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ABSTRACT 

 

To obtain genetic information about Campylobacter jejuni and Campylobacter coli from 

broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were 

collected in 2008 from the caecum right after slaughter or from the neck skin after processing. 

We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and 

flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and 

gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The 

rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The 

MLST analysis revealed that there were 59 known sequence types (ST) and 6 newly defined 

STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry 

(CC21, CC45, CC257, CC828), and these represented 61.8% of all of the investigated 

isolates. The analysis of 95 isolates from the caecum and from the corresponding carcass neck 

skin covered 44 different STs, and 54.7% pairs had matching genotypes. The data indicate 

that cross-contamination from various sources during slaughter may occur, although the 

majority of Campylobacter contamination on carcasses appears to originate from the 

slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli, 

although no mutations were found in C. jejuni. Mutations in the gyrA gene were observed in 

18.9% of C. jejuni and 26.8% of C. coli isolates, which includes two C. coli strains that 

carried mutations conferring resistance to both classes of antibiotics. A relationship between 

specific genotypes and antibiotic resistance/susceptibility was observed. 

 

Byline: multilocus sequence typing, genetic identification, macrolide resistance, quinolone 

resistance  
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INTRODUCTION 

 

Campylobacteriosis is the leading food-borne bacterial gastroenteritis worldwide (12, 14). In 

Switzerland, the number of registered campylobacteriosis cases rapidly increased to more 

than 100 per 100,000 inhabitants in the past few years (15), and this trend has also been 

observed in the European Union (12). However, the real number of cases is likely higher, 

because not all cases are reported due to the self-limiting nature of the disease and potentially 

mild symptoms. 

Campylobacter jejuni and Campylobacter coli are commonly associated with human 

infection, and they can be detected in up to 85% and 15% of cases, respectively (33). Despite 

the important role that C. jejuni and C. coli play as zoonotic pathogens worldwide, there is 

little information regarding the route(s) of transmission (17). Numerous case-control and 

modeling studies on the infection source of C. jejuni and C. coli have suggested that handling 

and consumption of contaminated poultry meat is associated with a risk of human 

campylobacteriosis (17, 45, 47, 49, 51). Initial meat contamination with C. jejuni or C. coli 

from the chicken intestine may occur during commonly used automated slaughter processing 

through several routes, such as the air, water, previously slaughtered flocks, or machinery (19, 

36, 37). 

Precise genotyping and continuous comparison of the strains obtained from, e.g., production 

site, flocks, slaughterhouse, retail meal, and infected humans, would help to trace the source 

of infection and may indicate possible intervention strategies for the contaminated site. 

DNA sequence-based typing methods, such as multilocus sequence typing (MLST), are well-

suited for this purpose (28), and MLST has become the method of choice for genotyping of 

Campylobacter (6, 8). Moreover, extension of the classical MLST technique for C. jejuni and 

C. coli with sequencing of the short variable region (SVR) within the flagellin-encoding gene 

flaB allows a more precise differentiation among strains that have the same MLST sequence 
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type (9, 29). An extended MLST workflow was recently developed that reduces the associated 

time and cost (24). In addition, the new approach allows genetic determination of antibiotic 

resistance to quinolones and macrolide. Resistance to these antibiotics is a worldwide issue of 

concern as an increasing number of Campylobacter isolates are resistant to these antibiotics. 

Strikingly, a number of strains are resistant to ciprofloxacin (quinolone) and to a lesser extent 

erythromycin (macrolide), which is problematic because these drugs are typically used to treat 

campylobacteriosis. Resistance to quinolone is mainly associated with a point mutation in the 

DNA gyrase gene (gyrA) at position C257T, and a transition in the 23S rRNA gene at position 

A2075G is commonly responsible for macrolide resistance (1). Simple sequence-based 

analysis of these common mutational positions can therefore provide information about the 

antibiotic susceptibility or resistance of a strain. Besides the prudent use of antibiotics, 

knowledge about the genetic composition of the infectious agent can be helpful to both treat 

the disease and prevent the spread of resistant strains. 

In the current study, MLST, flaB typing, and sequence-based determination of quinolone and 

macrolide resistance were used to investigate the genetic background of C. jejuni and C. coli 

isolates collected from Swiss broiler in a spatiotemporal study in 2008. We adressed the 

following three aspects: i) the diversity of Campylobacter isolates that were recovered from 

pooled caecum samples and the carcass neck skin; ii) the possible impact of cross- and self-

contamination during slaughter; and iii) the antibiotic resistance of Campylobacter strains 

from the broiler flocks and chicken carcasses. All of the data, including the strain information 

and trace files were entered into a commercial Web-based Campylobacter MLST database 

(SmartGene, Zug, Switzerland). This database allows users to retrieve and compare 

information for any analyzed strain for monitoring purposes (24). 

