

Virulence mechanisms of honeybee viruses

Benjamin Dainat¹, Peter Neumann¹

¹Swiss Bee Research Centre, Agroscope Liebefeld-Posieux Research Station ALP, Schwarzenburgstrasse 161, CH-3003 Bern

Key words

Apis mellifera, colony losses, honey bee, Varroa destructor, viruses, pathogens, winter bees

Aim of the study

Here we investigated the role of viruses and other pathogens for losses of honeybee colonies, *Apis mellifera*.

Material and methods

This study was based on a sampling in China as well as on long term monitoring of differentially treated experimental field colonies and an apiary case study in Switzerland. Using several molecular and field techniques, we surveyed life expectancy of colonies and individual bees as well as pathogen loads and physiological makers.

Results and significance

We reported for the first time of *Tropilaelaps mercedesae* as a vector of viruses. Furthermore, we streamlined the sampling for honeybee RNA virus analytics. Moreover, we demonstrated the interference of ants with pest diagnosis as well as identified predictive seasonal markers for honeybee colony death at both colony and individual bee level (Deformed wing virus, Nosema ceranae, Varroa destructor, Vitellogenin and Acute bee paralysis virus). We also showed that Deformed wing virus and Varroa destructor significantly reduce life expectancy of winter bees. We further suggest to redefine the previously reported clinical symptoms of CCD (Colony Collapse Disorder) and reported on the role of drifting. Finally, we were able to show for the first time that trypanosomatid parasites are ubiquitous in *Apis mellifera*, which are completely not understood. Our results will help to reduce the detrimental impact of bee losses in Switzerland and worldwide and will form a solid basis for hypothesis-driven research.

Publications, posters and presentations

Dainat, B.; Ken, T.; Berthoud, H.; Neumann, P. (2009) The ectoparasitic mite *Tropilaelaps mercedesae* (Acari: Laelapidae) as a vector of honeybee viruses, *Insectes Sociaux* 56: 40–43.

Dainat, B.; Chen, YP.; Evans, JD.; Neumann, P. (2010) Sampling and RNA quality for successful diagnosis of honey bee viruses using quantitative PCR, *Journal of Virological Methods*, under consideration.

Dainat, B.; Kuhn, R.; Cherix, D.; Neumann, P. (2010) The ant pitfall for quantitative diagnosis of the ectoparasitic mite *Varroa destructor*, *Apidologie*, under consideration.

Dainat, B.; Chen, YP.; Neumann, P.; Evans, JD. (2010) Parasite markers of honey bee colony collapse, in prep.

Dainat, B.; vanEngelsdorp, D.; Neumann, P. (2010) Revisiting CCD case definition symptoms, in prep.

Dainat, B.; Evans, JD.; Chen, YP.; Neumann, P. (2010) Deformed Wing Virus reduces life expectancy of winter bees: a new mechanism for colony losses.

Dainat, B.; Evans, JD.; Chen, YP.; Neumann, P. (2010) Honey bee drifting in Winter under infection pressure: a surviving mechanisms?

Dainat, B.; Evans, JD.; Gauthier, L.; Neumann, P. (2010) Ubiquitous occurrence of trypanosomatid parasites in honeybee colonies, *Apis mellifera* L., in prep.)

10 conference proceedings

16 publications in Beekeeping journals (in I, F, D).

Project 1.08.01

Project duration September 2007 - August 2010