1. (1974). Incidence of boar taint in Swedish Landrace and
Yorkshire boars. Livestock Production Science, 1(4), 411-420.

Martens, H., & Naes, T. (1991). Multivariate Calibration. New York: John Wiely & Sons
Inc.

Masson, P, Alves, A. C., Ebbels, T. M. D., Nicholson, J. K,, & Want, E. . (2010).
Optimization and Evaluation of Metabolite Extraction Protocols for Untargeted
Metabolic Profiling of Liver Samples by UPLC-MS. Analytical Chemistry, 82(18),
7779-7786.

55



Mattila, I, Seppanen-Laakso, T, Suortti, T., & Oresic, M. (2008). Application of -
Lipidomics and Metabolomics to the Study of Adipose Tissue. In: K. Yang, Methods in
Molecular Biology, vol. 456 (pp. 123-130).

Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwru(_ike, D (2008).
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of
Lipid Research, 49(5), 1137-1146.

McLafferty, F. W. (1993). Interpretion of Mass Spectra 4th ed. New York: Wiely
University Science Book

Moco, S, Bino, R.]., De Vos, R. C. H., & Vervoort, J. (2007). Metabolomics technologies
and metabolite identification. Trac-Trends in Analytical Chemistry, 26(9), 855-866.

Mortensen, A. B,, & Sorensen, S. E. (1984). Relationship between boar taint and
skatole determined with a new analysis method 30th European Meeting of Meat
Research Workers, Bristol.

Neumann, S,, & Bocker, S. (2010). Computational mass spectrometry for
metabolomics: Identification of metabolites and small molecules. Analytical and
Bioanalytical Chemistry, 398(7-8), 2779-2788.

Nicholson, ]. K., & Wilson, I. D. (2003). Understanding 'global’ systems biology:
Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery,
2(8), 668-676,

Nicholson, ]. K, Connelly, ], Lindon, J.C., & Holmes, E. (2002). Metabonomics: a
platform for studying drug toxicity and gene function. Nature Reviews Drug
Discovery, 1(2), 153-161.

Nicholson, . K., Lindon, ]. C,, & Holmes, E. (1999). 'Metabonomics': understanding
metabolic responses of living systems to pathophysiological stimuli via multivariate
statistical analysis of NMR spectroscopic data. Xenobiotica, 29(11),1181-1189.

Paik, M-, Moon, S.-M,, Kim, K-R., Choi, S., Ahn, Y.-H., & Lee, G. (2008). Target
metabolic profiling analysis of free amino acids in plasma as EOC/TBDMS
derivatives by GC-SIM-MS. Biomedical Chromatography, 22(4), 339-342.

Patterson, R. L. S. (1968). Sa-androst-16-ene-3-one: Compound responsible for taint
in boar fat. Journal of the Science of Food and Agriculture, 1 9(1),31-38.

Pauly, C,, Spring, P, O'Doherty, |. V., Kragten, S. A, & Bee, G. (2008). Performances,
meat quality and boar taint of castrates and entire male pigs fed a standard and a
raw potato starch-enriched diet. Animal, 2(11),1707-1715.

Pauly, C, Spring, P,, O'Doherty, ]. V., Kragten, S. A, & Bee, G. (2009). Growth
performance, carcass characteristics and meat quality of group-penned surgically

castrated, immunocastrated (Improvac (R)) and entire male pigs and individually
penned entire male pigs. Animal, 3(7),1057-1066.

56



Pauly, C,, Spring-Staehli, P., 0'Doherty, J. V., Kragten, S. A., Dubois, S., Messadene, |., &
Bee, G. (2010). The effects of method of castration, rearing condition and diet on
sensory quality of pork assessed by a trained panel. Meat Science, 86(2), 498-504.

Plumb, R, Castro-Perez, ]., Granger, ], Beattie, 1., Joncour, K., & Wright, A, (2004).
Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-

of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 18(19),
2331-2337.

Plumb, R. S,, Johnson, K. A,, Rainville, P., Smith, B. W,, Wilson, I. D., Castro-Perez, ]. M,,
& Nicholson, . K. (2006). UPLC/MSE; a new approach for generating molecular
fragment information for biomarker structure elucidation. Rapid Communications in
Mass Spectrometry, 20(13), 1989-1994.

Poste, G. (2011). Bring on the biomarkers. Nature, 469(7329), 156-157.

Prescott, ]. H. D,, & Lamming, G. E. (1967). The influence of castration on the growth
of male pigs in relation to high levels of dietary protein. Animal Science, 9(04), 535-
545.

Rius, M. A, Hortos, M., & Garcia-Regueiro, J. A. (2005). Influence of volatile
compounds on the development of off-flavours in pig back fat samples classified with
boar taint by a test panel. Meat Science, 71(4), 595-602.

Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological
Sciences, 85(2), 809-822.

Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B,,
Pujos-Guillot, E., Verheij, E., Wishart, D., & Wopereis, S. (2009). Mass-spectrometry-
based metabolomics: limitations and recommendations for future progress with
particular focus on nutrition research, Metabolomics, 5(4), 435-458.

Smith, C. A, Want, E. ], 0'Maille, G., Abagyan, R, & Siuzdak, G. (2006). XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak
Alignment, Matching, and Identification. Analytical Chemistry, 78(3), 779-787.

Sturm, M., Bertsch, A,, Grop], C., Hildebrandt, A, Hussong, R,, Lange, E,, Pfeifer, N,
Schulz-Trieglaff, 0., Zerck, A., Reinert, K., & Kohlbacher, 0. (2008). OpenMS - An
open-source software framework for mass spectrometry. BMC Bioinformatics, 9(1),
163.

Swartz, M. E. (2005). UPLC™: An Introduction and Review. Journal of Liquid
Chromatography & Related Technologies, 28(7-8),1253-1263

Tolstikov, V. V., & Fiehn, 0. (2002). Analysis of highly polar compounds of plant

origin: Combination of hydrophilic interaction chromatography and electrospray ion
trap mass spectrometry. Analytical Biochemistry, 301 (2), 298-307.

57



Trauger, S. A, Kalisak, E,, Kalisiak, ]., Morita, H., Weinberg, M. V., Menop, A. L., Poole,
F.L., II, Adams, M. W. W,, & Siuzdak, G. (2008). Correlating the transcriptome, '
proteome, and metabolome in the environmental adaptation of a hyperthermophile.

Journal of Proteome Research, 7(3), 1027-1035.

Trygg, ], & Wold, S. (2002). Orthogonal projections to latent structures (0-PLS).
Journal of Chemometrics, 16(3), 119-128.

Trygg, ], Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal
of Proteome Research, 6(2), 469-479.

Tuomola, M., Vahva, M., & Kallio, H. (1996). High-performance liquid
chromatography determination of skatole and indole levels in pig serum,
subcutaneous fat, and submaxillary salivary glands. Journal of Agricultural and Food
Chemistry, 44(5), 1265-1270.

Tweeddale, H., Notley-McRobb, L., & Ferenci, T. (1998). Effect of slow growth on
metabolism of Escherichia coli, as revealed by global metabolite pool
{("Metabolome") analysis. Journal of Bacteriology, 180(19), 5109-5116.

van den Berg, R. A,, Hoefsloot, H. C. J., Westerhuis, J. A, Smilde, A. K., & van der Werf,
M.]. (2006).

Centering, scaling, and transformations: Improving the biological information
content of metabolomics data. Bmc Genomics, 7.

Vigneau-Callahan, K. E,, Shestopalov, A. 1., Milbury, P. E., Matson, W. R, & Kristal, B. S.
(2001). Characterization of diet-dependent metabolic serotypes: Analytical and
biological variability issues in rats. Journal of Nutrition, 131(3), 924S-932S.

Vold, E.,, (1970). Meat production from boars and castrates. IV. Organoleptic and gas
chromatographic studies on the steam distillate of back fat from boars. Report No.
238. Vollabekk, Norway: Institute of Animal Genetics and Breeding, N.L.H.

Walstra, P. and Kroeske, D. (1968) The effect of castration on meat production in
male pigs. Worfd Review of Animal Production 4, 59-64.

Walstra, P,, Maarse, H,, (1970). IVO-report no. 2. Researchgroep Vlees en Vleeswaren
TNO, Zeist.

Walstra, P. (1974). Fattening of young boars: Quantification of negative and positive
aspects. Livestock Production Science, 1(2), 187-196.

Walstra, P, & Vermeer, A. W. (1993). Aspects of micro and macro economics in the

production of young boars. 44th annual meeting of the EAAP 1993, vol. 2 (2) (p. 325).
Aarhus, Denmark.

Weckwerth, W, & Morgenthal, K. (2005). Metabolomics: from pattern recognition to
biological interpretation. Drug Discovery Today, 10(22),1551-1558.

58



Wei, R, Li, G, & Seymour, A. B. (2010). High-Throughput and Multiplexed

LC/MS/MRM Method for Targeted Metabolomics. Analytical Chemistry, 82(13),
5527-5533.

Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery,
4(7), 594-610.

Westerhuis, ]. A., Hoefsloot, H. C. J., Smit, S., Vis, D. |., Smilde, A. K., van Velzen, E. ].].,
van Duijnhoven, ]. P. M., & van Dorsten, F. A. (2008). Assessment of PLSDA cross
validation. Metabolomics, 4(1), 81-89.