 

MATERIALS AND METHODS 
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Sampling and template preparation. Broiler caecal and neck skin samples were collected 

during the EU baseline study on the prevalence of Campylobacter in broiler flocks (11), 

where Switzerland took part within the framework of the bilateral approach. Samples were 

obtained from 411 different flocks at 5 different suppliers in Switzerland (Table 1), which 

together cover approximately 80% of poultry meat production in the country. Each sample 

consisted of intact caeca from 10 birds and neck skin from one bird from the same slaughter 

batch. The samples were collected at the slaughterhouses once a week for at least 44 weeks 

during 2008. The caecal samples were taken at the time of evisceration by careful manual 

traction at the junction with the intestine. The neck skins were collected directly after chilling, 

but before further processing, such as freezing, cutting, or packaging (11). The samples were 

processed in the Center for Zoonosis, Bacterial Animal Diseases und Antibiotic Resistance in 

Bern (ZOBA) according to the EU recommendations (11). The neck skin batches were 

processed as previously described for qualitative detection of thermotolerant Campylobacter 

(43). For the caecal samples, the caecal content of 10 birds was aseptically removed and 

pooled. For direct cultivation, a loopful of the material was streaked onto a modified charcoal-

cefoperazone-desoxycholate agar (mCCDA; Oxoid, Pratteln, Switzerland), as well as a 

campylosel (Oxoid) medium. The plates were incubated under microaerobic conditions at 

41.5°C for 48 h. After initial cultivation of bacteria from the neck skin and the caeca batches, 

at least one presumptive Campylobacter spp. colony from each plate was subcultured on TSA 

medium (Oxoid) at 41.5°C for 24 to 48 h under microaerobic conditions. Isolates that belong 

to the genus Campylobacter were identified by microscopy, a positive oxidase test, and the 

absence of growth on TSA after 24-48 h under aerobic conditions at 41.5°C, as well as 

microaerobic incubation at 25°C. Phenotypic species identification was performed as 

previously reported by Schnider et al. (44). Hydrolysis of indoxyl acetate was used to 

differentiate the Campylobacter spp. from the Helicobacter pullorum, being negative for the 

latter. A cell lysate was prepared from each pure culture as described previously (24). 
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A total of 149 isolates from the caecum and 248 isolates from the neck skin were obtained 

after cultivation and phenotypic identification. Isolate species identification through 

phenotypic testing was verified by sequence analysis of the rpoB gene fragment. Only the 

isolates confirmed as C. jejuni or C. coli were further investigated. The strain set allowed for a 

comparison of 95 isolate pairs where there was cultivation of Campylobacter spp. from the 

caeca and neck skin of the same slaughtered flock. 

 

Genotyping and determination of antibiotic resistance. The rpoB gene fragment was 

amplified with the broad-range primers CamrpoB-L, Pasrpob-L, and Rpob-R, and was 

subsequently sequenced as the first stage of genetic characterization for species identification 

(22, 23). The genotyping and antibiotic resistance analyses were performed as previously 

described by Korczak et al. (24) with a few adaptations concerning the combination of target 

genes in amplification groups. The 10 target genes were amplified in 3 multiplex PCRs: the 

first multiplex PCR amplified the glmM, aspA, and the 23S rRNA gene fragments; the second 

PCR amplified the glnA, tkt, flaB, and gyrA gene fragments; and the third PCR amplified the 

glyA, atpA, and gltA gene fragments. 

 

Data analysis. The data analysis was performed with the commercial Web-based application 

for Campylobacter identification, typing and antibiotic resistance determination (IDNS 

Campylobacter; SmartGene, Zug, Switzerland). In addition to the data entry and sequence 

trace file editing, the sequence type (ST) and clonal complex (CC) were assigned with an 

integrated automated link to the public PubMLST databank 

(http://pubmlst.org/campylobacter). The CCs are defined as a group of independent isolates 

that share at least four alleles (8). The genotypes of flaB were determined with a tool that is 

provided by the PubMLST database (

142 

143 

http://pubmlst.org/campylobacter). All of the new 

genotypes were submitted directly to the curator of the PubMLST database. The BioNumerics 

144 

145 
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software, version 5.1 (Applied Maths NV, Sint-Martens-Latem, Belgium) was applied for 

cluster analysis of concatenated sequences, whereas BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was applied to compare the rpoB sequences and 

identify species.  
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Statistical analysis. The binomial probability function of Statistix 9.0 for Windows 

(Analytical Software, Tallahassee, FL) was used to calculate the probability values for 

matching STs in the paired caecum and neck skin samples. The association of certain 

genotypes with presence of quinolone resistance and their local distribution was tested by 

Fisher’s exact two-tailed test. A P value ø0.05 was used to indicate statistically significant 

results. 

The Simpson’s Index of Diversity was calculated as previously described (18). 

The frequency distributions of STs that were obtained from the different suppliers were 

compared by calculating the proportional similarity index (PSI), also known as the 

Czekanowski index (42). The frequency distributions of the different sources were estimated 

by calculating their similarity using the equation PSI = 1 – 0.5 ¬i…pi – qi… , where pi and qi 

indicate the proportion of strains that belong to ST i out of all of the strains that belong to the 

source P and Q, respectively. A value of 1 indicates identical frequency distributions and a 

value of 0 indicates no common types.  

To investigate the population structure of the isolates from different suppliers, the correlated 

allele frequency model of STRUCTURE 2.3 was used (13, 40). The population number (K) 

was set as 5. The parameters were 100,000 burn-in iterations, followed by 100,000 sampling 

iterations using the admixture model to determine the FST values. 

 

RESULTS 
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Genetic identification. In most cases, phylogenetic rpoB-based analysis (23) confirmed the 

results from the phenotypic identification of the isolates. There was a total of 245 C. jejuni, 95 

C. coli, 54 H. pullorum and 3 Arcobacter butzleri recognized. The rpoB sequence similarities 

between the C. jejuni and C. coli, C. jejuni and H. pullorum, and C. jejuni and A. butzleri 

isolates varied from 83.17-98.97%, 71.79-74.07%, and 71.14-72.58%, respectively. The C. 

coli isolates showed 71.79-75.73% rpoB sequence similarity to H. pullorum and 71.35-

73.83% sequence similarity to A. butzleri, whereas the H. pullorum and A. butzleri isolates 

demonstrated 71.85-73.5% rpoB sequence similarity. Each new rpoB sequence was submitted 

to the GenBank (Table 2). Twenty-one of the isolates (5.3%) had conflicting genotype and 

phenotype data. Nine strains were phenotypically identified as C. coli, but were later 

classified as C. jejuni because of their rpoB gene sequence identity (sequences identical to 

C. jejuni Acc. No. CP000538, CP000814 or DQ174198). Five phenotypically identified C. 

jejuni isolates were later classified as C. coli (sequences identical to C. coli Acc. No. 

AF372098, HM486861 or HM486862). Ttwo strains phenotypically identified as H. pullorum 

were later identified as C. coli (sequence identical to Acc. No. AF372098) and C. jejuni 

(sequence identical to Acc. No. CP000538) by rpoB gene analysis. The opposite was 

observed with one C. jejuni and one C. coli isolate, where rpoB gene sequencing identified 

the strains as H. pullorum (sequences identical to Acc. No. HM486886 and HM486887). 

Finally, one C. jejuni and two C. coli isolates were genetically determined to be A. butzleri 

(Table 2). Interestingly, rpoB-based identification of two indistinguishable paired isolates 

(i.e., the same strain) did not agree with the results from further genetic analysis. These 

isolates were identified by rpoB sequencing as C. jejuni (rpoB sequence identical to Acc. No. 

DQ174198), but all of the other target genes used for MLST and detection of antibiotic 

resistance were specific for C. coli.  

The prevalence of C. jejuni and C. coli isolated from the caecum and neck skin samples 

differed slightly, and this difference was not significant. Within 114 caecal strains, 76 (66.7%) 
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were C. jejuni and 38 (33.3%) were C. coli; of the 226 neck skin samples, 167 (73.9%) were 

C. jejuni and 59 (26.1%) were C. coli.  

 

Typing. Of the 340 Campylobacter isolates that were analyzed, a total of 65 different STs 

were identified (Table 1). Six of these were novel STs that comprised 18 (5.3%) isolates. 

These STs have been submitted to the PubMLST database for appropriate number designation 

and may be the result of new combinations of previously described alleles. However, for ST-

3991, a new aspA allele sequence was found and was designated 248. Twenty of the STs were 

derived from C. coli isolates and 45 of the STs were observed within the C. jejuni isolates. 