Wilkins, C. K. (1990). Analysis of indole and skatole in porcine gut contents.
International Journal of Food Science & Technology, 25(3), 313-317.

Williams, L. D., Webb, N. B., & Pearson, A. M. (1963). INCIDENCE OF SEX ODOR IN
BOARS, SOWS, BARROWS AND GILTS. Journal of Animal Science, 22(1), 166-&.

Wilson, 1. D,, Nicholson, J. K., Castro-Perez, ]., Granger, ]. H., Johnson, K. A., Smith, B.
W., & Plumb, R. S. (2005). High resolution "Ultra performance” liquid
chromatography coupled to a TOF mass spectrometry as a tool for differential
metabolic pathway profiling in functional genomic studies. Journal of Proteome
Research, 4(2), 591-598.

Wishart, D. S. (2008). Metabolomics: applications to food science and nutrition
research. Trends in Food Science & Technology, 19(9), 482-493.

Wu, X,, Kumar, V., Quinlan, J. R,, Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J,, Ng, A.,
Liu, B, Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. ]., & Steinberg, D. (2008). Top 10
algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.

Xue JL, Dial GD. Raising intact male pigs for meat: Detecting and preventing boar
taint. Swine Health and Production. 1997;5(4):151-158.

Yokoyama, M. T., & Carlson, J. R. (1979). MICROBIAL METABOLITES OF
TRYPTOPHAN IN THE INTESTINAL-TRACT WITH SPECIAL REFERENCE TO
SKATOLE. American journal of Clinical Nutrition, 32(1), 173-178.

Zhou, X. H., Obuchowski, N. A., & McClish, D. K. (2002). Statistical Methods in
Diagnostic Medicin. New York: Wiley.

Zyromski, N. J., Mathur, A., Gowda, G. A. N., Murphy, C., Swartz-Basile, D. A, Wade, T.
E., Pitt, H. A, & Raftery, D. (2009). Nuclear Magnetic Resonance Spectroscopy-Based
Metabolomics of the Fatty Pancreas: Implicating Fat in Pancreatic Pathology.
Pancreatology, 9(4), 410-419.

59



Acknowledgments

[ am sincerely grateful to my advisors, Prof. Nageli and Dr. Laczko, for the support
and guidance he showed me throughout my dissertation writing. I am sure it hadn’t
been possible without their help.

Avery special thanks goes out to David Fischer, whose expertise, understanding, and
patience, added considerably to my graduate experience. I appreciate his vast
knowledge and skill in many areas (e.g. vision, aging, ethics, interaction). He
provided me with direction, technical support and became a mentor and friend. It
was though his, persistence, understanding and kindness that I completed my
medical doctor.

Appreciation also goes out to the entire crew of FGCZ and to the staff of the Institute
of Pharmacology and Toxicology for all the instances in which their assistance
helped me along the way. The support from Richard Lock I am also acknowledging.
Even thou he had I very tight schedule, he always took time to listen to my problems
and to find a solution,

I would like to thank Dr. Philippe Wyrsch and Sandro Imhasly from the Faculty of
Pharmacology and Toxicology for taking time to serve as my external reader.

In conclusion, I recognize that this research would not have been possible without
the financial assistance of Bundesamt fiir Landwirtschaft (CH), Bundesamt fiir
Veterindrwesen (CH) and University of Zurich.

I would also like to thank my family for the support they provided me through my
entire life and in particular, I must acknowledge my parents Anneli and Séren,
without whose love, encouragement and assistance I would not have finished this
thesis.

Finally, I thank my friends Anna Layer, Susanne Berger, Nina Kazmareck and Sabrina
Schéffle for instilling in me confidence and a drive for pursuing my doctor of
veterinary medicine, and of course for being there whenever I needed them.



Curriculum Vitae

Name

Date of birth
Place of birth
Citizenship

08/1991 - 06,1997

08/1997 - 06/1999

08/1999 - 06/2002

10.06.2002

10/2004 - 03/2010

26.03.2010

04/2010 - 04/2012

06/2012 - current

Malin Emelie Maria Olson
26.Juli 1983

Orebro, Sweden

Swedish

Primary School
Vasaskolan / Orebro, Sweden

Middle School
Vasaskolan / Orebro, Sweden

High School for Natural Sciences
Rudbecksskolan / Orebro, Sweden

University entrance diploma

Veterinary medicine
Ludwig-Maximilians University / Munich, Germany

Veterinary medicine diploma

Doctoral Student

Supervisor Prof. Hanspeter Nageli

Institute of Veterinary Pharmacology and Toxicology,
Vetsuisse-Faculty University of Zurich

Director Prof. Felix Althaus

Account manager at Waters AG
Baden-Déttwil / Switzerland