Eight STs were found only in isolates from the caecum and 26 STs were found only in the 

isolates that were obtained from neck skin; all of the other STs were present in both sample 

groups. Some of the isolates that belonged to the same ST could be further distinguished 

when the entire amplicon sequence was compared. Differences within the regions that flank 

the gene region that is defined as an allele by PubMLST were observed for ST-45, ST-122, 

ST-267, and ST-1096. 

The most frequent STs (number of isolates n‡ 14) within C. jejuni were ST-45 (n=34/14.0%), 

ST-257 (n=27/11.1%), ST-50 (n=18/7.4%), ST-21 (n=17/7.0%), ST-48 (n=17/7.0%), and ST-

586 (n=14/5.8%). The new ST-3963 was observed within several of the C. jejuni isolates 

(n=12/4.9%). The predominant STs within C. coli were ST-827 (n=32/33.0%) and ST-2142 

(n=14/14.4%). 

Fifty-five STs, which were present in 305 (89.7%) isolates, belonged to 20 previously defined 

clonal complexes. The remaining 35 isolates were distributed among 10 STs, which could not 

be assigned to any of the known lineages. The predominant clonal complexes were CC21 

(18.5%), CC45 (18.9%), and CC257 (11.5%) for C. jejuni, and CC828 (93.8%) for C. coli. 

Investigation of distribution of STs resulted in recognition of 7 different STs in 13 isolates 

obtained from slaughterhouse A, 42 STs in 138 isolates obtained from slaughterhouse B, 40 
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STs in 125 isolates from slaughterhouse C, 10 STs in 26 isolates from slaughterhouse D, and 

20 STs in 38 isolates obtained from slaughterhouse E (Table 1). There was a local association 

between the ST-257 and the new ST-3963 that was statistically significant. ST-257 was the 

most prominent ST in the sample set from slaughterhouse C (15.2%) compared to the others, 

especially slaughterhouse B, which had a similar sample size but had only a 1.4% 

representation of ST-257. ST-3963 was dominant in the samples that were obtained from 

slaughterhouse D (34.6%). 

The analysis of 95 paired samples identified 44 different STs. Whereas matching STs were 

found in 52 (54.7%) of these samples, 43 (45.3%) of the paired samples did not have 

matching STs (Fig. 1). Given the various STs that were observed, the probability to obtain 

this high number of matches by chance is p悦0 based on statistical analysis using binomial 

probability. 

Comparison of the flaB genotypes to the PubMLST database recognized 48 known and 11 

new types (Fig. 2). Cluster analysis of the sequenced flaB fragments (446 base pairs) revealed 

67 clusters (Fig. 2). This increase of resolution is due to the differences in flanking regions of 

sequence used for allele assignation by the PubMLST database. In some cases, flaB 

genotyping as well as sequence analysis allowed further separation of strains that belong to 

the same ST, although different STs can be found with the same flaB sequence. In contrast to 

the MLST data, there was no clear differentiation between the flaB types from C. jejuni and 

C. coli, and in some cases, the two species had an identical flaB sequence. All 52 of the paired 

samples that showed identical STs also had matching flaB sequences. 

The Simpson’s index of discrimination was calculated to be 0.958 for the MLST analysis 

alone, 0.953 for the flaB genotype analysis, and 0.978 for the combination of both genotyping 

methods. Analysis of the concatenated sequences of MLST gene fragments including the 

flanking regions of alleles increased the discriminatory power slightly to 0.963 and increased 
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the combined MLST flaB value to 0.978, whereas the Simpson’s index for the flaB sequence-

based analysis was 0.955.  

 

Genetic population structure. The PSI was calculated to assess the similarity of ST 

distribution between the five different slaughterhouses (Table 3). A relatively high value of 

similarity was observed for ST distribution between suppliers B and C (PSI=0.579), which are 

the two major producers in Switzerland. The PSI was also calculated for the caecum and neck 

skin, and the resulting PSI of 0.697 indicates that there is a high overlap of ST distribution.  

FST values based on the seven MLST alleles were determined for each of the 5 

subpopulations with values for supplier A=0.008; supplier B=0.635; supplier C=0.511; 

supplier D=0.720; and supplier E=0.671. 

 

Antibiotic resistance. The point mutation C257T (corresponding to C150T in our fragment) 

in the gyrA gene, which is associated with quinolone resistance, was observed in 46 C. jejuni 

(18.9%) and 26 C. coli (26.8%) isolates. Twenty-three caecal isolates (13 C. jejuni and 10 

C. coli) and 49 neck skin isolates (33 C. jejuni and 16 C. coli) carried this mutation. The 

transition A2075G (corresponding to A227G in our fragment) in the 23S rRNA gene, which 

contributes to macrolide resistance, was observed in 3 C. coli (3.1%) isolates. Two out of 

these three C. coli strains carried point mutations in both genes, whereas none of the C. jejuni 

isolates showed macrolide resistance. 

Several specific genotypes showed significant association with quinolone resistance. Whereas 

none of the CC45 (P<0.01), CC22 (P<0.01), CC257 (P<0.01), CC607 (P<0.05), or ST-586 

(P<0.05) strains had a mutation in the gyrA gene, all isolates of the ST-464 (P<0.01), ST-829 

(P<0.01), and ST-878 (P<0.01) strains had the specific mutation that confers quinolone 

resistance.  
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DISCUSSION 

 

In this study, we analyzed the genetic diversity and antibiotic resistance of Campylobacter in 

pooled caecum and neck skin samples from slaughter broilers and possible routes of carcass 

contamination at various slaughterhouses. 

Proper phenotypic identification of Campylobacter isolates, especially differentiation between 

C. jejuni and C. coli based on the hippurate test might be difficult and could result in false 

isolate identification (35). Additionally, phenotypic discrimination between Campylobacter 

spp. and other phenotypically similar species that are present in the isolate sampling 

environment, such as H. pullorum and A. butzleri, can be difficult or even impossible (38). 

rpoB gene analysis allowed for individual species identification within the isolated strains; the 

data we obtained with this analysis corroborated with the results from phenotypic 

characterization (94.5%). Any minor disagreements between the genotype and phenotype data 

reflect the previously mentioned difficulties with interpretation of the phenotypic tests. The 

rpoB-based identification of Campylobacter could finally be confirmed by the species-

specific STs determined by the MLST as well as by gyrA sequencing results that also allows 

phylogenetic separation of the two species (24). The only exception was one case of paired 

isolates (i.e., the same strain) that possessed an rpoB gene sequence that matched C. jejuni, 

but had an ST and gyrA sequence that was specific for C. coli. This could have been caused 

by genetic recombination, which is known to occur between these highly related species (3, 

46, 50). Thus, even though the rpoB gene sequence can be generally used to discriminate 

between the two species, false speciation can result from genetic recombination. 

Roughly one-third of the isolates are C. coli, which corresponds to previously reported values 

from isolates in Swiss poultry (24, 53). Thus, both C. jejuni and C. coli are present in poultry 

samples and may cause campylobacteriosis in humans. Nevertheless, although both of these 

species are prevalent in poultry samples, less than 15% of C. coli is typically associated with 
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human disease (33). C. coli may therefore have a decreased ability to survive on broiler 

carcasses, there could be a greater number of C. jejuni virulent strains, or other sources may 

contribute to C. jejuni infection. 

Within the sample set of 340 isolates, 65 known STs were assigned by MLST. Most of these 

STs could be assigned to four main CCs (CC21, CC45, CC257, CC828). The CC21 and CC45 

are also the most frequently reported C. jejuni genotypes in human disease and can be 

detected in up to 21.8% and 44.6% of investigated cases, respectively (4, 21, 41). Strains 

assigned to these lineages are common worldwide in a number of hosts, including poultry, 

cattle, sheep, wild birds, and the natural environment (7, 21, 44). Therefore, identifying a 

direct link between a specific carrier and campylobacteriosis may be difficult. In contrast, 

CC257 can be identified in up to 24.2% of human cases and is mainly found in poultry 

samples. Thus, human disease caused by C. jejuni assigned to this group probably occurs after 

handling or consumption of contaminated poultry meat (4, 16, 24, 30, 44, 49). 

The CC61 is identified frequently for cattle and sheep, and the feces of diseased humans (41, 

45). Surprisingly, we identified the CC61 in one paired sample and two single neck skin 

samples. Swiss agriculture is based on small mixed animal farms, thus strains can be easily 

transmitted between different hosts (7). Because C. coli is most prevalent in swine, pork 

products are considered to be the leading source of human infection (39). However, studies of 

C. coli genetics have shown that only a small number of the genotypes found in swine can be 

detected in samples from infected humans and other hosts (25, 47). In contrast, a considerable 

genetic overlap between C. coli isolates from poultry and human was previously observed, 

suggesting that infection was most likely due to the consumption of contaminated poultry 

meat. Interestingly, the ST-827 which was the most prevalent genotype of the C. coli isolates 

(33.0%) that were analyzed in this study, was also predominant (28.1%) in a set of C. coli 

strains that were isolated from humans (48). Because this C. coli genotype is rare in isolates 
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from hosts other than chickens and humans, the ST-827 may have come from chicken meat 

(6, 26, 31). 

In contrast to recent study in New Zealand, population structure analyses of our set of strains 

gave only little indications that specific populations can be discerned for a specific supplier 

(34). The two major Swiss broiler suppliers analyzed (B and D) had a similar ST distribution 

(PSI=0.579). An association between a particular sample supplier and several genotypes was 

observed for two of the STs. ST-257 was most frequent genotype in the samples that were 

collected from slaughterhouse C, and the novel genotype ST-3963 was found in 34.6% of 

isolates from slaughterhouse D. A high FST value of 0.720 for the latter suggests that these 

genotypes may represent a local clone. Further analyses of Campylobacter bacteria that are 

present in delivery areas of both slaughterhouses would be interesting to test for the presence 

of a local clone and attempt to track the source of campylobacteriosis.  

MLST analysis of Swiss Campylobacter isolates has only recently been utilized. 

Accumulation of more data about the strain genotypes from various sources will give a more 

comprehensive picture about the distribution, population structure, and source of C. jejuni and 

C. coli contamination in Switzerland.  

We compared 95 sample pairs of cultivated Campylobacter isolates that were obtain from the 

caecum and neck skin of the same flock. More than half of these pairs had matching STs. 

Statistical analysis indicates that this is a highly significant association, and that the majority 

of samples obtained from the neck skin originated from the slaughtered flock itself. Given the 

fact that only single colonies were analyzed, and that both species and various genotypes can 

be present in the flock, the true number of self-contaminated carcasses can be quite large (5, 

52). The remaining non-matching isolates that were obtained from the neck skin could have 

come from other contaminated sources, such as previously slaughtered batches, equipment, 

working surfaces, or water (19, 36, 49). Additionally, cultivation of Campylobacter from the 

caecum samples was unsuccessful in some cases. Interestingly, certain STs were found only 
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in the caecum, whereas others were found only on the neck skin. Whether this indicates that 

environmental factors during the slaughter process lead to carcass contamination remains to 

be more thoroughly investigated. 

The flaB-based genotyping confirmed the results that were obtained with the MLST analysis 

for the paired samples; pairs that had identical STs also had identical flaB sequences. 

Generally, the resolution of the flaB sequence-based genotyping was slightly higher than the 

MLST. In contrast to the sequence data from the MLST targets, the flaB sequence does not 

allow phylogenetic analysis of the strains or differentiation between C. jejuni and C. coli. 

However, it represents a different typing method that is useful for short-term investigations 

due to the known instability of this marker, whereby flaB is more stable than the 

conventionally used flaA (29). Sequence analysis of the entire amplicons of the MLST target 

genes and flaB increases the discriminatory power only slightly, although this technique may 

be useful to further differentiate between certain strains.  

An increase in the number of C. jejuni and C. coli strains that are resistant to frequently used 

antibiotics (macrolide and especially the quinolones) has been reported worldwide (1, 32). In 

this study, no C. jejuni isolates and only 3.1% of the C. coli isolates were macrolide resistant, 

whereas 18.9% C. jejuni and 26.8% C. coli isolates were resistant to quinolone (10). 

Macrolide and the quinolones are allowed for use in veterinary medicine in Switzerland. A 

high number of quinolone-resistant isolates could be associated with common therapeutic 

application of enrofloxacin in broiler flocks; enrofloxacin treatment has been shown to induce 

Campylobacter resistance and should therefore be used prudently (2, 20). However, the 

number of antibiotic resistant C. jejuni and C. coli strains in Switzerland is in the lower range 

of the European average reported antimicrobial resistance cases in poultry (27).  

Remarkably, there was an association between specific genotypes and resistance to quinolone. 

Because all of the broiler strains that belong to the genotypes ST-464, ST-829, and ST-878 

carried the same point mutation within the gyrA gene that is responsible for quinolone 
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resistance, these Campylobacter genotypes are either prone to mutations within this gene or 

these STs are clonal. On the other hand, strains that belong to the frequently found clonal 

complexes CC45, CC22, CC257, CC607, and ST-586 appeared to be less susceptible to 

mutations within the gyrA gene. Previous studies of Belgian and Swiss Campylobacter 

reported similar results with CC45, where only single strains from this clonal complex were 

resistant to quinolone (16, 24). Additionally, 30% of the C. jejuni CC21 were resistant to 

quinolone, which was also seen in a previous study (16); this further suggests that there is a 

correlation between specific genotypes and antibiotic resistance. 

In conclusion, we found that C. coli represented approximately one-third of the isolates, 

whereas C. jejuni represented the other two-thirds of the Campylobacter isolates that were 

obtained from Swiss slaughter broilers. The isolates showed high genetic variability in MLST 

and flaB genotyping with most common STs and CCs also described for poultry in other 

countries. A few genotypes showed local supplier association. Comparison of the paired 

samples indicates that there was mainly “self-contamination” of slaughtered broilers, although 

cross-contamination of carcasses cannot be excluded. Intervention at the production level 

could therefore have a most promising effect on the presence of Campylobacter in poultry 

products. Antibiotic resistance toward macrolide and quinolone in C. jejuni and C. coli seems 

less pronounced in Switzerland compared to other European countries. Nevertheless, the 

presence of antibiotic resistant strains indicates that such antibiotics should be used carefully, 

as overuse could lead to selection and spread of resistant bacteria. 
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FIGURE LEGENDS 

 

Figure 1. Clustering of the paired sample strains using the entire MLST target sequences. The 

unweighted-pair group method using average linkages tree (UPGMA) was applied in 

BioNumerics. The sequence type (ST) (I), flaB types (II), and suppliers’ designation are 

indicated. Paired samples (IV) are labeled with corresponding numbers with the caecum (C) 

and neck skin (S). The numbers in brackets indicate identical STs that are variants based on 

differences that were observed within flanking regions of the sequence used for allele 

definition by PubMLST. 

 

Figure 2. Clustering of the strains based on the partial flaB gene sequences. The unweighted-

pair group method using average linkages tree (UPGMA) was applied in BioNumerics. The 

flaB type (I), species (II), and sequence type (ST) are indicated (III). The numbers in brackets 

indicate variants of identical flaB types within flanking regions of the sequence used for allele 

definition by PubMLST. 
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Table 1. A summary of the MLST data, supplier, and number of Swiss broiler isolates that 

were analyzed. 

Origin Species Clonal 

complex 

ST A B C D E Total 

21 19 0 0 0 0 1 1 

 21 0 4 1 1 1 7 

 50 0 1 4 0 1 6 

 262 0 1 0 0 0 1 

 883 0 1 0 0 0 1 

 917 0 1 0 0 0 1 

22 22 1 0 2 0 0 3 

45 45 2 7 2 0 1 12 

 137 0 2 1 0 0 3 

 1964 0 0 1 0 0 1 

48 48 1 5 2 1 1 10 

61 61 0 1 0 0 0 1 

206 122 0 2 1 0 0 3 

257 257 0 1 4 1 1 7 

283 267 0 1 0 0 0 1 

 383 0 1 0 0 0 1 

354 354 0 1 0 0 0 1 

 1073 0 0 0 0 1 1 

443 51 0 1 0 0 0 1 

460 2952 0 2 0 0 0 2 

607 3963 0 0 0 2 0 2 

ND 464 0 2 0 0 3 5 

ND 586 0 2 1 0 1 4 

C
. 

je
ju

n
i 

ND 2655 0 1 0 0 0 1 

Total   4 37 19 5 11 76 

828 825 0 2 1 2 0 5 

 827 1 4 6 0 0 11 

 829 0 0 0 0 1 1 

 854 0 1 3 0 1 5 

 1096 0 2 1 0 0 3 

 1545 0 1 0 0 0 1 

 1556 0 0 0 1 0 1 

 1563 0 1 0 0 0 1 

 1614 0 0 0 0 1 1 

 2142 0 2 2 0 1 5 

 3336 0 0 1 0 0 1 

ND 1049 0 0 0 0 1 1 

ND 1680 0 0 1 0 0 1 

C
. 

co
li

 

ND 3989 0 1 0 0 0 1 

C
a

ec
u

m
 

Total   1 14 15 3 5 38 
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603 Table 1. continued 

Origin Species Clonal 

complex 

ST A B C D E Total 

21 19 0 1 0 0 0 1 

 21 0 5 3 2 0 10 

 50 0 4 7 0 1 12 

 262 0 1 1 0 0 2 

 883 0 0 1 0 0 1 

 917 0 0 1 0 0 1 

 3988 0 0 1 0 0 1 

22 22 1 3 6 0 0 10 

42 42 0 2 0 0 0 2 

45 11 0 1 0  0 0 1 

 45 1 8 11 0 2 22 

 137 0 2 0 0 0 2 

 418 0 1 0 0 0 1 

 782 0 0 1 0 0 1 

 1964 0 0 1 0 0 1 

 2197 0 0 1 0 0 1 

 2219 0 0 1 0 0 1 

48 48 0 4 3 0 0 7 

52 52 0 0 1 0 1 2 

61 61 0 2 1 0 0 3 

177 1388 0 1 0 0 0 1 

206 122 0 3 0 0 0 3 

 227 0 0 1 0 0 1 

 572 0 1 0 0 0 1 

257 257 0 1 15 0 4 20 

 824 0 0 0 0 1 1 

283 267 0 2 1 0 2 5 

 383 0 1 0 0 0 1 

353 353 0 2 0 0 0 2 

354 878 1 3 4 0 0 8 

 1073 0 2 1 0 2 5 

362 587 0 0 1 0 0 1 

443 51 0 1 1 0 0 2 

460 2952 0 1 0 0 0 1 

607 607 0 1 1 0 0 2 

 3963 0 1 2 7 0 10 

677 677 0 0 1 0 0 1 

1034 1956 1 0 0 0 0 1 

ND 441 0 0 1 1 0 2 

ND 464 0 3 0 0 2 5 

ND 586 0 5 3 0 2 10 

ND 1962 0 0 1 0 0 1 

C
. 

je
ju

n
i 

ND 3964 0 0 0 0 1 1 

N
ec

k
 s

k
in

 

Total   4 62 73 10 18 167 
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604 Table 1. continued 

Origin Species Clonal 

complex 

ST A B C D E Total 

828 825 0 1 2 4 0 7 

 827 3 10 7 0 1 21 

 829 0 3 0 0 1 4 

 854 0 1 2 1 0 4 

 1016 0 2 0 0 0 2 

 1096 0 2 0 0 1 3 

 1413 0 0 1 0 0 1 

 1614 0 0 1 0 1 2 

 2142 0 5 4 0 0 9 

 3023 0 0 0 1 0 1 

 3990 0 0 1 0 0 1 

 3991 0 1 0 0 0 1 

ND 1584 0 0 0 2 0 2 

C
. 

co
li

 

ND 3989 0 1 0 0 0 1 

N
ec

k
 s

k
in

 

Total   3 26 18 8 4 59 

ND: Not defined 605 

606 

607 

A-E indicate the slaughterhouses  

New STs are indicated in bold 
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608 

609 

Table 2. The accession numbers and number of isolates that represent identical rpoB gene 

fragment sequences. 

Species Acc. No. Number of identical 

isolates 

C. jejuni HM486850 55 

 HM486850 1 

 HM486852 1 

 HM486853 5 

 HM486854 11 

 CP000538 18 

 HM486855 14 

 HM486856 1 

 DQ174198 87 

 CP000814 49 

 HM486857 1 

 HM486858 1 

 HM486859 1 

C. coli HM486860 7 

 HM486861 2 

 HM486862 6 

 AF372098 78 

 DQ174193 2 

H. pullorum HM486863 2 

 HM486864 1 

 HM486865 5 

 HM486866 5 

 HM486867 2 

 HM486868 1 

 HM486869 9 

 HM486870 2 

 HM486871 1 

 HM486872 2 

 HM486873 1 

 HM486874 1 

 HM486875 2 

 HM486876 1 

 HM486877 1 

 HM486878 2 

 HM486879 4 

 HM486880 1 

 HM486881 1 

 HM486882 1 

 HM486883 2 

 HM486884 1 

 HM486885 1 

 HM486886 1 

 HM486887 2 

 HM486888 2 

HM486889 1 

HM486890 1 

A. butzleri 

HM486891 1 
The accession numbers obtained in this study are indicated in bold 610 
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611 Table 3. The proportional similarity index of ST distribution between the five suppliers. 

 Supplier A Supplier B Supplier C Supplier D 

Supplier B 0.317    

Supplier C 0.344 0.579   

Supplier D 0.038 0.161 0.195  

Supplier E 0.132 0.426 0.467 0.117 

 612 

613  
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